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T
he security of very efficient and widely
used public key crypto systems is
based on the hardness of mathematical
problems. Typically such problems
come from arithmetic. Here are three

important examples: Find shortest or closest
vectors in lattices, factor large numbers, and
compute logarithms in finite groups.

In this article we shall concentrate on the last
example and so cover crypto systems for which
the crypto primitive behind them is the discrete
logarithm (DL) in cyclic groups of prime order (see
the subsection on Diffie-Hellman Problems).

The first proposal for such systems was given by
Diffie and Hellman in their groundbreaking article
[DH]. As groups they suggested taking roots of
unity in the multiplicative group of finite fields.

The generality of the methods provided by al-
gorithmic arithmetic geometry opens immediately
a wide range of possibilities. One can replace tor-
sion points in the multiplicative group by torsion
points of Jacobian varieties of curves over finite
fields. But, on the other side, the strength of the
methods allows us to develop very efficient at-
tacks. So most of the suggested candidates for
public key systems did not fulfill the expectations,
and only DL-systems based on carefully chosen
elliptic curves and curves of genus 2 survived
without any blame.

This does not mean that the study of curves of
arbitrary genus is not important for applications
in data security. In many cases we understand
partial weaknesses of elliptic curves by making
more general objects accessible to computation.
The continuous study of consequences of advan-
ces in algorithmic arithmetic geometry for the
security of used crypto system and failures of at-
tacks give mathematicians a better conscience and
users more trust. So even people only involved in
designing systems without being interested in the
theoretical background can choose (very special)
cases, for example, one elliptic curve over a fixed
field with explicit addition formulas given in a
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list of standardized curves, for instance listed in
[NIST] or in [BRAIN]. But apart from applications
to elliptic curves the higher genus curves have
various applications in cryptography which we
cannot describe in this short survey.

But it is not only the status quo which is
supported. New points of view from the theoretical
side lead to advances in the design of hardware as
well as in protocols. One of the striking examples is
the development of pairing-based cryptography.
From its background, namely duality theory in
arithmetic geometry, there goes a direct path to
very efficient implementations of pairings which
allow, for instance, new ways to sign, and here
curves of higher genus may play an important
role.
Acknowledgment. The author would like to thank
the referees for careful reading of the manuscript
and for their helpful comments.

Some Aspects of Arithmetic Geometry
In the section “Construction of DL-Systems” we
shall formulate tasks for mathematicians motiva-
ted by needs of data security. It turns out that it
is surprisingly difficult to find families of groups
which are candidates for DL-systems, and that
the search for bilinear structures is even more
involved.

The only known examples are constructed
with the help of advanced methods of arithmetic
geometry mostly developed during the last sixty
years. We emphasize the remarkable fact that they
both enable us to solve old problems like FLT
(see the subsection “Digression: FLT”) and lead to
efficient and secure families of public key crypto
systems.

What Is Arithmetic Geometry?

Arithmetic geometry is one of the most powerful
ingredients in mathematics. It combines classical
algebraic number theory with algebraic geometry.
It uses the theory of functions over C, and so
analytic geometry, and it transfers this theory to
its p-adic counterpart, the p-adic rigid geometry.

The important feature is that objects from
number theory, like the ring of integers, and
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objects from algebraic geometry, like varieties

over finite fields, can be treated in a unified way

(as schemes consisting of the set of points with
topology and sheaves of functions). For instance,

the arithmetic of rings of integers in number
fields is very similar to the arithmetic of rings of

holomorphic functions on affine curves over finite

fields. The analogy is neither only formal nor in
all aspects obtained by using a dictionary, and

the interplay between the arithmetic world and
the geometric world is extremely fruitful for both

sides.

The situation becomes very interesting and ex-
tremely difficult if both points of view are mixed

together, for instance, if we look at the arith-
metic of curves C defined over number fields or

p-adic fields K. Geometrically these are varieties

of dimension 1, but since we can look at them
as being defined over the ring of integers OK of

K, they carry a 2-dimensional structure: from C
we get an arithmetical surface C. This surface

contains for each prime ideal p of OK a closed

fiber Cp (special fiber at p) which is the reduction
of C modulo p, that is, roughly speaking, the curve

obtained by looking at the equations defining C (in
a suitable normalization with respect to p) modulo

p. The arithmetical surface C contains much more

information than its generic fiber C. It is not uni-
quely determined by C. There is an optimal model,

the so-called minimal model, and using this model
one can try to get the arithmetical data of C from

studying the analogous data of the special fibers.

In the case that K is a number field one tries to
exploit the local information one gets over the

completions at all places of K simultaneously in
order to get global information, for example, about

rational points on C. (If K = Q these completions

are the reals R and, for all prime numbers p, the
p-adic numbers Qp.) If this strategy is successful

then one has established a local-global principle.
One famous example of such a principle is the

theorem of Hasse-Minkowski which states that

one quadratic polynomial in arbitrarily many va-
riables with coefficients in a number field K has a

K-rational solution if and only if it has solutions
in all fields obtained as completions with respect

to valuations of K.
We cannot expect to get such a principle for

general varieties. In fact we already find coun-

terexamples if we look at the set of solutions
of two quadratic equations or of polynomials in

two variables of degree 3. But there is a Galois
theoretical variant which relates local with global

information: the density theorem of Čebotarev

(Theorem 2.5).

Algorithmic Arithmetic Geometry

Classically algorithmic aspects of number theory

mostly deal with lattices and derived objects.

A fundamental tool is Minkowski’s theorem on

points with small norms in lattices and related
results, for instance reduction of quadratic forms
following Lagrange and Gauss. The enormous
growth of computational power made it possible
to construct interesting examples in a wide range,

and very often one meets the LLL algorithm as a
major tool.

The theoretical insights obtained by the ap-
proach described in the preceding subsection
made rapid and exciting progress possible in

the area of algorithmic arithmetic geometry,
generalizing considerably both range and techni-
ques of computational number theory. Prominent
examples are computation of tables of modular
forms including congruences, algorithmic study
of modular curves (see, for instance, the Cremona

tables [C] listing elliptic curves) and related Galois
representations.

Translating arithmetical problems into the geo-
metric language has the immediate consequence
that one can apply the methods from arithmetic

to the geometric case, too. And so we have now
a very advanced theoretical and algorithmic tool-
kit to deal with the explicit theory of varieties
over finite fields as a counterpart to the explicit
theory of algebraic number fields. We devote the

subsection “Arithmetic in Divisor Classes” to an
important example.

Complexity Hierarchy. A crucial part of every
algorithmic theory is the determination of the

complexity of the available algorithms.
Here we can only scratch the surface of this

fascinating mathematical subject. We introduce
Landau’s notation:

For

f , g : N→ R
with g positive define

f = O(g)
if there exists d ∈ R>0 with

| f (N) |≤ dg(N)
for all N.

Take α ∈ [0,1], c ∈ R>0.
Define

LN(α, c) := exp(c · log(N)α · log(N)1−α).

For (almost all) N ∈ N, let

fN : AN → BN
be maps from setsAN to setsBN . Assume that there
is an algorithm which evaluates fN with (probabi-
listic) complexity (e.g., number of bit operations
needed) F(N).

Then the (probabilistic) asymptotic complexity
of the family fN is called

• polynomial if F = O(LN(0, c)) (“fast algo-
rithm”)
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• exponential if F = O(LN(1, c)) (“hard algo-

rithm”) and

• subexponential if there is 0 < α < 1 with

F = O(LN(α, c))
in log(N).

Subexponential complexity is a very interesting

case between the two extremes.

Caution: This notion of complexity is an as-

ymptotic estimate of a specific algorithm for the

evaluation of fN . In particular, it is only an upper

bound for the hardness of the evaluation of fN .

Nevertheless it gives a good impression of what

one can expect for given instances with concrete

N large enough.

Examples for algorithms with polynomial com-

plexity are

• the (extended) Euclidean algorithm and

• exponentiation in groups (expressed in

costs for group operation).

The first example implies that the computation

of the greatest common divisor of numbers and

polynomials as well as the computation of the

inverse in finite groups with known group order

is of polynomial complexity.

From the second example it follows that expo-

nentiation in finite fields Fq is, as a function in

log(q), polynomial. The same is true for scalar

multiplication in elliptic curves (see the subsec-

tion “Curves of Genus 1: Elliptic Curves”). But a

highly nontrivial and much more general result is

explained in the next subsection.

Arithmetic in Divisor Classes. We take a (projective

absolutely irreducible nonsingular) curve C of

genus g defined over a field K which has no

inseparable algebraic extensions. This means that

irreducible polynomials over K have no multiple

zeros. Examples are all fields of characteristic 0

and all finite fields.

We assume that we have a K-rational point P∞
on C and denote by OC the ring of functions on C
which have only poles in P∞.

As an example take C as projective line. Then

OC is isomorphic to the ring of polynomials in one

variable.

The ring OC is a Dedekind domain and so every

ideal ≠ {0} is, in a unique way, the product of

powers of prime ideals.

The quotient field FC =Quot(OC) is the func-

tion field of C and is independent of the choice of

P∞.

We generalize the notion of ideals of OC to

ideals of FC by defining: A ⊂ FC is an ideal if there

is an element f ∈ F∗C such that f · A ⊂ OC is an

ideal of OC in the usual sense.

The set of ideals of FC is a commutative group

I(OC)which is freely generated by the set of prime

ideals of OC .

Inside of I(OC)we have the subgroup Princ(OC)
of principal ideals f · OC , f ∈ F∗C . The quotient

group

Pic(OC) := I(OC)/Princ(OC)

is the ideal class group of OC . It is in a natural
way isomorphic to Pic0(C), the divisor class group

of degree 0 of C, and a fundamental theorem

of the theory of curves states that Pic0(C) is in

a functorial way isomorphic to the group of K-

rational points of the Jacobian variety JC of C.

This is an abelian variety (i.e., a geometrically

connected projective commutative group scheme)

of dimension g over K.

The crucial point is that we can add in an explicit
way in JC(K) = Pic0(C) = Pic(OC)! To see this one

recalls that the algebraic structure of OC is similar

to the structure of the rings of integers of number

fields and that Pic(OC) is analogous to the ideal

class groups of number fields. Computing in these

groups is one of the major tasks of computational

number theory, and it is done effectively because

of Minkowski’s theorem on points with small norm

in lattices. An immediate consequence is that class

groups of number fields are finite.

In the geometric frame Minkowski’s theorem is

replaced by the even more fundamental theorem

of Riemann-Roch. The size of the discriminant

of K is replaced by the genus g of C. Again we

get as an immediate consequence that for finite

fields K = Fq (the field with q elements) the group

Pic0(C) is a finite group. In fact, we get a rather

sharp estimate from below and above for this size

depending on q and g in the subsection “The Local

Information”.

We state an important and amazing recent

result concerning the computation of the sum of

two elements in Pic0(C).

Theorem 2.1 (Hess, Diem). Let C be a curve of

genus g over the field Fq . The addition and inver-

sion in the divisor class group of degree 0 of C
can be performed by an explicitly given algorithm

in an expected number of bit operations which is

polynomially bounded in g and log(q), i.e., group

operations and scalar multiplication in divisor class

groups are of polynomial complexity both in g (with

fixed q) and log(q) (with fixed g).

Curves of Genus 1: Elliptic Curves. We apply the

Riemann-Roch theorem to the special case that C
has genus 1 and a rational point P∞ and come to

a well-known object: elliptic curves. We get:

• E(K) is in a natural way an abelian group

with neutral element P∞.

• E is as a variety isomorphic to its Jaco-

bian variety, and so elliptic curves with

chosen point P∞ are abelian varieties of

dimension 1.
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• The addition in E(K) is given by the fol-

lowing rule: R = P ⊕Q is the unique point

on E(K) for which there exists a function

in FE with zeroes of order 1 in P and Q
(respectively a zero of order 2 if P = Q)

and poles of order 1 in P∞ and R (and of

order 2 in P∞ if R = P∞).

• We find projective coordinates such that E
is given by a cubic homogenous equation

E : Y 2Z + a1XYZ + a3YZ
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3

(called the Weierstrass equation) without

singular points. The only point with Z-

coordinate equal 0 is P∞ = (0,1,0). All

other points can be given by affine coordi-

nates as P = (x, y) with y2 + a1xy + a3y =
x3 + a2x+ a4x+ a6.

• If char(K) is prime to 6 we find a short

Weierstrass equation

E : Y 2Z = X3 +AXZ2 + BZ3

with A,B ∈ K and discriminant ∆E :=
4A3 + 27B2 ≠ 0.

Using the short Weierstrass equation we can

describe addition geometrically by the following

rule: Take the line through P and Q (take the

tangent line if P = Q) and compute the third

intersection point −R with E. Then R is the point

obtained from −R by reflection at the x-axis.

From this description one easily deduces for-

mulas for the addition on E(K): For

P1 = (x1, y1,1), P2 = (x2, y2,1)

we get “in general”

P3 = (x3, y3,1) := P1 ⊕ P2

with

x3 = −(x1 + x2)+ ((y1 − y2)/(x1 − x2))
2.

For doubling points there is another explicit

formula.

This is a short and simple formula. But, because

of its importance, a lot of work has been done

to make addition even faster, by using appro-

priate coordinates, appropriate coefficients, and

appropriate normal forms for equations. This is

described in full detail in [ACF], Chapter 13.

Remark 2.2. It is obvious that we do not need deep

theory to get Theorem 2.1 for elliptic curves. But

in many cases one can transfer the group struc-

ture of elliptic curves to the addition in divisor

class groups of more general curves. By the theo-

rem we know that the complexity hierarchy of the

group operations is not changed. This is impor-

tant for the analysis of attacks to crypto systems

(the subsection “Attacks”).

Galois Representations Attached to Abelian
Varieties

In arithmetic geometry we want to find properties
of objects over arithmetically interesting fields
K such as number fields, p-adic fields, finite
fields. The methods used from algebraic geometry

and analysis work better over separably closed
fields. The bridge between the two concepts is
built by the action of the absolute Galois group
GK = Aut(Ks/K) (Ks the separable closure of K),
always assumed to be continuous with respect to

the profinite topology on GK .
Very often this action is studied on free modules

over appropriate ringsR like Z/nZ or Zℓ, the ℓ-adic
numbers, and leads to Galois representations.

Elements of finite order in abelian varieties
A of dimension d are a main source for such

representations. A basic result is that, for natural
numbers n prime to char(K), the group of torsion
points of order n

A[n] := {P ∈ A(Ks); n · P = 0}
is an abelian group isomorphic to (Z/nZ)2d . Hence,

after choosing a Z/nZ-base of A[n], the action of
σ ∈ GK is given by a matrix, and we get a
continuous homomorphism

ρA,n : GK → M2d(Z/n) with M2d =
set of 2d × 2d-matrices.

In particular, one can attach to curves C of genus
g Galois representations of dimension 2g induced
by the action of GK on JC[n] or, nearer to compu-
tation, on the elements of order dividing n in the

divisor class group of degree 0 of C regarded as a
curve over Ks .

Example 2.3. Let E/K be an elliptic curve and n ∈
N prime to the characteristic of K. The action of
GK on E[n] induces a 2-dimensional Galois repre-
sentation ρE,n over Z/nZ.

For σ ∈ GK the characteristic polynomial is

defined by

χρE,n(σ)(T) = T 2 − Tr(ρE,n(σ))T+
det(ρE,n(σ)).

In many important cases ρE,n is semisimple and
hence it is determined by its characteristic poly-
nomials.

ℓ-adic version. Take a prime ℓ different from
char(K) and define the ℓ =adic Tate module of an
abelian variety A (e.g., A = JC ) by

Tℓ(A) :=lim← A[ℓk].

GK acts continuously (with respect to the ℓ-adic

topology) on Tℓ(A) and induces a representation
ρ̃A,ℓ over Zℓ or, by tensoring with Q, over the field
of ℓ-adic numbers.

In particular, we can attach ℓ-adic representa-
tions to the divisor class groups of curves.
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Galois Representations in Arithmetical Geome-
try

In this subsection K is a number field, that is, a
finite algebraic extension of Q. In number theory
we have a hierarchy of fields: The number field K
carries various topologies induced by valuations
v which extend the p-adic valuations and the
absolute value on Q.

The completion of K with respect to the

topology induced by one v is the local field
Kv which is an algebraic extension field of p-adic
numbersQp or an extension field of R. It contains
K as a dense subfield.

If v is an extension of a p-adic valuation then
the ring of integers OK of K is contained in the
valuation ring of v and dense in the ring Ov of
v-adic integers of Kv . The residue field of v is
the finite field Fv obtained as quotient of OK or,

equivalently, of Ov modulo the maximal ideal mv

of v . It is a finite algebraic extension of Fp and so

isomorphic to Fq with q = pd .
Remark 2.4. In number theory one tries to

solve problems over global fields by looking
at them over (all) local fields and then reducing
them modulo v to problems over finite fields.
One hopes that one does not lose too much in-
formation (local-global-principle), see “What Is
Arithmetic Geometry?”

In cryptography one is mainly interested in ob-
jects over finite fields but by studying them one is
often led to problems over local fields (“lifting”)

and even over global fields.

The hierarchy of fields is reflected by the
hierarchy of Galois groups.

The global Galois group GK is big and com-

plicated. It is studied by restriction to subgroups
Gv which consist of elements of GK acting con-
tinuously with respect to the v-topology. Gv can
be identified with the Galois group GKv whose
structure is much simpler. In particular, it has
a canonical quotient group which is the Galois
group of the maximal unramified extension of
Kv in its separable closure. This quotient is ca-
nonically isomorphic to GFq and so topologically

generated by the Frobenius automorphism φq

mapping elements of Fq,s to their qth power.
Via these identifications one can define (con-

jugacy classes of) Frobenius elements σv ∈ GK
attached to each v .

We come back to the Galois representations
attached to torsion points, respectively, Tate
modules of abelian varieties A.

A consequence of the arithmetic of abelian

varieties is that the fixed field K
ker(ρ̃A,ℓ)
s of the

kernel of ρ̃A,ℓ is ramified only in places v of
K dividing either ℓ or at which A has bad
reduction. Hence almost all places ofK are unrami-
fied. Representations satisfying this condition are

called geometric. It has turned out that the study

of these representations is the key to the great
results in number theory achieved during the last
thirty years, and, at the same time, it is crucial for
finding DL-systems.

Having a geometric representation ρ, we define
Sρ as the finite set of places of K which consist
of all extensions of the absolute value and of all

places which ramify in K
ker(ρ)
s /K. For every place

v ∉ Sρ we can choose a Frobenius element σv . The
image of ρ at σv determines the restriction of ρ
to GKv . It gives the local information about ρ at v .

Looking at all v ∉ Sρ we can bundle this local
information. The next big result tells us that
we have a local-global principle for semisimple
geometric representations.

Theorem 2.5 (Čebotarev’s Density Theorem). Let

ρ be a geometric Galois representation of GK .
If ρ is semisimple, then ρ is determined by

{χρ(σv)(T); v
runs over places of K not contained in Sρ}.

It is even allowed to omit finitely many additional
places of K.

Remark 2.6. To demonstrate the power of this

statement we remark that the proof of Mordell’s
conjecture by Faltings follows from his result that
for prime numbers ℓ and all abelian varietiesA de-
fined overK the representation ρ̃A,ℓ is semisimple.

The Local Information

We fix a finite field Fq and take a curveC of genus g
defined over Fq. The following result is a landmark

(established ∼ 1930–40) in arithmetical geometry.

Theorem 2.7 (Weil). There is a monic polynomial
χC(T) ∈ Z[T] such that:

• All zeroes of χC(T) have (complex) value√
q. 1

• For all n, the characteristic polynomial of

the Frobenius automorphism φq under the
representation ρJC ,n is congruent to χC(T)
modulo n.

• For all ℓ ≠ p, the characteristic polynomial

of the Frobenius automorphism φq under
the representation ρ̃JC ,ℓ is equal to χC(T).

By linear algebra we see that |JC(Fq)| =
|Pic0(C)| = χC(1).

As consequence we get that |Pic0(C) − qg| =
O(qg−1/2).

Corollary 2.8. Let E be an elliptic curve over Fq.
Then aq :=| E(Fq) |= q + 1 − Tr(ρ̃E,ℓ) and

| | E(Fq) | −q − 1| ≤ 2
√
q (Hasse bound).

1This is an analogue of the Riemann hypothesis in num-

ber theory and so it is sometimes called the “Riemann

hypothesis” for curves though it is a proven result.
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The Global Information

We are very short on space here and consider only

a special case: K = Q and C = E an elliptic curve.

In the preceding subsection we have computed

the characteristic polynomial of the Frobenius

endomorphism φp at least when p is not dividing

∆E .
We bundle the local information and form the

global L-series of E:

LE(s) :=f∗(s)
·

∏

p prime to ∆E

(1−(p+1−ap)p−s+p1−s)−1

where f∗(s) is a rational function which takes care

of bad primes and ap is, as above, the order of

E(Fp).
This is a Dirichlet series, and the conjecture of

Hasse-Taniyama was that it could be extended to

an analytic function in the complex plane.

This was known since about the 1950s from

results of M. Deuring in the case thatE has complex

multiplication (CM) and yields an important tool

for cryptography.

Digression: FLT. Though it has nothing to do with

cryptography, we cannot resist hinting at how to

prove FLT.

The conjecture of Hasse-Taniyama has been

proved by A. Wiles ([W]) in a relevant special case;

in fact he proved the conjecture of Shimura-

Taniyama-Weil for semistable elliptic curves:2

LE(s) is the Euler product attached to a modular

form of weight 2!

Proof of FLT in Eight Lines

Assume that Ap − Bp = Cp for p ≥ 5.

I suggested to look at the elliptic curve E : Y 2 =
X(X −Ap)(X − Bp).

By global information (Wiles) ρE,p is attached

to a modular form. By local information about E
and the theorem of Ribet (Serre’s conjecture) ρE,p
is attached to a modular form ≠ 0 of level 2 and

weight 2. Such a form does not exist!

Construction of DL-Systems

We want to explain how the methods sketched

in the preceding section can be used for crypto-

graphy.

We introduce very shortly the requirements

coming from the needs of public key cryptography

based on discrete logarithms.

2The general proof was given by Breuil, Conrad, and

Diamond. The conjecture is a special case of Serre’s

conjecture, which is now proved, too.

Diffie-Hellman Problems

Let G be a group of known order n.

We can formulate a computational problem:

DHCP: For randomly chosen a, b ∈ {1, . . . , n},
g ∈ G and given g1 = ga, g2 = gb, compute ga·b.

DHCP is called the Diffie-Hellman computa-

tional problem.

It is obvious that we can solve DHCP if we can

solve the following task:

For randomly chosen g1, g2 ∈ G decide whether

g2 lies in the cyclic group generated by g1, and if

so, compute k ∈ N with

g2 = gk1 .

The residue class of such a k modulo n is

the discrete logarithm (DL) logg1(g2). Highly

nontrivial is a kind of converse: there is a subex-

ponential algorithm due to Maurer-Wolf that can

compute the (DL) in G if one knows how to solve

DHCP. Thus, the complexity of (DL) is an upper

bound for the complexity of DHCP and, up to

subexponential algorithms, the crypto primitive

determining security of the Diffie-Hellman key

exchange and encryption, as well as of the El

Gamal signature ([ACF]), is the discrete logarithm.

By elementary number theory (Chinese remain-

der theorem andp-adic expansion of numbers) one

sees immediately that without loss of generality

we can and shall assume that n is a prime number

ℓ. So G is a cyclic group generated by an element

g0, and (DL) is equivalent to the computation of

logg0(g) for random g ∈ G.

There are “derived” cryptographic schemes for

which the hardness of the Diffie-Hellman decision

problem DHDP determines security. The DHDP

asks—for randomly given elements g0, g1, g2, g3—

for a decision whether

logg0
(g1) · logg0

(g1) = logg0
(g3).

DL-Systems

To use (family of) groups G for public key systems

we have to solve three crucial tasks:

(1) Store the elements in G in a computer in

a compact way (ideally O(log(| G |)) bits

should be enough).

(2) The group composition is given by an algo-

rithmwhich is easily implementedandvery

fast (at most polynomially bounded time

and space is allowed). So exponentiation

is of polynomial complexity, too.

(3) The computation of the DL in G (for ran-

dom elements) is (to the best of our

knowledge) very hard and so unfeasible

in practice (ideally exponential in | G |).
Groups G with generator g0 satisfying these

conditions are called DL-systems.
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Remark 3.1. We use the structure “group” to

define the crypto primitive. This already im-
plies that the complexity of the DHCP is at most

∼
√
ℓ since there are (deterministic and probabi-

listic) algorithms for the computation of discrete
logarithms applicable to all groups (e.g., Shank’s

Baby-Step-Giant-Step or Pollard’s ρ-algorithm) of

this complexity. A deep fact is that in generic
groups no faster algorithm is available. Hence√
ℓ is the benchmark for the hardness of DL and

DHCP.

Bilinear Structures

Discrete logarithms concern the Z/ℓ-linear struc-
ture of cyclic groups. In every elementary course

on linear algebra one learns that there are multi-
linear aspects coming in a natural way from the

theory of linear maps. The principle behind this is
duality.

During the last ten years this aspect has become

more and more important in public key cryptogra-
phy, and there is much ongoing research in this

area.

Definition 3.2. Let G be a cyclic group of prime

order ℓ. Assume that there are Z/ℓ-modules B and
C and a bilinear map Q : G × B → C with

i): the group composition laws inG, B, and C,
as well as the map Q, are fast (e.g., poly-

nomial time).
ii): For random b ∈ B we have Q(g1, b) =
Q(g2, b) iff g1 = g2 .

We call (G,Q) a DL-system with bilinear struc-

ture.

Since we can transfer the computation of dis-

crete logarithms from G to C via Q, the existence

of bilinear structures may weaken DL-systems.
Moreover, if G = B, then DHDP becomes trivial.

But there are very interesting constructive fea-
tures, too. In the center of interest are short

signatures and identity-based protocols.

Candidates for DL-Systems

We want to find groupsG satisfying the conditions
of subsection “DL-Systems” and analyze bilinear

structures.

As mentioned earlier, Diffie and Hellman sug-
gested taking a prime ℓ dividing q−1 andG as the

group of ℓth roots of unity in F∗q . It is not difficult

to find instances where ℓ is of the same magnitude
as q, and conditions i and ii of Definition 3.2 are

satisfied. But the hardness of the DL (which is the
classical one already studied by Jacobi) is disap-

pointing. It is only of subexponential complexity;
the reason is that points on the projective line

over Fq are easily lifted to points on the line over
Z, and then a powerful method, index calculus (cf.

[ACF]), can be applied.

Structural theorems about abelian varietiesover

number fields imply that such a lifting is very
difficult if we take Jacobians of curves of genus
larger than 0.

This was the motivation for V. Miller [M1] to

suggest in 1985 using elliptic curves over finite
fields for DL-systems. Independently N. Koblitz
[K1] suggested this at the same time, and in 1989
[K2] he went further to propose class groups of
hyperelliptic curves, too.

With the results obtained in Theorem 2.1, we
can go even further and try to use divisor class
groups of curves of any genus g > 0 over Fq. Fixing

a size of magnitude M for ℓ (e.g., 1080) we can use
Weil’s theorem and take q and g such that M ≈ qg
(e.g., g · log10(q) ≈ 80). Then the diophantine task
is to find a field Fq and a curve C of genus g

defined over Fq such that |Pic0(C)| is (maybe up

to a small cofactor) a prime number ℓ.
There are theorems from analytic number

theory which predict that the chances to find

such pairs are rather good; and so the strategy is
to choose random curves and test whether they
satisfy the condition.

To do this we need a fast algorithm to determine

|Pic0(C)|.

Point Counting

This cannot be done naively. One has to use
the action of Frobenius automorphisms φq and
compute its characteristic polynomial. For this
one uses all the techniques sketched in the section

“Some Aspects of Arithmetic Geometry” in very
advanced forms:

(1) Class field theory of CM-fields leads to
the so-called CM method worked out
for genus 1,2,3 by Atkin, Enge, Morain,

Spallek, Weng, and many others. Hence we
use global Galois theory. We remark that
for g = 1 this leads to the explicit class
field theory of imaginary quadratic fields.

(2) Etale cohomology groups, i.e., ℓ-adic
representations attached to Tate modules
of JC (Schoof, Atkin, Elkies, Pila, …).

(3) p-adic cohomology (Satoh, Kedlaya,
Mestre,…) for moderate sizes of p (lifting

to p-adic fields).

For details we refer to [ACF]. As state of the art,
we get

Result 1. In cryptographically relevant areas

• we can count points on random elliptic

curves,
• we can count points on Jacobians of ran-

dom curves over fields of small (and even
medium) characteristic,

• we still have problems with random curves

of genus 2 over prime fields (but see the
work of Gaudry and Schost [GS]); we can
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use class field theory of CM-fields to find
an abundance of curves of genus 2 suitable
for DL-systems,

• and, of course, we have many special fami-
lies of curves whose members are accessi-
ble for point counting.

So for every g ∈ N we find divisor class groups
of curves of genus g which satisfy conditions 1
and 2 of the subsection “DL-Systems”.

Attacks

Curves of Genus > 2. The main motivation to take
divisor class groups was to avoid index-calculus
attacks enabled by lifting points on curves from
finite fields to number fields.

But it was soon discovered that the internal
structure of divisor class groups of curves of large
genus yields another type of index-calculus attack.

Even worse: variants of this attack are applicable
to curves of moderate genus. The sharpest result
nowadays is

Theorem 3.3 (Diem, Gaudry, Thomé, Thériault).
There exists an algorithm which computes, up to
log(q)-factors, the DL in the divisor class group of
curves of genus g in expected time of O(q(2−2/g)).

If C is given by a plane curve of degree d (singu-
larities allowed), then the DL in the group of divisor

classes of degree 0 is of complexity O(q2− 2
d−2 ).

Recall that the generic algorithms have com-
plexity O(qg/2). Hence curves of genus larger than
4 are not advisable.

The results of the theorem do not imply that
systems using hyperelliptic curves of genus 4 are
insecure, but the parameters of the systems have
to be larger than for generic groups.

Particularly interesting is the situation for
curves of genus 3. Surprisingly, nonhyperellip-
tic curves are less secure since they have a
plane model of degree 4. So one has to exclude
hyperelliptic curves of genus 3 which have
computable isogenies to nonhyperelliptic curves.
Unfortunately there are many such curves, and at
the moment it is not clear how to find criteria for
the nonexistence of such isogenies.

So it may be wise to use only curves of genus
1 and 2 if there are no very good reasons for
deciding otherwise.

Elliptic Curves. There is no direct index-calculus
attack known which is effective on elliptic curves.
But if the ground field is not a prime field, we
can apply Weil descent (a well-known method
in algebraic geometry [Fr1]) and transfer the DL
in E(Fq) to the DL in an abelian variety of higher
dimension and defined over a smaller ground field.
Again, one can try to apply index-calculus in these
abelian varieties, and there are many cases where
one succeeds (e.g., the field F2155 is not good for

cryptographical use). To avoid this it is suggested
that one use as ground field either Fp or F2n , where
n is a prime which is not a Mersenne prime.

Bilinear Structures
In the last section we saw that divisor classes
of carefully enough chosen curves of genus 1
(elliptic curves) and genus 2 cannot be attacked
nowadays by index-calculus methods. Now we
want to discuss transfers by duality theorems
coming from class field theory of local and global
fields [Fr3].

The Lichtenbaum-Tate Pairing on Elliptic Curves

Divisorclassgroupscarrya naturalduality induced
by class field theory of local fields. For Jacobian
varieties this is made explicit by the Lichtenbaum-
Tate pairing.

We state a version of this pairing for elliptic
curves E over Fq. (For the general background see
[Fr3], for the general version see [FR].)

Theorem 4.1. Let ℓ be a prime dividing |E(Fq)|.
Let k be the smallest natural number such that
ℓ|(qk − 1). Let ζℓ be an ℓth root of unity in Fqk .

Define G := E[ℓ] ∩ E(Fq) and G⊥ := {Q ∈
E(Fkq)∩ E[ℓ]; φq(Q) = q ·Q}.

There is a nondegenerate pairing

Q : G ×G⊥ →< ζℓ >
which can be computed with complexity polyno-
mial in k · logq.

This pairing is given very explicitly. For an
algorithm see [M2] and [ACF], Chapter 16. Because
of its importance there are many versions trying
to accelerate the computation of pairings related
to Q.

Corollary 4.2. The DL in elliptic curves over Fq is
transferred to the discrete logarithm in F∗qk and

hence has complexity which is subexponential in
k · log q.

Pairing-Friendly Curves

Theorem 4.1 has computational relevance only if
k is not large.

It is a dangerous result if k is small (say ≤ 6),
and it can be used constructively if k ≈ 12.

If we take random elliptic curves we shall expect
that k is of the same size as ℓ. An elliptic curve E
is called pairing-friendly if k is small.

There are curves which are too friendly: if E is
supersingular (i.e., there are no algebraic points
of order p on E), then k ≤ 6 and even k ≤ 2 if
p > 3. Hence the DL on supersingular curves is
not harder than the classical DL. For this reason
supersingular curves play only a minor role in DL-
systems based on elliptic curves. The nice thing
is that they deliver easy examples for groups with
gaps between DHCP and DHDP.
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To use the constructive aspects of pairings
described in the subsection “Bilinear Structures”,
for example, short signatures, one has to solve
interesting diophantine problems in order to find
elliptic curves with small, but not too small, k.
In [BN] one finds (conjecturally infinitely) many
elliptic curves with k = 12.

Remark 4.3. It would be interesting to be able
to construct nonsupersingular pairing-friendly
curves of genus 2.

Conclusion
We end by giving the equation of an elliptic curve
which passed all security checks and travels on
passports. Its equation is

Y 2Z = X3 +AXZ2 + BZ3

with

A = 7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9,

B = 26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6

defined over FA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377 .

|E(Fp)| is a prime ℓ

with ℓ = A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7.

The name of the curve is brainpoolP256r1.
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