
Visible Cryptography
Bill Casselman

C
ryptography literally permeates the air
we breathe, since it is part of nearly all
transmissions through cellular phones as
well as many on the Internet, but there
is one form of encryption that is visibly

ubiquitous—those little matrices of pixels that occur
on the mail of many countries of Europe and North
America, inside letters from the Internal Revenue
Service, on packaging of many commercial products
in the U.S., and (at least in the future) on all pharma-
ceutical products in Europe. They are classified as bar

codes, but in fact they are extremely sophisticated
2D arrays.

Their main advantage over older bar codes is
that they allow a great deal of information to be
packed into a very small space. All of them require

several layers to be unpeeled before they can be
interpreted, and in most applications the final layer
involves elliptic curve cryptography (ECC). In postal
use this provides a certificate of fee payment, among
other things, and in pharmaceutical packaging it is
intended to prevent counterfeits.

Data matrices come in a wide but fixed range of
sizes, from 10 × 10 to 144× 144. What a matrix dis-
plays is essentially an array of zeroes and ones. These
are assembled into an array of bytes, each one 8 bits
in size. These are unpacked according to one of sev-

eral different modes of interpretation. The last sev-
eral bytes of each matrix are added to the original
message to allow error correction. After possible cor-
rection, one might have at hand a readable message,
but more likely what one sees at this point is an ar-
ray to be deciphered only by a secret key. Even if the

message is not encrypted for security, it is likely to
be somewhat condensed and meant to be interpreted
according to some coding scheme particular to the
application.

Bill Casselman is professor of mathematics at the Uni-

versity of British Columbia and graphics editor of the

Notices. His email address is cass@math.ubc.ca.

What I’ll explain here is how the pixels are to be
assembled into bytes, at least in one simple example.
Let’s look at the symbol on the right above, which was
found on a carton of ice cream for sale in a supermar-
ket in western Michigan. Every data matrix symbol

is divided up into one or more smaller regions. The
Canada postage symbol is divided up into 2 × 2 re-
gions, while the one at hand is made up of just one.
These regions are demarcated by special peripheral

pixels, which are solid at left and bottom, alternating
at right and top. These are used for alignment of bar

code readers.

The core matrix is what you get by stripping away
the peripheral pixels. Conventionally, its points are
given coordinates (r , c) in matrix fashion, so r is row,
c is column. Thus (0,0) is the upper left corner. A
pixel is assigned the coordinate of its upper left cor-

ner.

There are 8 pixels in each byte, and the region oc-
cupied by a byte (at least for this symbol) is a 3 ×
3 square with a corner taken out. These pixels are
ordered right to left, bottom to top.

012

345

67

Thus the byte just below is 10001101 = 141.

378 Notices of the AMS Volume 57, Number 3



What I call the origin pixel is at lower right of the

byte. Bytes are arranged so that one byte is packed
in tightly at upper left, and then the rest spread out
from there on the lattice spanned by vectors [2,−2]
and [3,1].

For this particular size of data matrix, bytes are in
bijection with their origin pixels inside the symbol.

Since 100 = 10 · 10 is not divisible by 8, 4 pixels are
ignored.

Bytes that do not fit inside the symbol wrap
around on the other side, with a shift as indicated by
arrows in the diagram below.

0

1

2
3

4

5

6
7

8

9

10

11

Bytes are numbered up and down along diagonals,
starting at upper left.

What do we do with the bytes we can now read?
There are 12 altogether, and the data matrix specifi-
cation tells us that 7 of them are added at the end ac-

cording to the ECC200 coding scheme, which is based
on a Reed-Solomon code using the Galois field F256.
This leaves 5 in the actual message: 84, 157, 171,
130, 129. There are several modes of interpretation
of bytes, but this one is in the simplest ASCII mode.

The last byte 129 marks the end of the message

(and would begin a padding sequence if the message
didn’t take up all available space). Bytes in the range
[1,128] are ordinary ASCII characters shifted up by
1, so 84 represents S. Bytes in the range [130,229]
represent integers in the range 0-99, so the sequence

157, 171, 130 represents 27, 41, 0. But now I have to
say I have no idea what “S 27 41 0” means. Presum-
ably it is expressed in some code known to packagers

and distributors and provides an example of coding

for compression rather than security. By contrast, in
the Canadian postage stamp roughly 3/4 of the 174
message bytes are devoted to digital keys.

References

The only comprehensive reference in print that I
know of is the book

Electronic Postage Systems: Technology, Security,
Economics, Gerrit Bleumer, Springer, 2007.

It is mostly concerned with how cryptography
is employed in postal systems. As far as low-level
reading of data matrix symbols goes, one thing that
is presumably essential for professional work is the

ISO specification, which you can find by searching
for ISO/IEC 16022-2006 at

http://www.iso.org/iso/

but it costs real money (224 Swiss francs!), and I have
not seen it. The Wikipedia entry for data matrix at

http://en.wikipedia.org/wiki/
Data_ matrix

is helpful, but doesn’t have much detail. The webpage

http://www.bcgen.com/
datamatrix-barcode-creator.html

has an interactive application that will allow you to
create data matrix symbols from text you type in. As
far as technical details are concerned, links to pages
on data matrices can be found on

http://grandzebu.net/.

Follow links to the English version of bar codes, then
to “data matrix”. Another good source of information
is

http://www.libdmtx.org/

which will allow you to obtain C++ code for reading
and writing data matrices. This combined with the
grandzebu site makes a fairly practical source for
programming.

The 12 × 12 symbol on the ice cream carton has
analogues on other groceries, as you can see at

http://www.flickr.com/photos/nickj365/

Is there a single company ultimately responsible
for this phenomenon?

The Feature Column of the AMS (http://www.
ams.org/featurecolumn) for February 2010
covered this topic in more detail.

March 2010 Notices of the AMS 379

http://www.iso.org/iso/
http://en.wikipedia.org/wiki/Data_matrix
http://www.bcgen.com/datamatrix-barcode-creator.html
http://grandzebu.net/
http://www.libdmtx.org/
http://www.flickr.com/photos/nickj365/
http://www.ams.org/featurecolumn
http://www.ams.org/featurecolumn

