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Introduction
A quiver is just a directed graph.1 Formally, a
quiver is a pair Q = (Q0,Q1) where Q0 is a finite
set of vertices and Q1 is a finite set of arrows be-
tween them. If a ∈ Q1 is an arrow, then ta and ha
denote its tail and its head, respectively.

Let us fix a quiver Q and a base field K. At-
tach a finite dimensional vector space to each
vertex of Q and a linear map to each arrow (with
the appropiate domain and codomain). Then this
is called a representation of Q . Formally, a repre-
sentation V of Q is a collection

{Vx | x ∈ Q0}

of finite-dimensional K-vector spaces together with
a collection

{Va : Vta → Vha | a ∈ Q1}

of K-linear maps. If V is a representation of Q , then
its dimension vector dV is the function Q0 → N
defined by dV (x) = dimK(Vx) for all x ∈ Q0. Here
N = {0,1,2, . . . } denotes the set of nonnegative 
integers. The set of all possible dimension vectors
is NQ0. Here are a few typical examples of quiver
representations.

Example 1. A representation of the quiver

is a collection of two finite-dimensional vector
spaces V1 ,  V2 together with a linear map
Va : V1 → V2 .

Example 2. A representation of the loop quiver 

is a vector space V1 together with an endomor-
phism Va : V1 → V1 .

Example 3. A representation of the star quiver 

is a collection of six vector spaces V1, V2, . . . , V6 to-
gether with five linear maps Vai : Vi → V6 ,
i = 1,2, . . . ,5. If all maps are injective, then we can
view such a representation as a subspace 
configuration.

Harm Derksen is associate professor of mathematics at the
University of Michigan. His email address is 
hderksen@umich.edu.

Jerzy Weyman is professor of mathematics at Northeast-
ern University. His email address is j.weyman@neu.edu.

The authors are partially supported by NSF Grants DMS
0349019 and 0300064, respectively.
1The underlying motivations of quiver theory are quite 
different from those in the traditional graph theory. To 
emphasize this distinction, it is common in our context to
use the word “quivers” instead of “graphs”.
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If V and W are two representations of Q , then
a morphism φ : V → W is a collection of K-linear
maps

{φx : Vx → Wx | x ∈ Q0}
such that the diagram

commutes for every arrow a ∈ Q1 . That is,
Waφta = φhaVa for all a ∈ Q1.

For a quiver Q and a field K we can form the
category RepK(Q) whose objects are representa-
tions of Q with the morphisms as defined above.

A morphism φ : V → W is an isomorphism if φx
is invertible for every x ∈ Q0. One naturally wants
to classify all representations of a given quiver Q
up to isomorphism.

Example 4. Consider Example 1. For a linear map
Va : V1 → V2 we can always choose bases in V1 and
in V2 in which Va is given by the block matrix(

Ir 0
0 0

)
,

where r is the rank of A and Ir is the r × r iden-
tity matrix. Two representations Va : V1 → V2 and
Wa : W1 → W2 are isomorphic if and only if
dimV1 = dimW1 , dimV2 = dimW2 , and Va and Wa
have the same rank.

Example 5. Consider Example 2. Assume that the
base field K is algebraically closed. If Va : V1 → V1

is an endomorphism of the finite-dimensional 
K-vector space V1, then for some choice of basis
in V1, the matrix of Va has the form

(1)


Jn1,λ1 0 · · · 0

0 Jn2,λ2 0
...

. . .
...

0 0 · · · Jnr ,λr

 ,

where Jn,λ denotes the n× n Jordan block
λ 1

λ 1 ∅
. . .

. . .
∅ λ 1

λ

 .

The matrix (1) is the well-known Jordan normal
form of Va. It is unique up to permutation of the

blocks. Two representations, Va : V1 → V1 and
Wa : W1 → W1 , of the loop quiver are isomorphic if
and only if Va and Wa have the same Jordan nor-
mal form.

As we have seen, the classifications of repre-
sentations of the quivers in Examples 1 and 2 cor-
respond to well-known problems in linear algebra.
For more complicated quivers, the classification
problem leads to more involved linear algebra prob-
lems. For example, for the double loop quiver

we have to classify all pairs of matrices (Va, Vb) up
to simultaneous conjugation, a notoriously difficult
problem. The classification problem for Example 3
is equally hard. Yet there are many quivers for
which the classification problem has been solved.

Indecomposable Representations
If V and W are two representations of the same
quiver Q , we define their direct sum V ⊕W by

(V ⊕W )x := Vx ⊕Wx

for all x ∈ Q0, and

(V ⊕W )a :=
(
Va 0
0 Wa

)
: Vta ⊕Wta → Vha ⊕Wha

for all a ∈ Q1.
We say that V is a trivial representation if Vx = 0

for all x ∈ Q0. If V is isomorphic to a direct sum
W ⊕ Z, where W and Z are nontrivial representa-
tions, then V is called decomposable. Otherwise 
V is called indecomposable. Every representation 
has a unique decomposition into indecomposable 
representations (up to isomorphism and permu-
tation of components). The classification problem
reduces to classifying the indecomposable repre-
sentations.

Example 6. Let us go back to Examples 1 and 4.
There are 3 indecomposable representations
A,B,C, namely

A : K → 0, B : 0→ K, C : K 1→ K.

Any representation V is isomorphic to

V � Ad1−r ⊕ Bd2−r ⊕ Cr

where d1 = dimV1 , d2 = dimV2 and r = rankVa.

Example 7. Consider again Examples 2 and 5. Inde-
composable representations correspond to the 
Jordan blocks. The Jordan normal form shows how
a representation decomposes into indecomposables.

φ φ

a b
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Although there are infinitely many indecomposable
representations, they can still be parametrized by a
discrete parameter nand a continuous parameter λ.

Example 8. In Example 3, one can identify a 
2-dimensional family of pairwise nonisomorphic 
indecomposable representations, namely,

where Va1 , . . . , Va5 are given by the matrices

(
1
0

)
,
(

0
1

)
,
(

1
1

)
,
(

1
λ

)
,
(

1
µ

)
,

respectively, with λ,µ ∈ K .

Furthermore, there exist other families of inde-
composables for this particular star quiver, where
the number of parameters of the family is arbitrarily
large. In this example, describing explicitly the set
of indecomposable representations is essentially an
impossible task.

Theorems of Gabriel and Kac
We have observed different behavior of indecom-
posables for various quivers. If a quiver has only
finitely many indecomposable representations, it
is called a quiver of finite type. If there are infinitely
many indecomposables, but they appear in fami-
lies of dimension at most 1, then the quiver is
called of tame type.2 If the representation theory
of the quiver is at least as complicated as the rep-
resentation theory of the double loop quiver, then
the quiver is called of wild type. These definitions
given here are imprecise but hopefully convey the
right intuition. The precise definitions of tame and
wild type are omitted. It is known that every quiver
is either of finite type, tame, or wild. We will later
see that such a trichotomy is true in a more gen-
eral setting.

Forgetting the orientations of the arrows yields
the underlying undirected graph of a quiver. The
following amazing theorem is due to Gabriel (see [8],
[13]).

Theorem 9 [Gabriel’s Theorem, part 1]. A quiver
is of finite type if and only if the underlying undi-

rected graph is a union of Dynkin graphs of type
A , D, or E, shown below:

The Dynkin graphs play an important role in the
classification of simple Lie algebras, of finite crys-
tallographic root systems and Coxeter groups, and
other objects of “finite type”.

For quivers of tame type, a similar description
exists, namely:

Theorem 10 ([5], [14]). A quiver Q which is not of
finite type is of tame type if and only if the un-
derlying directed graph is a union of Dynkin graphs
and extended Dynkin graphs of type Â , D̂, or Ê ,
shown below:

Gabriel proved a stronger statement for quivers
of finite type:

Theorem 11 [Gabriel’s Theorem, part 2]. The in-
decomposable representations are in one-to-one
correspondence with the positive roots of the 
corresponding root system. For a Dynkin quiver 
Q , the dimension vectors of indecomposable 
representations do not depend on the orientation
of the arrows in Q .

Amazingly, this result is just the tip of an ice-
berg. Define the Euler form (or Ringel form) of a

2In some papers, the definition of tame type includes finite
type.
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quiver Q to be the asymmetric bilinear form on ZQ0

given by

〈α,β〉 =
∑
x∈Q0

α(x)β(x)−
∑
a∈Q1

α(ta)β(ha).

The Euler form is represented in the coordinate
basis of ZQ0 by the matrix E = (bi,j ) where the

bi,j = δi,j − #{ a ∈ Q1 | ta = i, ha = j},

where δi,j is the Kronecker delta symbol. One also
defines a symmetric bilinear form

(α,β) := 〈α,β〉 + 〈β,α〉,
called the Cartan form of the quiver Q . The 
Cartan form does not depend on the orientation 
of the arrows in Q .

Example 12. For the quiver

the Euler matrix is

E =
1 −1 0

0 1 −1
0 0 1


and the Cartan matrix is

C =
 2 −1 0
−1 2 −1
0 −1 2

 .
The Tits form q of Q is defined by

q(α) = 〈α,α〉 = 1
2 (α,α).

The number of continuous parameters for 
α-dimensional (α ≠ 0) representations is known to
be at least 1− q(α) . The Tits form plays an inte-
gral role in Gabriel’s theorem. For a quiver of finite
type and a nonzero dimension vector α, there are
only finitely many representations up to isomor-
phism, so q(α) ≥ 1. From this one can prove that
the Cartan form is positive definite and that the 
underlying undirected graph is a union of Dynkin
diagrams. One can also show that a dimension 
vector α is a positive root if and only if q(α) = 1.

About the same time at which Gabriel proved his
theorem, Kac and Moody came up with a general-
ization of root systems and corresponding Lie 
algebras for Cartan matrices of arbitrary quivers.
Kac proved in 1980 the following result (see [9]).

Theorem 13 [Kac’s Theorem]. For an arbitrary
quiver Q , the set of dimension vectors of inde-
composable representations of Q does not depend

on the orientation of arrows in Q . The dimension
vectors of indecomposable representations corre-
spond to positive roots of the corresponding root
system.

In the theory of Kac-Moody algebras one dis-
tinguishes between real roots and imaginary roots.
In Theorem 13, real roots correspond to dimension
vectors for which there is exactly one indecom-
posable representation, while imaginary roots cor-
respond to dimension vectors for which there are
families of indecomposable representations. If a
positive root α is real, then q(α) = 1. If it is imag-
inary, then q(α) ≤ 0.

Example 14. The real roots for the wild quiver

are
(1,0), (3,1), (8,3), (21,8), . . .
(0,1), (1,3), (3,8), (8,21), . . .

(pairs of consecutive odd Fibonacci numbers). The
imaginary roots are all (p, q) ∈ N2 with

3−√5
2

<
p
q
<

3+√5
2

.

The connections with the theory of Lie algebras
and algebraic groups can be developed much fur-
ther. Ringel showed how to construct the upper tri-
angular part of the enveloping algebra of a simple
Lie algebra from the representations of the corre-
sponding Dynkin quiver Q , using the Hall algebra
associated to Q ([15]). The connections between
quiver representations and canonical bases of quan-
tum groups is an active area of current research.

Canonical Decompositions

Kac’s theorem describes the dimension vectors in
which indecomposable representations appear.
However, this theorem does not tell us how to con-
struct indecomposable representations. One might
think that a “generic” representation of dimension
α is indecomposable if α is a root. This is not the
case. Because the classification of (indecompos-
able) representations is no longer feasible, we 
will set ourselves more modest goals. We will ask
ourselves the following questions:

If we fix a dimension vector α and we choose all
the linear maps at random, when will such a rep-
resentation be indecomposable? When will such a
representation be rigid? (This means: for which rep-
resentations does every small enough perturbation
of the linear maps result in an isomorphic repre-
sentation?)

1 2
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We say that a general representation of dimen-
sion α is indecomposable if there is a nontrivial
polynomial equation in the entries of the matrices
such that every decomposable representation of 
dimension α satisfies the polynomial equation.

Even for the loop quiver from Example 2 we see
that in dimension vector (n) a representation can
be indecomposable only if all its eigenvalues are
the same. One might ask a different question: how
does a general representation decompose? Kac
showed that if V is a “sufficiently general” repre-
sentation with dimension vector α, then the di-
mension vectors of the direct summands will not
depend on V . This general decomposition of the
dimension vector of α into the dimension vectors
of indecomposable summands is called the canon-
ical decomposition of α. This notion depends on the
orientation of arrows in Q . We write

α = α1 ⊕ . . .⊕αr
if a general representation of dimension vector α
has r indecomposable summands of dimension
vectors α1, . . . , αr . If a general representation of 
dimension α is indecomposable then the canoni-
cal decomposition of α is just α itself. In this case,
α is called a Schur root.

Example 15. Take the loop quiver from Example 2.
The dimension vector α = (n) is an imaginary root
because there is a 1-dimensional family of inde-
composables in this dimension. The canonical 
decomposition of α is

(n) = (1)⊕ (1)⊕ · · · ⊕ (1)︸ ︷︷ ︸
n

= (1)⊕n

because a general endomorphism has distinct eigen-
values and thus decomposes into Jordan blocks of
size one.

Example 16. Consider the quiver

A general representation of dimension (1,2,1) is
of the form

This representation is indecomposable if Va is 

injective, Vb is surjective, Vc is an isomorphism, 
and VbVa = 0. The dimension vector (1,2,1) is a 
real root (up to isomorphism there is only one 
indecomposable representation). For a general 
representation of dimension (1,2,1) , however, the
composition VbVa will be nonzero, and an inde-
composable summand

will split off. Thus (1,2,1) is not a Schur root.

The canonical decomposition is homogeneous
in the following way. If

α = α1 ⊕ . . .⊕αr
is the canonical decomposition for some dimension
vector, then

(2) nα = [nα1]⊕ . . .⊕ [nαr ],

where [nα] denotes nα if 〈α,α〉 < 0 and α⊕n if
〈α,α〉 ≥ 0.

We now get back to the questions from the be-
ginning of this section. A dimension vector α is rigid
if every summand in the canonical decomposition
of α is a real Schur root. An efficient combinator-
ial algorithm to compute the canonical decompo-
sition of a dimension vector was given in [4] (a sim-
ilar algorithm is given in [17]). Using this 
algorithm it is possible to check whether a given
dimension vector is a Schur root or a rigid dimen-
sion vector. It is unlikely that an easy explicit 
description of Schur roots or dimension vectors 
exists, given the complex nature of these notions
revealed in the next section.

An Example
We will discuss an example to visualize the notions
of real and imaginary roots and Schur roots.

The sets of dimension vectors for which general
representation is indecomposable have a very com-
plicated structure, as we will see in the example
below. For a quiver with three vertices, we can
graph dimension vectors in the projective plane to
get a two-dimensional picture. A dimension vector
(x, y, z) will be drawn as the projective point
[x : y : z] in P2. This makes sense because the
canonical decomposition is essentially homoge-
neous by (2). All dimension vectors will be con-
tained in the triangle [x : y : z], x, y, z ≥ 0.

Let Q be the quiver
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For this particular quiver, the imaginary positive
roots are exactly all dimension vectors α for which
q(α) ≤ 0 . The quadric q(α) = 0 is plotted in
Figure 1. This quadric and its interior correspond
to the imaginary roots.

The imaginary Schur roots are the dimension vec-
tors inside the nonconvex fractal-like polygon
shown in Figure 2. Since the polygon is properly
contained inside the quadric in Figure 1, we see that
there exist imaginary roots that are not imaginary
Schur roots.

In figure 3 we plotted some real roots for this
quiver. The dimension vectors α for which a gen-
eral representation is rigid are those that lie out-
side the fractal-like polygon in the Figure 4. A real
root α is a real Schur root if and only if α is a rigid
dimension vector. We see that some of the real
roots in Figure 3 lie inside the polygon in Figure 4.
This shows that some real roots are not real Schur
roots.

Representation Theory of Finite-
Dimensional Algebras
There is a close connection between quivers and
the representation theory of finite-dimensional 
algebras. In the last few decades there has been an

enormous progress in the area of finite-
dimensional algebras. Because of space limitations
we will not be able to do justice to this subject. We
will just give a glimpse of this area and its con-
nection to quivers.

A path in a quiver Q is a sequence a1a2 · · ·ar
of arrows in Q1 with tai = hai+1 for
i = 1,2, . . . , r − 1. We also define a trivial path ex
with tex = hex = x for each vertex x ∈ Q0. The path
algebra of KQ is the vector space spanned by all
paths in Q . The algebra structure of KQ is given
by the concatenation of paths. There is a natural
bijection between representations of the quiver Q
and (left)-KQ-modules.

Example 17. Consider the quiver

For every i, j with 1 ≤ i ≤ j ≤ 4 there is a unique
path from i to j . Identify this path from i to j with
the matrix Ej,i having a 1 in row j and column i and
0 everywhere else. Using this identification, we see
that the path algebra for this quiver is isomorphic
to the set of 4× 4 lower triangular matrices.

Figure 1.

[1:0:0 0:0:1]

[0:1:0]

[0:1:1][1:1:0]

[1:0:1]

Figure 3. 

[1:0:0 0:0:1]

[0:1:0]

[0:1:1][1:1:0]

[1:0:1]

Figure 2. 

Figure 4. 
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If A is a finite-dimensional algebra over the com-
plex numbers C, then the category of representations
of the algebra A is equivalent to the category of rep-
resentations of the algebra KQ/I for some quiver
Q and some two-sided ideal I of KQ. This is the rea-
son why quivers play a central role in the theory of
finite-dimensional algebras and their modules.

One can extend the notions of finite, tame, and
wild type for finite-dimensional algebras. An im-
portant result for quivers with relations is Drozd’s
Theorem, which states that every finite-dimensional
algebra is either finite type, tame, or wild (see [3],
[7]). These possibilities are mutually exclusive.

Even though the classification of indecompos-
able representations of wild algebras is an almost
impossible task, King showed that it is possible to
construct nice moduli spaces for the representa-
tions using geometric invariant theory [12]. These
moduli spaces do not parameterize all represen-
tations, but only representations that are a direct
sum of indecomposable representations satisfy-
ing a certain stability condition.

Another direction in representation theory of
quivers started with Auslander and Reiten’s appli-
cation of homological methods. They introduced
what is nowadays called the Auslander-Reiten trans-
form of a representation of a finite-dimensional 
algebra. For representations of a quiver Q without
relations or oriented cycles, the Auslander-Reiten
transform induces a map of dimension vectors. If
V is a representation of dimension α for which the
Auslander-Reiten transform is defined, then its
transform has dimension τ(α) where τ(α) ∈ ZQ0 is
the unique integer vector satisfying

〈τ(α), β〉 = −〈β,α〉
for all dimension vectors β . The homological prop-
erties of the Auslander-Reiten transform imply
that if α is a real root/imaginary root/real Schur
root/imaginary Schur root/rigid dimension vec-
tor, then so is τ(α) .

The Auslander-Reiten transform is visible in the
figures of the previous section. In that case, the map
τ is given by 3 5 −3

3 3 −2
1 2 −1

 .
Note that for example τ(0,1,1) = (2,1,1) and
τ(1,0,1) = (0,1,0) . Using the homological proper-
ties of the Auslander-Reiten transform, we have 
discovered the map τ that leaves the quadric in 
Figure 1, the infinite polygon in Figure 2, the real
roots3 (Figure 3), and the infinite polygon in Fig-
ure 4 invariant.
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