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C
hapter 1 of Kelley’s famous book
General Topology introduces the most
fundamental concepts of a topological
space. One such notion is defined as
follows [1]:

A topological space (X, τ) is con-
nected if and ony if X is not the
union of two nonvoid separated
subsets, where A and B are sepa-
rated in X if and only if A∩ B = �
and A∩ B = �.

As usual, Y denotes the closure of a subset Y
of X.

Kelley’s book has been a staple for several
generations of graduate students, many of whom
must have wondered what this formal definition
had to do with their intuitive notion of a connected
set. Frequently, such queries can be answered by
an historical investigation, and the aim here is
to trace the development of the formal concept
of a connected set from its origins in 1901 until
its ultimate ascension into the ranks of mathe-
matical concepts worthy of study for their own
sake twenty years later. Much of this development
took place at the University of Chicago under
E. H. Moore, and the evolution of connected sets
exemplifies one specific way in which ideas that
germinated there would be promulgated by his
descendants. Although Moore exerted little direct
influence, his department’s core of outstanding
graduate students, like the well-known Oswald
Veblen, and its cadre of small-college instructors
and high school teachers from across the country
who pursued degrees during summer sessions,
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like the lesser-known N. J. Lennes, would play a
decisive role.

An overarching theme is how the rapidly evolv-
ing AMS abetted this development in two ways.
For one, local and national meetings provided
venues where researchers could present their work
and keep abreast of the progress of others. For
another, the two AMS publications, the Bulletin and
the Transactions, provided outlets for publishing
these findings. Neither journal had widespread
readership across the Atlantic so, as we will see, the
study of connected sets would proceed in Europe
independently of advances in America. Initially,
European initiatives appeared in a Polish journal
and were based on a classic book by Hausdorff,
but ultimately the two schools of topology would
interact symbiotically over connected sets. One
of the contributors who engendered the ensuing
international collaboration was Anna Mullikin, a
second-generation Moore descendant who became
the first American to publish a paper devoted to
connected sets. We end our account by examining
one of her chief examples, Mullikin’s nautilus, to
illustrate the power of the general definition first
proposed by N. J. Lennes. We begin by introducing
the latter’s life and work, emphasizing the formu-
lation of connected sets he announced fifty years
before the appearance of Kelley’s classic.

The Pioneer N. J. Lennes
It seems appropriate that the person who pioneered
the modern definition of a connected set would
be a pioneer himself in a geographic sense. Nels
Johann Lennes (1874–1951) came to the U.S. from
his native Norway at age sixteen and, like many
Scandinavians, settled in Chicago. Recall that the
University of Chicago opened its doors in 1892;
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N. J. Lennes

Lennes enrolled four years later and earned a bach-
elor’s degree in just two years. Upon graduation he
became a high school teacher (1898–1907), taking
graduate courses at Chicago all the while. With his
Ph.D. in hand he then taught at the Massachusetts
Institute of Technology and Columbia University
for three years each before his pioneering move to
distant Missoula, Montana, where he was professor
of mathematics and head of the department from
1913 until retirement in 1944. ([2] provides an
overview of his life and work; he is described
as “one of the precursors of modern abstract
mathematics”.)

This biographical vignette indicates that while
Lennes was a student at Chicago he rubbed elbows
with two other students who would ultimately
make important contributions to this development,
Oswald Veblen (1880–1960) and R. L. Moore (1882–
1974). The mathematics department in Eckhart Hall
was a cauldron of activity, and this trio emerged
during a ten-year period that produced such leg-
endary figures as L. E. Dickson (1874–1954), G. A.
Bliss (1876–1951), and G. D. Birkhoff (1884–1944).

Veblen, recently profiled in the Notices [3], en-
rolled at Chicago in 1900 after having spent a year
at Harvard obtaining a second bachelor’s degree. It
is known that he first impressed E. H. Moore during
the fall 1901 seminar “Foundations of Geometry”,
and that his subsequent proof of the Jordan Curve
Theorem (JCT) was inspired by discussions in the

seminar. It is not so widely known that Lennes
played a decisive role with the JCT too. In fact,
Veblen’s first paper on topology reported that
Lennes, in his 1903 master’s thesis, proved the
special case of the JCT for a simple polygon [4, p.
83]. Because the idea of a curve dividing a plane
into separated subsets suggests the definition of a
disconnected set, as implicitly defined by Lennes,
we date our history from 1901.

The Moore seminar was pivotal for the careers of
Veblen and Lennes, and as usual the AMS played a
major role. The Chicago cauldron’s mix of topologi-
cal ingredients simmered at the April 1903 meeting
of the Chicago Section, where Moore’s advanced
graduate students delivered noteworthy presenta-
tions of research they had begun in the seminar.
The twenty-two-year-old Veblen announced major
results that would appear in his dissertation, one of
which included a proof independent of Lennes that
“The boundary of a simple polygon lying entirely
in a plane α decomposes α into two regions” [5,
p. 365]. Veblen was in the process of establishing
the first rigorous proof of the JCT, which he labeled
“The fundamental theorem of Analysis Situs” in a
paper read at the AMS meeting that preceded the
International Congress at the St. Louis World’s Fair
in 1904 [4, p. 83]. The JCT remains a benchmark
of mathematical rigor today. (See [7] for a modern,
computer-oriented account of this phenomenon.)

At the April 1903 meeting, Lennes, six years
Veblen’s senior, presented results from his mas-
ter’s thesis, “Theorems on the polygon and the
polyhedron”. In what was to become customary for
him, he would not submit this work for publication
for another seven years even though he would then
assert that only “minor changes and additions have
been made since that time” [8, p. 37]. The chief
result was that “the polygon and polyhedron sepa-
rate the plane and the three-space respectively into
two mutually exclusive sets” [Ibid.], an affirmation
of the inspiration for his definition of a connected
set in terms of separated domains.

Even though primarily engaged with teaching
high school, Lennes continued his activity with the
AMS by presenting two papers at the December
1904 meeting of the Chicago Section. One dealt
with Hilbert’s theory of area and resulted in a
Transactions publication the next year, reflecting
an ongoing interest in geometrical topics. The
other was concerned with improper definite inte-
grals, resulting in a paper in the American Journal.
During this time he also published a paper on uni-
form continuity in the Annals, his first publication
not read first before an AMS audience. Moreover,
Lennes submitted a paper on real function theory
that was read by title at the annual AMS summer
meeting in September 1905.

The focus of Nels Lennes’s research program
was analysis, a topic he was pursuing in earnest
with Oswald Veblen, who remained at Chicago for
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two years after receiving his Ph.D. in 1903. It is
known that Veblen played a central role in men-
toring R. L. Moore and directing his dissertation,
but the symbiotic relationship between Veblen and

[Lennes’s
definition]

represented a
dramatic shift

from the
geometric,

constructive
approach…

Lennes seems to have escaped
attention. Their joint activity
can be seen in Veblen’s disser-
tation, where he expressed his
“deep gratitude to Professor E. H.
Moore…and also to Messrs. N. J.
Lennes and R. L. Moore, who
have critically read parts of the
manuscript” [5, p. 344].

Veblen and Lennes also
collaborated on a textbook
aimed to “be used as a ba-
sis for a rather short theoretical
course on real functions” [9,
p. iii]. Three years before the
text appeared in 1907, Veblen
revealed that “The equivalence
[of the Heine-Borel theorem with

the Dedekind cut proposition] in question suggest-
ed itself to Mr. N. J. Lennes and myself while we
were working over some elementary propositions
in real function theory” [6, p. 436]. The central
feature of the book was the “Heine-Borel proper-
ty”, today called compactness, which Lennes had
discussed at an AMS meeting in December 1905.
Moreover, the final chapter, described as “more
advanced in character than the other chapters
and intended as an introduction to the study of a
special subject” [9, p. iii], elaborated upon Lennes’s
paper on improper integrals.

Before embarking on Lennes’s formulation of
connected sets, it is instructive to examine the
intuitive approach that preceded his more gen-
eral advance. This can be seen in the doctoral
dissertation of L. D. Ames that was published in
the October 1905 issue of the American Journal.
One of the “preliminary fundamental conceptions”
he presented was the following definition, whose
wording shows that set theory was still in its
formative stage [10, p. 366]:

An assemblage is connected … if
P0(x0, y0, z0) and P1(x1, y1, z1) are
any two points of the assemblage,
then it is possible to draw a simple
curve

x = λ(t), y = µ(t), z = υ(t),
t0 ≤ t ≤ t1

having P0 and P1 as end points and
such that all points of the curve
are points of the assemblage.

Such a property is called arcwise (or pathwise)
connected today.

Lewis Darwin Ames (b. 1869) was no slouch.
While teaching at a normal school from 1890 to

1900, he spent the summers of 1897 and 1898
taking courses at the University of Chicago. He
earned bachelor’s degrees from Missouri in 1899
and Harvard in 1901. Ames remained at Harvard
for another two years, the first as an instructor and
second as a graduate scholar, before returning to
the University of Missouri in the fall of 1903. During
that academic year he completed his dissertation
under the well-known analyst William Fogg Osgood
(1864–1943), thus becoming the first of Osgood’s
four doctoral students and showing that research
using the notion of a connected set was taking
place outside Chicago. It is conceivable that Lennes
and Ames crossed paths during their summer
studies but no evidence supports such a link.

Just two months after Ames’s paper appeared,
Lennes delivered three lectures at a Chicago Section
meeting of the AMS that exhibit his depth and
versatility as well as the breadth of offerings within
Moore’s department. One was the work cited above
on the Heine-Borel Theorem. Another elaborated a
fundamental theorem in the calculus of variations.
From the present vantage point, however, the third
was the most important. We turn to it now.

The Genesis of Connected Sets
The remaining paper that Nels Lennes delivered
at that December 1905 meeting, “Curves in non-
metrical analysis situs”, announced the earliest
formulation of a connected set [11, pp. 284–5]:

A set of points is connected if in
every pair of complementary sub-
sets at least one subset contains a
limit point of points in the other
set.

The abstract, including the specific wording, was
published in the March 1906 issue of the Bulletin.
This marked the first time such a formulation
appeared in print, but initially it elicited little
interest. Though expressed only for subsets of a
Euclidean space, the definition extends unchanged
to more general spaces. Importantly, it represented
a dramatic shift from the geometric, construc-
tive approach championed in Ames’s paper to an
abstract, nonconstructive formulation requiring
proof by contradiction.

Over the next year Lennes developed his paper
into a doctoral dissertation with the expansive
title “Curves in non-metrical analysis situs with an
application in the calculus of variations”. It was
written under the direction of E. H. Moore and
resulted in Lennes’s Ph.D. in 1907. Yet once again
Lennes did not rush into print, publishing his thesis
only in 1911. He emphasized, however, that no
critical advances had taken place in the meantime,
writing, “Changes made since then are entirely
unimportant” [12, p. 287]. Therefore, our analysis
will center on this paper. Here one can also see the
distinction between the older, geometric definition
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of connectedness and the abstract formulation.
Initially Lennes supplied an arcwise connected
definition only slightly more general than the one
adopted by Ames [12, p. 293]:

An entirely open set of points is
said to be connected if for any two
points of the set there is a broken
line connecting them which lies
entirely in the set.

But then he presented the standard definition
equivalent to the one in Kelley [12, p. 303]:

A set of points is a “connected
set” if at least one of any two
complementary subsets contains a
limit-point of points in the other
set.

It is germane to point out that the paper itself
was not devoted to connected sets per se, but to
simple arcs (curves) in nonmetric spaces. The for-
mal definition of a connected set was given along
with several other terms about midway through
the paper. He then supplied the following critical
definition [12, p. 308]:

A continuous simple arc connect-
ing two points A and B, A 6= B, is a
bounded, closed, connected set of
points [A] containing A and B such
that no connected proper subset of
[A] contains A and B.

In motivating this definition Lennes served no-
tice of his complete understanding of the role he
was about to play, asserting, “This definition seems
to be very near the obvious intuitional meaning of
the term ‘arc’ or ‘curve’ ” [12, p. 289]. Although
not referring to connected sets, his comment on
arcs could apply equally well to his formulation
of this important concept. Next Lennes moved to
his primary goal of proving properties of arcs in
the plane, such as the following: for every interior
point C of an arc AB, the arcs AC and BC are closed,
are connected, and have only C in common.

As the expanded title of the paper indicates,
the origin of connected sets lay in the calculus of
variations, a subject that was one of the specialties
at the University of Chicago, notably with Oskar
Bolza and Gilbert Bliss. Concerning the concluding
section, Lennes wrote that “the general theory of
the paper is applied to the problem of proving the
existence of minimizing curves in an important
class of problems in the calculus of variations” [12,
p. 290]. Moreover, he supplied a very useful history
of the need for a proper definition of the concept
of connectedness going back to G. Cantor and W. H.
Young, concluding with a Veblen paper from their
Chicago days together.

Lennes had an impressive résumé by the time
of his doctorate, having published six papers in
every American outlet available to him (the Annals,
Transactions, Bulletin (2), American Journal, and

Monthly), as well as the book with Veblen. But it
was his definition of connected sets over the long
haul, and his definition of a continuous simple
arc for a shorter period, that represent his biggest
contributions to mathematics. (As a curious aside,
Kelley’s résumé included papers in the Ameri-
can Journal, Duke Journal, and Proceedings of the
National Academy of Sciences when he sought em-
ployment after receiving his 1940 doctorate at
Virginia under G. T. Whyburn.)

After receiving his Ph.D., Lennes left his high
school post for an instructorship at MIT, where
he remained from 1907–10 but did not publish
one work. At that time MIT was fifteen years away
from becoming the top-notch research institution
it is today, beginning with the hiring of Norbert
Wiener and Dirk Struik. But then Lennes moved
to Columbia (1910–13), where he experienced a
spurt of nine publications, including the forty-page
paper based on his dissertation.

In February 1911 Lennes delivered three lectures
at an AMS meeting in New York, each of which
resulted in a paper published before the year was
out. Two months later he returned to Chicago for
an historic AMS meeting. Founded in 1888, the
Society remained mainly a local organization in

…the origin of
connected sets

lay in the
calculus of

variations…

New York City until the enter-
prising faculty at the upstart
University of Chicago inspired
national expansion six years lat-
er and established a western
outpost called the Chicago Sec-
tion in 1897. Yet it was April
1911 when, at the invitation of
the Chicago Section, the Soci-
ety became truly national by
holding its first meeting outside
New York City (with the excep-
tion of summer affairs). AMS secretary F. N. Cole
gushed, “This was in many ways a remarkable
occasion…arranged [so] that this reunion of the
eastern and western members should be especial-
ly marked by the delivery of President Bôcher’s
retiring address.… As was under these circum-
stances to be expected, the meeting was in every
way a most successful and inspiring one” [13, p.
505]. The meeting was successful and inspiring
too for Lennes, who gave two lectures. The first,
“Curves and surfaces in analysis situs”, showed
that his definition of a simple continuous arc
(shortened here, as then, to arc) “applies with-
out any change whatever to arcs in space” [13,
p. 525]. The primary aim of this work, however, was
to provide a rigorous proof that a closed contin-
uous surface separates space into two connected
sets.

That October, six months later, Lennes delivered
yet another paper at an AMS meeting back in
New York that extended results from the April
meeting [14, p. 165]. This turned out to be the
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last time he referred to connected sets in print,
but it did not signal the end of his research, as
he presented four more papers at AMS meetings,
two in April 1912 and two in February 1913. It is
telling from this activity, however, that his career
would take a dramatic turn when he left New
York that fall, as only one of those presentations
resulted in a published paper. The other three were
perhaps consigned to piles in his office that would

Like Lennes, the
four

Pennsylvanians
benefited

enormously
from AMS

meetings and
journals.

remain fixed points during the
thirty-one years he headed the
department, because once Lennes
left Columbia for the University
of Montana later in 1913, his re-
search output virtually ground to
a halt, numbering only one minor
paper (in the Monthly) on the fun-
damental theorem of calculus and
another on nonmathematical log-
ic (in the Mathematics Teacher).
Nonetheless, he resumed writ-
ing textbooks at all levels, from
high school through college, an
activity he had begun in collabora-
tion with H. E. Slaught while still
at Chicago. Ultimately Lennes’s
numerous textbooks became so
successful commercially that the house he built on
campus provides the residence for the president
of the University of Montana to this day. The
mathematics department at the university has held
the Lennes Exam for undergraduate students since
shortly after his death.

Lennes’s record illustrates the vital role the AMS
played in three distinct ways. First, the periods
when he published papers occurred while he was in
Chicago and New York, the two foci of the Society.
Columbia had served as AMS headquarters since
its founding in 1888, while Chicago inspired the
transformation from a local to a national organiza-
tion and became the first official section. Secondly,
Lennes normally vetted his results before AMS
audiences prior to submitting them for publication.
Finally, his papers often appeared in the two AMS
journals. But the time was ripe for his general
definition to take hold, and although he played no
role in its advance, various mathematicians made
use of it over the next ten years, most of them
allied with the University of Chicago. We turn to
this development next.

The Pennsylvanians
Shortly after Nels Lennes went into research hi-
bernation in Montana, another product of E. H.
Moore awoke from a prolonged slumber in an
entirely different part of the country to feast on
the savory pickings that Lennes had left behind.
R. L. Moore had been a graduate student at Chicago
from 1903–05, and Veblen’s expressed gratitude

to Lennes and Moore for critically reading Veblen’s
dissertation suggests that this trio of companions
collaborated quite closely. However, after receiving
his Ph.D. in 1905, R. L. Moore endured six years of
academic thaw, publishing only two papers, both
based on work done in graduate school. Whereas
Lennes did little research after 1913, R. L. Moore
tilled fertile soil at the University of Pennsylvania,
resulting in seventeen papers during 1911–20,

several of which dealt with con-
nected sets. As well, all three Ph.D.
students he mentored at Penn
made use of Lennes’s pioneering
work. Like Lennes, the four Penn-
sylvanians benefited enormously
from AMS meetings and journals.

R. L. Moore’s connection to
connected sets began with a pa-
per delivered at an AMS meeting
in April 1914 in New York and
published later that year [15]. How-
ever, his investigation was not
concerned with connected sets
per se. Rather he sought to charac-
terize linear continua in terms of
point and limit by extending a set
of axioms given by F. Riesz at the

1908 International Congress of Mathematicians in
Rome regarding postulates enunciated by David
Hilbert in his classic book on the foundations
of geometry. Moore began by stating Lennes’s
definition of a connected set, thereby becoming
the first person to make use of the power and
generality of the reformulation almost nine years
after its initial pronouncement. Then he listed
four axioms that extended Riesz’s three, one of
which read, “If P is a point of S, then S − P is
composed of two connected subsets neither of
which contains a limit point of the other” [15,
p. 124]. This idea of expressing the complement
of a set as the union of two separated, connected
sets would bear fruit in subsequent investigations
by Moore and his students.

Frigyes (Frederick in English) Riesz himself
played a curious role in the development of con-
nected sets, having stated independently of Lennes
an equivalent definition of a connected set just a
month after Lennes presented his at the December
1905 AMS meeting. While Lennes’s influence was
restricted to American mathematicians, Riesz’s
definition seems to have remained unknown until
an investigation by R. L. Wilder on the evolution of
connected sets seventy-two years later [16]. (See
[17] for an analysis of Riesz’s contributions to
topology.)

One year after Moore’s initial foray, he presented
a paper at another AMS meeting in which connected
sets were defined among axioms for the plane,
leading to a paper in the Bulletin later that year [18].
It is of interest to note that his first Ph.D. student,
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J. R. Kline, presented his dissertation at that April
1915 meeting, continuing E. H. Moore’s policy of
involving students in AMS affairs early in their
careers. There is no need to examine this work of
R. L. Moore because he soon extended its major
result appreciably in perhaps his most important
paper, “On the foundations of plane analysis situs”
[19]. This long and detailed work which we, like
Moore, abbreviate F. A., firmly solidified his repu-
tation as a first-rate researcher. Furthermore, he
used its sequence of theorems in his classes over
the next fifteen years to form the basis for what
would come to be known as the Moore Method of
teaching.

The use of connected sets abounds in F. A., start-
ing with their definition in the section following the
introduction and continuing throughout the paper.
In one part Moore quoted Lennes’s definition of
an arc and defined a domain as a connected set
of points M such that if P is a point of M , then
there exists a region that contains P and lies in
M . These definitions form the basis for Moore’s
intricate proof of a major theorem [19, p. 136]:

If A and B are distinct points of a
domainM , there exists an arc from
A to B that lies wholly in M .

Although the proofs of almost all 52 theorems in
F. A. involve connected sets, such sets were not the
primary object of study. Rather, connectedness re-
mained a tool for characterizing other kinds of sets.

The AMS role would repeat itself at an October
1916 meeting where both Moore and Kline found
Lennes’s formulation of connected sets to be highly
profitable. Moore’s paper was aimed at proving
the property that any two points on a continuous
curve C in any number of dimensions form the
extremities of an arc lying entirely in C. Once again
he found it necessary to supply the definition of a
connected set beforehand [20, p. 233]. This would
not mark Moore’s swan song with connected sets,
but his student John Robert Kline (1891–1955)
became more active in this regard over the next
few years. J. R. Kline had come under R. L. Moore’s
spell shortly after entering Penn in the fall of 1913
and, as we have seen, presented the results of
his dissertation at an AMS meeting in his second
year of graduate study. He remained at Penn for
two years after receiving his Ph.D. in June 1916.
At the AMS meeting that October he proved the
converse of the following theorem on open curves
that Moore had proved in F. A. [21, p. 178]:

If ` is an open curve in a universal
set S, then S − ` = S1 ∪ S2, where
S1 and S2 are connected sets such
that every arc from a point of S1 to
a point of S2 contains at least one
point of `.

Anna Mullikin in the 1941 yearbook from
Germantown High School.

As an indication of the extent to which connect-
ed sets had become a primary tool, Kline presented
another paper at the annual AMS meeting held
in New York just two months later. Its aim was
to generalize a result from Hausdorff’s classic
Grundzüge der Mengenlehre that the complement
of a countable set in n-dimensional space is always
connected. Kline, like R. L. Moore before him,
still felt obliged to state Lennes’s definition of
a connected set, though without attribution this
time. He did not find it necessary, however, to
state that Lennes’s formulation was equivalent
to the one Hausdorff supplied in his 1914 book.
Apparently Hausdorff had come upon his definition
in ignorance of Lennes.

J. R. Kline taught at Yale from 1918–19 and
Illinois from 1919–20 before returning to Penn
for the rest of his life. Before leaving Penn in
1918 he wrote a joint paper with R. L. Moore, the
only one that Moore ever co-authored, providing
necessary and sufficient conditions for a closed
and bounded set M to be a subset of an arc in
terms of closed, connected subsets ofM [22]. Thus
the central structures of interest remained arcs
and open curves; connected sets were relegated to
auxiliary status.

Two other former students of E. H. Moore also
made use of connected sets at this time. Arthur
Dunn Pitcher (1880–1923) arrived in Chicago in
1907 right after Lennes had left. Pitcher received
his Ph.D. three years later and then embarked on
a research program in Moore’s general analysis,
resulting in the paper “Biextremal connected sets”,
read at the same annual AMS meeting as Kline in
December 1916. In spite of the title, connected
sets were still used only as a tool. Actually, Pitch-
er had worked with Edward Wilson Chittenden
(1885–1977), a 1912 Chicago Ph.D., several years
earlier when the latter read their joint paper at
a Chicago Section meeting in March 1913. Their
joint work would ultimately be published in two
papers in the Transactions, with [23] containing
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results announced at meetings in 1913 and 1916.
Incidentally, A. D. Pitcher is the father of longtime
AMS secretary (1967–88) Arthur Everett Pitcher
(1912–2006).

R. L. Moore must have been a very proud Dok-
torvater at the April 1918 AMS meeting in New
York. Even though he did not present a paper, his
former student Kline delivered one characterizing
simple curves in terms of connected domains,
and his second student, G. H. Hallett, announced
theorems that appeared in his dissertation for
the Ph.D. he earned two months later. George H.
Hallett Jr. (1895–1985), like Kline, wrote his thesis
in geometry inspired by Moore’s early mentor G. B.
Halsted. Hallett would ultimately pursue a career
in government, but before embarking on that path
he too initiated a research program in topology, re-
sulting in a paper whose sole purpose was to prove
that the boundedness assumption in Lennes’s
characterization of an arc was superfluous. When
this result appeared in print, Hallett added, “Since
I wrote this paper it has been pointed out to me by
Professor R. L. Moore that a modification of [his
argument in F. A.] …would accomplish the same
result” [24, p. 325]. This paper was cited as late
as 1927 by one of R. L. Moore’s initial successes
at the University of Texas, Gordon Thomas Why-
burn (1904–69), thus suggesting that Hallett could
have become a successful research mathematician
should he have chosen to remain in the field [25].

Before leaving Philadelphia, R. L. Moore men-
tored a third doctoral student, Anna Margaret
Mullikin (1893–1975), who enrolled in the fall of
1918, right after George Hallett graduated. It is
not known what motivated Mullikin to enroll at
Penn but we offer a connection to Clara Bacon,
who attended the October 1911 meeting where
Lennes spoke about connected sets. Bacon was a
long-time professor of mathematics at Goucher
College, including Mullikin’s undergraduate years,
1911–15. Earlier she had pursued graduate studies
during summer sessions at the University of Chica-
go (1901–04), when she likely came in contact with
fellow graduate students Lennes, Veblen, and R. L.
Moore. Moreover, Bacon kept abreast of research
developments, becoming the first woman to receive
a Ph.D. in mathematics at Johns Hopkins in 1911.
Thus it is conceivable that she knew about the
success of R. L. Moore at Penn and the achievements
of his students Kline and Hallett. Unfortunately we
have no firm evidence to support this contention.1

Miss Mullikin, as she came to be known, pro-
gressed quickly under R. L. Moore’s special tutelage
during her first year in his class. A theorem that
had been only recently proved by W. Sierpiński
read [26]:

1We are indebted to Thomas L. Bartlow for suggesting this
possible link between Mullikin and R. L. Moore.

Mullikin nautilus.

A closed, bounded, connected set
M in <n cannot be expressed as a
countable union of disjoint closed
sets.

Moore, well known for meticulous examinations
of axioms, challenged Miss Mullikin to discover
what would happen if any of the conditions in this
theorem were relaxed. By the following October, at
the start of only her second year in graduate school,
she was prepared to announce her discovery at
an AMS meeting in New York [27]. The published
account states, “It will be shown in the present
paper that for the case where n = 2, this theorem
does not remain true if the stipulation that M is
closed be removed” [28, p. 144]. In summarizing
her paper, F. N. Cole reported, “In one dimension
no countably infinite collection of mutually exclu-
sive closed point sets ever has a connected sum
[union]. One might rather naturally be inclined to
believe that this proposition holds true also in two
dimensions. Miss Mullikin shows by an example
that this is, however, not the case” [29, p. 147].

The example, now called the Mullikin nautilus, is
shown in the figure. The nautilus M is the union of
a countably infinite collection of arcs Mn, n = 1,2,
…, each composed of four line segments running
from ( 1

2n ,0) to ( 1
2n ,

1
2n ) to (−1

2n ,
1

2n ) to (−1
2n ,

−1
2n ) to

(1, −1
2n ). The fact thatM is connected is not obvious

in terms of the traditional geometric approach of
connecting any two points of M while remaining
within M . Yet it can be proved easily with the
Lennes definition, as follows. Assume M is the
union of two separated sets A and B. Notice that
the restrictions An and Bn of A and B to each
arc Mn separate Mn. Since Mn is connected, either
An = Mn or Bn = Mn. Thus A and B are collections
of arcs, one of which must be infinite. It is then
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easy to see that A and B must have a limit point
in common, contradicting the assumption that
they are separated. This proves that the Mullikin
nautilus M is connected, and hence serves as an
example that not every connected set is arcwise
connected. Importantly, it illustrates the need for
the shift from the earlier constructive, geometric
definition.

Moore arranged an instructorship for Miss Mul-
likin at Texas for 1920–21 so she could complete
her thesis there, and during that year two of her
papers were read at AMS meetings in New York,
both dealing with connected sets. The nautilus
in [27] and theorems announced in [30] and [31]
formed the basis for her Ph.D. dissertation, titled
“Certain theorems relating to plane connected point
sets”, which was published in the Transactions
in 1922 [28]. Miss Mullikin thus became the first
American to study properties of connected sets
in their own right. Her work was scrutinized in a
recent paper that discusses its fifty-year mathe-
matical legacy and details its role in subsequent
collaborations between the emerging schools of
topology in Poland and the U.S. [32]. Overall, then,
all three R. L. Moore doctoral students at Penn
contributed to the development of connected sets.

Beyond the AMS
Miss Mullikin was not the first person in the
world to publish a paper in which connected sets
were the primary object of study. In reviewing
the history of this topological concept, the famed
mathematician/historian R. L. Wilder (1896–1982)
observed that “the first paper devoted to the study
of connected sets was not published until 1921;
we refer here to the classic paper Sur les ensembles
connexes of B. Knaster and C. Kuratowski [33]”
[16, p. 724]. In a strict sense, Wilder is absolutely
correct about this fifty-page survey. Nonetheless,
Fundamenta Mathematicae, the prestigious Polish
journal where [33] appeared, included four earlier
papers that established various properties of con-
nected sets but received no mention in [16]. We
cite them briefly. The second paper ever published
in Fundamenta, written by Wacław Sierpiński, ex-
plored properties of connected sets that contain
no subsets that are continua. The other three
predecessors of [33] appeared the following year,
1921. In the first, Sierpiński provided proofs of
several properties of connected sets; for instance,
the complement of a connected set inRn containing
no subsets that are continua is always connected.
Fundamenta also included two short notes by
Stefan Mazurkiewicz solving problems posed by
Sierpiński, one of which established the existence
of a connected set in the plane having no connected
and bounded subsets, while the other introduced
the notion of a quasi-connected set. The latter note
was followed immediately by [33]. In addition to

these four papers, the short note by Sierpiński in
1918 that motivated the Mullikin nautilus seems
also to have escaped Wilder’s attention.

It was [33] together with [28] that elevated
connected sets from secondary tools to primary
objects. As we have seen, a twenty-year gestation
period in three phases preceded this elevation,
beginning with the proof of the Jordan Curve
Theorem, centering on the published definition by
Lennes in 1911, and continuing with the work of
several graduates of E. H. Moore at Chicago and
R. L. Moore at Penn. Connected sets did not remain
the exclusive dominion of these Moore schools in
the U.S., but they certainly accounted for the most
lasting contributions. And at the center of this
flurry of activity was the increasingly influential
AMS with its meetings in New York and Chicago and
its two journals, the Bulletin and the Transactions.
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