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Intimations of Infinity
Kirk Weller, Anne Brown, Ed Dubinsky, Michael McDonald,

and Cynthia Stenger

The natural numbers? The natural num-
bers are 1,2,3 . . . ,∞, but there is no
such number as ∞; there is nothing you
can think of as a concrete value.

There is no actual infinity; and when we
speak of an infinite collection, we un-
derstand a collection to which we can
add new elements unceasingly.

Overture
The comments above (see the next page for who
made them and when) represent one type of think-
ing about infinity. There are other types, as we will
see, and they all create difficulties for students,
philosophers, and even mathematicians. The pur-
pose of this article is to show how a particular the-
ory about how people come to understand math-
ematics, APOS Theory, can be helpful in

understanding the thinking of both novices and
practitioners as they grapple with the notion of in-
finity. In APOS theory, which will be more fully ex-
plained later, an individual develops an under-
standing of a concept by employing certain
mechanisms called interiorization, encapsulation,
and thematization. These mechanisms are used to
build and connect mental structures called actions,
processes, objects, and schemas.

To get a feeling for the complexity of how peo-
ple grapple with infinity, see how you and perhaps
some of your colleagues would answer the fol-
lowing questions. How do you think your answers
compare with what has been said by mathemati-
cians and philosophers over the last 3,000 years
or by students today?
• If the slow tortoise starts a little ahead of the

swift Achilles, how can this demi-god ever catch
up? For Achilles must first advance to where the
tortoise started, by which time the plodder has
moved on a little, so Achilles must then advance
to that spot, and so on, forever.

• How can the quantity dx be treated both as a
positive quantity with which calculations can
be made, and something that can be ignored as
if it were 0?

• Is 0.999 · · · = 1?
• Suppose you put two tennis balls numbered 1

and 2 in Bin A and then move ball 1 to Bin B,
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then put balls 3 and 4 in Bin A and move 2 to
Bin B, then put balls 5 and 6 into Bin A and move
3 to Bin B, and so on without end. How many
balls are in Bin A when you are done? Infinitely
many, because the number increases by one
each time, or none, since every ball is eventually
removed?

• If you build a set by putting in the integer 1, then
2, then 3, and so on, how do you get from this
unending process to a conception of the full set
of natural numbers?

• Is the infinite union 
⋃∞
k=1 P ({1,2, . . . , k}) equal

to the power set of the natural numbers P (N)?
Here, P stands for the power set operator.

• Is there any sense in which an uncountable set
can be the outcome of a countable algorithm?
For each of these questions, rigorous formal

thought provides answers on which mathemati-
cians can agree. But agreement has not come eas-
ily; students often have a hard time accepting the
formal solutions, and describing the infinite can be
difficult. For example, the first statement at the very
beginning of this article is a paraphrase of what a
student said recently in describing her conception
of the natural numbers. The second statement is
a quote from H. Poincaré [10] almost a century
ago.

The following examples illustrate the thinking
of students, mathematicians, and philosophers on
the above bulleted questions. They indicate some
of the many aspects of the infinity concept, the va-
riety of approaches taken to deal with these aspects,
and some of the difficulties encountered by experts
and students in their efforts to understand the in-
finite.
Achilles and the Tortoise.
All objections to the infinite, Aristotle insisted, are
objections to the actual infinite. The potential in-
finite, on the other hand, is a fundamental feature
of reality. Aristotle used this distinction between
the two types of infinity to resolve paradoxes like
Achilles and the tortoise [7].
Infinitesimals.
“And what are these fluxions? The velocities of
evanescent increments. And what are these same
evanescent increments? They are neither finite
quantities, nor quantities infinitely small, nor yet
nothing. May we not call them the ghosts of de-
parted quantities?” [1, p. 83]
Is 0.999…=1?
Responses to this question from university stu-
dents included:

“Just less than one, but it is the nearest you can
get to one without actually saying it is one.”

“It is just less than one, but the difference be-
tween it and one is infinitely small.”

“The same, because the difference between them
is infinitely small” [12].

Tennis Balls.
During interviews with college students for a cur-
rent research project, one said: “. . . they’re both
gonna contain half the balls.” Another claimed that
Bin A contained “two infinity minus infinity which
would be infinity.” Yet another said: “A doesn’t re-
ally have a limit on how big it is. . .so A goes to in-
finity.” One student felt that “. . . you cannot decide
what’s gonna be in A.” Only one student thought
that Bin A would be empty [11].
Getting N from a Process.
“It [the natural numbers] means this is the collec-
tion of things 1, 2, 3, and. . .then I keep adding
1. . .and now I’m going to take the union over all
those sets 1 through n. . . . What annoys me about
this is that when I take that union . . . somehow you
have to know in advance what the integers are be-
fore you can take the union over all the finite trun-
cations of the natural numbers.” (A research math-
ematician’s response during an interview for a
current research project.)
The Result of Taking an Infinite Union.
During an interview a college student tried to de-
termine whether the infinite union⋃∞
k=1 P ({1,2, . . . , k}) is equal to P (N) . She noted

that the power sets are nested and thought of the
union iteratively in terms of an infinite sequence
P ({1}), P ({1,2, }), . . ., P ({1,2, . . . , k}) , . . ., but then
remarked, “and then you keep adding one and
you’ll still have finite sets, but eventually you have
to, I just still want to include that infinity!” [3]
Getting an Uncountable Set from a Countable
Algorithm.
“I don’t believe the power set of the natural num-
bers is countable, and you have presented what ap-
pears to be a countable process for creating this
set.” (A college teacher’s response during an in-
terview for a current research project.)

“A procedure that purports to construct P (N)
only gives an illusion of construction.” (From a pri-
vate conversation with a set theorist.)

The issues raised here are controversial for both
mathematicians and philosophers and have been
for centuries. In this article we describe several of
our investigations (some completed, some ongoing,
and some only contemplated) into the issues raised
by the variety of thinking about infinity that his-
tory and current discourse provide. We illustrate
how research in mathematics education can con-
tribute to resolving classical issues related to the
concept of infinity and point out how this same re-
search can also explain certain difficulties we see
in students who are trying to understand infinite
processes and objects in mathematics.

We will explain how the APOS theory of learn-
ing helps us analyze the type of thinking exempli-
fied in the quotes given above. Specifically, we use
the theory to argue that human beings can and do
conceive of an infinite process as a totality and
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think about actual infinity, that one can apply cer-
tain mental mechanisms to think about the set of
natural numbers as a totality, and that there is a
sense in which those students who claim that
.999 . . . is not the same as 1 are right. And, though
we will leave the full details for a future article, we
will also suggest that the same mental mechanism
that allows an individual’s thoughts to shift from
enumerating the natural numbers one-by-one to
considering the entire set of natural numbers can
also be used to make the leap from thinking about
a countable process to seeing an uncountable set
such as P (N) as a mental object.

Motivation
The concept of mathematical infinity appears
throughout the collegiate mathematics curricu-
lum, especially in precalculus and calculus courses,
where students consider topics such as limits, the
asymptotic behavior of rational functions, infinite
sequences and series, and improper integrals. How-
ever, this represents but a small portion of all the
situations where the infinite appears. For instance,
many of the mathematical structures studied in lin-
ear algebra, abstract algebra, real analysis, and
topology are infinite sets; existence proofs fre-
quently require the construction of infinite men-
tal procedures; and problem situations involving
collections of mathematical objects indexed by an
infinite set occur throughout the undergraduate
curriculum.

Although the concept of infinity permeates the
undergraduate curriculum, students experience
little if any formal instruction on the concept prior
to a study of cardinality in a “bridge” course or a
formal study of Cantorian theory in an upper-
division set theory course. Our experiences as
teachers and researchers convince us that this is
insufficient. As one can see from the quotes given
in the “Overture”, students continue to struggle
with the concept of infinity, despite their experi-
ences in lower-division courses. Two projects ([3]
and [11]) show the degree to which students with
fairly strong mathematics backgrounds struggle
with infinity even after having completed at least
one course where aspects of mathematical infin-
ity were considered in some depth.

In the study reported in [3], students were asked
to prove or disprove the statement

∞⋃

k=1

P ({1,2, . . . , k}) = P (N),

where P indicates the power set operator. Of the thir-
teen students interviewed, only one student solved
the problem correctly, and even this student needed
significant prompting before providing the correct
solution. In trying to interpret the meaning of the
infinite union, all of the students constructed an

infinite iterative process that yielded an infinite se-
quence of power sets of the form P ({1,2, . . . , k}) .
Subsequently, every one of them seriously enter-
tained the notion that the sequence would “even-
tually” yield the power set of an infinite set.

In [11] a different set of students was asked to
work on the tennis ball problem mentioned in the
“Overture”. Even though every one of the thirteen
students could articulate the time at which the nth
ball would be dropped into Bin A and then trans-
ferred to Bin B, only one student concluded that
Bin A would be empty after all of the balls had been
dropped. Their conflicting thoughts about how to
deal effectively with an unending process appeared
to be at the root of their difficulties.

In addition to playing a role in understanding
infinite processes (such as those arising in con-
sidering an infinite union or the tennis ball prob-
lem), students’ conceptions of infinity have a bear-
ing upon their ability to solve other types of
problems. In order to act on an infinite set, say to
compare the cardinality of two infinite sets or to
show that the set of all linear combinations of a set
of vectors in a vector space over R is a subspace,
one must be able to think of these infinite sets as
mathematical objects, or entities, which can be
transformed. Helping students formulate object
conceptions of mathematical concepts requires
the development and implementation of carefully
designed instruction. In the sections that follow we
discuss how APOS Theory can provide an expla-
nation of how human beings conceive of the infi-
nite. This is a first step toward the development
of pedagogical strategies intended to help students
to understand and apply the kinds of transforma-
tions required for the successful solution of vari-
ous problems involving the infinite.

There are two reasons why we believe APOS
Theory might be a useful tool in these endeavors.
First, APOS Theory has been used over the past
twenty years to analyze student thinking about var-
ious concepts in the undergraduate mathematics
curriculum. The results of these analyses have
guided the development of effective pedagogical
strategies [13]. Second, our initial attempts to
apply APOS Theory to understand how individu-
als think about infinity have been encouraging.
Based on an analysis of interview data of students
attempting to solve the above infinite union prob-
lem, the research study [3] describes how stu-
dents appear to construct their conceptions of in-
finite iterative processes. We have also recently
prepared a comprehensive report to discuss how
APOS Theory can be used to explain, and in some
cases to propose resolutions of, many of the issues
and paradoxes of the infinite that have plagued
philosophers and historians of mathematics for
centuries [2].



744 NOTICES OF THE AMS VOLUME 51, NUMBER 7

experience in mathematical thinking. For example,
one might wish to add two functions f and g to ob-
tain a new function f + g. Thinking about doing this
requires that the two original functions and the re-
sulting function are conceived as objects. The actual
transformation is imagined by de-encapsulating
back to the two underlying processes and coordi-
nating them by thinking about all of the elements
x of the domain and all of the individual transfor-
mations f (x) and g(x) at one time so as to obtain,
by adding, the new process, which consists of trans-
forming each x to f (x) + g(x) . This new process is
then encapsulated to obtain the new function f + g.

The mental mechanisms of interiorization and
encapsulation allow one to think about what hap-
pens after a process is completed. In many cases,
the domains and the ranges of functions are infi-
nite sets, so these mechanisms allow an individual
to think about infinity in these contexts.

While these mental structures describe how an
individual constructs a single transformation, a
mathematical topic often involves many actions,
processes, and objects that need to be organized
and linked into a coherent framework that is
called a schema. The mental structures of action,
process, object, and schema constitute the
acronym APOS. In this article we use these men-
tal structures and the mental mechanisms of in-
teriorization and encapsulation to analyze from
a cognitive perspective various issues raised as a
result of careful thinking about the infinite. For
more information about APOS Theory and a sum-
mary of how it has been used in mathematics ed-
ucation research, see [5].

Application
Our discussion of applications of APOS Theory to
the issues listed at the beginning of this essay will
be divided into four parts. First, we consider some
problems that have been around for a long time.
These include the classical paradoxes, disputes
about the infinitely small, and the value of an in-
finite, repeating decimal. Next, we consider the
tennis ball problem as an example of a situation
involving infinite iterative processes in which one’s
conception of the set of natural numbers plays a
role. This is followed by a description of a more gen-
eral consideration of infinite iterative processes
based on a recently completed research project. Fi-
nally, we describe a new research project that be-
gins to look at mental constructions of uncount-
able sets.
Classical Paradoxes, the Infinitely Small and
Repeating Decimals
Aristotle’s resolution of paradoxes such as Achilles
and the tortoise consisted of making a distinction
between actual and potential infinity and then re-
jecting the former. While he believed human beings
could conceive of potential infinity, Aristotle

Inspiration
Before we describe the investigations that have en-
sued from thinking about problems like those men-
tioned above, we discuss the mental mechanisms
and structures to which we will be referring. This
brief explanation of APOS Theory is meant to fa-
miliarize the reader with the terminology used in
subsequent sections.

The interiorization of actions is an “everyday”
activity in the mathematics classroom. For exam-
ple, an algebra student may wish to describe the
behavior of a quadratic function over a given in-
terval to see whether it increases for a while and
then decreases. The transformation of calculating
functional values over the interval is first con-
ceived as an action, in that it requires specific in-
structions, e.g., a formula. Repeating this action and
reflecting on the relationship between functional
values as x varies over the interval, the student may
begin to interiorize the action into a mental struc-
ture called a process. This is a structure that im-
plements the action, not externally, but internally,
in the individual’s mind. A process enables the in-
dividual to imagine the calculation of several val-
ues of the function and to think about these cal-
culations all at the same time. Thus, the individual
can observe the behavior of the functional values
as x varies over the interval without having to eval-
uate f (x) for explicit values of x . At this point, if
the student becomes aware of the process as a to-
tality, realizes that transformations can act on that
totality, and can actually construct such transfor-
mations explicitly or in her or his imagination (e.g.,
think about horizontal and vertical shifts or com-
pressions and expansions), then we say that the in-
dividual has encapsulated the process into a cog-
nitive object.

There are two aspects of encapsulation that are
important to keep in mind. First, according to APOS
Theory, an encapsulation occurs because the indi-
vidual desires to perform an action (or process) on
a process. This is not possible, because a process
is dynamic, something that is in progress, and as
such is not susceptible to being acted upon. For ex-
ample, students who have not encapsulated the
process of set formation into an object will think
that a set such as {2, {5,6,8}} has cardinality 4
(and not 2). This may be because their thinking
about 2, 5, 6, 8 does not go further than the process
of inserting these four numbers into a set. Encap-
sulating the process of forming {5,6,8} into an ob-
ject eliminates this difficulty and allows one to
perform the desired action (in this example, de-
termining cardinality). Second, it is often important
in a mathematical activity to de-encapsulate an ob-
ject, that is, to go back to the process from which
it came.

The encapsulation and de-encapsulation of
processes in order to perform actions is a common
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considered the idea of an actual infinity to be be-
yond the understanding of mortals ([8, pp. 34–44]).
Although there were dissenters, Aristotle’s idea
persisted for millenia, and it has been expressed
quite explicitly in modern times by various writers,
including mathematicians such as Poincaré ([10,
pp. 46–7]).

In our view, however, the rejection of actual in-
finity is unnecessary and ignores important math-
ematical notions such as actually infinite sets, com-
parison of infinite cardinalities, mathematical
induction, etc. In fact, there are explanations of how
an individual might think
about infinity that incorpo-
rate the mind’s ability to con-
template actual infinite ob-
jects.

Today’s formal definition
of limit (in terms of epsilons
and deltas) provides a satis-
factory mathematical expla-
nation of how a symbol such
as dx can be used in one part
of a calculation as if it were a
positive quantity and in an-
other part, ignored (or “ne-
glected”) as if it were zero.
Extensive research shows,
however, that the dispute be-
tween Newton’s “evanescent
quantities” and Berkeley’s
“ghosts of departed quanti-
ties” [1] is alive and well in the
minds of many (most?) of
today’s calculus students [4],
[12], [15], [16]. Again, we feel
that there is an alternative
cognitive explanation that could be more helpful
to students struggling to resolve the paradoxes of
the “infinitely small”.

The importance of the pervasive difficulty in
dealing with the relation 0.999 · · · = 1 and the per-
sistent idea that there is an “intermediate state” be-
tween a sequence of values and its limit [4] lies not
only in the specific mathematical errors that stu-
dents make but also in what it tells us about how
far so many students are from having a useful in-
tuitive understanding of the concept of limit of a
sequence. As nearly as we can tell from our review
of the literature [2], no explanations other than
those based on APOS Theory have been offered re-
garding the cognition of 0.999 · · · = 1, that is, re-
garding how an individual might think about this
relation in ways that fit with the mathematics.
Moreover, the only pedagogical strategy available
seems to be a reiteration of the mathematical facts.

We will use a single kind of analysis, based on
APOS Theory, to propose resolutions of cognitive
issues as disparate as the paradox of Achilles and

the tortoise; the question of the existence of infi-
nitely small, nonzero quantities; and the relation
between a sequence and its limit. We hope the
unity of our explanations makes them clearer and
more satisfactory than other explanations that
have been offered. But more importantly, we feel
that these analyses could lead to pedagogical strate-
gies that will be effective in helping students un-
derstand the mathematics of the infinite.
Achilles and the Tortoise
An individual can think about an infinite iterative
process using the mental structure of process as

described in APOS Theory. In
terms of that theory, per-
forming a small number of
iterations constitutes an ac-
tion. By interiorizing these ac-
tions, an individual can use
the resulting process struc-
ture to imagine repeating the
actions indefinitely or “for-
ever”, so to speak. This cor-
responds to potential infin-
ity. Using the process mental
structure, an individual can
see the process as a totality,
even if it is inconvenient or
impossible to think explicitly
about each step in the
process, and decide to per-
form actions on the total
process. Here, the mental
structure of encapsulation
comes into play. Encapsula-
tion consists in transforming
the process to an object and
applying the desired action.

In the case of Achilles and the tortoise, we have
two coordinated processes of Achilles repeatedly
covering the previous distance traveled by the tor-
toise while the tortoise continually moves farther
along. As processes, we can imagine this going on
forever, and we encapsulate the completed
processes in order to perform on them the action
of comparing the total distances covered by the two.
With a cognitive grasp of the question, we can then
do the calculations (which amount to summing in-
finite series) and see that in a finite time, the total
distance covered by Achilles exceeds that covered
by the tortoise.

It is important to note that, given an infinite
process, the mental mechanisms of interiorization
and encapsulation allow one to think about what
happens after the process is completed. The ob-
jection that this cannot be done, since one can
never actually perform an infinite number of steps,
is precisely what the structure of process takes care
of, since one does not have to actually perform all
of the steps, whether there be finitely or infinitely

It is important to
note that, given an
infinite process, the

mental
mechanisms of

interiorization and
encapsulation

allow one to think
about what

happens after the
process is
completed.
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many of them. And, in our view, the ability to en-
capsulate an infinite iterative process requires
thinking about actual infinity. Thus, we claim that
human beings can conceive of actual infinity.
Infinitesimals
The dispute about the meaning of dx (Newton ac-
tually used o) in the expression

f (x + dx)− f (x)
dx

can be represented by the ideas of Newton and
Berkeley. In [2] we consider the ideas of these two
thinkers in some detail and try to show how our
interpretations are based on their actual writings.
Here, we briefly summarize our interpretations
and explain in APOS terms how an individual can
think about infinitesimals in calculus.

In terms of an APOS analysis, it appears that the
crux of the issue was that when writing the
difference quotient, Newton intended dx to rep-
resent a process of approaching 0. That is, the
symbol dx in the difference quotient stands for the
process of replacing the symbol dx by smaller and
smaller positive numbers. For each one of these pos-
itive numbers, one can compute the difference
quotient. Hence, that expression represents the
process of obtaining values by replacing dx with
smaller and smaller positive numbers and making
the calculations. On the other hand, when Newton
wrote

Quantities, and the ratios of quantities,
which in any finite time converge con-
tinually to equality, and before the end
of that time approach nearer the one to
the other than by any given difference,
become ultimately equal [9, p. 29],

he was seeing those processes as totalities and en-
capsulating them in order to obtain the ultimate
value of dx (which is 0) and of the difference quo-
tient (its limit, in contemporary parlance). In the ex-
amples that he considered, Newton was generally
able to obtain the latter value by simplifying the
difference quotient expression and then replacing
dx by 0, that is, “neglecting” it.

Thus, in our interpretation, when dx represents
a process, it is a positive number, so the difference
quotient makes sense mathematically. But then,
with the encapsulation, dx represents an object to
which Newton referred as its ultimate value, which
is zero. The ultimate value of the difference quo-
tient, again no longer as a process but represent-
ing an object, is its limit. This distinction between
process and object is our resolution of the “con-
tradiction” of dx being sometimes positive and
sometimes 0.

Our interpretation of Newton’s thinking has an
additional attribute that we think helps explain

why many people had such difficulty in under-
standing what he was saying. In a finite process,
there is always an object produced in the last step
of the process. Even though there is no last step
in an infinite process, such a process can still re-
sult in an object. This requires, however, a much
more powerful mental mechanism than imagining
a last step. According to APOS Theory that mech-
anism is encapsulation, and the resulting object is
what is called in [3] the transcendent object of the
process. Our interpretation of Newton’s thinking
is that he understood the distinction between
process and object in this context and realized
that a more powerful mental step was required in
order to go from an infinite process to an ultimate
value. We conjecture that he had encapsulated the
limiting process but had no mathematical tools
(such as the formal concept of limit) to express pre-
cisely his object conception.

Drawing on an analogy with determining the
velocity of a body “at the very instant it arrives”,
Newton emphasized what happens “ultimately”,
which we interpret as an attempt to apply an ac-
tion of evaluation to a completed process, leading
to an encapsulation. He clearly distinguished the
objects produced by the process from the tran-
scendent object produced by encapsulating the
process.

Newton’s critics, however, insisted that dx and
the difference quotient itself must always be viewed
as static objects. Thus, when Berkeley insisted that
Newton’s evanescent increments were “neither fi-
nite quantities, nor quantities infinitely small, nor
yet nothing” [1], our view is that he was not dis-
tinguishing between an object produced by a
process and an object that is brought into being by
encapsulating the process as a result of applying
the action “What is the ultimate value of the
process?”
0.999. . . and 1
Maybe the students are right, maybe 0.999 . . . is not
the same as 1, at least not cognitively. APOS The-
ory can offer an explanation of such thinking. Math-
ematicians consider 0.999 . . . to stand for the limit
of an infinite sequence. However, the ability to
think of this expression in that way requires cer-
tain mental constructions that some students may
not yet have made. For such individuals, the sym-
bol 0.999 . . . appears to represent a process (that
is the only possible explanation of the “. . .” or
phrases such as “and so on”). It is an infinite
process, and so there is no object produced by a
last step. The symbol 1, however, refers to an ob-
ject. Since a process is something different from
an object, it makes sense to say that the process
0.999 . . . cannot be the same as the object 1. What
makes this particularly difficult is that the num-
ber 1 is not an object produced by any step in the
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many balls at noon. However, the kth ball is moved
from Bin A to Bin B at the kth step, from which it
follows that Bin A will be empty at noon.

This paradox is resolved by comparing the con-
tents of the bins. The mental mechanisms of inte-
riorization and encapsulation allow one to think
about what happens after the process is completed.
In the tennis ball problem there are two coordinated
processes: one in which Bin A receives the next two
balls, and in the other, the lowest numbered ball
in Bin A drops into Bin B. One imagines these co-
ordinated processes continuing forever and then
encapsulates the completed processes in order to
perform the action of comparing the contents of
Bin A and Bin B. At this point, with a cognitive un-
derstanding of the question of the contents of Bin
A after the process is completed, one can see that
at noon Bin A will be empty. Even though there is
no last step in the infinite process of filling the bins,
one can use encapsulation to imagine a resulting
transcendent object and then determine mathe-
matically that it is the empty set, e.g. by checking
that Bin A and the empty set contain exactly the
same elements.
Preliminary Results of Student Interviews
To unravel the basic notions undergraduates hold
concerning infinite processes, students (with ma-
jors in mathematics, mathematics education, or
computer science) were asked to solve the tennis
ball problem. A preliminary analysis of the data sug-
gests that students who had difficulty solving the
problem did not see the underlying infinite itera-
tive processes as completed totalities, which is a
necessary precursor to encapsulation. Thus, they
did not see the “ultimate” contents of each bin as
an object, and so the question of how many balls
each contains was meaningless to them.

Nearly every student could articulate that the kth
ball would be moved from Bin A to Bin B at the kth
step. However, only one student argued that Bin A
is empty. This student seemed to grasp that the
movement of the kth ball not only describes what
happens to a single, randomly selected ball but to
every ball in the holding bin. Several of the students
who had difficulty with the problem believed Bin
A would never be empty because the iterative
process would continue beyond the kth step. Al-
though they understood that every ball would
“eventually move to B,” they believed that “there
will always be more to come.”

Other students argued on the basis of cardi-
nality. At each succeeding step the number of balls
in each bin increases by one. At the kth step balls
numbered 1 through k are in B, and balls numbered
k + 1 through 2k are in A. Some of the students gen-
eralized the finite case to assert that each bin
would contain “half of the balls,” the “upper half”
in A and the “lower half” in B. Others substituted
∞ for k to conclude that B would contain 1 through

process but is the result of encapsulating it and so
transcends the process.

In fact, we conjecture that certain mental con-
structions are necessary before it is possible to
even think about the mathematical solution, much
less understand it. Specifically, to understand that
0.999 · · · = 1, the individual must first realize that
0.999 . . . is an infinite process and, as such, does
not produce an object (a numerical value in this
case) directly. Rather, the process must be encap-
sulated to an object in order to find this value. Once
this encapsulation has been made, one can then do
some mathematics to determine the value. For ex-
ample, one might argue that there are two numbers
L and 1, L being the object produced by the en-
capsulation. Since L is understood to be a value that
is determined after the process is finished, there
might be less of a tendency to try to force it to come
from the process and be very close to 1 or “the num-
ber just before 1”. One might then calculate that
|L− 1| is smaller than any positive real number,
so it must be 0, and so L = 1.

We have no data to support the idea that stu-
dents are aware of the subtle distinction between
infinite processes and their transcendent objects.
We plan to design experiments to investigate this
question as well as the conjectures above. This
might lead to the design of new pedagogy focused
on the process/object distinction that is intended
to help students overcome difficulties, such as
those reported in [4] and [12], having to do with
understanding infinite decimals.
Construction of the Natural Numbers and
Student Thinking on the Tennis Ball Problem
College students’ thinking on the tennis ball prob-
lem is the focus of a current study [11]. During in-
terviews, students were asked to imagine three
bins of unlimited capacity: a holding bin, where
balls numbered k = 1,2,3 . . . would originate; Bin
A, where each ball would be held temporarily; and
Bin B, the final destination for each ball. Their task
was to determine the contents of Bins A and B at
noon, if at 1

2k seconds before noon, balls numbered
2k− 1 and 2k are placed in Bin A, while the ball
numbered k is moved from Bin A into Bin B.

The data in [11] is part of an analysis of students’
thinking on this problem. The aim is to investigate
how they think about the set of natural numbers
and to test the generalizability of the description
of the mental construction of infinite iterative
processes developed in [3]. This latter study, which
we describe later in this article, looks at a more com-
plex mathematical situation.
A Theoretical Analysis of the Tennis Ball
Problem
There are two competing conceptions of the prob-
lem which make it paradoxical. On one hand, the
number of balls in Bins A and B increases by one
at each step, suggesting that both bins have infinitely



748 NOTICES OF THE AMS VOLUME 51, NUMBER 7

1One possible explanation is that some students inappro-
priately felt that this process was “continuous” in the sense
that the number of balls at the end would be the limit, as
k goes to infinity, of the number of balls at the kth step.
Such overgeneralization is common. For example, some cal-
culus students will overgeneralize the “zero product prop-
erty” and reason that limx→0 x cot(x) = 0 , even though
limx→0 cot(x) is not finite.

∞ and A would contain ∞ + 1 to 2∞ . When
prompted, these students generally acknowledged,
as did those who did not focus on cardinality, that
each ball would “eventually” be moved to Bin B.
However, they did not find this information use-
ful. In their view, the problem could not be solved.
Because the procedure would continue indefinitely,
one could never identify a particular number (other
than ∞) that could be substituted for k to identify
the precise “halfway” point that would denote
which numbered balls would be in A and which
would be in B at noon.

A preliminary analysis of the data suggests that
the students who had difficulty may not have made
certain mental constructions. Those who simply
substituted ∞ for k and used this to conclude that
Bin B contains 1 through ∞ and A contains ∞ + 1
through 2∞may not have constructed a useful in-
finite iterative process from their conceptions of
finite iterative processes. They generalized from the
finite case to the infinite in a manner that did not
account for the way in which the infinite case tran-
scends the finite.1 Those students who did not
substitute ∞ for k , but asserted that the “ones
that are higher” remain in Bin A because “there’s
an infinite number of natural numbers,” likely did
not see the process as being complete. Because
the process “does not stop,” or “noon can never be
reached,” they could not imagine that all the steps
of the process could be carried out and finished.

The student who correctly proved the result ap-
peared to make this latter construction. In his
proof he argued that if the nth ball were contained
in A at noon, a contradiction would result, because
the ball would appear in Bin B at any time within
1/2n seconds before noon. In making this argu-
ment, the student realized that all of the balls
would be in Bin B at noon. This required him to see
the process as a totality or a single operation. The
student in question gave evidence of having made
this construction when he said: “So any time I
choose an n, like say I choose an n out of the hold-
ing thing. Well, after the nth time, it’s going to be
in B, and so that for me was like saying, okay, if I
have an n, n has to be in B, so that means all the
holding bin will end up in B.” Because he could see
the process as a completed totality, he was able to
encapsulate it and argue that Bin A is empty. In
making this construction, he understood that the
situation at noon transcends the process, in the

sense that it differs from and is not produced by
any step of the process.

These preliminary findings suggest that a cor-
rect solution is dependent upon the student’s abil-
ity to see the underlying infinite iterative process
as a completed totality. Without making this men-
tal construction, the student finds the problem
difficult or impossible to solve, because the process
“does not stop,” from which it follows that “there
are always more balls to come.”
Conceptions of Infinite Iterative Processes
The ongoing study concerning the natural numbers
and the tennis ball problem is closely related to the
research study reported in [3]. In this investigation
the authors interviewed students solving a partic-
ular elementary set theory problem and developed
a description of the mental constructions an indi-
vidual might make and use to understand infinite
iterative processes. As stated earlier, students were
asked to prove or disprove the following equality:

∞⋃

k=1

P ({1,2, . . . , k}) = P (N).

Although one can resolve the question by noting
that the set on the left side is countable and the
set on the right is not, in the context of the course
the authors expected students to compare the two
sets on the basis of set inclusion. In particular,
they expected students to note that the union on
the left side contains only finite sets as elements,
whereas P (N) contains infinite sets as elements.

While mathematicians may see both sides of
this proposed equality as static objects, the stu-
dents interviewed saw these as processes they had
constructed or needed to construct. Thus, the au-
thors decided to look carefully at the actions and
processes that individuals might construct in order
to understand the formal notation represented in
this problem. The central role of one’s conceptions
of infinite iterative processes was brought to light
by this analysis. We give a short description of the
mental construction of infinite iterative processes
proposed by the authors and then make some brief
observations.

The construction of a mathematically useful
conception of infinite iterative processes appears
to be based on one’s process conception of finite
iteration. One must be able to apply the relevant
finite process to an initial object and understand
generally how an object is produced via the process
from the preceding object or objects. A process con-
ception of infinite iteration develops as the indi-
vidual becomes able to coordinate multiple in-
stantiations of this finite process. A successful
coordination leads to the individual becoming able
to conceive of this infinite process as being com-
plete, even though there is no final step of the
process and no last object. Once the process can
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2This construction is familiar to set theorists. See, for ex-
ample, the proof that the Cantor set is homeomorphic to
2ℵ0 in [14], the identification of the Baire space NN with
the irrationals in [6], etc.

Conceptions of P (N)
While one may come to understand P (N) through
its formal definition as the set of all subsets of N ,
we would argue that the definition alone is not suf-
ficient, at least not for some undergraduate math-
ematics students. To apply actions or processes to
this set in certain problem situations, APOS The-
ory posits that an individual needs to be able to ac-
cess a rich process conception through de-
encapsulation of an object conception. The set
P (N) cannot, of course, be constructed by encap-
sulating the infinite iterative process of taking the
union of the power sets of initial segments of N.
Nevertheless, we may ask if it is possible to con-
ceive of this set as arising from any infinite itera-
tive process, given that the set itself is uncountable.
Our investigation of mental constructions of un-
countable sets begins with the question: How do
experts get a rich conception of P (N)? Is it simply
through mathematical formalism, or are there
underlying mental constructions that can be re-
vealed through careful research? These questions,
as well as our interest in studying conceptions of
uncountable infinity, led us to investigate how
mathematicians come to understand P (N) and
whether their construction of this understanding
admits an APOS analysis. This is a project that we
are currently in the midst of conducting.

Is the mental construction of P (N) made by a so-
phisticated mathematical thinker, for example, a
research mathematician, derived mainly from the
formal definition? Certainly this definition states
completely what the set is, and one could imagine
various infinite processes for building a given set
in P (N) . But the question still remains as to how
one would think of the set “all at once”, as a cog-
nitive object. According to APOS Theory, when one
uses this object in a problem situation, a de-
encapsulation to a process is needed. But what is
the process that was encapsulated to give the set
in the first place? Could this process be an infinite
iterative process even though the set itself is un-
countable? In our current research, we have in fact
developed a countable, iterative process along with
multiple encapsulations which we believe yields the
uncountable set P (N) . This process seems to be re-
lated to the binary tree construction of P (N) , where
P (N) is the set of all branches of an infinite binary
tree.2 Our concern, however, is with the cognitive
meaning of “the set of all branches” and how an
individual might construct this set in her or his
mind.

As of this writing, we are conducting interviews
with mathematicians who do have rich conceptions

be imagined as being complete, the individual may
reflect upon it and begin to see it as a totality, in
the sense of seeing it as a single operation that can
be carried out and finished. Depending on the sit-
uation, the individual might attempt to construct
an action of evaluation on the process, typically with
the goal of determining the state at infinity for the
process. A successful application of an action of
evaluation happens in tandem with the encapsu-
lation of the process into an object, called its tran-
scendent object. This object is understood to be re-
lated to, but beyond the objects produced by the
process, in the sense that it cannot be produced by
applying the iterative process to any of the previ-
ously produced objects. The objects produced by
the process, followed by the transcendent object,
are then conceived of as forming an extended se-
quence (i.e., an ordered set indexed by N∪ {∞} ).

To consider the infinite union above, many stu-
dents began by constructing a process of the
following form, noting that successive power sets
are nested:

P ({1}) = P ({1})

P ({1})∪ P ({1,2}) = P ({1,2})
...

P ({1})∪ P ({1,2})∪ · · ·∪
P ({1,2, . . . , k}) = P ({1,2, . . . , k}).

Students who were successful realized that they
could continue this process and see it as being
complete, even though there is no final step to the
process and no final object produced. Many of the
students’ difficulties were associated with this
issue, in that it was hard for them to consider the
infinite process without imagining that the set
P (N) or an entity that they referred to as
P ({1,2,3, . . . ,∞}) was produced by the process.
Only a few students could see the process as com-
plete, and in order to be successful with the prob-
lem, they also had to be able to see the completed
process as a totality. This means that they had to
understand that every set constructed within the
process contains only finite sets. With that under-
standing, they could see that the transcendent ob-
ject for this process is the set of all finite subsets
of N , an object that is not constructed anywhere
in the process but rather is constructed only as the
process is encapsulated.

The above analysis focused on the infinite union
that appears in the problem. Students’ struggles in
determining what that union is equal to tell us a
great deal about their construction of this set. Be-
cause this set is not equal to the uncountable set
P (N), however, this investigation tells us little about
the mental construction of P (N) . This is a com-
pletely different matter to which we now turn.
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of uncountable sets to compare the mental mech-
anisms they appear to use in developing these con-
ceptions with the process we have constructed and
its encapsulation. Preliminary results are encour-
aging, and we hope to produce reports on this
work in the near future.

A particularly interesting aspect of this current
work has to do with our suggestion that a count-
able process can yield an uncountable set. Mathe-
matically, this is not possible, but it may be that
in our minds we can make such a leap. We propose
that what makes the difference cognitively is en-
capsulation, which is not a mathematical tool but
a mental mechanism. We believe that encapsulation
may just be a sufficiently powerful mechanism to
allow the mind to make such a leap from the count-
able to the uncountable. In future reports we hope
to provide data and analyses that tend to support
(or, as the case may be, not support) this conjec-
ture.

Finale
Some of the explanations we have given in this ar-
ticle are at variance with those of other commen-
tators on infinity in mathematics, both past and pre-
sent. There is, of course, no issue here of
determining who is correct (whatever that may
mean). Rather, we hope that our explanations ex-
hibit a coherence, unity, and simplicity that may
render them worth thinking about when trying to
understand how human beings can and do think
about infinity.

Perhaps more important, certainly from a prac-
tical point of view, is the hope that our explana-
tions of student difficulties with infinity will point
to pedagogical strategies that can lead to im-
provement in learning. The reason for our optimism
is that explanations of other mathematical con-
cepts using these mechanisms and the totality of
APOS Theory of which they are a part have led to
effective pedagogy that has been reported in the
literature. Whether a similar outcome will occur for
infinity only time and future research and devel-
opment can tell.
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