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M
odel theory is a branch of mathe-
matical logic whose techniques have
proven to be useful in several dis-
ciplines, including algebra, algebraic
geometry, and number theory. The

last fifteen years have also seen the application of
model theory to bimeromorphic geometry, which
is the study of compact complex manifolds up to
bimeromorphic equivalence. In this article I will try
to explain why logic should have anything to say
about compact complex manifolds. My primary
focus will be on the results in bimeromorphic ge-
ometry obtained by model-theoretic methods and
the questions about compact complex manifolds
that model theory poses.

Structures and Definable Sets
Besides being a discipline in its own right, model
theory is also a way of doing mathematics. Given a
mathematical object, such as a ring or a manifold,
we begin by stating explicitly what structure on
that object we wish to investigate. We then study
those sets that can be described using formal ex-
pressions that refer only to the declared structure
and whose syntax is dictated by first-order logic.
Let me give a few details.

A structure consists of an underlying set M
together with a set of distinguished subsets of
various cartesian powers of M called the basic
relations. It is assumed that equality is a basic
(binary) relation in every structure. One could
also allow basic functions from various cartesian
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powers ofM toM , but by replacing them with their
graphs I will, without loss of generality, restrict
myself to relational structures. For example, a ring
can be viewed as a structure where the underlying
set is the set of elements of the ring and there are,

besides equality, two basic relations: the ternary
relations given by the graphs of addition and
multiplication. If the ring also admits an ordering
that we are interested in, then we can consider
the new structure where we add the ordering as
another basic binary relation. The definable sets of

a structure are those subsets of cartesian powers
of M that are obtained from the basic relations in
finitely many steps using the following operations:

• intersection,
• union,
• complement,
• cartesian product,
• image under a coordinate projection, and
• fibre of a coordinate projection.

I am avoiding talking about the logical syntax here,
but the reader familiar with some first-order logic

will recognize that the basic relations form the lan-
guage of the structure and the various operations
correspond to logical symbols such as conjunction,
disjunction, and negation. The operation of taking
the image under a coordinate projection corre-
sponds to existential quantification, while that of

taking a fibre of a coordinate projection corre-
sponds to substituting parameters for variables
(that is, specialisation). The definable sets are then
the setsdescribedby first-order formulae. This way
of viewing definable sets is an essential feature
of model theory, even though many expositions

(including this one) avoid formulae by introducing
definability set-theoretically, just as I have done
here.
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In any case, given a structure we have an asso-
ciated collection of definable sets. When (R,+,×)
is a commutative unitary ring, for example, it is
not hard to see that if f1, . . . , fℓ are polynomials
in R[x1, . . . , xn], then the algebraic set they define,
namely their set of common zeros in Rn, is de-
finable. Hence the finite boolean combinations of
such sets, that is, the Zariski constructible sets, are
all definable. It is an important fact that if R is an
algebraically closed field, then these are the only

definable sets.1

But we are interested in a somewhat different
sort of example. Fix a compact complex manifold
X and consider the structure A(X) where the
basic relations are the complex analytic subsets of
Xn, for all n > 0. By a complex analytic subset, or
just analytic subset for short, I mean a subset A
such that for all p ∈ Xn there is a neighbourhood
U of p and finitely many holomorphic functions
f1, . . . , fℓ on U such that A ∩ U is the common
zero set of {f1, . . . , fℓ}. Note that the local data
of U and f1, . . . , fℓ are not part of our structure;
only the global set A is named as a basic relation.
The model theory of compact complex manifolds
was begun by Zilber’s [14] observation in the
early 1990s that A(X) is “tame”. In particular,
as a consequence of Remmert’s proper mapping
theorem, Zilber shows that every definable set in
A(X) is a finite boolean combination of analytic
subsets. But the tameness goes much further,
making the geometry of analytic sets susceptible
to a vast array of model-theoretic techniques.

Zilber’s analysis of individual compact complex
manifolds extends to the many-sorted structure
A, which includes all compact complex manifolds
at once, and where all complex analytic subsets
are named as basic relations. Note that algebraic
geometry is part of this structure; amongst the
compact complex manifolds inA are the complex
projective spaces, and so all quasi-projective alge-
braic varieties are definable inA. But there are also
nonalgebraic compact complex manifolds, and in
some sense the model-theoretic analysis focuses
on those. Let me discuss two examples that we
will see again later.

Suppose {α1, . . . , α2n} is an R-basis for Cn, and
Λ = Zα1 + ·· · + Zα2n is the real 2n-dimensional
lattice it generates. Then the quotient T = Cn/Λ
is a compact complex manifold of dimension n,
called a complex torus, that inherits a holomorphic
group structure from (Cn,+). While some com-
plex tori can be embedded into projective space,
if Λ is chosen sufficiently generally, then the re-
sulting torus is nonalgebraic. For example, if the
real and imaginary parts of {α1, . . . , α2n} form an

1This is quantifier elimination for algebraically closed

fields, or equivalently Chevellay’s theorem that over an

algebraically closed field the projection of a constructible

set is constructible.

algebraically independent set over Q, then T will

not contain any proper infinite analytic subsets. In

particular, such tori, which are called generic com-

plex tori, cannot be projective varieties if n > 1.

Another example of a nonalgebraic compact com-

plex manifold is the following Hopf surface: fix

a pair of complex numbers α = (α1, α2) with

0 < |α1| ≤ |α2| < 1, and consider the infinite

cyclic group Γ of automorphisms of C2 \ {(0,0)}

generated by (u, v) ֏ (α1u,α2v). The quotient

Hα = C2 \ {(0,0)}/Γ is a compact complex surface

that is never algebraic. Indeed, this can already be

deduced from its underlying differentiable struc-

ture;Hα is diffeomorphic to S1×S3, something that

is never the case for a projective surface. Unlike

tori, Hopf surfaces always contain proper infinite

analytic subsets: the images of the punctured axes

in C2 \ {(0,0)} give us at least two irreducible

curves on Hα. If α is chosen sufficiently generally,

then these will be the only curves. In that case, like

generic complex tori, Hα will have no nonconstant

meromorphic functions.

In model theory there are several notions, of

varying resolution, that describe the possible inter-

action between two definable sets. These notions,

specialised to the structureA, have relevant coun-

terparts in bimeromorphicgeometry. Suppose that

X and Y are irreducible complex analytic sets in

A. The strongest possible interaction is if X and

Y are biholomorphic. This can be weakened to

bimeromorphic equivalence: there exists an irre-

ducible analytic subset G ⊂ X × Y such that both

projections G → X and G → Y are generically

bijective. By “generically bijective” I mean that off

a countable union of proper analytic subsets of X

the fibres of G → X are singletons, and similarly

for G → Y . If G → X and G → Y are only assumed

to be generically finite-to-one, then we say that

G is a generically finite-to-finite correspondence

between X and Y . Finally, we can weaken the con-

dition much further by merely asking that there

exist some proper analytic subset of X × Y that

projects onto both X and Y . In that case we say

that X and Y are nonorthogonal. For example, any

two projective varieties are nonorthogonal. On the

other hand, any compact complex manifold with-

out nonconstant meromorphic functions—such

as a generic complex torus or a generic Hopf

surface—is orthogonal to any projective variety.

Indeed, nonorthogonality to some projective va-

riety implies nonorthogonality to the projective

line P1, and if G ⊂ X × P1 witnesses this, then G

has nonconstant meromorphic functions, and as

G → X will necessarily be generically finite-to-one,

so does X.
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Classifying Simple Compact Complex
Manifolds
One way for a structure to be considered “tame”
is if the definable sets have a dimension theory,
that is, if a certain intrinsic model-theoretically
defined dimension function, called the rank, takes
on ordinal values on all definable sets. Zilber’s
initial analysis of A showed that every analytic
subset of a compact complex manifold is of finite
rank. In fact, this rank is bounded by, but typically
not equal to, the complex dimension. I will not
define rank here, but I will in a moment explain
what it means for a compact complex manifold
to have rank 1. This reticence is partially justified
by the fact that there is general model-theoretic
machinery available, due mostly to Shelah, that
analyses arbitrary finite-rank definable sets in
terms of rank 1 sets. In particular, and this is
only the starting point of such an analysis in A,
every analytic set will be nonorthogonal to one
of rank 1. It follows that the study of rank 1
sets is central to understanding compact complex
manifolds in general. Note that this is not true
of complex dimension: understanding compact
complex curves tells us essentially nothing about
compact complex surfaces that contain no curves.

So what does it mean for a compact complex
manifold X to be of “rank 1”? Here is a geometric
characterisation: X is not covered by a definable
family of proper infinite analytic subsets. Pillay [10]
observed that such manifolds were already of
interest to complex geometers and were called
simple. More precisely:

Definition. A compact complex manifoldX is said
to be simple if dimX > 0, and whenever Y is a com-
pact complex manifold, A ⊂ Y × X is an analytic
subset, and E ⊂ Y is a proper analytic subset such
that the fibres of A above Y \E are proper infinite
subsets of X, then the union of all the fibres of A
above Y \E is contained in a proper analytic subset
of X.

Projective curves are simple; they are the only
simple projective varieties. But so is a generic
complex torus, or indeed any compact complex
manifold without proper infinite analytic subsets.
The generic Hopf surfaces, having precisely two
curves on them, are also simple. It is not hard to
see that simplicity is a bimeromorphic invariant;
in fact, it is preserved by generically finite-to-finite
correspondences. In a sense that I have hinted
at above and will return to again later, simple
manifolds are the building blocks for all compact
complex manifolds.

The contribution of model theory to bimero-
morphic geometry begins with the following di-
chotomy for simple compact complex manifolds,
which is a consequence of the deep results of
Hrushovski and Zilber from [5]. It says that a sim-
ple compact complex manifold is either algebraic

or its cartesian powers have no “rich” definable

families of analytic subsets. More precisely, if X is
a simple compact complex manifold, then exactly

one of the following holds:

I. X is a projective curve, or
II. X is modular: whenever Y is a compact

complex manifold with dimY > 0, and
A ⊆ Y × X2 is an analytic subset whose

generic fibres over Y are distinct proper
infinite irreducible analytic subsets of X2

that project onto each coordinate, then Y
is simple.

While the condition of modularity only explicitly
mentions X2, it actually restricts the rank of fami-

lies of analytic subsets ofXn, for alln. All projective
curves are nonmodular. For example, the family

of lines y = ax + b is a two-parameter algebraic
family; it gives rise to a family of subvarieties of

P1×P1 that is parameterised by a two-dimensional
projective variety, and two-dimensional projective
varieties are not simple.

So, by the above dichotomy, every simple man-
ifold of dimension at least two is modular. As

we have seen, examples can be found among
the complex tori and the Hopf surfaces. In fact

the model-theoretic analysis provides us with a
further dichotomy which distinguishes sharply be-

tween these two examples. Very roughly speaking,
a modular manifold that is not a complex torus
admits only binary definable relations. More pre-

cisely, if X is a simple modular compact complex
manifold, then exactly one of the following holds:

I. X is in generically finite-to-finite corre-

spondence with a complex torus, or
II. X is relationally trivial: if A ⊆ Xn is an irre-

ducible analytic subset that projects onto
X in each coordinate, and if {π1, . . . , πℓ}
is an enumeration of all the coordinate
projections from Xn to X2, then A is an

irreducible component of

ℓ⋂

i=1

π−1
i

(
πi(A)

)
.

Note that complex tori are not relationally triv-
ial: being complex Lie groups they admit a truly

ternary analytic relation, namely the graph of the
group law. Simple Hopf surfaces are relationally

trivial. Actually one can be more precise in case I:
there exists a generically finite-to-one meromor-
phic surjection from X to a Kummer manifold,

a manifold of the form T/Γ where T is a com-
plex torus and Γ is a finite group of holomorphic

automorphisms of T .
The above characterisation of simple modu-

lar compact complex manifolds was suggested
by Hrushovski in his 1998 address to the Inter-

national Congress of Mathematicians [4]. It was
proved by Pillay and Scanlon in [12], building on
some unpublished work of Scanlon. The result is

obtained as a corollary to the main theorem in
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that paper which I would at least like to state in

brief. Meromorphic groups are a natural generali-
sation of algebraic groups to the complex analytic
category; they are complex Lie groups that are
“compactifiable” in an appropriate sense. What

Pillay and Scanlon actually prove, using model-
theoretic methods and building on work of Fujiki,
is that every meromorphic group is the extension
of a complex torus by a linear algebraic group.

In any case, putting the two dichotomies to-

gether, we get:

Theorem 1. IfX is a simple compact complex man-
ifold, then

• X is a projective curve, or
• X is in generically finite-to-finite correspon-

dence with a simple complex torus of di-
mension > 1, or

• X is relationally trivial.

It remains then to understand the relationally
trivial compact complex manifolds. In dimension

one there are none because all compact curves
are algebraic (this is by the Riemann existence
theorem), and it is not hard to see that projective
curves are not relationally trivial. Besides Hopf
surfaces, examples of relationally trivial surfaces

can also be found among the K3 and Inoue sur-
faces. Relationally trivial manifolds remain quite
elusive, and, except for the case of surfaces, there
are only conjectural results. These conjectures are

restricted to Kähler manifolds, which also play
a special role from the model-theoretic point of
view, and to which I now turn.

Compact Cycle Spaces and Kähler
Manifolds
One of the obstacles to the full application of
model-theoretic techniques to compact complex
manifolds is the size of the language, the fact that

every analytic set is a basic relation. Let me point
out that in the algebraic case there is a more eco-
nomical choice of structure. Consider, for example,
the compact complex manifold X = Pm, projec-

tivem-space over the complex numbers. Instead of
A(X)we can consider the structureAQ(X), where
we only include as basic relations the algebraic
subsets ofXn that are defined by polynomials with
rational coefficients. ThenAQ(X) has only count-

ably many basic relations. But all analytic subsets
of Xn are still definable in AQ(X). This is because
every complex analytic subset of projective space
is algebraic (Chow’s theorem) and every algebraic

set is obtained by specialisation from an algebraic
set overQ. HenceA(X) andAQ(X) have the same
definable sets, even though the latter is equipped
with a much reduced collection of basic relations.

This motivates the following definition: A com-

pact complex manifold X is called essentially
saturated if there exists a countable collection L0

of analytic subsets of cartesian powers of X such

that every analytic set is definable in the reduct

where only the sets in L0 are named as basic

relations. Essentially saturated compact complex

manifolds are significantly more amenable to a

model-theoretic analysis. Exactly why is described

in [7] and is somewhat beyond the scope of this

article. Instead, I would like to focus on a very

suggestive geometric characterisation of essential

saturation.

Recall that a k-cycle of a compact complex man-

ifold X is a finite linear combination Z =
∑
i niZi

where the Zi are distinct k-dimensional irreducible

complex analytic subsets of X and each ni is a

positive integer. In particular, every irreducible an-

alytic subset is itself a cycle. The set of all k-cycles

is denoted byBk(X), andB(X)denotes the disjoint

union of all theBk(X). In the 1970s Barlet endowed

B(X) with a natural structure of a complex ana-

lytic space. If X is algebraic, then B(X) coincides

with the Chow scheme. With this terminology in

place, we can characterise essential saturation as

follows: X is essentially saturated if and only if all

the irreducible components of B(Xn) are compact,

for all n ≥ 0. This follows from [7], in which the

universal family of complex analytic subspaces

(the Douady spaces) were used instead of Barlet’s

cycle spaces. In any case, it is important here that

the condition is on all the cartesian powers; if H
is a Hopf surface, then B(H) has only compact

components, but B(H × H) has a noncompact

component. In particular, Hopf surfaces are not

essentially saturated. While the property of B(X)
having only compact components is one that ap-

pears often in bimeromorphic geometry, it seems

that the extension of this condition to all cartesian

powers of X has not been studied. For example,

is essential saturation preserved under cartesian

products and bimeromorphic equivalence?

How does one check if a component of the

Barlet space is compact? In the late 1970s Lieber-

man [6] gave the following differential geometric

criterion: a set of cycles is relatively compact in

the cycle space if and only if the volume of the

cycles in that set (with respect to some hermitian

metric) is bounded. This gives us many examples

of essentially saturated manifolds. Recall that a

Kähler manifold is one that admits a (hermitian)

metric which locally approximates to order 2 the

standard euclidean metric on Cn. With respect to

such a metric, the volume of the cycles in any given

component of the Barlet space is constant, and

this remains true of cartesian powers because käh-

lerianity is preserved under cartesian products. It

follows from Lieberman’s theorem that all com-

pact Kähler manifolds are essentially saturated.

Moroever, any compact complex analytic space

that is bimeromorphic to a Kähler manifold—this

is Fujiki’s class C—is also essentially saturated.
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While C does not include all essentially satu-

rated manifolds (Inoue surfaces of type SM are

counterexamples, see [8]), it is a large class of

manifolds that contains all projective varieties

and complex tori and that is preserved under var-
ious operations including meromorphic images

and generically finite-to-finite correspondences.

Compact Kähler manifolds play a prominent role

in bimeromorphic geometry largely because they
are susceptible to many of the techniques of al-

gebraic geometry. Because of essential saturation,

they are also important to the model-theoretic

approach.

Let us return to the classification problem for
simple compact complex manifolds. In the previ-

ous section I explained how this reduces to under-

standing the relationally trivial manifolds. We can

restrict the problem further and ask: What are the
relationally trivial simple Kähler manifolds? We

have already seen that there are none in dimension

one. In dimension two, inspecting the Enriques-

Kodaira classification, we see that all relationally

trivial simple Kähler surfaces are bimeromorphic
toK3 surfaces. These surfaces (introduced by Weil

and named in honour of Kummer, Kodaira, Kähler,

and the mountain K2) are by definition simply-

connected compact surfaces with trivial canonical
bundle. In higher dimensions the correct general-

isation of K3 seems to be irreducible hyperkähler:

simply connected compact Kähler manifolds with

the property that their space of holomorphic

2-forms is spanned by an everywhere nondegener-
ate form. Pillay has conjectured that all relationally

trivial simple Kähler manifolds are in generically

finite-to-finite correspondence with an irreducible

hyperkähler manifold. Since irreducible hyperkäh-

ler manifolds are always even-dimensional, Pillay’s
conjecture, coupled with Theorem 1 above, would

imply that every odd-dimensional simple Kähler

manifold is in generically finite-to-finite corre-

spondence with a complex torus. In dimension
three this is essentially a conjecture of Campana

and Peternell, namely that every simple Kähler

threefold is Kummer.

Variation in Families
In justifying our focus on simple manifolds I have

already mentioned the fact that every compact

complex manifold is nonorthogonal to a simple

one. From this one can deduce that for every

compact complex manifold X there exists a mero-
morphic surjection f : X → Y , where dimY > 0 and

Y is in generically finite-to-finite correspondence

with some cartesian power of a simple manifold.

The same is then also true of each generic fibre

Xy of f . At least in the Kähler case, using essential
saturation, one can show that the corresponding

meromorphic surjections on Xy vary uniformly

in the parameter y . Since the dimension of Xy is

strictly less than that of X, such an analysis must

stop after finitely many iterations. It is in this

sense, via sequences of meromorphic fibrations,
that simple manifolds control the structure A.

Of course this does not reduce the classification

problem to the case of simple manifolds; at the
very least one needs to also understand how such

manifolds fit into meromorphic fibrations and how

they interact with each other. I want to state one
conjecture that is central to this question.

First of all, from the definition of simplicity it

follows that two simple manifolds are nonorthogo-
nal toeachother if andonly if theyare ingenerically

finite-to-finite correspondence. The three classes

of compact complex manifolds appearing in The-
orem 1—projective curves, simple complex tori

of dimension > 1, and simple relationally triv-

ial manifolds—are all mutually orthogonal in the
sense that any two manifolds coming from dif-

ferent classes will be orthogonal. Moreover, while

all curves are nonorthogonal to each other, there
exist orthogonal pairs within each of the other two

classes.

One fundamental question is whether or not
there exist entire definable families of simple man-

ifolds any two of which are orthogonal. Actually,

it follows from observations of Pillay and Scanlon
that such families do exist, but not, conjecturally,

among the Kähler manifolds. More precisely, the

conjecture is that if f : X → Y is a meromorphic
surjection between compact Kähler manifolds with

simple generic fibres, then any two generic fibres

are in generically finite-to-finite correspondence. In
2005 Campana [2] proved an isotriviality result

which proves the conjecture, with the stronger

conclusion of isomorphism rather than correspon-
dence, in the following cases: when the generic

fibres are surfaces, when the generic fibres are

“general” complex tori, and when the generic
fibres are irreducible hyperkähler.

Analogies
By way of conclusion, I want to discuss the spe-
cial role of model theory as a medium between

different geometric contexts. Certain results from

bimeromorphic geometry have informed advances
in abstract model theory which can then be reap-

plied in other areas. In this way model theory acts

as a conduit between bimeromorphic geometry
and, in the case I want to discuss, differential-

algebraic geometry. I need to say a few words

about differential-algebraic geometry.
Like bimeromorphic geometry, differential-

algebraic geometry is an “expansion” of algebraic

geometry. A differential field is a field K equipped
with a derivation; an additive map δ : K → K
such that δ(xy) = xδ(y) + yδ(x). For example,

(C(t), d
dt
) is a differential field. Differential algebra

is then commutative algebra in the presence of
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this derivation. The role of polynomials is played
by differential polynomials: functions of the form
P
(
x, δ(x), . . . , δr(x)

)
, where P ∈ K[X0, . . . , Xr] is

an ordinary polynomial. A differential field (K, δ)
is differentially closed if any system of differential
polynomial equations and inequations having
a solution in some differential field extension
already has a solution in K. The model theory of
differentially closed fields of characteristic zero
is also tame. In particular, every definable set
in (K,+,×, δ) is a finite boolean combination of
differential-algebraic sets: zero sets of systems of
differential polynomial equations. These are the
objects of study in differential-algebraic geometry.

Many of the model-theoretic techniques that
apply to the structureA also apply to (K,+,×, δ).
In fact, there is a fruitful analogy between these
structures whereby complex analytic sets cor-
respond to finite-rank differential-algebraic sets
(see [10]). This analogy can lead to transferring
results between the two disciplines that these
structures represent. The example I have in mind
is based on the following theorem of Campana [1],
due also independently to Fujiki [3], from the
early 1980s. Suppose X is a compact complex
manifold and C is a compact analytic subset of
the cycle space B(X). Then for any a ∈ X, the
set of cycles in C that pass through a is (up
to bimeromorphism) an algebraic set. Moreover
this happens uniformly as a varies. In 2001 Pil-
lay [11] observed that this theorem could be used
to give a more direct proof of the first dichotomy;
the fact that every simple manifold is either a
curve or modular. Pillay’s argument involves for-
mulating an abstract model-theoretic counterpart
to Campana’s theorem, which replaces the diffi-
cult and much more general results of Hrushov-
ski and Zilber [5]. Pillay and Ziegler [13] then
show that this model-theoretic counterpart also
holds in differentially closed fields. As a result
one has an analogue of Campana’s theorem in
differential-algebraic geometry, as well as a di-
rect proof of the corresponding dichotomy for
rank 1 differential-algebraic sets. Another related
example of this phenomenon can be found in [9],
in which Campana’s “algebraic connectedness”
is abstracted from bimeromorphic geometry to
model theory and then applied to differentially
closed fields. The outcome in that case is a cri-
terion for when a finite-rank differential-algebraic
set is in generically finite-to-finite correspondence
with the CK -points of an algebraic variety, where
CK = {x ∈ K : δ(x) = 0}.

The kind of transfer of ideas that we see in
the above examples, and the role that model
theory plays here of recognising, formalising, and
facilitating analogies between different geometric
settings, is not something new or unique to its
interaction with bimeromorphic geometry. This
has been a defining feature of model theory since

the 1970s and continues to fuel the internal
development of the subject.
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