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Background

N
umber theory targets the most fun-
damental object of a human’s mind:
integer numbers. Its questions can
be explained to high school students,
while getting answers requires very

deep and convoluted arguments. Its internal
beauty has always been an irresistible attrac-
tion for mathematicians, computer scientists,
engineers, and enthusiastic amateurs. Further-
more, its primal motivation has always been our
natural intellectual curiosity rather than everyday
practical needs.

Cryptography is a key technology widely de-
ployed by private, commercial, and governmental
users to ensure privacy and authenticity in secure
electronic data communication. Its research direc-
tions are often driven by practical demands. For
example, recently, various issues of privacy and
electronic voting entered the world of cryptography.
While most of us would agree that these activities
are not the most pure and beautiful in our lives,
cryptography has its own irresistible attraction
and intrinsic motivation for further developments.

The goal of this article is twofold. We hope to
convince cryptographers that number theory still
has much to offer in terms of concrete results
and that they can also extend their toolbox with a
variety of little-used, yet powerful, methods. We
also hope that number theorists will gain new
interest in such an exciting area as cryptography,
which guarantees to keep them supplied with new
challenges. The dull, politically correct cliché that
different cultures are to be explored and enjoyed
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rather than treated as hostile may actually be
correct.

Cryptography is the best-known area of ap-
plications of number theory, but it is not the
only one. The others include computer science,
dynamical systems, physics, and even molecular
chemistry. There are also recently emerging appli-
cations of number theory to quantum computing
and financial mathematics. Nevertheless, here we
concentrate only on the interplay between number
theory and cryptography and on what they have
given and can give to each other.

Honeymoon

Prior to pioneering works of Whitfield Diffie
and Martin Hellman, Ralph Merkle and Martin
Hellman, and Ron Rivest, Adi Shamir, and Leonard
Adleman, which essentially invented public key
cryptography (see [30]), number theory had always
been considered as the most conservative and
closed part of mathematics with only occasional
and short-lasting affairs outside.

We briefly remind readers how the Diffie-Hellman
and RSA schemes work.

In the Diffie–Hellman scheme, two communi-
cating parties, say C (for a Cryptographer) and
M (for a Mathematician) agree on a cyclic group
G , generated by g ∈ G . Then C and M choose
secret numbers x and y and compute gx and gy ,
respectively. The values of gx and gy are now
made publicly available. It is easy to see that both
C and M can compute(

gy
)x = gxy = (gx)y .

Note that gxy does not carry any meaningful
information. However, it can be used to derive (via
a publicly known algorithm) a common key for
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some pre-agreed private key cryptosystem, which
C and M can now use for their communication. It
is believed that the problem of finding gxy from
given values of gx and gy is hard, and solving the
corresponding discrete logarithm problem is the
only feasible line of attack. That is, the attacker
simply tries to recover x from the given value of
gx (or does the same for y ). We also recall that
the order of G needs to be prime (to prevent the
so-called Pohlig-Hellman attack of reducing the
problem to prime order subgroups).

In RSA, C chooses two primes p and q and
computes N = pq ; note that the Euler function
ϕ(N) = (p−1)(q−1) can easily be evaluated. Then,
C also chooses an encryption exponent e with
gcd(e,ϕ(N)) = 1 and computes the decryption
exponent d such that

de ≡ 1 (mod ϕ(N)).

Now the values of N and e are made public,
while d is kept private. To encrypt a message m
(represented by an integer in the reduced residue
system modulo N ), M simply computes and
transmits

c ≡me (mod N).

The decryption is as easy:

cd ≡ (me)d ≡mde ≡m (mod N),

since by the Euler Theorem

aϕ(N) ≡ 1 (mod N)

for any integer a with gcd(a,N) = 1. It is also
believed that, in order to attack this cryptosystem,
one must find d , which in turn requires ϕ(N) ,
which is equivalent to finding the factors p and q
of N .

As we have just seen, both the Diffie-Hellman
key exchange protocol and RSA cryptosystem
are based on very simple number-theoretic facts,
which date back centuries. But certainly it was
not the mathematics behind these constructions
that made number theorists so excited. It was the
realization that attacking these schemes required
very deep insight into some fundamental properties
of integers.

The sudden discovery of the great potential
of number theory for very practical applications
immediately got the attention of many leading
researchers in number theory. Such distinguished
number theorists as Neal Koblitz, Jeffrey Lagarias,
Hendrik Lenstra, Andrew Odlyzko, Carl Pomer-
ance, Hugh Williams, and many others started to
actively work in this area and achieved a series
of fundamental results and also established new
directions.

Midlife Crisis

Unfortunately, over the years the tight links and
mutual interest have somewhat diminished. Much
of the cryptographic research became occupied
with protocol designs. Although this is undeniably
highly important and interesting, it is, typically, a
not so mathematically rich part of cryptography.
Certainly this must not be held against protocol
design; using mathematics is not a goal, it is a
way to achieve a goal. There is nothing wrong if
some areas do not need much of it. Furthermore,
there have been many really delightful exceptions,
such as zero-knowledge proofs and the identity-
based cryptosystem of Boneh and Franklin; short
signatures of Boneh, Lynn, and Shacham; and the
tripartite key exchange protocol of Joux. See [1] for
a detailed description of these schemes.

However, due to increased applied orientation,
researchers with more advanced knowledge of
engineering and of actual demands of practical
cryptography, but lesser fundamental mathemati-
cal background, moved into the area. In turn, this
led to relying on a somewhat lightweight approach
to proofs, led to creating oxymorons such as
“heuristic proof ”, and developing a frequently used
argument that “if we do not understand some
object well enough, it behaves as a uniformly
distributed random variable.” Unfortunately, one
of the effects of this was that mathematicians, both
several individual researchers and the whole com-
munity, have somewhat distanced themselves from
cryptography. The creation of NTRU [18] in the mid-
1990s by number theorists Jeffrey Hoffstein and
Joseph Silverman and harmonic analyst Jill Pipher
was one of the few very welcome exceptions, but it
did not change the trend of somewhat abstained
position among most of the mathematicians. On
the bright side, theoretical computer scientists
have moved in, bringing with them new paradigms
such as zero-knowledge proofs, secure computa-
tion, privacy protection, pseudorandomness, and
many other insights which greatly expanded the
scope of cryptographic research.

So, by all means, the word “crisis” in the title of
this section refers only to the relations between
cryptography and mathematics, but not to the
progress in each individual area, which has been
truly remarkable.

Surprisingly enough, in many cases it was
exactly the practical aspect of cryptography which
suffered first from that lack of broad mathematical
background.

For example, since Neal Koblitz and Victor Miller
independently invented elliptic curve cryptography
(see [1]), its well-known Achilles heel was the
encryption/decryption speed. The idea is based
on the fact that the set of rational points on an
elliptic curve over a finite field form an Abelian
group under an appropriate composition law.
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Traditionally, the group of points on an elliptic
curve is written additively, so we talk about addition
rather than multiplication, doubling rather than
squaring, and multiplication by a scalar rather
than exponentiation. Furthermore, typically it is
easy to choose a curve for which this group
contains a large cyclic subgroup of prime order. So
many standard constructions such as the Diffie–
Hellman key exchange scheme can be implemented
over an elliptic curve, too. So far, no efficient
general attack has been found on this scheme;
however, this security advantage is somewhat
offset by higher computational costs. Another
potential weakness (which is elliptic-curve-specific)
is that typically doubling a point and adding
two points on an elliptic curve follow different
formulas and thus take different amounts of time.
This can be efficiently exploited by the so-called
timing or power attacks. There is an extensive
literature, where a number of very clever tricks
have been suggested to remedy the situation (see [1,
Chapter 29]). Unfortunately, being carried away
by the race to reduce the number of arithmetic
operations in computational formulas (and also
balancing them between doubling and additions),
the cryptographic community missed the fact
that a readily available solution already existed
in literature. The insight came from a number
theorist. Namely, it was the paper of Edwards [16]
that changed the whole game here. Since then,
Edwards curves have become a hot topic in elliptic
curve cryptography. Let us hope that history will
not repeat itself and the new spiral of incremental
adjustments on the original idea of Edwards curves
will not distract from searching for (and finding!)
new fundamental improvements.

There are also strong trends within cryptography,
motivated by both inner dynamics and practical
demands, to make it more rigorous. Overall, this is
a very positive development; the idea goes in the
right direction. Research in this area has led to such
remarkable achievements as the Cramer-Shoup
cryptosystem [12]. This and many other papers
follow the same standards of rigor as a typical
mathematical paper.

However, the quest for provable security occa-
sionally takes too extreme forms. Nowadays, it
is very hard for a newly proposed cryptographic
scheme to get accepted for publication if the
authors do not say something about “provable
security”. In turn it sometimes leads to hastily
composed proofs which have gaps or simply do
not address the statement they are supposed to
prove. As a result, there have been quite a few com-
pletely broken “provably secure” cryptosystems.
Recently, similar concerns have been expressed by
Koblitz [23], albeit in maybe a too radical form; see
also [25] for the follow-up discussion.

Even linguistically, the word “provable” is slightly
overemphasized, as all known proofs are nothing

but reductions between various problems. No one
in complexity theory calls an NP-complete problem
“provably hard”. Nowadays, we may only dream
of such a proof (and probably these dreams will
last for a long time…). In any case, the author
personally would put much more trust into a
protocol which remains unscathed after it has
been carefully examined by several well-known
“code-breakers” rather than in any “provably secure”
scheme.

Living Happily Ever After?

There is no reason not to! Actually there are strong
indications that this may really happen. Over the
last several years one could see a large group
of researchers, of different academic ages, who
started their careers in classical or computational
number theory and moved toward cryptography. In
turn the modern cryptographic community seems
to be ready to embrace mathematicians.

Although this is still mostly limited to elliptic
curve cryptography, this is a really delightful
development. These mathematicians represent
different generations and areas of number theory
and hopefully will also diversify the area of
applications to cryptography.

Furthermore, most mathematicians probably
limit the involvement of mathematics in cryptog-
raphy to only public key cryptography . There is,
however, much more out there. For example, secret
sharing, which we describe below, gives an example
of such unjustly lesser-known applications. Quan-
tum cryptography is yet another direction which is
rapidly becoming very practical, too.

In fact, the main point of this article is to exhibit
great opportunities for both disciplines and give
several concrete examples where such joint work
may start. Number theory still has a lot to offer,
while cryptography provides a constant stream of
new beautiful problems and points of view. Both
sides just need to take a step toward each other
and become more accepting:

Number Theory + Cryptography − Prejudice = Love

Although typically number theory plays a service
role, simply responding to challenges and requests
coming from cryptography, there are also examples
when cryptographic techniques have directly led
to very interesting number-theoretic results. Below
we try to give a brief outline of several recent
activities and achievements which have been cross-
fertilized by, and belong to, both number theory
and cryptography. Our intention has been to give
a diverse scope of possible directions for further
collaboration, as well as to formulate some specific
problems. Unfortunately the space limitations
forced us to leave out many exciting topics,
such as, for example, constructions of expanders
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from isogeny maps on elliptic curves and their
applications to constructing hash functions and
investigating of the security of discrete logarithm
problems on elliptic curves (see [8, 20]).

It is important to remember that number theory
is not the only branch of mathematics which is
related to cryptography. For instance, recently
we have witnessed very exciting developments in
the group-theory-based cryptography as well as
recently emerged links between cryptography and
polynomial algebra.

The author is indebted to Joachim von zur
Gathen for the observation that three out of
seven Clay Millennium problems—P vs. NP, Birch
and Swinnerton-Dyer Conjecture, and Rie-
mann Hypothesis—deal with objects of cryp-
tographic relevance: hard computational prob-
lems, elliptic curves, and prime numbers; see
http://www.claymath.org/millennium/.

Current Developments and Perspectives
In RSA We Trust!

RSA cryptosystem is based on the Euler Theo-
rem, which is one of the most well-known and
fundamental number-theoretic facts. However, it
has always excited number theorists, not because
of the way it works, but because we think that
despite (or maybe because of) the simplicity of the
underlying mathematics, it is very hard to break.
Designing attacks on RSA and evaluating their
strength is exactly where most of the interplay
between number theory and cryptography has
happened.

Certainly the modulus factorization attack is the
most general way of breaking RSA. All factorization
algorithms, heuristic and rigorous, are based on
our knowledge and understanding of the behavior
and distribution of smooth numbers and thus have
very strong number theory contents (see [13, 30]).
We recall that an integer n is called y -smooth if
n has no prime divisor p > y . Furthermore, the
elliptic curve factoring algorithm of Lenstra [24] is
based on some deep facts on the distribution of
elliptic curves over finite fields and class numbers.

Yet, despite very significant and concentrated
efforts, integer factorization remains a very hard
computational problem, which is poorly under-
stood theoretically and practically. One of the
possible ways to gain more understanding of this
problem is to ask how much “help” one should
request from an all-powerful oracle in order to
be able to factor a given integer N . Two most
impressive achievements in this direction are due
to Maurer [27] and Coppersmith [10]. Maurer [27]
has proved, conditionally on some natural conjec-
ture on the density of very smooth numbers in a
short interval, that for any ε > 0 one can request
(adaptively) at most ε logn bits of information and
then factor n in polynomial time. In the approach

of Coppersmith [10] more information is requested,
but it is limited to specific bits of prime factors of
n . For example, if n = pq , where p < q < 2p are
primes, then about 0.25 logn/ log 2 of the most
significant bits of p are enough to factor n ; see
also [28] for an exhaustive survey of follow-up de-
velopments. Both approaches contain a number of
open problems of rich number-theoretic contents
and certainly deserve more attention from number
theorists.

Finally, there are also attacks on RSA that are
based on an unlucky or careless choice of the
modulus. For example, such is the cyclic attack
on RSA analyzed by Friedlander, Pomerance, and
Shparlinski on the basis of the results on the
distribution of the Carmichael function of shifted
prime numbers; see [33, Chapter 15].

Similarly, the problem of the distribution and
frequency of so-called strong primes (see [30,
Section 4.4.2]), has been resolved in [2]. In both
cases, it is shown that the overwhelming majority
of the moduli is perfectly safe against both threats.
And also in both cases there are several exciting
directions for further research and collaboration
between number theorists and cryptographers.

Geometry of Numbers and Lattice-Based
Cryptography

In 1978 Merkle and Hellman suggested a cryp-
tosystem based on a very elegant idea of using
a superincreasing knapsack, that is, a sequence
of integers a1, . . . , an with ai > ai−1 + . . . + a1 ,
i = 2, . . . , n (see [30, Section 8.6]). Although in
general the Knapsack Problem is NP-complete, a
superincreasing knapsack is easy: Given the sum

A =
n∑
i=1

aixi ,

with a binary vector (x1, . . . , xn) ∈ {0,1}n , one can
recover xn, . . . , x1 consecutively by using a simple
“greedy” algorithm. One, however, may try to hide
the superincreasing structure by choosing a prime
p > an , a random λ 6≡ 0 (mod p) , an element π
of the symmetric group Sn , and then publishing a
permutation

c1 = bπ(1), . . . , cn = bπ(n)
of the residues

bi ≡ λai (mod p), i = 1, . . . , n.

Then a binary vector (y1, . . . , yn) ∈ {0,1}n is
encrypted by

C =
n∑
i=1

ciyi ,

which can be decrypted by anyone who knows
p , λ , and the permutation π by computing
A ≡ λ−1C (mod p) , recovering (x1, . . . , xn) for the
corresponding superincreasing knapsack, and then
computing yi = xπ−1(i) , i = 1, . . . , n . This idea is
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very attractive and encryption/decryption are both
very fast. However, unfortunately, this scheme
and its various extensions have all been broken
by an appropriate application of the famous LLL
algorithm of Lenstra, Lenstra, and Lovász; see [32].
This series of unsuccessful attempts to build
a reliable cryptosystem based on hard lattice
problems was quite frustrating, and for quite some
time this direction was put on the back burner.

The first theoretical breakthrough, which
reignited interest in lattice-based cryptosystems,
happened in 1997 when Ajtai and Dwork and
Goldreich, Goldwasser, and Halevi reinstated this
direction. Although these cryptosystems and their
variations are either impractical or under attack
(or both) (see [31, 32]), they proved the vitality of
the idea of using hard problems of the geometry of
numbers for cryptographic purposes. Furthermore,
at around the same time, the highly practical
NTRU was invented by Hoffstein, Pipher, and
Silverman [18]. A decade of attacks on NTRU has
led to a series of modifications and adjustments
of the original scheme, but it seems that it has
survived the storm and provides a very secure and
efficient cryptosystem.

Nowadays there is a strong and active group
of cryptographers who are combining practi-
cal aspects of lattice-based cryptography with
a deep and original mathematical insight; see the
surveys [28, 31, 32].

There are, however, many unexplored directions.
For example, is it possible to salvage the original
Merkle-Hellman idea by mixing a superincreas-
ing knapsack with some other types of easily
recoverable knapsacks? It is known that iterating
the modular multiplication hiding trick does not
help here, but what about a more general affine
transformation

bi ≡ λai + µ (mod p), i = 1, . . . , n,

and then insisting that the encoded message is
always of the same weight w ∼ n/2 (so the total
additive shift is wµ )?

There are many other possibilities to investigate
and certainly an unlimited field of action for
number theory.

Anatomy of Integers and Cryptographic
Attacks1

As we have mentioned, our insight on the behavior
of prime divisors of a “typical” integer underlies
all modern integer factorization algorithms. There
are, however, several more important, albeit not
so well-known, cryptographic constructions which
rely on some delicate properties of prime and
integer divisors of integers.

1The author admits that the title of this section is greatly
influenced by [14].

However, these algorithms are not the only
applications of number-theoretic results on the
fine structure of integers. Here we recall a few
more cryptographic constructions and algorithms
with a rich and nontrivial number theoretic content.
In particular, many cryptographic attacks target
“atypical” integers, and it is important to know how
rare they are.

The traditional Discrete Logarithm Problem
(DLP) is the problem of finding x from a given
value of gx where g is a generator of a cyclic
group G . There are, however, several cryptographic
protocols which rely on the presumed hardness
of finding x from given values of gx, . . . , gxn

(or, sometimes, just of two values gx and gxn ).
Intuitively it may seem that this extra information
cannot help much and the problem is not easier
than the original DLP (corresponding to n = 1).

Quite surprisingly, this intuition has turned out
to be wrong. In particular, Cheon [9] has shown
that, ignoring some logarithmic factors:

• given gx and gxd for some d | p − 1, one

can find x in time about O
(√
p/d +

√
d
)

(which is O
(
p1/4

)
for d ∼ √p );

• given gx, . . . , gxd for some d | p + 1, one

can find x in time about O
(√
p/d + d

)
(which is O

(
p1/3

)
for d ∼ p1/3 ).

This gives rise to the question of estimating the
probability with which a random prime p is such
that p ± 1 has a divisor d of a given size.

Fortunately, readily available results and meth-
ods, such as the classical Brun sieve as well as some
more recent results, give almost perfect answers
to this and related questions and imply that the
above attacks apply to a rather dense set of primes.
We refer to [9] for more details.

In [29], Menezes introduces the Large Subgroup
Attack on some cryptographic protocols over a
prime field IFp . The attack can be applied, if for some
q | p− 1, the ratio n = (p− 1)/(2q) has a smooth
divisor s > q . Banks and Shparlinski [3] have
used their asymptotic formula on the probability
η(k, `,m) that a k -bit integer n has a divisor
s > 2m which is 2` -smooth to give some insight
on the frequency with which this attack succeeds
on “random” primes, assuming that shifted primes
p − 1 behave like “random” integers.

One of the most interesting choices of parame-
ters is:

k = 863, m = 160, ` = 80

(which produces a 1024-bit prime p ), in which
case it has been shown in [3] that (heuristically) the
attack succeeds with probability η(863,80,160) ≈
0.09576 > 9.5%.
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Pell Equations and Pairing-Based Cryptography

Elliptic curve cryptography is yet another confirma-
tion of the great practicality of deep mathematical
theories. Recently, the area enjoyed a second
wave of activity in which elliptic curves are not
merely used as just an example of a finite group
but in a much more subtle way, which has no
analogue in other groups such as IF∗q . Namely,
following the pioneering works of Boneh and
Franklin, Boneh, Lynn and Shacham, Joux, Joux
and Nguyen, Menezes, Okamoto and Vanstone, a
diverse scope of cryptographic applications of the
Tate, Weil, and other pairings on elliptic curves has
been discovered (see [1, Chapters 22 and 24] for
an exhaustive survey).

A background on elliptic curves can be found
in [1, 36]; however, for our purposes it is quite
enough just to recall that an elliptic curve in the
affine model is essentially the set of solutions
(x, y) in the algebraic closure of a finite field IFq
of q elements to the Weierstrass equation

Y 2 = X3 + aX + b
, where the coefficients a, b ∈ IFq avoid a certain
surface in IF2

q (and also gcd(q,6) = 1; otherwise,
the Weierstrass equation takes a slightly more
complicated form).

In modern applications of elliptic curves in
cryptography, the notion of embedding degree
plays one of the central roles. Recall that an elliptic
curve E over the finite field IFq of q elements has
embedding degree k with respect to the subgroup
G of the group E(IFq) of IFq -rational points on E , if
#G | qk − 1, and k is the smallest positive integer
with this property. Typically, only subgroups G of
prime order ` of E(IFq) are of interest.

The above applications have naturally led to two
mutually complementary directions:

• Estimating the probability that a “random”
elliptic curve (in some natural sense) has a
small embedding degree with respect to a
subgroup G of E(IFq) of large prime order
` .

• Finding explicit constructions of elliptic
curves E having a small embedding degree
with respect to some subgroup G of E(IFq)
of large prime order ` .

There are results of various flavors which show
that a “random” curve (for different types of
randomization) tends to have a large embedding
degree with respect to large prime order subgroups
of E(IFq) (see [21, 26]). In particular, this means
that the so-called MOV attack of Menezes, Okamoto
and Vanstone (see [1, Section 22.2]) is not likely to
succeed on a “random” curve. On the other hand,
this also means that “random” curves are useless for
the purposes of pairing-based cryptography, thus
making the second problem even more important.

Both directions still have many open questions
with a strong number theory context, even if
in many cases only conditional results, under
the Generalized Riemann Hypothesis and/or the
Bateman-Horn Conjecture on primes in polynomial
values. For example, in [26], an approach is given to
getting a heuristic upper bound on the number of
the pairing-friendly MNT curves, named after Miyaji,
Nakabayashi and Takano; see [1, Section 24.2.3.a],
(who surprisingly enough, invented this very elegant
construction even before applications of pairing-
friendly curves had been found). However, to get
precise results one needs to estimate the order
of magnitude (as the function of the parameter
z > 1) of the series

S(z) =
∑
s≤z

s squarefree

∑
n2+8=3sm2

n≡1 (mod 6)
n≥2

1
(logn)2

,

where the inner sum is taken over positive solutions
n ≡ 1 (mod 6) , n ≥ 2 to the Pell equation n2+8 =
3sm2 (see [19] for a background on the Pell
equation). It is believed that, typically such solutions
grow exponentially and the j th solution is of
order of magnitude exp(c

√
sj) for some absolute

constant c > 0 (in particular, the first solution is
exponential in

√
s ). This may lead to a suggestion

that S(z) = zo(1) . However, Karabina and Teske [22]
noticed that there is a thin set of exceptional values
of s = 12k2 + 4k+ 3, satisfying 3s = (6k+ 1)2 + 8,
for which there is a very small solution of order√
s . This implies that

S(z) ≥ C
√
z

(log z)2

for some absolute constant C > 0. In [21] this
bound has been slightly improved, but the question
about the precise behavior of S(z) is still wide open
and is of great interest for both number theory
(because of the new methods it is likely to require
to develop) and cryptography (because of the
application to such a “hot” topic as pairing-based
cryptography). Let us reiterate that so far even
heuristically the situation is poorly understood.

Similar questions can be asked for other con-
structions (see [17] for a survey), giving unlimited
opportunities for collaboration between both
communities.

Secret Sharing and Algebraic Number Theory

Since Shamir introduced the first secret sharing
scheme (SSS) (see [30, Section 12.7.2]), this area
has enjoyed a tremendous amount of attention
and work. We recall that, in the simplest settings,
a “ t -out-of-n” SSS is a way of distributing some
information, derived from a secret key X , between
n participants so that any t + 1 of them can
recover X , but no coalition of t participants can
gain any knowledge about X . The initial scheme
of Shamir already used a very elegant idea of
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polynomial interpolation over finite fields. Later,
much deeper tools of polynomial algebra and
algebraic number theory were applied to improve
the existing schemes. These schemes also cover
many more access scenarios of threshold secret
sharing over an arbitrary abelian group when given
only blackbox access to the group operations and
to blackbox randomness (while the original scheme
of Shamir is essentially limited to secret sharing
over finite fields). In turn this generality required
use of much deeper number-theoretic tools. For
example, Desmedt and Frankel [15] constructed a
scheme based on cyclotomic fields and discussed
the relations between their construction and the
Lenstra constant . We recall for an algebraic number
field IK the Lenstra constant L(IK) , introduced as
a tool to study Euclidean number fields, is defined
as the largest number m of algebraic integers
α1, . . . , αm ∈ ZZ IK such that the differences αi −αj ,
1 ≤ i < j ≤ m , belong to the unit group of IK.
Unfortunately, L(IK) tends to be rather small.

In fact, the construction of [11], which builds
upon some previous ideas of Cramer and Fehr,
is still based on using algebraic numbers, but
its effectiveness is not limited by the size of the
Lenstra constant.

We also note that algebraic geometry, in partic-
ular constructions of curves with many rational
points over finite fields, has also been used for
the same purpose [7]. There is very little doubt
that experts in algebraic number theory may find
(and solve!) a wealth of challenging problems in
this area and thus greatly contribute to its further
development.

Exponential Sums and Pseudorandomness

Exponential sums, and more generally character
sums, form a well-developed number-theoretic tool
to show that certain objects behave similarly to
uniformly distributed random variables. So there
is no surprise they can be of invaluable help for
analyzing cryptographic primitives; see [33] for
some examples.

For example, let g ∈ IF∗q be an element of order
t . The Diffie–Hellman problem (that is, recovering
gxy from gx and gy ) is nowadays usually called the
Computational Diffie–Hellman Problem, CDH. One
can also consider a variant of this problem that is
known as the Decisional Diffie–Hellman Problem,
DDH, which is about distinguishing a stream of
Diffie–Hellman triples (gx, gy , gxy) from a stream
of triples (gx, gy , gz) where x, y, z are chosen
uniformly at random from the interval [0, t − 1] .
The complexity status and interrelations between
the CDH and DDH are mostly unknown, but both are
presumed to be hard. One, however, may try to get
some indirect evidence in support of their hardness.
Motivated by this point of view, the uniformity of
distribution of (gx, gy , gxy) has been established

by Canetti, Friedlander and Shparlinski and then
improved by Canetti, Friedlander, Konyagin, Larsen,
Lieman and Shparlinski (see [33, Chapter 3]). Finally,
Bourgain [5], using very powerful methods of
additive combinatorics, has greatly extended the
range of t for which such a result holds. Yet
one can still find here many open questions and
unexplored directions.

There are also more direct applications of
exponential sums. For instance, Boneh and Venkate-
san [4] introduced the following problem, known
as the Hidden Number Problem, HNP:

For a prime p , recover α ∈ IFp ,
given the ` most significant
bits of αti (mod p) for k ele-
ments t1, . . . , tk ∈ IFp , chosen
independently and uniformly at
random.

Certainly when ` is large (say, larger than the
bit length of p ), the problem is trivial. Boneh
and Venkatesan [4] have given a probabilistic
polynomial time algorithm which works for much
smaller values of ` , namely ` ≈

√
logp . They have

also shown that the HNP has close links with the
bit security property of the Diffie-Hellman key. The
latter means that recovering even a small portion
of the bits of gxy is as hard as recovering the whole
key. This property is crucial to guarantee that
when only some bits of gxy are used to establish
a common key for a private key cryptosystem,
this does not introduce any additional weakness
in the protocol. Recall that the bit length of such
keys (80-120 bits) is significantly shorter than the
bit length of the Diffie-Hellman key (500-1,000
bits). One of the facts used in the proof was the
observation that if t ∈ IFp is chosen uniformly
at random, then the probability that αt (mod p)
belongs to a prescribed interval of length h inside
of [0, p − 1] is about h/p .

However, it has turned out that for the above
application the multiplier t is chosen from a
multiplicative subgroup of IFp , and thus the above
uniformity of distribution property had to be re-
established, and this is exactly where exponential
sums came into the picture (see [34]).

The HNP algorithm of Boneh and Venkatesan [4],
reinforced with bounds of exponential sums, has
also been used for a very “destructive” purpose,
namely to attack the Digital Signature Scheme
(see [33, Chapter 20]). The exponential sums which
appear here are of a type which does not appear
in any “pure” number theory applications, and
their estimating required a combination of various
techniques.

Even more surprisingly, the modification sug-
gested in [35] to the HNP algorithm of [4] has
tight links with the Waring problem in finite fields
and allows the study of very general sequences of
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multipliers; see [34] for a survey of algorithms for
several other variants of the HNP.

Finally, just to give a brief taste of the diversity
of application of exponential sums to cryptography,
we also mention:

• The construction of Bourgain [6] of so-
called randomness extractors, a very im-
portant object in theoretic cryptography
and computer science. Obtaining explicit
forms of the estimates of [6] is a natural,
interesting, but not easy, question.

• Results of Jao, Miller and Venkatesan [20]
on the reducibility between the discrete
logarithm problem on different elliptic
curves with the help of bounds of character
sums (implied by the Generalized Riemann
Hypothesis). A natural direction of research
would be to apply the large sieve technique
in order to establish a similar result for
almost all primes (instead of all primes as
in [20]) but unconditionally.

Conclusion
By no means is this paper intended to be a survey
of all links, both existing and potential, between
cryptography and number theory. Many important
topics and directions are left out. We still hope it
says enough to exhibit the richness and potential
of the two interacting galaxies of cryptography
and number theory. In particular, we have tried
to show to mathematicians there is much more in
cryptography than RSA and other classical schemes
of public key cryptography, where they can apply
their knowledge and experience. On the other hand,
the intent was to show to cryptographers that there
is much more in mathematics than congruences
and prime numbers, which can be of great value
for cryptography

The author does hope that the title of this
section refers only to the paper, and not to the
story. In fact, we have strong reasons to expect that
we are just at the beginning of a new chapter with
many more exciting twists and an elaborate plot.
We anticipate this will bring a lot of success and
enjoyment to all its participants and interested
viewers.
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