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a Shimura Variety?
James S. Milne

Most mathematicians have encountered modular
functions. For example, when the group theorists
discovered the monster group, they were surprised
to find that the degrees of its irreducible represen-
tations were already encoded in the q-coefficients
of the j-function. The theory of Shimura varieties
grew out of the applications of modular functions
and modular forms to number theory. Roughly
speaking, Shimura varieties are the varieties on
which modular functions live.

Shimura Curves
According to the uniformization theorem, every
simply connected Riemann surface is isomorphic
to the Riemann sphere, the complex plane, or the
open unit disk (equivalently the complex upper half
plane D1). The Shimura curves are the quotients of
D1 by the actions of certain discrete groups, which
I now describe.

The action
(
a b
c d

)
z = az+b

cz+d of SL2(R) on D1

realizes SL2(R)/{±I} as the group of holomor-
phic automorphisms Hol(D1) of D1. Let B be a
quaternion algebra over a totally real number field
F such that R ⊗F B is isomorphic to M2(R) for
exactly one embedding of F into R, and let G
be the algebraic group over Q whose R-points
for any Q-algebra R are the elements of B ⊗Q R
of norm 1. Then G(R) is a product of SL2(R)
with a compact group, and so there is a surjective
homomorphismϕ : G(R)→ Hol(D1)with compact
kernel. A Shimura curve is the quotient of D1 by
the image in Hol(D1) of a congruence subgroup of
G(Q).

For example, when B = M2(Q), the group G is
SL2, and we get the familiar elliptic modular curves,
namely, the quotients ofD1 by a discrete subgroupΓ of Hol(D1) containing the image of a principal
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congruence subgroup

Γ(N) def= {A ∈ SL2(Z) | A ≡ I mod N}.
In this case, the Riemann surface Γ\D1 can be
compactified in a natural way by adding a finite
number of points (called the cusps), and so Γ\D1

has a unique structure of an algebraic curve
compatible with its analytic structure. In all other
cases, Γ\D1 is compact and so is automatically an
algebraic curve.

Each Shimura curve has a natural embedding in
projective space. Consider, for example, the elliptic

modular curve Y(N) def= Γ(N)\D1. A cusp form of
weight 2k for Γ(N) is a holomorphic function f on
D1 vanishing at the cusps and such that
(1)
f (Az) = (cz+d)2k ·f (z) for all A =

(
a b
c d

)
∈ Γ(N).

For some fixed k, a basis f0, . . . , fn for the cusp
forms of weight 2k defines an embedding

P , (f0(P) : . . . : fn(P)) : Y(N)→ Pn(C)
of Y(N) as an algebraic subvariety of Pn(C). In
fact, we can do better. Each of the cusps is fixed by

a unipotent matrix
(

1 h
0 1

)
with h a positive integer.

For such a matrix, (1) becomes f (z) = f (z + h),
and so a cusp form f has an expansion

(2) f (z) = a1q+a2q2 +a3q3 +· · · , q = e2πi/h.

Let Q[ζN] be the field generated over Q by a
primitive Nth root of 1. It is possible to choose
the basis f0, . . . , fn so that the coefficients in (2)
lie in the field Q[ζN] and, when this is done, the
homogeneous polynomials defining Y(N) have
coefficients in Q[ζN]. Thus Y(N) has a canonical
model over Q[ζN]. This property of Y(N) is very
unusual. Typically, an algebraic variety over C will
not have a model over an algebraic number field,
and when it does, it will have many distinct models,
none of which is to be preferred.

The above explanation for why Y(N) has a
canonical model overQ[ζN] is that of the analysts.
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The geometers have an entirely different explana-
tion. For an elliptic curve E overC, the group E(C)N
of elements of order N is a free Z/NZ-module of
rank 2 equipped with a skew-symmetric pairing eN
taking values in the group of Nth roots of 1 in C. A
level-N structure on E is a basis (t1, t2) for E(C)N
such that eN(t1, t2) = ζN . For N ≥ 3, the canonical
model of Y(N) represents the functor sending a
Q[ζN]-algebra R to the set of isomorphism classes
of elliptic curves over R equipped with a level-N
structure.

Both explanations fail when B ≠ M2(Q): then
the curves are compact, so there are no cusps and
no q-expansions, and they are not moduli varieties
in any natural way. Thus both the analysts and the
geometers were surprised when Shimura (in 1967)
proved that all these curves do have canonical
models over specific number fields. The theory of
Shimura varieties, as distinct from the theory of
moduli varieties, can be said to have been born
with Shimura’s paper. Ihara (in 1968) attached
Shimura’s name to these curves.

Shimura Varieties, according to Shimura
A complex manifold is symmetric if each point is an
isolated fixed point of an involution. For example,
D1 is symmetric because it is homogeneous and
i is an isolated fixed point of the involution
z ,

(
0 −1
1 0

)
z = −1/z. A connected symmetric

complex manifold is called a hermitian symmetric
domain if it is isomorphic to a bounded open
subset ofCn for somen. Every hermitian symmetric
domain is simply connected, and so the Riemann
mapping theorem shows that D1 is the only
hermitian symmetric domain of dimension one.
The connected Shimura varieties are the quotients
of hermitian symmetric domains by the actions of
certain discrete groups, which I now describe.

The group of holomorphic automorphisms of
a hermitian symmetric domain D is a semisimple
Lie group whose identity component we denote by
Hol(D)+. To define a family of connected Shimura
varieties covered by D, we need a semisimple
algebraic group G over Q and a surjective homo-
morphism G(R)→ Hol(D)+ with compact kernel.
The connected Shimura varieties are then the
quotients Γ\D of D by a torsion-free subgroup Γ
of Hol(D)+ containing the image of a congruence
subgroup of G(Q) as a subgroup of finite index.

Baily and Borel proved that, as in the curve case,
the modular forms onD relative to Γ embed Γ\D as
an algebraic subvariety of some projective space.
Thus, each manifold Γ\D has a canonical structure
as an algebraic variety over C, and a later theorem
of Borel shows that the algebraic structure is in
fact unique.

Shimura introduced the notion of a canonical
model for these algebraic varieties. This is a model

of the variety over a specific number field that
is uniquely determined by specifying the fields
generated by the coordinates of certain special
points. Shimura and his students Miyake and
Shih proved the existence of canonical models
for several fundamental families of connected
Shimura varieties.

Shimura Varieties, according to Deligne
When Deligne was asked to report on Shimura’s
work in a 1971 Bourbaki seminar, he rewrote the
foundations. For Deligne, a Shimura variety is
defined by a reductive group G over Q and a G(R)-
conjugacy class of homomorphisms h : C× → G(R)
satisfying certain axioms. The Shimura variety
itself is a certain double coset space. The axioms
ensure that, on the one hand, this double coset
space is a finite disjoint union of the varieties
considered in the preceding section and on the
other hand, that it is the base space for a variation
of Hodge structures. Sometimes the variation of
Hodge structures arises from a family of abelian
varieties, in which case the existence of a canonical
model follows from the theory of moduli varieties.
In other cases, Deligne was able to prove the
existence of a canonical model by relating the
Shimura variety to one that is a moduli variety. In
the remaining cases, the existence of a canonical
model was proved by the author and Borovoi
(somewhat independently).

Shimura varieties interested Langlands as a
source of Galois representations and as a test for
his idea that all zeta functions are automorphic. In
a 1974 lecture he introduced the term “Shimura
variety” for the varieties defined by Deligne. Once
the existence (and uniqueness) of their canonical
models had been demonstrated, it became cus-
tomary to refer to the canonical model as the
Shimura variety (rather than the variety over C).
The connected components of these varieties are
the canonical models of the preceding section.

Further Reading
For Shimura’s approach, I suggest looking first
at his notes Automorphic Functions and Number
Theory1 and his ICM talks. For Deligne’s approach
there are the difficult original articles of Deligne2

and the author’s Introduction to Shimura Varieties.3

1Lecture Notes in Mathematics, No. 54, Springer, 1968.
2Travaux de Shimura. Séminaire Bourbaki (1970/71), Exp.
No. 389; Variétés de Shimura, Proc. Sympos. Pure Math., 33,
AMS, 1979, pp. 247–289.
3Clay Math. Proc., 4, AMS, 2005, pp. 265–378.
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