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his work was inspired by the article
“Mobius transformations revealed” by
Douglas Arnold and Jonathan Rogness
[3]. There the authors write:
“Among the most insightful tools that mathematics
has developed is the representation of a function of
a real variable by its graph. ... The situation is quite
different for a function of a complex variable. The
graph is then a surface in four-dimensional space,
and not so easily drawn. Many texts in complex anal-
ysis are without a single depiction of a function.
Nor is it unusual for average students to complete
a course in the subject with little idea of what even
simple functions, say trigonometric functions, ‘look
like’.”

In the printed literature there are a few laudable
exceptions to this rule, such as the prize-winning
Visual Complex Analysis by Tristan Needham [28],
Steven Krantz’s textbook [21] with a chapter on
computer packages for studying complex vari-
ables, and the MAPLE-based (German) introduction
to complex function theory [15] by Wilhelm Forst
and Dieter Hoffmann.

But looking behind the curtain, one encounters
a different situation that is evolving very quickly.
Some of us have developed our own techniques
for visualizing complex functions in teaching and
research, and one can find many beautiful illustra-
tions of complex functions on the Internet.

Elias Wegert is professor of mathematics at Technische
Universitdt Bergakademie Freiberg. His email address is
wegert@math.tu-freiberg.de.

Gunter Semmler is a postdoc in mathematics at Tech-
nische Universitdt Bergakademie Freiberg. His email ad-
dress is semmTer@math.tu-freiberg.de.

Both authors were supported by the Deutsche Forschungs-
gemeinschaft with grant Wel 704/8-2.

NOTICES OF THE AMS

Figure 1. The phase plot of an analytic
function in the unit disk.

This article is devoted to “phase plots” or “phase
portraits”, a special tool for visualizing and explor-
ing analytic functions. Figure 1 shows such a fin-
gerprint of a function in the complex unit disk. The
explanation of this illustration is deferred to alater
section, where it is investigated in detail.

Phase plots have been invented independently
by a number of people, and it is impossible to give
credit to someone for being the first. Originally,
they were mainly used in teaching as simple and ef-
fective methods for visualizing complex functions.
Over the years, and in particular during the process
of writing and rewriting this manuscript, the topic
developed its own dynamic, and gradually these
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Figure 2. The analytic landscape of
f(z)=(z-1)/(z2 +z+1).

innocent illustrations transmuted to sharp tools
for dissecting complex functions.

So the main purpose of this article is not only to
present nice pictures that allow one to recognize
complex functions by their individual faces, but
also to develop the mathematical background and
demonstrate the utility and creative uses of phase
plots. That they sometimes also facilitate a new
view on known results and may open up new per-
spectives is illustrated by a universality property
of the Riemann zeta function that, in the setting of
phase plots, can be explained to (almost) anyone.

The final section is somewhat special. It resulted
from a self-experiment carried out to demonstrate
that phase plots are sources of inspiration that can
help to establish new results. The main finding is
that any meromorphic function is associated with
a dynamical system that generates a phase flow on
its domain and converts the phase plot into a phase
diagram. These diagrams will be useful tools for
exploring complex functions, especially for those
who prefer thinking geometrically.

Visualization of Functions

The graph of a function f : D ¢ C — C lives in
four real dimensions, and since our imagination
is trained in three-dimensional space, most of us
have difficulties in “seeing” such an object.!

Some books on complex function theory have
nice illustrations showing the analytic landscape
of a function, which is the graph of its modulus
(see Figure 2). The concept was not introduced by
Johann Jensen in 1912, as is sometimes claimed,
but probably earlier by Edmond Maillet [27]in 1903
(see also Otto Reimerdes’s paper [32] of 1911).

Differential geometric properties of analytic
landscapes have been studied in quite a number
of early papers (see Ernst Ullrich [37] and the
references therein). Jensen [20] and others also
considered the graph of |f|2, which is a smooth
surface. The second edition of “Jahnke-Emde”

Figure 3. The color circle and the color-coded
phase of points close to the origin.

[19] made analytic landscapes popular in applied
mathematics.

Analytic landscapes involve only one part of
the function f, its modulus |f |; the argument arg f
is lost. In the era of black-and-white illustrations
our predecessors sometimes compensated for this
shortcoming by complementing the analytic land-
scape with lines of constant argument. Today we
can achieve this much better using colors. Since
coloring is an essential ingredient of phase plots,
we consider it in some detail.

Recall that the argument argz of a complex
number z is unique up to an additive multiple of
21. In order to make the argument well defined its
values are often restricted to the interval (-7, 17],
or, even worse, to [0,27r). This ambiguity dis-
appears if we replace argz with the phase z/|z|
of z. Though one usually does not distinguish
between the notions of “argument” and “phase”, it
is essential here to keep these concepts separate.

The phase lives on the complex unit circle T,
and points on a circle can naturally be encoded
by colors. We thus let color serve as the lacking
fourth dimension when representing graphs of
complex-valued functions (see Figure 3). The col-
ored analytic landscape is the graph of |f| colored
according to the phase of f. Since the modulus
of analytic functions typically varies over a wide
range, one does better to use a logarithmic scaling
of the vertical axis. This representation is also
more natural since log |f| and arg f are conjugate
harmonic functions (see Figure 4). Colored ana-
lytic landscapes came to life with easy access to
computer graphics and by now quite a number
of people have developed software for their visu-
alization. Andrew Bennett [7] has an easy-to-use
Java implementation, and an executable Windows
program can be downloaded from Donald Mar-
shall’s website [26]. We further refer to Chapter 12
of Steven Krantz’s book [21], as well as to the
websites run by Hans Lundmark [25] and Tristan
Needham [29]. Very beautiful pictures of (uncol-
ored) analytic landscapes can be found on the
“The Wolfram Special Function Site” [43].2

L One exception is Thomas Banchoff, who visualized four-
dimensional graphs of complex functions in [6].
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2 As of March 2011 Wolfram’s tool visualizes the modulus
and the principal value of the argument, but not phase.
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Figure 4. The colored logarithmic analytic
landscape of f(z) = (z - 1)/(z> + z + 1).

Though color printing is still expensive, colored
analytic landscapes also appear in the printed lit-
erature (see, for example, the outstanding mathe-
matics textbook [1] by Arens et al. for engineering
students).

With colored analytic landscapes the problem of
visualizing complex functions could be considered
solved. However, there is yet another approach that
is not only simpler but even more general.

Instead of drawing a graph, one can depict a
function directly on its domain by color-coding its
values, thus converting it to an image. Such color
graphs of functions f live in the product of the
domain of f with a color space.

Coloring techniques for visualizing functions
have been familiar for many decades, for exam-
ple in depicting altitudes on maps, but mostly
they represent real-valued functions using a one-
dimensional color scheme. It is reported that
two-dimensional color schemes for visualizing
complex valued functions have been in use for
more than twenty years by now (Larry Crone [9],
Hans Lundmark [25]), but they became popular
only with Frank Farris’s review [13] of Needham’s
book and its complement [14]. Farris also coined
the name “domain coloring”.

Domain coloring is a natural and universal sub-
stitute for the graph of a function. Moreover, it
easily extends to functions on Riemann surfaces or
on surfaces embedded in R3 (see Konstantin Poelke
and Konrad Polthier [31], for instance).

It is worth mentioning that we human beings
are somewhat limited with respect to the available
color spaces. Since our visual system has three
different color receptors, we can only recognize
colors from a three-dimensional space. Mathema-
ticians of the species Gonodactylus oerstedii’ could
use domain coloring techniques to even visualize
functions with values in a twelve-dimensional
space (Welsch and Liebmann [41], p.268; for
details see Cronin and King [10]).

3The Mantis shrimp (Gonodactylus oerstedii) has twelve
separate visual pigments.
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Figure 5. A typical spectrum of polar light.

Indeed, many people are not aware that nat-
ural colors in fact provide us with an infinite
dimensional space—at least theoretically. In reality
“color” always needs a carrier. “Colored light”
is an electromagnetic wave that is a mixture of
monochromatic components with different wave-
lengths and intensities. A simple prismatic piece
of glass reveals how light is composed from its
spectral components. Readers interested in further
information are recommended to visit the fasci-
nating Internet site of Dieter Zawischa [44]. The
wavelengths of visible light fill an interval between
375 nm and 750 nm approximately, and hence
color spectra form an infinite-dimensional space
(see Figure 5).

How many color dimensions are distinguishable
in reality depends on the resolution of the measur-
ing device. A simple model of the human eye, which
can be traced back to Thomas Young in 1802, as-
sumes that our color recognition is based on three
types of receptors that are sensitive to red, green,
and blue, respectively.

Since, according to this assumption, our visual
color space has dimension three, different spec-
tra of light induce the same visual impression.
Interestingly, a mathematical theory of this effect
was developed as early as in 1853 by Hermann
Grassmann, the ingenious author of the “Aus-
dehnungslehre”, who found three fundamental
laws of this so-called metamerism [16] (see Welsch
and Liebmann [41]).

Bearing in mind that the world of real colors
is infinite dimensional, it becomes obvious that
its compression to at most three dimensions can-
not lead to completely satisfying results, which
explains the variety of color schemes in use for
different purposes. The most popular color sys-
tems in our computer-dominated world are the
RGB, CMYK, and HSV schemes.

In contrast to domain colorings that color-code
the complete values f(z) by a two-dimensional
color scheme, phase plots display only f(z)/|f(z)]
and thus require just a one-dimensional color
space with a circular topology. As will be shown
in the next section, they nevertheless contain al-
most all relevant information about the depicted
analytic or meromorphic function.

In Figure 6 the Riemann sphere C (with the
point at infinity on top) is colored using two typ-
ical schemes for phase plots (left) and domain
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Figure 6. Color schemes for phase plots and
domain coloring on the Riemann sphere.

Figure 7. Two color schemes involving
sawtooth functions of gray.

coloring (right), respectively. Somewhat surpris-
ingly, the number of people using phase plots
seems to be quite small. The website of Francois
Labelle [24] has a nice gallery of nontrivial pic-
tures,? including Euler’s gamma and Riemann’s
zeta functions.

Since the phase of a function occupies only one
dimension of the color space, there is plenty of
room for depicting additional information. It is rec-
ommended to encode this information by a gray
scale, since color (hue) and brightness are visually
orthogonal. Figure 7 shows two such color schemes
on the Riemann w-sphere. The left scheme is a
combination of phase plots and standard domain
coloring. Here the brightness b does not depend
monotonously on log |[w| but is a sawtooth func-
tion thereof, like, for example, b(w) = log |w| —
[log |w|]. This coloring works equally well, no mat-
ter in which range the values of the function are
located.

In the right scheme the brightness is the prod-
uct of two sawtooth functions depending on
log [w| and w/|w|, respectively. The discontinu-
ities of this shading generate a logarithmically
scaled polar grid. Pulling back the coloring from
the w-sphere to the z-domain of f by the mapping
w = f(z) resembles a conformal grid mapping,
another well-known technique for depicting com-
plex functions (see Douglas Arnold [2]). Note that
pulling back a grid instead of pushing it forward
avoids multiple coverings. Of course all color-
ing schemes can also be applied to functions on
Riemann surfaces.

4Labelle Jjustifies the sole use of phase by reasons of
clarity and aesthetics.
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Figure 8. Four representations of the function
f(z)=(z-1)/(z2+z+1).

For comparison, Figure 8 shows the four repre-
sentations of f(z) := (z —1)/(z%2 + z + 1) in the
square |[Rez| < 2, |Imz| < 2 corresponding to
the color schemes of Figure 6 and Figure 7, re-
spectively. Though these pictures (in particular the
upper two) look quite similar, which makes it sim-
ple to use them in parallel, the philosophy and the
mathematics behind them is quite different. I shall
comment on this issue in the final section.

The Phase Plot
The phase of a complex function f : D — C is de-
fined on Dy := {z € D : f(z) € C*}, where C*
denotes the complex plane punctured at the origin.
Nevertheless we shall speak of phase plots P: D —
T,z — f(2)/|f(z)] on D, considering those points
where the phase is undefined as singularities. Re-
call that T stands for the (colored) unit circle.

To begin with we remark that meromorphic
functions are characterized almost uniquely by
their phase plot.

Theorem 1. If two nonzero meromorphic functions
f and g on a connected domain D have the same
phase, then f is a positive scalar multiple of g.

Proof. Removing from D all zeros and poles of f
and g, we get a connected domain Dy. Since, by as-
sumption, f(2)/|f(2)| = g(z)/|g(z)| for all z € Dy,
the function /g is holomorphic and real-valued in
Dy, and so it must be a (positive) constant.

It is obvious that the result extends to the case
in which the phases of f and g coincide merely on
an open subset of D.

In order to check whether two functions f and g
with the same phase are equal, it suffices to com-
pare their values at a single point that is neither a
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Figure 9. A function with a simple zero, a
double zero, and a triple pole.

zero nor a pole. For purists there is also an intrin-
sic test that works with phases alone: Assume that
the nonconstant meromorphic functions f and g
have the same phase plot. Then it follows from the
open mapping principle that f # g if and only if
the phase plots of f + ¢ and g + ¢ are different for
one, and then for all, complex constants ¢ # 0.

Zeros and Poles

Since the phases of zero and infinity are undefined,
zeros and poles of a function are singularities of
its phase plot. What does the plot look like in a
neighborhood of such points?

If a meromorphic function f has a zero of order
n at zp it can be represented as

f(z)=(z—-29)"g(2),

where g is meromorphic and g(zy) € C*. It fol-
lows that the phase plot of f close to zy resem-
bles the phase plot of z" at 0, rotated by the angle
—(1/n)argg(zp). The same reasoning, with a neg-
ative integer n, applies to poles.

Note in Figure 9 that the colors are arranged in
opposite orders for zeros and poles. It is now clear
that the phase plot not only shows the location of
zeros and poles but also reveals their multiplicity.

A useful tool for locating zeros is the argument
principle. In order to formulate it in the context of
phase plots we translate the definition of winding
number into the language of colors: Let y : T — Dy
be a closed oriented path in the domain Dy of a
phase plot P : Dy — T. Then the usual winding
number of the mapping Poy : T — T is called the
chromatic number of y with respect to the phase
plot P and is denoted by chrompy or simply by
chromy.

Less formally, the chromatic number counts
how many times the color of the point y(t)
moves around the complete color circle when
y(t) traverses y once in the positive direction.

Now the argument principle can be rephrased as
follows: Let D be a Jordan domain with positively
oriented boundary oD and assume that f is mero-
morphic in a neighborhood of D. If f has n zeros
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Figure 10. This function has no poles. How
many zeros are in the displayed rectangle?

and p poles in D (counted with multiplicity), and
none of them lies on 0D, then

n—p = chromoD.

Looking at Figure 10 in search of zeros imme-
diately brings forth new questions, for example:
Where do the isochromatic lines end up? Can they
connect two zeros? If so, do these lines have a spe-
cial meaning? What about “basins of attraction”?
Is there always a natural (cyclic) ordering of ze-
ros? What can be said about the global structure of
phase plots? We shall return to these issues later.

The Logarithmic Derivative

Along the isochromatic lines of a phase plot the
argument of f is constant. The Cauchy-Riemann
equations for a continuous branch of the logarithm
logf = logl|f| +1iargf imply that these lines are
orthogonal to the level lines of |f], i.e., the isochro-
matic lines are parallel to the gradient of |f|. Ac-
cording to the chosen color scheme, we have red
on the right and green on the left when walking on
a yellow line in the ascending direction.

To go a little beyond this qualitative result, we
denote by s the unit vector parallel to the gradient
of |f] and set n := is. With @ := argf and y :=
log |f| the Cauchy-Riemann equations for log f im-
ply that the directional derivatives of ¢ and y sat-
isfy

Os = 0n@ >0, OpyY = —0s@ =0,

at all points z of the phase plot where f(z) # 0
and f'(z) # 0. Since the absolute value of 0, mea-
sures the density of the isochromatic lines, we can
visually estimate the growth of log |f| along these
lines from their density. Because the phase plot de-
livers no information on the absolute value, this
does not say much about the growth of |f]. But
taking into account the second Cauchy-Riemann
equation and

|dogf) 12 = (0n@)? + (3s)?,
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Figure 11. Zeros of f’ are color saddles.

we obtain the correct interpretation of the density
0np@: itis the modulus of the logarithmic derivative,

(1) on = |f'/f].

So, finally, we need not worry about branches of the
logarithm. It is worth mentioning that 9, (z) be-
haves asymptotically like k/|z— zy| if z approaches
a zero or pole of order k at z,.

But this is not yet the end of the story. What
about zeros of f” ? Equation (1) indicates that some-
thing should be visible in the phase plot. Indeed,
points zy where ' (zy) = 0 and f(zy) # 0 are “color
saddles”, i.e., intersections of isochromatic lines.

If f" has a zero of order k at zg, then z — f(z) —
f(zp) has a zero of order k + 1 at zy. Consequently,
f can be represented as

f(z) =f(z0) + (z — z9)* g(2),

where g(zg) # 0. It follows that f(z) travels k + 1
times around f(z,) when z moves once around z,
along a small circle. In conjunction with f(zy) # 0
this can be used to show that there are exactly
2k + 2 isochromatic lines emanating from z, where
the phase of f is equal to the phase of f(zp). Al-
ternatively, one can also think of k + 1 smooth
isochromatic lines intersecting each other at zy.
Color saddles appear as diffuse spots such as at
the center of the left picture in Figure 11. To lo-
cate them precisely it is helpful to modify the color
scheme so that it gets a jump at some point t of the
unit circle. If t := f(zo)/1f (2p)] is chosen, then the
phase plot shows a sharp saddle at the zero zy of
f’ as in the right picture.

Essential Singularities

Have you ever seen an essential singularity? Fig-
ure 12 is the picture that usually illustrates this
situation.

Despite the massive tower, this is not very
impressive, and with regard to the Casorati-
Weierstrass theorem or the Great Picard theorem
one would expect something much wilder. Why
does the analytic landscape not reflect this be-
havior? For the example the answer is easy: the
function has a tame modulus, every contour line
is a single circle through the origin. Now look at
the phase plot in Figure 13. But must there not be
a symmetry between modulus and phase? In fact

JUNE/JULY 2011

Figure 12. The analytic landscape of f(z) = e/~

Figure 13. A phase plot depicting the essential
singularity of f(z) = el/%.

not. There is such a symmetry of modulus and
argument (for nonvanishing functions), but phase
plots depict the phase and not the argument—and
this makes a difference.

So much for the example, but what about the
general case? Perhaps there are also functions that
conceal their essential singularities in the phase
plot?

In order to show that this cannot happen, we
assume that f : D{zp} — C is analytic and has an
essential singularity at z.

By the Great Picard theorem, there exists a color
¢ € T such that any punctured neighborhood U
of zp contains infinitely many points zx € U with
f(zx) = c. Moreover, the set of zeros of f’ in D
is at most countable, and hence we can choose ¢
such that no saddle point z € U with f'(z) = 0 and
f(z) # 0 lies on an isochromatic line with color c.
As was shown in the preceding section, the mod-
ulus of { is strictly monotone along such lines, so
that two distinct points z; cannot lie on the same
isochromatic line.

Consequently any neighborhood of an essential
singularity contains a countable set of pairwise dis-
joint isochromatic lines with color c. Combining
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Figure 14. Phase plot of f(z) = eZ.

this observation with the characterization of phase
plots near poles and removable singularities, we
obtain the following result.

Theorem 2. An isolated singularity z, of an ana-
Iytic function f is an essential singularity if and only
if any neighborhood of z, intersects infinitely many
isochromatic lines of the phase plot with one and
the same color.

Note that a related result does not hold for
the argument, since then, in general, the values
of argf(zy) are different. For example, any two
isochromatic lines of the function f(z) = exp(1/z)
have a different argument.

Periodic Functions

Obviously, the phase of a periodic function is peri-
odic, but what about the converse?

Though there are only two classes (simply and
doubly periodic) of nonconstant periodic mero-
morphic functions on C, we can observe three
different types of periodic phase plots.

“Striped” phase plots such as Figure 14 always
depict exponential functions f (z) = e?*? with a #
0. Functions with simply p-periodic phase (see Fig-
ure 15, for example) need not be periodic, but have
the more general form e®*/? g(z) with x € R and a
p-periodic function g.

The first result basically follows from the
fact that the function argf is harmonic and has
parallel straight contour lines, which implies that
argf(x +1iy) = ax + By + y. Since log |f| is conju-
gate harmonic to argf, it necessarily has the form
log If (x +iy)| = —ay + Bx + 6.

If the phase of f is p-periodic, then we have

_fz+p) Ifz+p)l
2= " F(2)]

and since h is meromorphic on C, it must be a pos-

itive constant e®. Now it follows easily that g(z) :=
f(z) - e=%?/P is periodic with period p.

Finally, if the phase plot of f is doubly periodic

(see Figure 16), i.e., f/If| has periods p; and p»

with p,/p> ¢ R, then it does not necessarily follow

€ [R+,

NOTICES OF THE AMS

Figure 15. Phase plot of f(z) = sinz.

Figure 16. Phase plot of a Weierstrass
g-function.

that f is an elliptic function. A counterexample is
f(z) := e*?g(z), where g # const has periods p;
and p», and « € C\{0} is a solution of the linear
system
Im(ap;) = 2k, j=1,2,

with k1, k> € Z. It may be an interesting problem to
prove that all functions with doubly periodic phase
plots are indeed of this form.

Partial Sums of Power Series

Figure 17 shows a strange image that, in similar
form, occurred in a numerical experiment as the
phase plot of a Taylor polynomial. Since it looks
so special, one could attribute it to a programming
error. A moment’s thought reveals what is going on
here. This example demonstrates again that look-
ing at phase plots can immediately provoke new
questions.

Indeed the figure illustrates a general result (see
Titchmarsh [36], Section 7.8) that was proven by
Robert Jentzsch in 1914:

If a power series ay + a1z + a»z> + --- has
a positive finite convergence radius R, then the
zeros of its partial sums cluster at every point z
with |z| = R.

The reader interested in the life and person-
ality of Robert Jentzsch is referred to the recent

VOLUME 58, NUMBER 6



f(z) =1/(1-2).

paper [11] by Peter Duren, Anne-Katrin Herbig,
and Dmitry Khavinson.

Boundary Value Problems

Experimenting with phase plots raises a number of
new questions. One such problem is to find a cri-
terion for deciding which color images are analytic
phase plots, i.e., phase plots of analytic functions.

Since phase plots are painted with the restricted
palette of saturated colors from the color circle,
Leonardo’s Mona Lisa will certainly never ap-
pear. But for analytic phase plots there are much
stronger restrictions: By the uniqueness theorem
for harmonic functions an arbitrarily small open
piece determines the plot entirely.

So let us pose the question a little differently:
What are appropriate data that can be prescribed
to construct an analytic phase plot, say, in a Jordan
domain D ? Can we start, for instance, with given
colors on the boundary 0D? If so, can the boundary
colors be prescribed arbitrarily, or are they subject
to constraints?

In order to state these questions more precisely
we introduce the concept of a colored set K, which
is a subset K of the complex plane together with a
mapping C : K — T. Any such mapping is referred
to as a coloring of K.

For simplicity we consider here only the follow-
ing setting of boundary value problems for phase
plots with continuous colorings:

Let D be a Jordan domain and let B be a continu-
ous coloring of its boundary oD. Find all continuous
colorings C of D such that the restriction of C to 0D
coincides with B and the restriction of C to D is the
phase plot of an analytic function f in D.

If such a coloring C exists, we say that the color-
ing B admits a continuous analytic extension to D.

JUNE/JULY 2011

The restriction to continuous colorings auto-
matically excludes zeros of f in D. It does, however,
not imply that f must extend continuously onto
D—and in fact it is essential not to require the
continuity of f on D in order to get a nice result.

Theorem 3. Let D be a Jordan domain with a con-
tinuous coloring B of its boundary oD. Then B ad-
mits a continuous analytic extension to D if and
only if the chromatic number of B is zero. If such
an extension exists, then it is unique.

Proof. If C : D — T is a continuous coloring, then a
simple homotopy argument (contract 0D inside D
to a point) shows that the chromatic number of its
restriction to 0D must vanish.

Conversely, any continuous coloring B of oD
with chromatic number zero can be represented
as B = el? with a continuous function @ : 0D — R.
This function admits a unique continuous har-
monic extension ® to D. If ¥ denotes a harmonic
conjugate of ®, then f = e®~¥ is analytic in D. Its
phase C := ¢'® is continuous on D and coincides
with B on 0D. Recall that f need not be continuous
on D.

Theorem 3 parameterizes analytic phase plots
that extend continuously on D by their boundary
colorings. This result can be generalized to phase
plots that are continuous on D with the exception
of finitely many singularities of zero or pole type
in D. Admitting now boundary colorings B with
arbitrary chromatic number we get the following
result:

For any finite collection of given zeros with or-
ders ny,...,n; and poles of orders pi,...,px the
boundary value problem for meromorphic phase
plots with prescribed singularities has a (unique) so-
lution if and only if the boundary coloring B satisfies

chromB=n;+---+n;—p; — -+ — px.

The Riemann Zeta Function

After these preparations we are ready to pay a visit
to “zeta”, the mother of all analytic functions. Fig-
ure 18 is a phase plot in the square —40 < Rez <
10, -2 < Imz < 48. We see the pole at z = 1,
the trivial zeros at the points —2,—-4,—6,..., and
several zeros on the critical line Rez = 1/2. Also
we observe that the isochromatic lines are quite
regularly distributed in the left half plane.

Saying that zeta is the mother of all functions
alludes to its universality. Our starting point is the
following strong version of Voronin’s universality
theorem due to Bagchi [4] (see also Karatsuba and
Voronin [22], Steuding [35]):

Let D be a Jordan domain such that D is con-
tained in the strip

R:={ze€C:1/2 <Rez <1},

and let f be any function that is analytic in D, con-
tinuous on D, and has no zeros in D. Then f can be
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Figure 18. The Riemann zeta function.

uniformly approximated on D by vertical shifts of
zeta, Ci(z) := C(z +1it) with t € R.

Recall that a continuously colored Jordan curve
Jc is a continuous mapping C : J — T from a
simple closed curve J into the color circle T. A
string S is an equivalence class of all such colored
curves with respect to rigid motions of the plane.
Like colored Jordan curves, strings fall into differ-
ent classes according to their chromatic number.
Figure 19 depicts a representative of a string with
chromatic number one.

We say that a string S lives in a domain D if it
can be represented by a colored Jordan curve J¢
with J C D. A string can hide itself in a phase plot
P:D — Tif, for every € > 0, it has a representative
Jc such that J ¢ D and

IEEB.JX|C(Z) —P(z)] <e.

In less technical terms, a string can hide itself if
it can move to a place where it is invisible since it
blends in almost perfectly with the background.

In conjunction with Theorem 3, the following
universality result for the
phase plot of the Riemann
zeta function can easily
be derived from Voronin’s
theorem.

Theorem 4. Let S be a
string which lives in the
strip R. Then S can hide it-
self in the phase plot of the

oV

Figure 19. A Riemann zeta function on R
representative if it has chromatic number
of a string. zero.

In view of the extreme
richness of Jordan curves and colorings, this result
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Figure 20. The Riemann zeta function at
Imz =171, 8230 and 121415.

is a real miracle. Figure 20 shows phase plots of
zeta in the critical strip. The regions with saturated
colors belong to R. The rightmost figure depicts the
domain considered on p. 342 of Conrey’s paper [8].

What about the converse of Theorem 4 ? If there
exist strings with nonzero chromatic number that
can hide themselves in the strip R, their potential
hiding places must be Jordan curves with nonvan-
ishing chromatic number in the phase plot. By the
argument principle, this would imply that zeta has
zeros in R. If we assume this, for a moment, then
such strings indeed exist: they are perfectly hidden
and wind themselves once around such a zero. So
the converse of Theorem 4 holds if and only if R
contains no zeros of zeta, which is known to be
equivalent to the Riemann hypothesis (see Conrey
[8], Edwards [12]).

Phase Flow and Diagrams

Mathematical creativity is based on the interplay
of problem posing and problem solving, and it is
our belief that the former is even more important
than the latter: often the key to solving a problem
lies in asking the right questions.

Mlustrations have a high density of information
and stimulate imagination. Looking at pictures
helps in getting an intuitive understanding of
mathematical objects and finding interesting
questions, which then can be investigated using
rigorous mathematical techniques.

This section intends to demonstrate how phase
plots can produce novel ideas. The material pre-
sented here is the protocol of a self-experiment
that has been carried out by the first author in
order to check the creative potential of phase plots.

Let us start by looking at Figure 1 again. It de-
picts the phase of a finite Blaschke product, which
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Figure 21. The phase plot of a Blaschke
product with five zeros.

is a function of the form

flz)=c[] -2
k=1

S 1-Zz’

z €D,

with |zx| < 1 and |c| = 1. Blaschke products are
fundamental building blocks of analytic functions
in the unit disc and have the property |f(z)| = 1
for all z € T. The function shown in Figure 1 has
eighty-one zeros zy in the unit disk.

Looking at Figure 1 for a while leaves the im-
pression of a cyclic ordering of the zeros. Let us
test this with another example having only five ze-
ros (Figure 21, left). The picture seems to confirm
the expectation: if we focus attention to the yellow
color, any of these lines connects a zero with a cer-
tain point on the boundary, thus inducing a cyclic
ordering.

However, looking only at one specific color is
misleading. Choosing another one, for instance
blue, can result in a different ordering. So what is
going on here? More precisely: What is the global
structure of the phase plot of a Blaschke product?
This could be a good question.

An appropriate mathematical framework in
which to develop this idea is the theory of dynam-
ical systems. We here sketch only the basic facts;
for details see [39].

With any meromorphic function f in a domain
D we associate the dynamical system

f(2)f'(z)
If (2) 12+ 1f"(2)1>
The function g on the right-hand side of (2) extends
from Dy to a smooth function on D. This system
induces a flow ® on D, which we designate as the
phase flow of f.

The fixed points of (2) are the zeros of f (re-
pelling), the poles of f (attracting), and the zeros of
f" which are not zeros of f (saddles). The remain-
ing orbits are the components of the isochromatic
lines of the phase plot of f when the fixed points
are removed. Thus the orbits of the phase flow en-
dow the phase plot with an additional structure
and convert it into a phase diagram (for details see
[39]).

Intuitively, the phase flow & transports a col-
ored substance (“phase”) from the zeros to the

(2) Z=g(z):=
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Figure 22. Phase transport to the boundary,
zeros of f and f’ with invariant manifolds.

poles and to the boundary of the domain (see Fig-
ure 22). The left part of Figure 23 illustrates how
“phase” of measure 21 emerging from the zero in
the highlighted domain is transported along the
orbits of ® until it is finally deposited along (parts
of) the boundary.

In the general case, wheref : D — C is meromor-
phic on a domain D and G C D is a Jordan domain
with boundary J in Dy, the phase transport from
any zero (pole) of f in G generates a (signed) mea-
sure on J. The result is a quantitative version of
the argument principle that tells us in which way
the phase of the zeros (poles) is distributed along
J (see Figure 23, right).

The question about the structure of phase plots
of Blaschke products can now be rephrased in the
setting of dynamical systems: What are the basins
of attraction of the zeros of f with respect to the
(reversed) phase flow?

The key to solving this problem is given by the
invariant manifolds of the saddle points, i.e., the
points a; € D, where f'(a;) = 0 and f(a;) # 0.
Removing all unstable manifolds of the points a;
from D results in an open set B, which is the union
of connected components B;. Any component B;
contains exactly one zero b; of f, where multiple
zeros are counted only once.

The intersection of every set B; with T is not
empty and consists of a finite number of arcs Aj;.
The complete set of these arcs covers the unit cir-
cle, and two arcs are either disjoint or their in-
tersection is a singleton. These separating points
are the endpoints of unstable manifolds that origi-
nate from saddle points. For later use we renumber
the arcs Aj; as Ay, A, ..., As in a counterclockwise
direction.

It is obvious that the number s of separating
points cannot be less than the number of distinct
zeros of f.In order to get an upper bound of s, f has
m distinct zeros with multiplicities f1,..., B» and
k saddle points where f’ has zeros of multiplicities
o1, ..., X, respectively. Then we have

Bi+--+Bm=n.

The first equation follows from the well-known fact
that the derivative of a Blaschke product of order

G+ +tox=n-1,
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Figure 23. The phase flow and the argument
principle.

Figure 24. Invariant manifolds of the saddles
and basins of attraction of the zeros.

n has exactly n — 1 zeros in D, this time count-
ing multiplicity. From any saddle point a; exactly
«; + 1 rays emerge that belong to the unstable
manifold of a;. Since any separating point must
be the endpoint of one such line, the total num-
ber s of separating points cannot be greater than
k+ o +---4+ o, =k+n— 1. Thus we finally get

m<s<n+k-1.

Examples show that both estimates are sharp.

It turns out ([34]) that the global topologi-
cal structure of the phase plot is completely
characterized by the sequence S of integers,
which associates with any of the arcs Aq,..., A
(in consecutive order) the number of the cor-
responding zero. This sequence depends on
the specific numbering of the zeros and the
arcs, but an appropriate normalization makes it
unique. For example, the Blaschke product de-
picted in Figure 24 is represented by the sequence
§$=1(1,2,3,2,4,5,4,2).

Let us now return to Figure 1 again. Picturing
once more that “phase” is a substance emerging
from sources at the zeros that can exit the domain
only at its boundary, is it not then quite natural
that phase plots of Blaschke products must look
like they do?

And if you are asking yourself what “natural”
means, then this is already another question.

Concluding Remarks
Phase plots result from splitting the information
about the function { into two parts (phase and
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modulus), and one may ask why we do not sepa-
rate f into its real and imaginary parts. One reason
is that often zeros are of special interest; their
presence can easily be detected and characterized
using the phase, but there is no way to find these
from the real or imaginary part alone.

And what is the advantage of using f/|f | instead
of log |f|? Of course, zeros and poles can be seen
in the analytic landscape, but they are much bet-
ter represented in the phase plot. In fact there is a
subtle asymmetry between modulus and argument
(respectively, phase). For example, Theorem 3 has
no counterpart for the modulus of a function.”

Since phase plots and standard domain coloring
produce similar pictures, it is worth mentioning
that they are based on different concepts and have
a distinct mathematical background.

Recall that standard domain coloring methods
use the complete values of an analytic function,
whereas phase plots depict only its phase. Tak-
ing into account that phase can be considered as
a periodization of the argument, which is (locally)
a harmonic function, reveals the philosophy be-
hind phase plots: Analytic functions are consid-
ered as harmonic functions, endowed with a set
of singularities having a special structure. Alge-
braically, phase plots forget about the linear struc-
ture of analytic functions, while their multiplica-
tive structure is preserved.

This approach has at least two advantages.
The first one is almost trivial: phase has a small
range, the unit circle, which allows visualizing all
functions with one and the same color scheme.
Moreover, a one-dimensional color space admits
a better resolution of singularities. Mathemati-
cally more important is the existence of a simple
parameterization of analytic and meromorphic
phase plots by their boundary values and their
singularities (Theorem 3). There is no such result
for domain colorings of analytic functions.

The following potential fields of applications
demonstrate that phase plots may be a useful
tool for anyone working with complex-valued
functions.

1. A trivial but useful application is visual in-
spection of functions. If, for example, it is not
known which branch of a function is used in a cer-
tain software, a glance at the phase plot may help.
In particular, if several functions are composed,
software implementations with different branch
cuts can lead to completely different results. You
may try this with the MATHEMATICA functions
Log (Gamma) and LogGamma. Another useful exer-
cise in teaching is to compare the phase plots of
exp(log z) and log(exp z).

2. A promising field of application is visual anal-
ysis and synthesis of transfer functions in systems

>There is such a result for outer functions, but it is impos-
sible to see if a function is outer using only the boundary
values of its modulus.
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theory and filter design. Since here the modulus
(gain) is often more important than phase, it is rec-
ommended to use the left color scheme of Figure 7.

3. Further potential applications lie in the area
of Laplace and complex Fourier transforms, in par-
ticular to the method of steepest descent (or sta-
tionary phase).

4. Phase plots also allow one to guess the asymp-
totic behavior of functions (compare, for example,
the phase plots of exp z and sin z) and to find func-
tional relations. A truly challenging task is to redis-
cover the functional equation of the Riemann zeta
function from phase plots of € and I’ (see [40], pp.
44-46).

5. Complex dynamical systems, in the sense of
iterated functions, have been investigated by Felix
Huang [18] and Martin Pergler [30] using domain
coloring methods. The problem of scaling the mod-
ulus disappears when using phase plots; see the
pictures of Francois Labelle [24] and Donald Mar-
shall [26].

6. Geir Arne Hjelle [17] developed an interactive
Java applet that visualizes interpolation problems
for Blaschke products using phase portraits.

7. The utility of phase plots is not restricted to
analytic functions. Figure 25 visualizes the func-
tion

h(z) :=Im (e‘iT" z") + iIm(eiT" (z-1"),

with n = 4. This is Wilmshurst’s example [42] of a
harmonic polynomial of degree n having the max-
imal possible number of n? zeros. For background
information we recommend the paper on gravita-
tional lenses by Dmitry Khavinson and Genevra
Neumann [23]. To understand the construction
of the depicted function it is important to keep
track of the zeros of its real and imaginary parts.
In Figure 25 these (straight) lines are visualized
using a modified color scheme that has jumps at
the points 1,i,—1 and —i on the unit circle.
Besides these and other concrete applications
one important feature of phase plots is their po-
tential to bring up interesting questions and pro-
duce novel ideas. If you would like to try out phase
plots on your own problems, you may start with
the following self-explaining MATLAB code:®
xmin=-0.5; xmax=0.5; ymin=-0.5; ymax=0.5;
xres = 400; yres = 400;
X = linspace(xmin,xmax,xres);
y = linspace(ymin,ymax,yres);
[x,y] = meshgrid(x,y); z = x+i*y;
f =exp(1./2);
p = surf(real(z),imag(z),0%*f,angle(-f));
set(p, 'EdgeColor’,’none’);
caxis([-pi,pil), colormap hsv(600)
view(0,90), axis equal, axis off

SThis is a contribution to Nick Trefethen’s project of
communicating ideas by exchanging ten-line computer
codes.
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Figure 25. A modified phase plot of
Wilmshurst’s example for n = 4.

Though the phase of a function is at least of
the same importance as its modulus, it has not
yet been studied to the same extent as the latter.
It is our conviction that phase plots are problem
factories, which have the potential to change this
situation. The forthcoming book [37] aims to give a
comprehensive introduction to complex functions
using phase portraits. The reactions to a mathe-
matical calendar [33] featuring phase portraits of
analytic functions have shown that the beauty of
these images may also stimulate the interest of a
more general public.

Technical Remark

All images in this article were created using MATH-
EMATICA and MATLAB.
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