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Laurent Schwartz died in Paris on the 4th of July
2002. He was born in Paris on March 5, 1915. His
father, Anselme Schwartz, had been born in 1872
in a small Alsatian town soon after the annexation
of Alsatia by Germany. A fervent patriot, Anselme
Schwartz had emigrated to France at the age of four-
teen (before speaking French). In Paris he man-
aged to carry out successful studies in medicine and
was to become a prominent surgeon in France in
the years between the two world wars. In 1907, 
having just become the first Jewish surgeon ever
officially employed in a Paris hospital, Anselme
married a first cousin, Claire née Debré. Anselme
and Claire had been raised in the Jewish religion,
but they brought up their three sons, Laurent,
Bertrand, and Daniel, in very strict atheism. The ex-
tended Schwartz family was remarkably extended.
Jacques Hadamard was Laurent’s grand-uncle. An
entire branch of the family were the Debrés: Lau-
rent’s maternal grandfather, Simon Debré, was the
chief rabbi in Neuilly; later there was a Debré pres-
ident of the national Academy of Medicine; there
have been and there are prominent Gaullist politi-
cians Debrés (by then Catholic converts). In 1938
Laurent Schwartz married the daughter of Paul
Lévy, Marie-Hélène, who was to become a distin-
guished mathematician in her own right.

On completing high school (the French lycée),
Laurent Schwartz hesitated between a career as a

classics scholar and that of a mathematician. He
had won the Concours Général in Latin; the Con-
cours Général was and still is the most prestigious
nationwide competition in France for high school-
ers. Meanwhile he had become fascinated by the
beauty of geometry, and, in the end, with the en-
couragement of one of his professors in classics
and of his uncle, the pediatrician Robert Debré, and
despite the rather unhelpful attitude of Hadamard,
dismayed that the sixteen-year-old Laurent was
not acquainted with the Riemann zeta function, he
tried for admission to the science classes of the
École Normale Supérieure (ENS), the most selective
and most scholarly oriented of the “Grandes
Écoles”. He underwent the rather grueling two-year
training (“hypotaupe”, followed by “taupe”, the
tunnelling “submole” and “mole” years, so to speak)
preparatory to entrance to the ENS, where he was
admitted in 1934. Gustave Choquet, a winner of the
Concours Général in Mathematics, had also passed
the admissions exam that same year, and so had
Marie-Hélène Lévy, one of the first normaliennes.
Although the ranks of potential French scientists
had been decimated by the First World War, there
was still an impressive roster of mathematicians,
saved from the carnage by their age, to whose
teaching the young normaliens could be exposed:
É. Borel, É. Cartan, A. Denjoy, M. Fréchet, G. Julia,
P. Montel, to name some of the best known. At the
nearby Collège de France they could also hear
Lebesgue’s lectures and take part in the Hadamard
seminar. The enduring love of Laurent Schwartz for
probability theory originated at that time, through
his personal acquaintance and private conversa-
tions with his father-in-law-to-be, Paul Lévy.

In 1937, his studies at the ENS completed and the
agrégation (the diploma needed to become a teacher
in a lycée) secured, Schwartz let himself be drafted
into military service, at that time compulsory in
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France and, in principle, lasting three years. The idea
was to get rid of the chore as early as possible and
then to fully engage in his teaching and research 
career. During his years at the École Normale,
Schwartz had become strongly politicized. His
nascent political interest owed little to the influence
of other students but much to his wide historical
and political reading. It had been triggered by the
revelation (gotten in some of the memoirs of the
1920s and 1930s) that the struggle in the First 
World War had not been the black-and-white affair
painted in the French high bourgeoisie in which he
had been raised. The Kaiser’s Germany had not been
quite the Evil Empire, but, yes, an empire and at the
same time an imperfect and evolving democracy
(with a substantial social-democratic party), not 
unlike France itself emerging from the Dreyfus 
affair. Another eye-opener for Schwartz was learn-
ing about the treatment of native peoples by the 
European colonial powers. The late 1930s were 
also the time of the Moscow trials; Schwartz per-
ceived at once their true nature and meaning. He 
became and remained for the rest of his life an ardent
anti-Stalinist (later, as a professor in Nancy he was
accused in leaflets circulated by Communist-party
students of being a CIA agent). It is not hard, more
than sixty years later, to sympathize with that very
idealistic, and moralistic, young Frenchman of the 
late 1930s, indignant at the evils of colonialism 
and opposed to the right-wing politicians whose 
hatred of the socialists was pushing them towards
fascism, attracted to the far left (sole supporters of
the soon-to-be-destroyed Spanish Republic) but 
repelled by Stalin’s regime. With the Nazi threat 
looming ever larger, he became an active Trotskyite,
and he remained one until 1947. It is striking, 
however, to realize how critical he was from the 
start of some of the political analyses and assess-
ments by Trotsky and his followers. His political 
evolution brings to mind that of another French
mathematician, Jean van Heijenoort, who had 
belonged to the same leftist circles as Schwartz, 
then abandoned mathematics to follow Trotsky 
as a kind of secretary from Istanbul to Mexico. Even-
tually he emigrated to the U.S. (enrolling as a Ph.D.
student at NYU, where he shared an office with 
Louis Nirenberg) and in 1948 published in the 
Partisan Review a severe critique of the logical 
thinking in Marxism.

Politics, always viewed from the standpoint of
a moralist, remained a permanent concern of 
Laurent Schwartz. After World War II he militated
actively and very visibly against the French war and
later the U.S. war in Vietnam (he was a member of
the Russell tribunal) and most prominently against
the French war in Algeria. A mathematics Ph.D.
student at the University of Algiers, Maurice Audin,
had been tortured and murdered by the French 
military. Schwartz chaired the “Comité Audin”, 

demanding (unsuccessfully) an official enquiry into
the murder. He also chaired the university com-
mittee that awarded a posthumous Doctorat ès
Sciences to Audin. Jointly with Lipman Bers, Henri
Cartan, Jean Dieudonné, and others, he agitated
constantly to rescue mathematicians from repres-
sive governments around the world: José Luis
Massera in Uruguay, Jiri Müller in Czechoslovakia,
Leonid Pliush in the USSR, to name a few. Defense
of human (and not only mathematicians’) rights
took up much of his public activity, often in close
collaboration with the classical historian Pierre
Vidal-Naquet. He used to joke that one of the few
merits he saw in being a member of the French
Academy of Sciences was that the title might help
impress some foreign official to “do the right 
thing”. In the late 1970s he was among the relatively
few European leftists who protested the Soviet 
invasion of Afghanistan.

Back in 1938, a recruit in the French army, 
Laurent saw clearly what had happened at Munich
and that war was coming. War came, and it was 
no longer possible for the Schwartzes to live in
northern France under German occupation. For a
while Laurent continued to be paid a stipend by 
the office that eventually became the CNRS 
(Centre National de la Recherche Scientifique). The
administrators seem not to have been paying much
attention to the fact that he was Jewish. His em-
ployment, however, was abruptly terminated in
1942, after which (and until the end of the war) he
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received some modest financial support from 
the foundation Aide à la Recherche Scientifique,
funded by Michelin, the tire production company,
which did not abide by the racial policies of the
Vichy government.

In 1940–41 the scientific environment in which
Laurent and Marie-Hélène Schwartz found them-
selves was a bit of a desert. But luck helped them
come across Henri Cartan and Jean Delsarte in
Toulouse on a brief visit. Cartan and Delsarte, who
were earlier acquaintances, informed them that
many faculty members of the mathematics de-
partment of the University of Strasbourg (then the
premier mathematics department in France) had
moved to the University of Clermont-Ferrand. There
they both could work under the guidance of some
of the migrated mathematicians: J. Dieudonné,
Ch. Ehresmann, A. Lichnerowicz, and S. Mandel-
brojt, among others. The move to Clermont-Ferrand
(the Schwartzes lived in very constrained circum-
stances in a nearby village, spending their weekdays
at the university) represented an important turn-
ing point in Laurent’s career. He met many of the
members of the Bourbaki group and was intro-
duced to their approach to mathematics. He became
a “Bourbakist” as he had become a Trotskyite,
deeply and lastingly influenced but far from un-
critical. His major disagreement with Bourbaki 
lay far in the future. Interestingly, its roots were
to be in the Bourbaki formulation of measure 
theory, exclusively concerned with Radon mea-
sures on locally compact spaces. Schwartz came 
to regard it as one of the major missteps of the
group. Having himself been part of the writing
committee, he was partly responsible. He was 
disturbed by the blatant inadequacy of the 
Bourbaki framework to accommodate the results
of Paul Lévy and other probabilists, J. L. Doob
among them, dealing with measures on infinite-
dimensional spaces such as C([0,1]) , definitely 
not locally compact. His renewed interest in 
probability theory later solidified his dissent.

The other main mathematical event in the 
Clermont-Ferrand period of Schwartz’s life was
the completion of his Ph.D. thesis on the approxi-
mation of continuous functions on R+ = [0,+∞)
by sums of exponentials S = a0 +

∑
n an exp(−λnx),

where the infinite sequence of distinct real num-
bers λn > 0 is fixed. A theorem of Ch. Müntz 
implies that these sums are dense in C(R+) if and
only if 

∑
n λ−1

n = +∞ . Schwartz proved that when∑
n λ−1

n < +∞ , the closure in C(R+) of the subspace
made up of the sums S consists of the functions
that can be extended holomorphically to the open
half-plane �z > 0. His main tools were functional
analysis and the Fourier and Laplace transforms,
a kind of trial run for the work that was to make
him famous.

In other times the doctorate would have opened
the way to a straightforward career as a teacher in
a university, first as a “Maître de Conférence”, later
as a full professor. But not much could be straight-
forward in such times. There was a rush of events,
both on the world stage and at the personal level.
In 1943 the Allied forces landed in North Africa,
and the Germans invaded the south of France. The
movements of a Jewish Trotskyite became very
risky; false identities for the family had to be 
secured. In the middle of all this, in the hope of 
at least genetic survival, the Schwartzes decided 
to have a child. Marie-Hélène had a difficult 
pregnancy; the Vichy police raided the hospital
where she had left her newborn son, Marc-André
(on medical advice, so as not to risk transmitting
to the baby the TB of which she seemed, but was
not sure, to be cured). In the months that followed,
the changes of address of the little family were 
unavoidable and frequent.

In the summer of 1944 Paris was liberated by
the Allied forces, and soon thereafter the German
troops were pushed back to the Rhine. In Novem-
ber 1944 (while still living under the assumed name
of Sélimartin), Schwartz discovered distributions:
as convolution operators ϕ → u∗ϕ on the space
C∞comp of test functions, not quite their final 
definition (that was to come to him in February
1945) as continuous linear functionals on C∞comp. 
After teaching at the University of Grenoble 
during the academic year 1944–45, he was invited
to join the faculty in Nancy, where Delsarte and
Dieudonné were hoping to create a world-class
center of mathematics, a kind of mirror image of
the Chicago mathematics department, where André
Weil was at the time. Delsarte, Dieudonné, Weil,
jointly with Henri Cartan, Claude Chevalley, and
René de Possel, had been the “founders” of Bour-
baki; and Nancago was the name of the fictitious
“institution” that had started to bring the Bourbaki
opus into print. The composition of the entity
Bourbaki was ever-changing, upcoming young
mathematicians replacing departing older ones.
Schwartz was soon recruited into the group. In
1950 he was awarded the Fields Medal for his 
distribution theory. In 1952 he came to Paris as a
professor at the Sorbonne.

In 1959 he left the Sorbonne to take up a pro-
fessorship at the École Polytechnique (nicknamed
L’X), where Paul Lévy had been teaching and where
Schwartz embarked on an ambitious program of
reform. Before Schwartz’s appearance on the 
scene, the X did not produce any researcher in the
sciences. It was and still is a military school, its 
president an army general. For ages it had been a
top, if not the top, engineering school in France; its
alumni were mostly engineers employed in indus-
try, often in the high administrative echelons of pri-
vate and, increasingly, public enterprises. Only a
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few students chose a military career. The entrance
examination has always been very selective, more
or less on a par with that of the École Normale
Supérieure. In principle the students entering X
were a terrific talent pool. Schwartz directed his
considerable experience as a militant to convince
officialdom and colleagues to help create the con-
ditions that would attract young talent to research
in mathematics as well as in related disciplines
(especially physics). He recruited brilliant younger
mathematicians to the “laboratoire de mathéma-
tiques”, and he organized a seminar that became
internationally known and is still functioning. One
can safely say that his Polytechnique campaign
was a resounding success. The school is now a
very active research center, where some of the best
mathematicians in France teach and do research
and help students to start doing their own.

After Polytechnique, Laurent Schwartz fought a
last campaign to make the universities more com-
petitive and for what he called la sélection. He 
advocated injecting some selectivity into the rules
of admission to the universities. The admission 
is open to anybody with an end-of-high-school
diploma; the standards for this diploma have been
declining. Historically speaking, his timing was
poor. French academia was in rapid transition 
from a network of a few sparsely populated elite
institutions (in 1952, circa 250,000 students in all
subjects) to a mass education enterprise (close to
2.5 million students today). At the end of the 
twentieth century and still under the influence of
May 1968, the dominant ideology has been that 
of equalitarianism. Any proposal with a hint of 
meritocracy has evoked suspicion and hostility.
Even those colleagues who sympathized with his
aims felt the fight was hopeless, too late, too in-
compatible with the need to educate large masses
of youngsters not especially inclined towards schol-
arship. One can safely say that in the fight for
sélection, his failure was total. As he himself used
to say with a smile, who could have predicted that
the Soviet regime would collapse before any change
in the admission regime of French universities?

During his long career Laurent Schwartz had
many students, and it will suffice here to name five
of them, among the earlier ones and the most 
eminent: Louis Boutet de Monvel, Alexandre
Grothendieck, Jacques-Louis Lions, Bernard 
Malgrange, and André Martineau.

No sketch of Laurent Schwartz’s life can neglect
to mention his achievements as a lepidopterist.
Parts of his collection of tropical butterflies and
moths, one of the greatest private collections in the
world (with more than 25,000 specimens), have
been donated to the Muséums d’Histoire Naturelle
in Paris, Lyon, and Toulouse, and parts to a museum
of natural history in Cochabamba (Bolivia). His 
collecting through the tropics led to the discovery

and description of several new species now named
after him.

No sketch of Laurent Schwartz’s life can fail to
recall his kindness. The intensity and range of his
political commitment might give the impression 
of uncompromising radicalism. Actually he was
extremely tolerant of other people’s opinions. He
confronted officials and officers with firmness but
always with courtesy. Equanimity best describes his
mental attitude, and the willingness to concede
that he might be wrong.

Laurent Schwartz is survived by his wife, Marie-
Hélène, and his daughter, Claudine Robert, a 
professor of statistics at that same University of
Grenoble where he had held his first university
position.

Distribution Theory and Functional
Analysis
In the middle of the twentieth century, mathe-
matics was ready for a satisfactory theory of 
generalized functions. The needs and the means to
satisfy them were present.

The need was demonstrated by the various and
recurrent attempts during the preceding half-
century to define derivatives of functions that did
not seem likely candidates for differentiation—
step functions, for example. Often but not always
these attempts were triggered by the need to solve
differential equations, ordinary or partial. Two of
the most significant (and successful) attempts had
occurred at the beginning of the century: Heavi-
side’s symbolic calculus, invented to solve the 
ordinary differential equations (ODEs) of electrical
circuits, and Hadamard’s finite parts, introduced to
obtain explicit formulas for what are now called the
fundamental solutions of the wave equation in
higher space-dimensions. The “explanation” of
Heaviside’s calculus through the Laplace trans-
form was not very convincing, but it pointed to
some kind of link with Fourier analysis. Heavi-
side’s calculus transformed convolution into 
multiplication, but the derivative rules for the 
convolution (f ∗ g)(t) =

∫ t
0 f (t − s)g(s)ds of two dif-

ferentiable functions in the closed half-line [0,+∞),
d
dt

(f ∗ g)(t) = f (0)g(t)+ (f ′ ∗ g)(t),

were poorly understood. In 1926 Norbert Wiener
used regularization, i.e., convolution with com-
pactly supported C∞ functions, to approximate
continuous functions f by smooth ones.

An impressive widening of the kinds and uses
of generalized functions came from theoretical
physicists engaged in building quantum mechan-
ics. On the real line the “Dirac function” was known
to Heaviside: it was the function with symbol 1, the
derivative of what we sometimes now call the Heav-
iside function, equal to 0 in (−∞,0) and to 1 in
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(0,+∞), whose symbol is 1/p . Without making 
the link with Heaviside’s work, Dirac used ap-
proximations of his “function” by true functions
and introduced multidimensional Dirac measures,
for instance, the measure associated to the light-
cone Γ ⊂ R4,

ϕ →
∫
ϕ(x)δ(x2

0 − x2
1 − x2

2 − x2
3)dx0dx1dx2dx3

=
∫
Γ
ϕ(x)dµ,

where dµ is the natural invariant measure on Γ (in
this equation ϕ can be any continuous function in
R4 with sufficient decay at infinity). The late 1920s
and the 1930s saw accelerated progress in this 
direction and in new ones:

Boundary-value problems for elliptic equations
required handling of generalized functions more
singular than Radon measures, e.g., multilayer
boundary data.

In the last chapter of his book [Bochner, 1932],
Bochner defines the Fourier transform of finite
sums of the kind

(1)
N∑
n=0

dn

dxn
(Pn(x)fn(x)),

where Pn is a polynomial and fn ∈ L2(Rn) (N ∈ Z+
can vary). This is essentially the definition of a
tempered distribution. What is missing? Bochner
looks at the derivatives dn/dxn as formal opera-
tions, not as weak derivatives; there is no duality,
no space of (rapidly decaying) test-functions. The
space of sums (1) is stable by (formal) Fourier
transform. Fourier transform exchanges multipli-
cation and convolution, although Bochner does
not say when these operations are defined. He does
not even point out that the Dirac function is of type
(1). There is no evidence that he ever made anything
of his generalized functions, not even when later
(in 1946) he defined the generalized (truly, the 
distribution) solution of a linear ODE.

Schwartz did not know anything of Wiener’s and
Bochner’s works, but he attended Leray’s Peccot 
lectures at the Collège de France in 1934–35, in
which Leray defined the weak solution of a second-
order linear partial differential equation
P (x, ∂x)u = 0 in R3 by the property that∫

R3
u(x)P
(x, ∂x)ϕ(x)dx = 0

for every compactly supported function ϕ of
class C2. Here P
(x, ∂x) denotes the transpose of
P (x, ∂x); of course the coefficients of P (x, ∂x) must
have a modicum of regularity, and u must be 
locally integrable. Leray did not define the deriva-
tives ∂αx u for |α| > 2.

The closest any mathematician of the 1930s ever
came to the general definition of a distribution is

Sobolev in his articles [Sobolev, 1936] and [Sobolev,
1938] (Leray used to refer to “distributions, in-
vented by my friend Sobolev”). As a matter of fact,
Sobolev truly defines the distributions of a given,
but arbitrary, finite order m: as the continuous lin-
ear functionals on the space Cmcomp of

compactly supported functions of class Cm. He
keeps the integer m fixed; he never considers the
intersection C∞comp of the spaces Cmcomp for allm. This 

is all the more surprising, since he proves that
Cm+1

comp is dense in Cmcomp by the Wiener procedure of 

convolving functions f ∈ Cmcomp with a sequence of 

functions belonging to C∞comp! In connection with 
this apparent blindness to the possible role of
C∞comp, it is amusing that in 1944, when Schwartz 

mentioned to Henri Cartan his inclination to use
the elements of C∞comp as test functions, Cartan 

tried to dissuade him: “They are too freakish (trop
monstrueuses).”

Using transposition, Sobolev defines the multi-
plication of the functionals belonging to (Cmcomp)∗

by the functions belonging to Cm and the differ-
entiation of those functionals: d/dx maps (Cmcomp)∗

into (Cm+1
comp)∗ . But again there is no mention of

Dirac’s δ(x) nor of convolution, and no link is made
with the Fourier transform. He limits himself to 
applying his new approach to reformulating and
solving the Cauchy problem for linear hyperbolic
equations. And he does not try to build on his 
remarkable discoveries. Only after the war does 
he invent the Sobolev spaces Hm and then only for
integers m ≥ 0. Needless to say, Schwartz had not
read Sobolev’s articles, what with military service
and a world war (and Western mathematicians’ 
ignorance of the works of their Soviet colleagues).
There is no doubt that knowing those articles would
have spared him months of anxious uncertainty.

In the 1940s there were many different areas 
besides differential equations in which the need for
universal concepts and tools was becoming clear.
Three of them will be mentioned here.

Representation Theory for Lie Groups
The important book [Weil, 1940] of André Weil
had already pointed to the relevance, in the absence
of a differentiable structure on the group, of two
of the most basic concepts of harmonic analysis:
convolution and Fourier transform. (The defini-
tion by duality of a Radon measure in Weil’s book
should, but does not seem to, have been inspiring
to Schwartz, who had read it.) In the 1950s and
1960s, F. Bruhat and Harish-Chandra were to show
the role of distributions on a Lie group. The nat-
ural generalization of the Schwartz space S and of
the Fourier transform to semisimple Lie groups 
was introduced by Harish-Chandra and put to 
spectacular use. Distributions provided a solid
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framework and language for noncommutative 
harmonic analysis.
Homology and Cohomology of Smooth Manifolds
Today we know that there is essentially one coho-
mology theory: cohomology with values in the 
appropriate sheaf. But in the 1940s there were 
various notions of homology and cohomology 
floating around. On a C∞ manifold the theorems
of De Rham, following up on Hodge Theory, pointed
to duality between (singular) homology and 
(De Rham) cohomology, but the duality could 
not be formalized in mathematically acceptable
analytic terms. On learning of distributions 
directly from Schwartz, De Rham saw at once the
concept that had been missing: currents, which is
to say, differential forms with distribution coeffi-
cients (see [De Rham, 1955] and [Schwartz, 1966]).
The duality with (compactly supported) smooth
differential forms is built into their definition, 
allowing the extension to currents of the exterior
derivative and, on a Riemannian manifold, of the
Hodge operations. Cocycles and coboundaries can
then be conceived as analytic objects: closed and
exact currents, respectively. Chains in singular 
homology, and thus very “concrete” geometric 
objects, are viewed as currents. Currents of weak
regularity have turned out to be important also 
in the study of minimal surfaces and of analytic 
varieties.
Quantum Field Theory
As Schwartz liked to point out, in general physi-
cists were better prepared to accept distributions
than were mathematicians. Of course, physicists
had invented some of them and had been using
them for a while. They were accustomed to the idea
that a functional could not, in general, be evaluated
at a point, but had to be tested over an extended
region. In fact, the axiomatic theory of quantum
electrodynamics needs a highly sophisticated ver-
sion of distributions: distributions with values in
the set of unbounded linear operators on a Hilbert
space (see [Streater, 1964]). There are serious dif-
ficulties associated with these objects, rooted in the
impossibility of multiplying among themselves
most scalar distributions. Since quantum electro-
dynamics is an incredibly accurate method for pre-
dicting experimental measurements, there must
be ways of circumventing these difficulties. Therein
lies in part the justification for renormalization.

As for the tools required to develop a unified 
theory of generalized functions, they were ready
at hand in the 1940s; in fact, they were essentially
available since the publication of the landmark
monograph [Banach, 1932]. The Bourbakists were
experts on the subject of the duality of very gen-
eral locally convex topological vector spaces (a
subject to which a crucial contribution was made
by G. Mackey in the 1940s).

Thus there is no question that the times were
ripe and that Laurent Schwartz was especially well
placed to provide a theory of generalized func-
tions. He said often that the invention of distribu-
tions would have occurred in any case, with or
without him, and that it would have come within
the next ten years at the latest. But in all likelihood
the presentation would have been quite different
from his own, heavily dependent on the theory of
topological vector spaces.

A number of results intrinsic to distributions and
partial differential equations cannot be proved
without recourse to sophisticated functional 
analysis. But, undoubtedly, depending on it can be
a hindrance to a quick introduction to distributions.
Fortunately, in teaching it can easily be, and most
of the time is, bypassed. Most of the basic tenets
of the theory can be stated and proved using solely
sequences of test functions or of distributions. The
great success and usefulness of distribution the-
ory lies in its simplicity and in the easy, automatic
nature of its operations. Many have accused it of
being “shallow”. But that is precisely what analy-
sis needed, a shallow justification for what it wanted
to do: for instance, to differentiate under the in-
tegral sign without thinking twice. With the easy
part taken care of, analysts could push further and
take care of the finer and more difficult points.

Laurent Schwartz chose to spend half of the
decade of the 1960s proving theorems about 
highly complicated topologies on tensor products
of topological vector spaces to be able to study 
distributions valued in those spaces. Meanwhile, 
the tendency in large sectors of analysis was point-
ing in the opposite direction. In the past thirty to
forty years the tendency has been to use scales of
Banach spaces (such as the Sobolev spaces Wp,s)
rather than more general spaces. It has been rein-
forced by the now-predominant preoccupation
with nonlinear differential equations. Yet use of
Fréchet spaces and also of inductive or projective
limits of Fréchet spaces is unavoidable and 
remains alive in other areas of analytic geometry.
It suffices to mention Serre’s duality in the coho-
mology of the Dolbeault differential complex.

Granted that Schwartz might have been 
replaceable as the inventor of distributions, what
can still be regarded as his greatest contributions
to their theory? This writer can mention at least two
that will endure: (1) deciding that the Schwartz
space S of rapidly decaying functions at infinity and
its dual S′ are the “right” framework for Fourier
analysis, (2) the Schwartz kernel theorem.

At first the student might not appreciate the 
full significance of the choice of S, perhaps not re-
alizing that there are many other spaces stable
under Fourier transform, spaces of functions that
decay much faster at infinity, and not appreciat-
ing the deeper fact that, owing to the underlying
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uncertainty principle, the temperedness of tem-
pered distributions ensures the localizability of
their Fourier transform (think of analytic func-
tionals whose Fourier transform can grow expo-
nentially and which are “located” neither here nor
there). Certain spaces of Gevrey ultradistributions
are also localizable, but although useful in a num-
ber of technical questions, they are less “natural”.

The Schwartz kernel theorem states a fairly
miraculous property of the main distribution
spaces, the fact that in certain aspects they are more
like finite-dimensional Euclidean space than like in-
finite-dimensional Banach spaces. In any one of
them, C∞, C∞comp, D′ , D′

comp , S, S′ , etc., every closed 

and bounded set is compact. Moreover, just as the
(bounded) linear operators Rm → Rn are elements
of Rm ⊗Rn (i.e., m× n matrices), the bounded 
linear operators, say K : C∞comp(M2) →D′(M1) (M1

and M2 are two smooth manifolds), are in one-to-
one correspondence with distributions K(x, y) in
the product manifold M1 ×M2. With a half-century
delay, this gives legitimacy to the general Volterra
concept:

∀ϕ ∈ C∞comp(M2), Kϕ(x) =
∫
M2

K(x, y)ϕ(y)dy,

using the physicists’ integral notation to mean the
duality bracket. Under suitable hypotheses on 
supports and partial regularity, this gives also a 
general meaning to Volterra composition: the 
“kernel” of the composite K1 ◦K2 is the “integral”∫
K1(x, y)K2(y, z)dy . To round off the analogy 

with the finite-dimensional situation, it must be
mentioned that this property is equivalent to the
isomorphism of D′(M1 ×M2) with the tensor
product D′(M1) ⊗̂ D′(M2), where the hat indicates
completion (in the sense of every “natural” 
topology on the tensor product): distributions
u(x, y) in M1 ×M2 are equal to infinite sums∑∞
n=0 vn(x)⊗wn(y) . In all this D′ can be replaced

by any one of the other functional spaces above
(and many others). The Schwartz kernel theorem
was Grothendieck’s starting point in building his
theory of nuclear spaces (the kernel theorem is
true because the spaces under consideration are nu-
clear). Today there is no real need to know the
proof of the Schwartz kernel theorem (there is a
very simple proof due to L. Ehrenpreis). The theo-
rem provides the foundation on which to start
studying special classes of operators, for example,
pseudodifferential operators or Fourier integral
operators, by studying the corresponding kernel
distributions.

Today it is hard to conceive of pseudodifferen-
tial operators or of Fourier integral operators 
without distributions as defined by Schwartz in
1945. More generally, their definition provided 

the language for vast tracks of mathematics, pure
and applied.

It is also hard to reconstruct how difficult it
was to arrive at the right definition (many other de-
finitions have been devised subsequently, but none
has passed the test of time). It is in the nature of
mathematics that most of its theorems and defin-
itions are destined to be simplified and, at least for
the very successful, to come to seem obvious and
to be taken for granted. Dieudonné used to say that
mathematicians would like to be remembered for
their most difficult theorems, but most of the time
it is their simplest results that survive in the 
collective consciousness of later generations.

To close this section, the following anecdote
might be illustrative. In 1948 Laurent Schwartz
visited Sweden to present his distributions to the
local mathematicians. He had the opportunity of
conversing with Marcel Riesz. Having written on the
blackboard the integration-by-parts formula to 
explain the idea of a weak derivative, he was in-
terrupted by Riesz saying, “I hope you have found
something else in your life.” Later Schwarz told
Riesz of his hopes that the following theorem
would eventually be proved: every linear partial 
differential equation with constant coefficients has
a fundamental solution (a concept made precise 
and general by distribution theory). “Madness!” 
exclaimed Riesz. “This is a project for the twenty-
first century!” The general theorem was proved 
by Ehrenpreis and Malgrange in 1952. At the end
of the twentieth century, there were proofs of it 
in ten lines.
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Laurent Schwartz,
Radonifying Maps,
and Banach Space
Geometry
Gilles Pisier

Although he did not himself work in that direction,
Laurent Schwartz had a major influence on the
rapid development of the geometry of Banach
spaces in the early 1970s, the expansion of which
continues till today.

This happened mainly through a series of yearly
seminars starting with the 1969–1970 “red semi-
nar” on Radonifying maps (see [11]), followed by the
eight volumes of the Maurey-Schwartz functional
analysis seminars from 1972 to 1981 (with a one-
year gap 1976–77 due to Maurey spending that
year visiting the Jerusalem Institute for Advanced
Studies). At the University of Paris the tradition of
publishing the notes of “influential seminars” was
well established at that time (notably around mem-
bers or ex-members of the Bourbaki group), but
these notes usually appeared after a long delay, 
because the university was notoriously understaffed
(the mathematics department was reduced then
to the Institut H. Poincaré). From 1969 on Schwartz
was able to use the considerably richer resources
of the École Polytechnique to publish one or two
seminar volumes per year. He had created the
Centre de Mathématiques there in 1965, and 
that center published an impressive number of
seminar volumes on partial differential equations
(in collaboration first with Goulaouic, later with
other specialists). During the period 1970–72 the
latter seminar included a few “guest lectures” in
functional analysis (notably one by Kwapień on
Enflo’s counterexample to Grothendieck’s approx-
imation problem and one by Pietsch on p-absolutely
summing maps), but after that an independent
seminar was started with Maurey (later on,
Beauzamy and the author became virtual co-
organizers). The notes for a given talk were dis-
tributed usually a few weeks later and were gath-
ered and reproduced without delay at the end of
the year. Each of these seminars attracted to the
École Polytechnique numerous visitors and played
a “federative role”: they quickly became a precious
meeting point for the different directions inside
their subject.

While still at the university, Schwartz himself had
published the notes of a classical seminar devoted
to making more accessible Grothendieck’s thesis
on tensor products of locally convex spaces, which
he had supervised [17]. However, when Schwartz
started his theory of Radonifying maps, I doubt that
he foresaw that it would relate back to Grothen-
dieck’s “Résumé” [3], as it later did through Saphar’s
and Maurey’s theses. Schwartz’s motivation was
rather the study of probability theory on infinite-
dimensional spaces. It is well known that he had
had a keen interest in Brownian motion early on
[18] (perhaps helped by his family ties: Paul Lévy
was his father-in-law). So the initial motivation
came mostly from measure theory. In the mid-
1960s he had given a course on Radon measures
on topological spaces at the Bombay Tata Institute
that was later published [21]. The 1960s also saw
the emergence as such of the theory of “infinite-
dimensional Gaussian measures” or equivalently of
“Gaussian processes” (among which Brownian 
motion is the classical example). We have in mind
the works of Gelfand-Vilenkin, Sazonov-Minlos (for
measures on nuclear spaces), Leonard Gross (for
“abstract Wiener spaces”), Richard Dudley, Xavier
Fernique, Michael Marcus, Larry Shepp (for conti-
nuity and integrability of Gaussian processes), and
Jean-Pierre Kahane (for random Fourier series [5]),
to name a few whose work must have been inspi-
rational to Schwartz at some point.

The following problem (originating in Kol-
mogorov’s work) occupied center stage: Given a 
Banach space E (say separable for simplicity), con-
sider a random process {X(t,ω) | t ∈ E∗} such
that t → X(t, ·) ∈ L0(Ω,A, P ) is linear and contin-
uous. When do the “random paths” t → X(t,ω)
correspond ω-almost surely to an element of E?
In other words, when is there a (strongly measur-
able) E-valued random variable ω→ e(ω) such that
X(t,ω) = 〈t, e(ω)〉 for all t in E∗?

For example, when E = C([0,1]) (the space of
continuous functions on [0,1]), and

∀µ ∈ C([0,1])∗ X(µ) =
∫
Xt dµ(t),

we are equivalently asking, When does the process
(Xt )t∈[0,1] have (a version with) continuous paths?

Another example is provided by Gaussian 
measures: Let (gn) be a sequence of independent
standard Gaussian random variables (with mean 0
and variance 1). Let (xn) be a sequence in E such
that

∀t ∈ E∗
∑
n
|t(xn)|2 <∞.

Then, if we define X(t,ω) =∑n gn(ω)〈t, xn〉 , we
find (by a 1968 result of Itô-Nisio; see, e.g., [4]) 
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that the above question is equivalent to, When
does the series ∑

n
gn(ω)xn

converge strongly in E for almost every ω?
Actually, Schwartz preferred to think of this

problem using cylindrical measures instead of 
linear random processes. One may associate to the
linear process X the collection

λ = {λS | S ⊂ E∗, S finite},
where λS is the probability distribution on RS of
the restricted process {X(t, ·) | t ∈ S}. Conversely,
any family of probabilities {λS} (satisfying an ob-
vious linearized consistency requirement) comes
from a process X as above. When the answer to the
above problem is positive, the associated “cylin-
drical probability” on E (meaning the projective 
system λ = {λS}) actually comes from a Radon
probability on E, the distribution of the above 
random variable ω→ e(ω) . One can then essen-
tially say that λ “is” Radon if and only if the 
answer to the above problem is positive. For in-
stance, if E is a Hilbert space, then, in the second
example above, λ “is” Radon if and only if∑
n ‖xn‖2 <∞.
The Radonifying maps are linear maps u : E → F

between Banach spaces having the property of
transforming a certain class of cylindrical mea-
sures on E into Radon measures on F . More pre-
cisely, u : E → F is called p-Radonifying (0 < p <∞)
if for any probability space (Ω,A, P ) and any 
continuous linear map X : E∗ → Lp(Ω,A, P ) the
composition X ◦ u∗ : F∗ → Lp(Ω,A, P ) comes from
a Radon measure on F . Schwartz showed that for
the latter measure, x→ ‖x‖pF is then automatically
integrable, so that p-Radonifying maps form a 
Banach space when p ≥ 1.

To illustrate this, the continuity of the paths of
Brownian motion can be seen as a consequence of
the fact that the natural inclusion map
u : Lipα → C([0,1]) is p-Radonifying when α > 1/p
(here f ∈ Lipα means that there is a constant c
such that |f (s)− f (t)| ≤ c|s − t|α for all s and t in
[0,1]).

During the same period, other researchers were
studying linear maps with similar properties, 
notably Vershik and Sudakov in the Soviet Union
(see [25]), but whether there was any mutual 
influence is unclear.

Actually, Schwartz was initially interested in a
more general kind of Radonifying map (see [21]),
but when informed (apparently through a letter
from Kwapień) of the existence of Pietsch’s theory
of p-absolutely summing maps, he focused on the
p-Radonifying ones. At an important meeting that
he attended in Poland in 1969 (see [19]), Schwartz
met notably S. Kwapień and A. Pietsch and invited

them to visit him in Paris. By that time he knew 
that p-Radonifying maps were almost the same 
as Pietsch’s p-summing maps (which had their
roots in Grothendieck’s work, at least for p = 1
and p = 2). He had also determined precisely 
when a diagonal multiplication u : *q → *r is 
p-Radonifying for 0 < p < 1 and for arbitrary 
values of 0 < q, r ≤ ∞ .

A map u : E → F is called p-absolutely summing
(in short, p-summing) if any sequence (xn) in E
such that sup{∑n |ξ(xn)|p | ξ ∈ E∗, ‖ξ‖ ≤ 1} <∞
is transformed by u into one such that∑
n ‖u(xn)‖p <∞. Consideration of the cylindrical

probability associated to (say)

λ =
∑
n≥1

2−nδ2n/pxn

(equivalently of the linear process X : E∗ → Lp(E,λ)
defined by X(t,ω) = 〈t,ω〉) shows that since∫

‖x‖pu(λ)(dx) =
∑
n
‖u(xn)‖p,

p -Radonifying implies p -summing for any
0 < p <∞ . Schwartz (see [20]) showed that the
converse holds for 1 ≤ p <∞ (assuming F reflex-
ive if p = 1). In the case 0 < p < 1, he needed to as-
sume moreover that E has Grothendieck’s metric
approximation property, but a counterexample
[15] later showed that the result may fail very
strongly without this assumption.

Among the first successes to the credit of his
theory, the initial proof by Maurey of the “Pietsch
conjecture” (independently proved by S. Chevet)
used Radonifying ideas. This is a striking result:
whenever 0 < p,q < 1, p-summing and q-summing
are the same!

Schwartz’s ideas were pursued notably by
A. Badrikian and S. Chevet (see [1] and [2]), but once
the connection was made with p-summing maps,
Maurey’s thesis [10] (following H. P. Rosenthal’s
work on subspaces of Lp [16]) opened up a broad
new area of research, and the term “p-Radonifying”
was quickly dropped for “p-summing”.

Nevertheless, the connection with probability
theory (notably Gaussian or q-stable measures for
0 < q < 2) remained crucial and definitely can be
traced back to Schwartz’s work. His “duality theo-
rem” for p-Radonifying maps played a key role
(see [6]) in later developments. Stated in modern
terms, this essentially says that if E∗ embeds iso-
morphically in an (abstract) Lp-space, then every 
p-summing u : E → F has a p-summing adjoint
u∗ : F∗ → E∗ . This extends the self-duality of
Hilbert-Schmidt maps between Hilbert spaces.
Moreover, it was later proved (see, e.g., [8]) that the
sufficient condition that E∗ embeds in Lp is actu-
ally necessary. For example, this applies when
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E∗ = L2 for any p (Gaussian embedding) or when
E∗ = Lq with 0 < p < q < 2 (q-stable embedding).

Undoubtedly, this result was part of Maurey’s ini-
tial inspiration when he introduced “type”, “stable
type”, and “cotype” for Banach spaces: A Banach
space E is called of type p if 

∑
n ‖xn‖p <∞ implies

the almost sure convergence of 
∑
n gnxn (where the

random variables (gn)’s are Gaussian as above). It
is called of cotype p if the converse implication
holds. Shortly afterwards, in 1974, combined work
due to Krivine, Maurey, and the author led to geo-
metric characterizations of spaces admitting type
(or cotype) “better” than p �= 2 (see [12]).

From that point on, these notions quickly led 
to major advances in the “geometry” of Banach
spaces. This is what Pe �lczyński called “the great
French revolution in Banach space theory” in his
plenary address to the 1983 ICM in Warsaw [14].
For instance, the close connection of these notions
with the dimensions of the almost-spherical 
sections in Dvoretzky’s famous theorem had a
huge impact (see [13] and the very recent survey
[12] for more details and references). Type and 
cotype remain fundamental for anyone interested
in Banach spaces, notably in “local theory”, 
i.e., the part of the theory that concentrates on 
asymptotically large but finite-dimensional, often
geometrical, considerations.

Maurey was also stimulated by Hoffmann-
Jørgensen’s work [4] (brought to his attention by
Kwapień), as well as by Kwapień’s isomorphic char-
acterization [7] of Hilbert spaces as those that have
both type 2 and cotype 2. Hoffmann-Jørgensen
(himself greatly influenced by Kahane’s book [5])
had independently introduced (apparently slightly
earlier) similar notions of type and cotype, but he
was mainly motivated by probabilistic considera-
tions. In addition to its impact on “local theory”,
the convergence of his work with Maurey’s is at the
root of an explosion of results on “probability on
Banach spaces” during the period 1975–81, when
type and cotype turned out to be the key to the
study of the law of large numbers, the central-limit
theorem, or the LogLog law on Banach spaces (see,
e.g., [9]).

In retrospect, it seems type and cotype provided
the sort of “classification” of Banach spaces that
came just at the right time and was exactly suited
for the needs of (at least) two distinct groups of 
researchers: on the one hand, those interested in
geometry (or structure) and, on the other, those 
interested in probability. In addition, it provided a
new framework for Banach-space-valued harmonic
analysis.

Throughout the 1970s and in the many countries
that he visited, Schwartz’s support of these new 
developments was invaluable: Rather than present
his own research (about disintegration, Markov
processes, or martingales), he often preferred to 

enthusiastically survey the “geometry of Banach
spaces”, building on his knowledge of his students’
work (see [22], [23], [24]). In 1968 the “new” Banach
space theory was already growing strongly in
Poland (Pe �lczyński) and in Israel (Lindenstrauss);
later it caught on in the U.S. (H. P. Rosenthal, 
P. Enflo, W. B. Johnson,…), but the support of a
mathematician as famous as Schwartz was never-
theless extremely precious. At that time, although
the theory of distributions was, of course, very
highly respected, the theory of locally convex spaces
had lost its appeal, and the mathematical “estab-
lishment” seemed mostly skeptical (to say the least)
that going “back” to Banach spaces would prove
fruitful. Three decades later that reluctance has
surely faded, the field has produced two Fields
Medalists, and a lot has happened (see the 2,000
pages of the Handbook in reference [12]). As usual,
this is the result of a vast collective enterprise,
sometimes with no connection to Schwartz, but we
find it quite appropriate to acknowledge here the
debt that the subject owes him.
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Deux   maîtres  es
probabilités:
Laurent Schwartz et
Paul-André Meyer
Marc Yor

It is at the same time a sad occasion and a great honor
for me to evoke some of the achievements of Laurent
Schwartz in probability theory in general and his 
research on stochastic processes in particular.

Although I shall mainly discuss the works of
Laurent Schwartz, I find it impossible not to asso-
ciate the name and works of Paul-André Meyer to
this évocation: indeed, not only did the death of Paul-
André Meyer occur on the 31st of January 2003, only
a few months after the death of Laurent Schwartz

on the 4th of July 2002, but their works, as far as
the topics of stochastic differential geometry and
(in part) stochastic integration are concerned, were
developed in close connection, each one having
read and commented on the other’s work prior to
the publication of his own work.

More precisely, Meyer’s Cours sur les Intégrales
Stochastiques [7], which appeared in 1976, was a 
landmark in the deep understanding of the mean-
ing of the general (real-valued or vector-valued)
semimartingale X and of the stochastic integrals∫
H dXwhich one can associate to X. Indeed, by the

end of the 1970s semimartingales were charac-
terized independently by Bichteler and Dellacherie-
Mokobodzki, following much pioneering work by
Métivier-Pellaumail, as the “good” integrators of
bounded predictable processes. For a remarkably
concise and informative presentation of stochas-
tic calculus, see Meyer’s appendix to Michel Émery’s
volume [4] Stochastic Calculus in Manifolds.

This brings us back to Laurent Schwartz’s con-
tributions to stochastic calculus on manifolds: one
of the motivations of his work in this domain, very
clearly presented in the introduction to [12], was 
his remark that since real-valued (or vector-valued)
semimartingales are stable under composition by
C2 functions, it should be possible to define a 
semimartingale X taking values in a differentiable
manifold V of class C2 as a process X such that for
every C2 function φ : V → R, φ(X) is a real-valued
semimartingale. This is indeed possible, and, in 
particular, this notion is stable under C2 mappings
from one manifold to another.

Following this successful definition, it was then
tempting to try to define a conformal martingale
X taking values in a manifold V as a process such
that for every holomorphic function φ : V → C ,
φ(X) is a conformal martingale. (Note: The notion
of conformal C-valued martingales was introduced
by Getoor and Sharpe (1972) as the class of
C-valued, continuous local martingales M such
that for every holomorphic function φ : C→ C ,
φ(M) remains a local martingale; in fact, it suffices
that M and M2 are local martingales. This notion
led to the proof that the dual of H1 is BMO for 
real-valued martingales; this result was obtained 
by Getoor and Sharpe in the continuous case and
very soon extended by Meyer—without using the
concept of a conformal martingale—to the general
discontinuous case.)

If V is not a Stein manifold, however, it admits
too few holomorphic functions for the above 
attempt of defining a V -valued conformal martin-
gale to be meaningful. This led Schwartz to a vast
discussion of localization procedures, definitions,
etc. … Finally, the “right” definition of a conformal
martingale X on V is a process such that for every
function φ : V → C of class C2 that is holomorphic
on an open set V ′ of V , φ(X) is a semimartingale
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that is equivalent on X−1(V ′) to a conformal 
martingale.

Of course, one should not be surprised that in
his research on stochastic processes, as in his 
famous work in analysis, Schwartz looks for weak
definitions to “free” himself from the rigidity of
strong ones. Again, this leads him to define the 
interesting notion of a formal semimartingale [13]:
there, it is the differential symbol (dXt ) (more 
accurately, this symbol is defined in [17]), or the
family of integrals 

∫
H dX for suitable H’s, that

has some meaning and not (Xt ) itself.
It is noteworthy that, in doing so, Schwartz 

obviates the problem of looking for some suitable
extension of the class of semimartingales, such 
as (various types of) Dirichlet processes (as intro-
duced by Föllmer): although nowadays a large 
family of such processes, mainly obtained as 
functionals of Brownian motion, has been identi-
fied, no corresponding unifying theory of stochastic
integration has emerged.

Besides the introduction of formal semimartin-
gales, Schwartz’s discussion of semimartingales
valued in manifolds, together with the associated
theory of stochastic integration and resolution of
stochastic differential equations (SDE), may be con-
densed in what both Meyer [8] and Émery [4] call
Schwartz’s principle: If one writes Itô’s formula as

d(f (Xt )) = (dXt )f

with (Schwartz’s notation)

(1) dXt = dXit (ω)Di +
1
2
d[Xi,Xj ]t (ω)Dij

for f : V → R or C a C∞ function and (xi) global co-
ordinates on V , one is led to understand the dXt
“pseudo-mathematical” object as a tangent vector
of second order, which, in fact, does not depend
on the choice of coordinates.

Meyer [8, p.257] prefers to write (1) as d2Xt and to
call it the speed of X (and not its acceleration!). This
then leads Schwartz and Meyer to consider stochas-
tic integrals as second-order objects by defining the
integrals along the paths of a semimartingale X of
C∞ forms of order 2 on V ; precisely, if

θ = ai d2xi + aij dxidxj ,
then∫

Xt0
θ def=

∫ t
0
ai(Xs )dXis +

1
2

∫ t
0
aij (Xs )d〈Xi,Xj〉s ,

which in agreement with Schwartz’s principle may
be presented as ∫ t

0
〈dXs , θ〉.

It is noteworthy that, although Schwartz dis-
cusses conformal martingales on manifolds [12],

he does not really discuss the notion of a martin-
gale, which is in fact done by Bismut (see Meyer [8,
p. 258]; W. Kendall pointed out to me the relevant
Comptes Rendus note of Bismut [1]): here, both a
connection Γ on V and a filtration on the probability
space are needed to define a Γ martingale on V ,
whereas the definition of a conformal martingale
does not necessitate any connection.

By insisting systematically on the deep geo-
metric (intrinsic) meaning of semimartingales and
their stochastic integration and stochastic differ-
ential equations, Laurent Schwartz has given a
tremendous help to the probabilists’ community to
learn and “integrate” some (!) differential geome-
try into their common working tool kit, thus mak-
ing them able to understand better and generalize
beyond the Markovian case Itô’s early works on
SDEs in a differentiable manifold (Nagoya (1950),
Kyoto (1953)) and his stochastic parallel displace-
ment (Stockholm (1962); 1975). I would also like to
mention Itô’s discussion of stochastic differentials
(number 37 in Itô’s list of publications; see Itô’s 
selected papers [5] for all the references to 
Itô’s works given here).

Anyone who wishes to study the different aspects
of the subject (of stochastic parallel displacement,
in particular) in earnest ought to read the very 
informative and excellent Lecture Notes volume of
D. Elworthy [3], who even compares the Bismut-
Meyer-Schwartz general theory (p. 179) and the
deep results of Itô and Malliavin (see, e.g., [6]). For
a treatment with a different flavor and many 
examples, see Rogers-Williams [11, Chap. V].

While discussing the existence and uniqueness
of solutions of stochastic differential equations,
Schwartz also made some fine remarks about 
the speed of convergence of Picard’s series:∑
n ‖X (n+1) −X (n)‖2 <∞ , where X (n) denotes the

classical nth iterate of a process through Picard’s
“machine” associated to an SDE with Lipschitz 
coefficients. See the original paper [18] and the
discussion in Dellacherie-Maisonneuve-Meyer 
([2, p. 360 et seq.]).

I could witness personally (I have in mind here
the paper [16], whose topic is closely linked with
Brownian bridge processes, which used to intrigue
Schwartz a lot) that Laurent Schwartz was very
much of a perfectionist concerning his work in
probability (and, no doubt, also in general), asking
specialists he thought would help him solve some
particular question, showing them early drafts,
and so on.

He has been, and so has Meyer, “un modèle pour
nous tous,” as Alain Connes wrote recently.1

1Hommage à Laurent Schwartz, Gazette des Mathé-
maticiens (Octobre 2002), no. 94, 7–8.
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