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And while I have sought to shew the
naturalist how a few mathematical con-
cepts and dynamical principles may
help and guide him, I have tried to shew
the mathematician a field for his
labour—a field which few have entered
and no man explored. Here may be
found homely problems, such as 
often tax the highest skill of the math-
ematician, and reward his ingenuity all
the more for their trivial associations
and outward semblance of simplicity.

So writes D’Arcy Wentworth Thompson (1860–
1948) [8], the great biologist, in the epilogue to 
his magnum opus On Growth and Form in 1917.
In this classic work Thompson states his task in 
the following words:

The terms Growth and Form, which
make up the title of this book, are to be
understood, as I need hardly say, in
their relation to the study of organ-
isms. We want to see how, in some cases
at least, the forms of living things, and
of the parts of living things, can be ex-
plained by physical considerations, and

to realise that in general no organic 
form exists save as are in conformality
with physical and mathematical laws.

The torch lit by D’Arcy Thompson has been taken
up, in the last quarter of the twentieth century, by
a growing band of mathematicians and theoreticians
to the extent that mathematical or theoretical biology
is well recognised as an important discipline in
many undergraduate and graduate schools in uni-
versities and colleges. Mathematicians have indeed
brought their skills to address biological questions.
The Fields Medallist René Thom brought a great
wealth of new topological and analytic ideas to the
fundamental problems of modelling and under-
standing morphogenesis [7]. Here Thom introduces
his idea of a catastrophe to build  mathematical mod-
els of embryology, the structure of cells, as well as
models of thought and language. In the two-volume
work on mathematical biology [5], Murray has
brought to bear a wealth of modelling ideas and
mathematical techniques, ranging from the most el-
ementary to the cutting edge of modern nonlinear
mathematical analysis, to describe a vast array of
biological phenomena. Indeed, Murray’s books have
had and continue to have a major impact on cur-
rent mathematical biological research.

Much more recently, in this postgenomic era 
of biomedical research, a key objective is to sys-
tematically catalogue all the molecules and their 
interactions within a living cell. This in turn 
has given rise to the concepts of network biology,
which finds its mathematical expression in terms
of the theory of random graphs. Indeed, recent ad-
vances in network biology suggest that cellular net-
works are governed by universal laws and offer a
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new conceptual framework that may revolutionise
our view of biology [1], [2].

In the drive to bring these exciting develop-
ments to the lay audience and to aid the public 
understanding of science, eminent scientists have
written some excellent books on the theoretical 
underpinning of biology. In this regard the books
of Brian Goodwin, How the Leopard Changed Its
Spots: The Evolution of Complexity [3]; Ian Stewart,
Life’s Other Secret [6]; and Hans Meinhardt, The Al-
gorithmic Beauty of Sea Shells [4], are just a few ex-
amples.

At the start of the new millennium it is natural
and even fortuitous that John Adam has written a
book that in some ways attempts to light a new
torch. However, the torch that Adam carries illu-
minates a different path from that of D’Arcy
Thompson. John Adam’s quest is a very simple
one: that is, to invite one to look around and ob-
serve the wonders of nature, both natural and bi-
ological; to ponder them; and to try to explain
them at various levels with, for the most part, quite
elementary mathematical concepts and techniques.
No mathematical technique, however sophisticated,
can lead to a deeper understanding of the natural
world unless the practitioner has been able to ask
the right questions and to express the problem in
terms of a mathematical model that can be ex-
plored and tested against experimental or observ-
able evidence.

Mathematics in Nature begins by using simple
arithmetical ideas to investigate some quite in-
triguing and fun problems. For instance, Adam 
relates the apparently true story of an inmate at a
correctional center in West Virginia who escaped
from the prison grounds by using a rope made
from dental floss to pull himself over the courtyard
wall. Given that the rope was estimated to be the
thickness of a telephone cord (about 4 mm in 
diameter) and the wall 18 feet high, how many
packets of dental floss were required? This ques-
tion can be answered by estimating the diameter
of dental floss to be 1/2 mm and noting that a typ-
ical packet contains 55 yards. A very different kind
of problem is that of estimating the weight of the
atmosphere, a calculation that might seem daunt-
ing but is in fact surprisingly simple. There is also
the problem of saving the world from an alien 
attack! Here Adam recalls the sci-fi novel The Black
Cloud by the late astronomer Sir Fred Hoyle, in
which one of the characters does a “back-of-
an-envelope” calculation to estimate the time of 
arrival of a mysterious and seemingly intelligent
cloud of dust and gas that is directly approaching
Earth.

Next, one is introduced to the ideas of dimen-
sional analysis. This was the starting point for
D’Arcy Thompson and essentially concerns the
way in which physical characteristics vary with

size. Dimensional analysis is perhaps the first 
modelling technique required in order to begin to
understand any physical or natural phenomenon.
Here we meet the problem of estimating how long
a sea mammal can endure a dive or how high a flea
can jump. Another interesting application is to use
dimensional analysis to study the question, why do
cells divide when they reach a certain size?

A wonder of nature that is fa-
miliar to everyone is the rainbow.
It is one of the most beautiful and
intangible manifestations of na-
ture, and the history of its theori-
sation goes back to Descartes,
Newton, and Snell. John Adam
writes a very accessible account
of the structure of rainbows using
elementary trigonometry and ba-
sic differential calculus. In addi-
tion, he leads one into related phe-
nomena such as the halo and the
glory, the formation of ice crys-
tals and snowflakes, and even a
discussion of the iridescence of
the wing cases of beetles. It is a de-
light to see how quite basic math-
ematical techniques can be used to
help one understand and appre-
ciate the beauty of the world around us.

In the chapter “Clouds, Sand Dunes, and Hurri-
canes” a variety of modelling ideas are introduced,
and here Adam reemphasises his basic philosophy,
i.e., “try to understand a given phenomenon at as
many complementary levels as possible.”

Waves occur in many situations in the natural
world. Ocean waves and the ripples on a pond are
commonly observed by everyone. The evidence for
the presence of waves can sometimes be seen in
cloud formations and the shape of sand dunes.
Adam devotes considerable time to the study and
structure of waves. Beginning with linear wave the-
ory, he leads one to examine dispersion relations
and matters of stability. There are applications 
of the theory to shallow and deep-water waves 
as well as to ship waves. There are of course limi-
tations to the linear theory. An example of a wave 
phenomena that cannot be modelled by linear 
theory is that of a remarkable “solitary wave” 
observed by J. Scott-Russell in 1834:

I was observing the motion of a boat
which was rapidly drawn along a narrow
channel by a pair of horses, when the
boat suddenly stopped—not so the
mass of water in the channel which it
had put in motion; it accumulated round
the prow of the vessel in a state of vio-
lent agitation, then suddenly leaving 
it behind, rolled forward with great 
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is a good idea, combined with the principle of least
work.

In Chapter 12 Adam looks at the problems of
meandering rivers and river draining patterns, as
well as the mechanical forces experienced by trees.
In the former case an appeal is made to the 
hypothesis due to Langbein and Leopold that 
“meanders are not mere accidents of nature, but
the form in which a river does the least work in 
turning.” Here Adam considers the mean square
curvature of a river bend and uses the basic ideas
drawn from the calculus of variations to obtain 
conditions under which the mean square derivative
of the curvature is a minimum. He also draws out
a connection with stresses in an elastic wire.

In the discussion of river drainage patterns one is
introduced to the cellular automata rules which are
invoked. A river or stream is said to be of class 1.
When any two rivers merge they form a branch of
class 2, and after merging with yet another river,
they form a branch of class 3, and so on. This can be
generalised through defining the following rules:

1. If two tributaries of the same class i merge,
the resulting branch is of class i + 1.

2. If two tributaries of different classes, i and j ,
merge, where j > i , the resulting branch is of class j .

The next step is to consider Ni, the total num-
ber of tributaries of class i, and let m be the class
of the main stream. Then by assuming that Ni
obeys simple power laws or, more interestingly, is
equal to a particular Fibonacci number, then some
quite realistic drainage patterns may be computed.
Adam then goes on to use beam theory to discuss
the bending and shaking of trees as well as to 
estimate how high a tree can grow without buck-
ling under its own weight.

Bird flight is the subject of Chapter 13. Here it
is interesting to learn that it is much more efficient
for flocks of birds to fly in V formations rather than
individually. Adam develops the basic equations 
of bird flight, which involves the concepts of drag,
lift, and wingloading. Using these concepts to-
gether with dimensional analysis and Bernoulli’s
theorem, he discusses gliding and hovering, and
also describes how soaring birds take advantage 
of thermals and sea birds of wind shear just above
the surface of the sea.

How did the leopard get its spots? One answer
to this question is given by Rudyard Kipling in his
Just So stories. While this account is a delightful 
legend, it does not help us to understand how 
animal coat markings arise in general. For this we
turn to the great scientist Alan Turing of Enigma
fame and, to some, better known as a founding 
father of computing. In a groundbreaking paper [9]
that appeared in 1952, he showed that diffusion
can destabilise a chemical concentration to produce
patterns in place of a uniform homogeneous steady
state. This rather counterintuitive observation has

velocity assuming the form of a large
solitary elevation, a rounded, smooth
and well-defined heap of water, which
continued its course along the channel
apparently without change of form or
diminution of speed. I followed it on
horseback, and overtook it still rolling
at a rate of some eight to nine miles an
hour, preserving its original figure some
thirty feet long and a foot to a foot and
a half in height. Its height gradually 
diminished, and after a chase of one or
two miles I lost it in the windings of the
channel. Such, in the month of August
1834, was my first chance interview
with that singular and beautiful phe-
nomenon.

This phenomenon led to a mathematical de-
scription in 1895 by Korteweg and de Vries and gave
birth not only to the so-called KDV equation but also
to the modern studies of integrable partial differ-
ential equations and the inverse scattering method.

Although KDV is beyond the scope of this book,
there is a nice treatment of the somewhat more
tractable Burger’s equation, which models, for 
example, the mechanisms which maintain a tidal
bore.

Once more one is invited to look around for
more of nature’s symmetries. Look up and you
may see hexagonal convection-cell clouds; look
around and you may see mud cracks of polygonal
shape. Look at a bees’ honeycomb with its very 
regular hexagonal cells. In this latter phenomenon
John Adam argues that while bees are not optimi-
sation experts, they do like to construct polygonal
cells that enclose a region of maximum area 
but with minimum perimeter. This then leads 
to a discussion of the areas and perimeters of 
regular polygons and the problem of tiling two-
dimensional space. It is easy to see that the hexag-
onal cell does the trick here. However, when one
recognises that honeycomb cells are essentially
three-dimensional, the problem is much more 
challenging and involves the so-called Kelvin Prob-
lem: What is the most efficient (i.e., minimum of the
surface area of the boundary) partition of space
into equal volumes? It is surprising how far one 
can investigate such problems with the use of 
elementary geometry and calculus. In the same chap-
ter Adam takes up a similar line of enquiry in the
discussion of soap bubbles and foams, which is the
term used for an agglomeration of bubbles. Polyg-
onal mud cracks are a different phenomenon alto-
gether, and different modelling ideas are required.
A good start is to recognise that tension forces are
involved, and this suggests that Hooke’s law—
namely, tension is proportional to displacement—
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led to an enormous body of work on the study of
reaction-diffusion equations with far-reaching 
biological consequences. J. D. Murray [5] and many
others have taken up Turing’s ideas and developed
many models of animal coat markings, limb-bud
development, and even how the crocodile got its
teeth!

The underlying assumptions of patterning 
models are:

1. Certain chemicals (called morphogens) stim-
ulate cells to produce melanin, high concentrations
of which produce colouration, but low concentra-
tions do not.

2. Two chemicals are produced in the skin. One
activates the production of melanin, and the other
inhibits it.

3. Production of the “activator” initiates the 
production of the “inhibitor”.

4. The inhibitor diffuses faster than the activator.
These assumptions, combined with Turing’s 

discovery, lead to the construction of activator-
inhibitor systems of reaction-diffusion equations
that can be used to model a wide range of pat-
ternings in nature.

As Adam points out, there are alternatives to the
reaction-diffusion embryological pattern-forming
models. One example, not discussed in this book,
is Lewis Wolpert’s [10] idea of “positional infor-
mation”, suggesting that cells are preprogrammed
to read a chemical (i.e., morphogen) concentration
and differentiate accordingly into different kinds
of cells destined to become, for example, cartilage,
bone, tissue, hair, etc. Indeed, there is still much
controversy surrounding this fundamental problem
of developmental biology.

A related and fascinating study modelled by 
reaction-diffusion equations is the colouring and
patterning of a butterfly wing. The wing pattern is
laid down during the pupation stage. One sugges-
tion is that a morphogen that “switches on” a 
particular gene in the wing cells is released from
sources located somewhere on the wing. The 
morphogens diffuse throughout the wing cells and
“throw” biochemical switches when they exceed
some threshold concentration. It also turns out
that the wing pattern depends crucially on the
geometry and scale of the wing.

Adam illustrates these ideas in application to a
simple one-dimensional model of diffusing mor-
phogen that introduces the fundamental solution
of the heat equation and the method of separation
of variables. There is also a brief discussion of the
development of plankton blooms.

The book concludes with a little appetising dip
into fractal geometry, which is currently reshaping
some of the ways one thinks about patterns in 
nature.

Unlike D’Arcy Thompson, John Adam did not
write an epilogue to his book, but it does deserve

one. To paraphrase D’Arcy Thompson, such an
epilogue could read:

And while I have sought to show the
natural observer how a few mathemat-
ical concepts and dynamical principles
may help and guide him, I have tried to
show students and practitioners of math-
ematics and the just plain curious a field
of adventure for their labour. Here may
be found homely problems to tax the
highest skills of mathematical students
and reward their ingenuity.

On Growth and Form is a classic; Mathematics
in Nature has the potential to become one too.
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