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Patterns of Research in
Mathematics

Jerrold W. Grossman

F
or ten days in April 2004, an Erdős num-
ber was for sale on the World Wide Web
auction site eBay [9]. To be more precise,
a scientific consultant in Ann Arbor, Michi-
gan, was selling 40 hours of his time to the

winning bidder, with the goal of publishing a jointly
authored research article. Because the seller has
Erdős number 4, the buyer will obtain Erdős num-
ber 5 if the project is successful. Seventeen peo-
ple participated in the auction, and the winning bid
was over $1,000. (The seller is quite serious about
this, as part of his crusade for encouraging col-
laboration in research. Some people find it harm-
less fun. A few are outraged; in particular, the high
bidder posted a message, explaining that he won
the auction “not because I intend to pay or to col-
laborate with the seller—my Erdos [sic] number is
already 3—but to stop the mockery this person is
doing of the paper/journal system.”)

The notion of a researcher’s Erdős number has
circulated among mathematicians for decades [3,
11]. It is simply the length of (number of edges in)
the shortest path from Paul Erdős (1913–1996) to
the researcher in the collaboration graph—the
graph whose vertices are researchers and whose
edges join any two people who are coauthors on a
published research article or book. Because Erdős
had by far the most collaborators of any mathe-
matician (509 at latest count), he is the natural
“center” for the collaboration graph, at least in

mathematics. The much-visited Erdős Number Pro-
ject website [5] lists Erdős’s coauthors, as well as
the nearly 7,000 people with Erdős number 2, and
provides much additional information.

Interest in Erdős numbers illustrates mathe-
maticians’ curiosity about how we go about doing
what we do, and in particular about the social as-
pects of our profession. The main purpose of this
article is to make better known some facts and fig-
ures about the world of mathematical research.
The interested reader should also consult a recent
article in SIAM News [6], which complements much
of what is discussed here, as well as the website
referenced above. The data we used were kindly
provided by the American Mathematical Society
and cover approximately the time period
1940–1999.

How Much Research Is Going On?
The Society’s Mathematical Reviews (MR) currently
catalogs (and in most cases publishes reviews or
edited author summaries of) about 86,000 pub-
lished items per year that can generally be classi-
fied as research in the mathematical sciences. At
the turn of the century, the database contained
about 1.6 million papers (and books), produced
by about 300,000 authors. (Two notes: We ignore
nonauthored items in the database, such as con-
ference proceedings; the relevant papers in the
proceedings have their own entries as authored
items. In maintaining this database, and making it
available to subscribers in print form and on the
Internet [8], the MR staff has taken pains to iden-
tify authors as people and not merely as name
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strings—see [12] for details. Although some
misidentifications are present in the database, we
do not think they substantially affect our results.)

Figure 1 shows the number of authors in the
database with different numbers of papers. About
43% of all authors have just one paper. The median
is 2, the mean 6.87, and the standard deviation
15.35. It is interesting (for tenure review commit-
tees?) to note that the 60th percentile is 3 papers,
the 70th percentile is 4, the 80th percentile is 8,
the 90th percentile is 17, and the 95th percentile
is 30. Because the database is dynamic, these num-
bers must be viewed with caution; someone who
has published only one paper as of today may have
many more coming down the road.

The author list contains over 1,500 people with
more than 100 papers, including eight mathe-
maticians with more than 500 papers: Paul Erdős
with 1,401, Drumi Bainov with 782, Leonard

Carlitz (1907–1999) with 730, Lucien Godeaux
(1887–1975) with 644, Saharon Shelah with 600,
Hari M. Srivastava with 537, Frank Harary with
534, and Richard Bellman with 522. (Many of these
counts have increased in the past five years.)

Not surprisingly, research productivity has in-
creased over time. Figure 2 shows the number of
papers and number of authors in each of the
decades covered by our data. The mean number of
papers per author (within the given decade) in-
creased gradually, from 3.4 in the 1940s to 5.0 in
the 1990s.

Is There a Difference in Output among
Areas of Mathematics?
Beginning in 1980, it became easier to identify the
primary “area” of mathematics for each paper, be-
cause the MR number for a paper encoded the pri-
mary subject classification. In order to draw some
summary conclusions, we divide the mathematics
subject classification (MSC) categories into groups,
admittedly somewhat arbitrary, as shown in Table 1.
(A few adjustments had to be made to account for
changes in the classification scheme over time. For
example, the old Section 10 was replaced by Sec-
tion 11 in 1984, and papers in the former are in-
cluded in our counts for the latter. New categories
added in 2000 are not included.) The data for this
section are the 886,000 papers and 220,000 authors
from 1980 to 1999.

Figure 3 shows the fraction of papers in each
group. It probably comes as no surprise to anyone
hanging around major mathematics departments
that continuous mathematics has a clear plurality.
Of course there are thousands of papers in the sci-
ence and engineering category that fall outside the
scope of MR and are therefore not included.

At a finer level of detail, we see in Table 2 the
particular sections that include more than 3% of the
total. These 11 sections together account for 46%
of the papers in MR.

Figure 1. The distribution of the total number of
papers per author.

Figure 3. The distribution of papers by groups
of MSC categories.

Figure 2. The increasing quantity of mathematics and
mathematicians.
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Many mathematicians work in more than one
area. Figure 4 shows the fraction of authors, among
the 130,000 who have published more than one
paper during 1980–1999, who published in one or
more areas during that time. (The 90,000 authors
having just one paper are omitted from this chart.)
Breadth is a two-edged sword, and it is certainly
not to be assumed that the more areas one works
in, the better.

One might wonder whether researchers in some
areas of mathematics publish more papers than re-
searchers in other areas. (Some might claim that
this would mean that such researchers are better
at finding new theorems. Skeptics might argue that
the cultural climate surrounding some areas leads
to the acceptance of more trivial results.) Figure 5
shows the mean number of papers per author in
each group. These figures are lower than the over-
all mean of 6.87 for two possible reasons: The data
cover only the time period 1980–1999, and a re-
searcher who publishes in more than one group is
counted here in each group separately.

There does not seem to be a large difference in
output between continuous mathematics and dis-
crete mathematics. Furthermore, the individual
sections with the most papers per author (between
4.25 and 4.62) seem to range randomly over the
groupings, and include, in decreasing order, 05, 16,
60, 14, 81, 83, 35, 54, 53, and 20. Given that many
researchers in peripheral areas, such as statistics
or engineering, may have many papers not included
in MR, it does not seem to be significant that the
paper counts for these groups are lower.

How Much Collaboration Is Going On, and
Does Area Matter?
About half of the papers currently being published
have more than one author. This has not always
been the case. Figure 6 shows the fractions of pa-
pers in each decade with one, two, three, or more
than three authors. For the database as a whole, 66%
of the papers have one author, 26% have two, 7%
have three, and 1% have four or more. The mean
number of authors per paper has risen from 1.10
in the 1940s to 1.63 in the 1990s. The mean for the
entire database is 1.45. About 75% of all authors
appearing in the database have written joint papers.

To determine whether area of mathematics cor-
relates with multiauthorship, we look again at the
1980–1999 data broken down by the MR sections
and the groupings shown in Table 1. During this
time period, the mean number of authors per paper
was about 1.52, and about 39% of the papers were
joint work. Figure 7 shows the extent of collabo-
ration by group. The mean number of authors per
paper is very close in the pure mathematics areas
(1.45 for continuous, 1.41 for discrete). As might
have been guessed, this parameter is higher (around
1.7) for MR papers in computer science, science, and

engineering; it is significantly lower for the “Other”
group.

Table 3 shows the individual MR sections with
the most and the least collaboration. Apparently
it is not fashionable to have too many authors on
a paper in certain areas of mathematics.

Figure 4. The distribution of the number of
areas in which authors with more than one
paper published.

Figure 5. The mean number of papers per author, by group.

Figure 6. The fraction of papers with a given number of
authors, by decade.
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Pure “continuous” mathematics

22 Topological groups, Lie groups
26 Real functions
28 Measure and integration
30 Functions of a complex variable
31 Potential theory
32 Sev. complex vars., analytic spaces
33 Special functions
34 Ordinary differential equations
35 Partial differential equations
39 Difference and functional equations
40 Sequences, series, summability
41 Approximations and expansions
42 Fourier analysis
43 Abstract harmonic analysis
44 Integral transforms, oper. calc.
45 Integral equations
46 Functional analysis
47 Operator theory
49 Calc. of variations, optimal control
53 Differential geometry
54 General topology
55 Algebraic topology
57 Manifolds and cell complexes
58 Global analysis, analysis on manifolds
60 Probability theory, stochastic proc.
65 Numerical analysis

Operations research
90 Oper. res., math. programming

Statistics
62 Statistics

Computer science
68 Computer science
94 Information, circuits, communication

Pure “discrete” mathematics

03 Logic, set theory, foundations
05 Combinatorics
06 Order, lattices, ordered alg. struct.
08 General algebraic systems
11 Number theory
12 Field theory and polynomials
13 Commutative rings and algebras
14 Algebraic geometry
15 Linear, multilinear alg.; matrix theory
16 Associative rings and algebras
17 Nonassociative rings and algebras
18 Category theory; homological algebra
19 K-theory
20 Group theory and generalizations
51 Geometry
52 Convex and discrete geometry

Science and engineering
70 Mechanics of particles and systems
73 Mechanics of solids
76 Fluid mechanics
78 Optics, electromagnetic theory
80 Class. thermodynamics, heat transfer
81 Quantum theory
82 Stat. mechanics, structure of matter
83 Relativity and gravitational theory
85 Astronomy and astrophysics
86 Geophysics
92 Biology and other natural sciences
93 Systems theory; control

Other
00 General
01 History and biography

Table 1. Groups of subjects in the Mathematics Subject Classification.

Figure 7. The extent of collaboration by group, 1980–1999.



JANUARY 2005 NOTICES OF THE AMS 39

What Does the Collaboration Graph Look
Like?
The past several years have seen an explosion in
the interest in properties of large real-world net-
works. Graph theorists are not the only leading play-
ers here; physicists, computer scientists, and so-
ciologists are turning out papers by the dozens.
(See, for example, an excellent comprehensive sur-
vey by physicist Mark Newman [10].) These graphs—
whether social networks such as collaboration
graphs or telephone call graphs, information net-
works such as citation graphs or the links on the
World Wide Web, technological networks such as
the Internet or power grids, or biological networks
such as protein interactions or the neural network
of a worm—do not display the kinds of properties
that “almost all” graphs do. Instead, parameters
such as the degree distribution (how many edges
are incident to each vertex), the average distance
between vertices, and the degree of clustering of
edges (as opposed to their being randomly dis-
tributed throughout the graph) exhibit interesting
patterns. (Fittingly, Paul Erdős led the early re-
search in the study of random graphs [4].)

Here are a few facts about C , the mathematics
research collaboration graph for 1940–1999, ac-
cording to MR data. (Of course this is just a sub-
graph of the collaboration graph for all disciplines;
see the final section of this article.) The graph C
has about 337,000 vertices and 496,000 edges, so
the average number of collaborators per person is
2.94. The graph has one large connected compo-
nent consisting of about 208,000 vertices. Of the
remaining 129,000 authors, 84,000 of them have
written no joint papers (these are isolated vertices
in C). The other 45,000 are distributed in 17,000
components with up to 39 vertices, but 11,000 of
these components have just two authors. The av-
erage number of collaborators for people who have
collaborated is 3.92; the average number of col-
laborators for people in the large component is 4.43;
and the average number of collaborators for peo-
ple who have collaborated but are not in the large
component is 1.54.

Figure 8 shows the distribution of the number
of collaborators per mathematician. In graph-
theoretical terms, this chart tabulates the degrees
of the vertices in C . The median is 1, the mean is
2.94, and the standard deviation is 5.50. (If we
omit the isolated vertices, then the median degree
is 2, the mean is 3.92, and the standard deviation
is 6.04.) Recent research (see [10]) has indicated that
we should expect the nonzero degrees to follow a
power law: The number of vertices with degree d
should be roughly proportional to d−β , where β is
somewhere around 3. Indeed, when we fit such a
model to our data (grouping the data in the tail),
we find the exponent to be about 2.97, with a cor-
relation coefficient for the model of r = 0.97. A
slightly more accurate model throws in an expo-
nential decay factor, and with this factor present,
the exponent is 2.46 , and r = 0.98. Apparently
these models are appropriate for these data.

Forty-four people in the database have more
than 100 collaborators, led by Paul Erdős with 502,
Frank Harary with 254, and Yuri Alekseevich
Mitropolskii with 240. (Harary is an Erdős coauthor,
and Mitropolskii’s Erdős number is 3.) The next six
most sociable mathematicians (all of whom have
between 152 and 156 coauthors listed in MR
through 1999), with their Erdős numbers shown in
parentheses, are Noga Alon (1), Andrei Nikolae-
vich Kolmogorov (1903–1987) (4), Saharon Shelah
(1), Sergei Petrovich Novikov (3), Aleksandr An-
dreevich Samarskii (3), and Hari M. Srivastava (2).
(Again, most of these counts have grown in the past
five years.)

The distance d(u, v) between two vertices in a
graph is just the number of edges in a shortest path
from one vertex to the other. The eccentricity of
vertex u is e(u) = maxv d(u, v) , the diameter of the
graph is maxu,v d(u, v), and the radius of the graph
is minu e(u) . The large component of C has radius
14 and diameter 27. There are at least three

81 Quantum theory 5.2%
35 Partial differential equations 5.2%
62 Statistics 4.6%
65 Numerical analysis 4.6%
60 Probability theory, stochastic proc. 4.3%
90 Oper. res., math. programming 4.3%
58 Global analysis, analysis on 

manifolds 4.2%
05 Combinatorics 3.6%
68 Computer science 3.6%
34 Ordinary differential equations 3.2%
11 Number theory 3.2%

Table 2. MSC categories with the most 
papers.

Figure 8. The distribution of the number of
collaborators each mathematician has.
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vertices with eccentricity 14 (including Noga Alon,
but not including Paul Erdős, whose eccentricity
is 15). By randomly sampling 66 pairs of vertices,
we found the average distance between two vertices
to be around 7.8, with a standard deviation of 1.4.
The median of the sample was 8, with the quartiles
at 6.75 and 9. The smallest and largest distances
in the sample were 5 and 12, respectively. The ap-
propriate phrase for C , then, is perhaps “nine de-
grees of separation” [7], if we wish to account for
three quarters of all pairs of mathematicians.

The clustering coefficient of a graph is defined
as the fraction of ordered triples of vertices u, v,w
in which edges uv and vw are present that have
edge uw present. (In other words, how often are
two neighbors of a vertex adjacent to each other?)
The clustering coefficient of the collaboration graph
is 913659/6072790 = 0.15. The fairly high value of
this parameter (it would be about 10−5 if the edges
occurred at random), together with the fact that
path lengths are small, indicates that C is a “small
world” graph [13].

The discussion above refers to what might be
called the collaboration graph of the first kind, in
which two authors are joined by an edge if they have
published a joint paper, regardless of how many
other coauthors that paper has. A graph C′ with
fewer edges could be constructed by purists who
put an edge between u and v only if u and v have
published a two-author paper together. See [5] for
comparable information about this collaboration
graph of the second kind. An intriguing subgraph
of C′ is its main core. The k-core of a graph is the
(unique) largest subgraph all of whose vertices

have degree at least k ; the smallest nonempty k-
core (i.e., the one for largest k) is its main core [1].
For C′ the main core is the 5-core, and it has 44
vertices and 162 edges: Paul Erdős, 36 Erdős coau-
thors, and seven people with Erdős number 2. Fur-
thermore, because the core contains several copies
of K5 (the complete graph on five vertices) and
K3,3 (the complete bipartite graph with three ver-
tices in each part), we know that C′ is nonplanar
(thereby answering a question raised by Erdős).

And What Is Your Erdős Number?
Mathematicians like to have fun computing their
Erdős numbers. (Again, we could consider Erdős
numbers of the first or second kinds. Here we will
restrict ourselves to the former; see [5] for further
information on the latter, as well as an updating
of many of the statistics mentioned in this article
using data through 2004.) Their distribution (for
the 208,000 mathematicians in the large component
of C in the MR database) is shown in Figure 9. The
median Erdős number is 5 (as is the mode), the
mean is 4.69, and the standard deviation is 1.27.

The Erdős numbers of the 44 Fields medalists
are all 5 or less, with the exception of Laurent Laf-
forgue, whose publication list in MR shows no
coauthors at all. Comparable statements can be
made for winners of other honors, such as the
Wolf Prize in Mathematics. A few mathematicians
from the nineteenth and early twentieth centuries
formally collaborated, and we have been able to
establish finite Erdős numbers for such people as
David Hilbert (4) and Ferdinand Georg Frobenius
(3), but not, unfortunately, for Bertrand Russell. The

MR Section mean au. >1 au. >2 au. >3 au.

68 Computer science 1.77 53% 17.7% 4.7%
(all science and engineering sections) 1.73 52% 16.4% 3.9%

94 Information, circuits, communication 1.67 50% 13.5% 3.2%
05 Combinatorics 1.64 46% 13.7% 3.2%
65 Numerical analysis 1.61 46% 12.3% 2.2%
90 Oper. res., math. programming 1.59 45% 11.6% 1.9%
33 Special functions 1.58 45% 9.6% 2.0%
62 Statistics 1.56 45% 8.7% 1.3%
58 Global analysis, analysis on manifolds 1.55 40% 11.3% 2.7%
39 Difference and functional equations 1.52 41% 9.1% 1.4%

(average over all sections) 1.52 39% 9.9% 2.0%

51 Geometry 1.34 28% 4.9% 0.7%
19 K-theory 1.33 26% 5.7% 1.3%
18 Category theory; homological algebra 1.33 28% 4.5% 0.4%
11 Number theory 1.32 26% 5.0% 0.7%
31 Potential theory 1.32 27% 5.0% 0.3%
14 Algebraic geometry 1.31 26% 4.4% 0.6%
03 Logic, set theory, foundations 1.30 24% 5.1% 0.9%
32 Sev. complex vars., analytic spaces 1.30 26% 3.7% 0.5%
12 Field theory and polynomials 1.30 25% 4.2% 0.5%

Table 3. MSC categories with the most and least collaboration.
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[9] RICHARD MONASTERSKY, Hot type: Co-author for sale,
The Chronicle of Higher Education 50:38 (May 28,
2004), A15.

[10] M. E. J. NEWMAN, The structure and function of com-
plex networks, SIAM Review 45 (2003), 167–256; MR
2010377.

[11] TOM ODDA [pseudonym for Ronald L. Graham], On
properties of a well-known graph or what is your Ram-
sey number?, Topics in graph theory (New York, 1977),
166–172, Ann. New York Acad. Sci. 328, New York
Acad. Sci., New York, 1979; MR 81d:05055.

[12] BERT TEPASKE-KING and NORMAN RICHERT, The identifi-
cation of authors in the Mathematical Reviews data-
base, Issues in Science and Technology Librarianship
31 (Summer, 2001), http://www.library.ucsb.edu/
istl/01-summer/databases.html.

[13] DUNCAN J. WATTS and STEVEN H. STROGATZ, Collective dy-
namics of ‘small-world’ networks, Nature 393 (1998),
440–442.

Figure 9. The number of people with different Erdős numbers.

author would be interested in learning of other re-
sults of this type.

One could certainly extend the collaboration
graph outside the field of mathematics. The emi-
nent biologist Eugene V. Koonin, at the National
Center for Biotechnology Information, has Erdős
number 2 (via a paper with László Székely and oth-
ers on genomes), and this leads to small finite
Erdős numbers for many scientists. Indeed, it is
probably possible to connect to Erdős a large frac-
tion of people who have published in the biologi-
cal sciences. With a couple of hours’ work on the
Web, the author was able to establish an upper
bound of 9 for the Erdős number of his brother, a
practicing physician, who was a coauthor on a sin-
gle biology paper resulting from a summer in-
ternship. Similar results should hold for physics,
chemistry, and computer science. It would be in-
teresting to explore how the issues raised in this
article apply to research in the social sciences and
the humanities.

Microsoft founder Bill Gates has Erdős num-
ber 4, as does Linus Pauling, who won the 1954
Nobel Prize in Chemistry and the 1962 Nobel Peace
Prize. It is not hard to find small finite Erdős num-
bers for many other Nobel prize winners as well,
from Albert Einstein (2; 1921 Physics) to Francis H.
C. Crick (7; 1962 Medicine) to Herbert A. Simon (3;
1978 Economics). Further trivia of this sort can be
found on the Erdős Number Project website, as
well as in [2].

The author has implemented a breadth-first
search in the collaboration graph and would be
happy to assist curious readers in determining
their own Erdős numbers. Furthermore, MathSciNet
has recently added a feature that allows users to
find the distance in C between any two authors.
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Erdős collaboration graphs, Social Networks 22 (2000),
173–186; MR 2001j:91101.

[2] RODRIGO DE CASTRO and JERROLD W. GROSSMAN, Famous
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http://www.oakland.edu/enp, 1996–present.

[6] ——— , Patterns of collaboration in mathematical re-
search, SIAM News 35:9 (November, 2002), 1 and 8–9.

[7] JOHN GUARE, Six Degrees of Separation, Random House,
New York, 1990.

[8] MathSciNet, Mathematical Reviews on the Web,
1940–present, American Mathematical Society,
http://www.ams.org/mathscinet.

http://www.library.ucsb.edu/istl/01-summer/databases.html
http://www.library.ucsb.edu/istl/01-summer/databases.html

