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T
he Institute for Advanced Study in
Princeton is hosting a special program
during the academic year 2012–2013
on a new research theme that is based
on recently discovered connections be-

tween homotopy theory, a branch of algebraic
topology, and type theory, a branch of mathemati-
cal logic and theoretical computer science. In this
brief paper our goal is to take a glance at these
developments. For those readers who would like to
learn more about them, we recommend a number
of references throughout.

Type theory was invented by Bertrand Russell
[20], but it was first developed as a rigorous
formal system by Alonzo Church [3], [4], [5]. It now
has numerous applications in computer science,
especially in the theory of programming languages
[19]. Per Martin-Löf [15], [11], [13], [14], among
others, developed a generalization of Church’s
system which is now usually called dependent,
constructive, or simply Martin–Löf type theory;
this is the system that we consider here. It was
originally intended as a rigorous framework for
constructive mathematics.

In type theory objects are classified using a
primitive notion of type, similar to the data types
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used in programming languages. As in program-
ming languages, these elaborately structured types
can be used to express detailed specifications of
the objects classified, giving rise to principles of
reasoning about them. To take a simple example,
the objects of a product type A× B are known to
be of the form 〈a, b〉, and so one automatically
knows how to form them and how to decompose
them. This aspect of type theory has led to its
extensive use in verifying the correctness of com-
puter programs. Type theories also form the basis
of modern computer proof assistants, which are
used for formalizing mathematics and verifying
the correctness of formalized proofs. For example,
the powerful Coq proof assistant [6] has recently
been used to formalize and verify the correctness
of the proof of the celebrated Feit-Thompson odd
order theorem [7].

One problem with understanding type theory
from a mathematical point of view, however, has
always been that the basic concept of type is unlike
that of set in ways that have been hard to make
precise. This difficulty has now been solved by
the idea of regarding types not as strange sets
(perhaps constructed without using classical logic)
but as spaces, regarded from the perspective of
homotopy theory.

In homotopy theory one is concerned with
spaces and continuous mappings between them,
up to homotopy; a homotopy between a pair
of continuous maps f : X → Y and g : X → Y is
a continuous map H : X × [0,1] → Y satisfying
H(x,0) = f (x) and H(x,1) = g(x). The homotopy
Hmay be thought of as a “continuous deformation”
of f into g. The spaces X and Y are said to be
homotopy equivalent,X ' Y , if there are continuous
maps going back and forth, the composites of
which are homotopical to the respective identity
mappings, i.e., if they are isomorphic “up to
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homotopy". Homotopy equivalent spaces have the
same algebraic invariants (e.g., homology, or the
fundamental group) and are said to have the same
homotopy type.

Homotopy type theory is a new field of math-
ematics which interprets type theory from a
homotopical perspective. In homotopy type theory,
one regards the types as spaces, or homotopy types,
and the logical constructions (such as the product
A × B) as homotopy-invariant constructions on
spaces. In this way, one is able to manipulate
spaces directly, without first having to develop
point-set topology or even define the real numbers.
Homotopy type theory is connected to several
topics of interest in modern algebraic topology,
such as∞-groupoids and Quillen model structures
(see [18]); we will only mention one simple example
below, namely the homotopy groups of spheres.

To briefly explain the homotopical perspective
of types, consider the basic concept of type theory,
namely that the term a is of type A, which is
written

a : A.
This expression is traditionally thought of as akin
to “a is an element of the set A”. However, in
homotopy type theory we think of it instead as “a
is a point of the space A”. Similarly, every term
f : A → B is regarded as a continuous function
from the space A to the space B.

This perspective clarifies features of type theory
which were puzzling from the perspective of types
as sets, for instance, that one can have nontrivial
types X such that (X → X) � X + 1. But the key
new idea of the homotopy interpretation is that
the logical notion of identity a = b of two objects
a, b : A of the same type A can be understood as
the existence of a path p : a � b from point a
to point b in the space A. This also means that
two functions f , g : A → B are identical just in
case they are homotopic, since a homotopy is just
a family of paths px : f (x)� g(x) in B, one for
each x : A. In type theory, for every type A there
is a (formerly somewhat mysterious) type IdA
of identities between objects of A; in homotopy
type theory, this is just the path space AI of all
continuous maps I → A from the unit interval. (See
[2], [1], [18].)

At around the same time that Awodey and
Warren advanced the idea of homotopy type theory,
Voevodsky showed how to model type theory using
Kan simplicial sets, a familiar setting for classical
homotopy theory, thus arriving independently
at essentially the same idea around 2005. Both
were inspired by the prior work of Hofmann and
Streicher, who had constructed a model of type
theory using groupoids [9].

Voevodsky, moreover, recognized that this
simplicial interpretation satisfies a further crucial

property, which he termed univalence and which
is not usually assumed in type theory. Adding
univalence to type theory in the form of a new
axiom has far-reaching consequences, many of
which are natural, simplifying, and compelling. The
Univalence Axiom thus further strengthens the
homotopical view of type theory since it holds in
the simplicial model but fails in the view of types
as sets.

The basic idea of the Univalence Axiom can be
explained as follows. In type theory, one can have
a universe U, the terms of which are themselves
types, A :U, etc. Of course, we do not have U :U,
so only some types are terms of U—call these
the small types. Like any type, U has an identity
type IdU, which expresses the identity relation
A = B among small types. Thinking of types as
spaces, U is a space, the points of which are
spaces. To understand its identity type, we must
ask, “What is a path p : A� B between spaces in
U?” The Univalence Axiom says that such paths
correspond to homotopy equivalences A ' B, as
explained above (the actual notion of equivalence
required is slightly different). A bit more precisely,
given any (small) types A and B, in addition to
the type IdU(A, B) of identities between A and B
there is the type Eq(A, B) of equivalences from A
to B. Since the identity map on any object is an
equivalence, there is a canonical map,

IdU(A, B)→ Eq(A, B).

The Univalence Axiom states that this map is itself
an equivalence. At the risk of oversimplifying, we
can state this succinctly as

Univalence Axiom: (A = B) ' (A ' B).
In other words, identity is equivalent to equivalence.

From the homotopical point of view, this says
that the universe U is something like a classifying
space for (small) homotopy types, which is a practi-
cal and natural assumption. From the logical point
of view, however, it is revolutionary: it says that
isomorphic things can be identified! Mathemati-
cians are, of course, used to identifying isomorphic
structures in practice, but they generally do so
with a wink, knowing that the identification is not
“officially” justified by foundations. But in this new
foundational scheme, not only are such structures
formally identified, but the different ways in which
such identifications may be made themselves form
a structure that one can (and should!) take into
account.

Part of the appeal of homotopy type theory
with the Univalence Axiom is the many interesting
connections it reveals between logic and homotopy.
Another remarkable aspect is that it can be carried
out in a computer proof assistant since type theory
exhibits such good computational properties (see
[21], [8] on the use of computer proof assistants
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in general). In practical terms, this means that it is
possible to use the powerful, currently available
proof assistants based on type theory, like the
Coq system, to develop mathematics involving
homotopy theory, to verify the correctness of
proofs, and even to provide some degree of
automation of proofs.

To give just one example, in homotopy type
theory one can directly define the n-dimensional
sphere Sn as a type, with its associated principles
of reasoning. Moreover, for any type A one can
define the homotopy groups πn(A), again in a
very direct way in terms of the identity type IdA
explained above. One can then reason directly in
type theory, using the principles associated with
these constructions, and prove, for example, that
πn(Sn) = Z for n ≥ 1 (as has recently been done
by G. Brunerie and D. Licata at the Institute for
Advanced Study, using the Univalence Axiom in an
essential way). Finally, the proof can be formalized
in a proof assistant and verified by a computer. In
this way, one not only has new methods of proof in
classical homotopy theory, but indeed ones which
provide associated computational tools.

Voevodsky has christened this combination
of homotopy type theory with the Univalence
Axiom, implemented on a computer proof assistant,
the Univalent Foundations program. It can be
regarded as a new foundation for mathematics
in general, not just for homotopy theory, as
Voevodsky has shown by developing an extensive
code library of formalized mathematics in this
setting. Moreover, he is promoting more interaction
between pure mathematicians and the developers
of such proof assistants, as is occurring in the
special year on Univalent Foundations at the
Institute for Advanced Study.

For those interested in contributing to this
new kind of mathematics, it may be encouraging
to know that there are many interesting open
questions. The most pressing of them is perhaps
the “constructivity” of the Univalence Axiom itself,
conjectured by Voevodsky in [23]. It concerns the
effect of adding the Univalence Axiom on the
computational behavior of the system of type
theory and thus on the existing proof assistants.
Another major direction, of course, is the further
formalization of classical results and current
mathematical research in the univalent setting.
We expect that it will eventually be possible to
formalize large amounts of modern mathematics in
this setting and that doing so will give rise to both
theoretical insights and good numerical algorithms
(extracted from code in a proof assistant).

In this direction, together with Voevodsky, the
last two authors are working on an approach to the
theory of integrable systems (using the new notion
of p-adic integrable system as a test case) in the

univalent setting. A preliminary treatment in the
construction of the p–adic numbers is given in [17].
One of Voevodsky’s goals (as we understand it) is
that, in a not too distant future, mathematicians
will be able to verify the correctness of their own
papers by working within the system of univa-
lent foundations formalized in a proof assistant
and that doing so will become natural even for
pure mathematicians (the same way that most
mathematicians now typeset their own papers in
TEX). We believe that this aspect of the univalent
foundations program distinguishes it from other
approaches to foundations by providing a practical
utility for the working mathematician.

Our goal in this announcement has been to give
a brief and intentionally superficial glimpse of two
closely related recent developments: homotopy
type theory and Voevodsky’s univalent foundations
program. Since these subjects are still developing
quite rapidly, the current literature tends to be
rather specialized and accessible mainly to those
with prior knowledge of homotopy theory and
logic. One exception is the survey article [18],
which goes into much greater depth than the
present article, while still being intended for a
general mathematical readership; it also contains
an introduction to the use of the Coq proof assistant
in the univalent setting. A complete exposition
of the current state of the art in homotopy type
theory is available in the form of a book which
was jointly authored by the participants of the IAS
special year and is freely available at [10]. See also
[1], and [23].
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