A Critique of the Structure of U.S. Elementary School Mathematics

What Do Secondary Preservice Mathematics Teachers Need to Know? Content Courses Connecting Secondary and Tertiary Mathematics

Principles for Implementing a Potential Solution to the Middle East Conflict
This program provides research support for outstanding mathematical scientists who have held a doctoral degree between three and twelve years.

Learn more about qualifications for this program

www.ams.org/centfellow

Application deadline: December 1, 2013
Solve the differential equation.

\[t \ln t \frac{dr}{dt} + r = 7te^t \]

\[r = \frac{7e^t + C}{\ln t} \]

WHO HAS THE #1 HOMEWORK SYSTEM FOR CALCULUS?
THE ANSWER IS IN THE QUESTIONS.

When it comes to online calculus, you need a solution that can grade the toughest open-ended questions. And for that there is one answer: WebAssign.

WebAssign’s patent pending grading engine can recognize multiple correct answers to the same complex question. Competitive systems, on the other hand, are forced to use multiple choice answers because, well they have no choice. And speaking of choice, only WebAssign supports every major textbook from every major publisher. With new interactive tutorials and videos offered to every student, it’s not hard to see why WebAssign is the perfect answer to your online homework needs.

It’s all part of the WebAssign commitment to excellence in education. Learn all about it now at webassign.net/math.
The November issue features several articles bearing on math education. These include a Doceamus on moving from the routine to the nonroutine in problem solving, a piece on the structure of U.S. elementary school mathematics, and an article on what secondary preservice math teachers need to know. In a historical direction, we have an article about the role of Cauchy’s mean value theorem in the history of analytic rigor. Finally, there is an unusual article about the application of mathematical principles to the negotiation of peace in the Middle East.

—Steven G. Krantz, Editor

Features

1282 A Critique of the Structure of U.S. Elementary School Mathematics
Liping Ma

1297 What Do Secondary Preservice Mathematics Teachers Need to Know? Content Courses Connecting Secondary and Tertiary Mathematics
Eileen Murray and Jon R. Star

1300 Principles for Implementing a Potential Solution to the Middle East Conflict
Thomas L. Saaty and H. J. Zoffer
MOOCs and the Future of Mathematics

Calculus pedagogy and online courses are well-trodden fields of war. I write with care, given the wide array of opinions strongly held.

In 2012 I created a calculus MOOC (massive open online course) for Penn’s partnership with Coursera. The course ran in the spring of 2013 and again in summer 2013. You are welcome to view the materials for this course (and other free courses) on Coursera’s website.

Contrary to apocalyptic fears, this is not the end of calculus instruction. Rather, this and other open-access online courses herald a time of experimentation and rapid improvement in how we communicate mathematics to the world.

I volunteered to build this MOOC to give a proof-of-concept for a different approach to calculus and calculus education. Over the course of a year, I designed, drew, animated, and recorded a complete second-semester calculus course. Two dedicated graduate students and two postdocs helped generate assessments and write a free Wiki-based text. The work was difficult; the impact on grateful learners across the world redeemed that difficulty in full.

Before turning to the question of MOOCs and their future, I wish to note that MOOCs are more than a translation of an existing course to a video format: they represent a novel means of rapid innovation in how we present mathematics. A few particulars of my MOOC should illustrate this point.

1) The video lectures are hand drawn and animated. Students gain a visually dynamic understanding of series, surfaces, moments, and more. Many find it fun, an adjective not normally applied to calculus texts.

2) The ordering is novel (apologies to Euler), beginning with Taylor series. The initial emphasis on their mechanics draws in those students of AP calculus who grasp derivatives without depth. The course then turns to limits, derivatives, integrals, and applications, drawing conceptual insight from Taylor expansions throughout. Sequences and more rigorous approach to series are part of “discrete calculus”—re-capitulating calculus for functions with discrete input and analog output (i.e., sequences).

3) Connections to deeper ideas in mathematics and applications are repeatedly drawn. The nonthreatening nature of comic-book-style animations lets me foreshadow commutative diagrams, generating functions, and network topology without overwhelming students. Asymptotic notation (big-O) is used throughout, and an emphasis on contemporary applications empowers students for future courses in the sciences.

Some will view these changes as refreshing; others will find them misguided. Whatever the value of this particular offering, it demonstrates the degree of innovation possible with MOOCs. The rise of low-cost platforms for putting our courses online is a liberation from the publishing bureaucracy that has made the calculus education of today look almost identical to that of the 1980s and earlier (in every respect save price).

This course is one example of the creative possibilities for MOOCs. The reader can imagine what could be done with higher-level material. The potential advances arising from modular cross-linked content, collaborative development, and improvement based on data-mining student performance are profound. Though only a handful of MOOCs in mathematics have been developed, the optimism surrounding this platform is justified.

There are many open questions concerning MOOCs: what do they portend for our profession? our students? our community?

I wish to sidestep the more hyperbolic criticisms (such as meaningless completion rates or conspiracy theories of venture-capitalist plots) and instead address realistic risks and rewards. MOOCs certainly have the potential to do harm: harm to our students if regulations or laziness lead to entertaining pabulum catering to the lowest common denominator, harm to faculty if we are robbed of our freedom of creative expression in the classroom. However, the potential returns, especially to those without ready access to the best schools, are so compelling as to demand experimentation and investment.

The future of MOOCs is uncertain. I have learned this past year from my inaccuracy in predicting six months ahead that it is folly to predict a decade hence. I have also learned from the last century of mathematics research (not infrequently funded by the United States Department of Defense) that an innovation that can be imagined as being turned to evil almost always ends up being turned to an imagined good. I am optimistic about MOOCs, especially in mathematics.

“What will MOOCs change?” is not the ultimate question. “Why do mathematicians exist?” is the critical question that we must answer—persuasively—with skillful exposition to all those we serve: students, parents, scientists, deans, and lawmakers. If we do not provide a comprehensible and compelling answer, others will answer the question for us. If we do not build high-quality expositions that demonstrate why mathematics is to be loved, others will build expositions communicating that mathematics is to be feared or endured. To us is given the gift of seeing the beauty and art in our discipline, a beauty that is not grasped without great effort. The rise of MOOCs is our profession’s moment of opportunity to communicate its truths skillfully and artfully and to promote our core insights and modes of thought to an eager worldwide audience through this medium of rapid innovation.

Robert Ghrist
Andrea Mitchell University Professor
University of Pennsylvania
ghrist@math.upenn.edu

MOOCs (massive open online courses) are causing a revolution in higher education today. What will be the impact of this revolution on mathematics teaching in colleges and universities? The Notices invites short pieces (800 words or less) on the subject of MOOCs in mathematics. Please send contributions to notices-mooc@ams.org.
Support

MathSciNet for Developing Countries

The MathSciNet for Developing Countries (MDC) program funds subscriptions to the Mathematical Reviews Database for scholars in developing nations, where subscription costs would otherwise be out of reach.

To learn more about MathSciNet for Developing Countries and other programs, visit www.ams.org/support

Contact the AMS Development Office by phone: 401-455-4111 or email: development@ams.org

THANK YOU
On “Two Views: How Much Math Do Scientists Need?”

I agree with Frenkel, but a professor of mathematics is the least convincing person to advocate for students of other sciences taking more math courses. In fact, if the only people vigorously promoting math for scientists were mathematicians, I would have serious fears for the future of our profession!

I am convinced that this is not the case. Many eminent biologists can rebut Wilson’s piece with personal stories of how their own breakthroughs were made possible by their mathematical educations. I will ask some of my colleagues in the so-called nonmathematical sciences to read Wilson’s and Frenkel’s essays and send responses to me, and I encourage other members of the AMS to do the same. I will share these with the editor of the Notices; I guarantee they will be extremely interesting reading.

—Bruce Bayly
University of Arizona
bjb@math.arizona.edu
(Received August 5, 2013)

Frenkel Misreads Wilson

Reading E. O. Wilson’s essay and Edward Frenkel’s response to it [Notices, August 2013], I thought Frenkel mischaracterized Wilson’s views. Wilson’s point was that fear of mathematics was driving away potential scientists and that it need not do so. It seems to me that this point is hard to disagree with. In no way was Wilson arguing that potential scientists should not learn mathematics. Frenkel points out that Wilson is “octogenarian”. How is this relevant? The only point I can see of making this statement is to insinuate that Wilson is too old to have a valid opinion. Frenkel also says that Wilson believes fear of math is justified and most scientists don’t need math. Wilson does not say that in his article, and I would be very surprised if he believed it. Frenkel says that Wilson’s thesis is that “great scientists don’t need math,” in quotation marks. The quotation marks lead one to believe that this is a quote from Wilson’s article, but no such quote appears in the article. Furthermore, I don’t think that is Wilson’s thesis. In all, Frenkel’s essay is of much lower quality than Wilson’s, and I think the Notices should have thought twice before publishing it.

—Mark Hovey
Wesleyan College
mhovey@wesleyan.edu
(Received August 2, 2013)

Wilson’s Misguided Headline

Both articles speak for themselves, so I shall only respond to Mark Hovey’s comment that the quote “great scientists don’t need math” does not appear in E. O. Wilson’s article. In fact, this was the headline under which Wilson’s article was published online on the Wall Street Journal website, and under which it was distributed on social media, such as Twitter.

—Edward Frenkel
University of California at Berkeley
frenkelmath@gmail.com
(Received August 12, 2013)

Do Scientists Need Math?

The disagreement in the essays by Wilson and Frenkel in the August issue of the Notices seems, on first reading, to be fundamental and sharp. But it can be made moot simply by qualifying the overly broad term “scientist”. The biological and social sciences are very different from the physical sciences. It is not controversial that physicists and chemists need quite a bit of math, but it may well be a defensible position that at the current state of their science many biological and social scientists do not need much mathematics beyond statistics.

And, by the way, other differences between the biological and physical sciences occasionally show up. It is no longer surprising that when “scientific” fraud makes it into the newspaper, the science is usually biomedical. Also, most popular disbelief or distrust in “science” concerns biology, such as evolution and the efficacy of vaccines; very few people refuse to use airplanes due to distrust of aerodynamics.

—Charles Radin
University of Texas
radin@math.utexas.edu
(Received August 22, 2013)

Authors, Editors, and Referees

I would like to add a comment to Neal Koblitz’s letter on “Errors in Papers” (Notices, August 2013).

Even the most talented mathematicians make errors that were not detected by referees and ended up published. Nowadays, authors and referees are under pressure, as Koblitz points out, but editors also deserve criticism.

Let me describe a recent case. Professor X wrote a paper on a subject originally investigated by A and B, two bright, talented, and inspiring mathematicians. Professor X built on results by A and B, whom he duly quoted in his manuscript. However, he noticed an error in the first page of one of the numerous papers written by A and B: an equivalence between two definitions given by A and B was wrong, and he decided to investigate the two structures associated with the nonequivalent definitions. He submitted the manuscript to the same journal where A and B had published, among many others, the paper with the error.

He got a rejection, in a computer-generated letter, stating only that the journal applies the highest standard and has a broad readership. No answer to his polite and tactful cover letter (in fact, Professor X had meanwhile passed away), no referee’s report, nothing! Such an editor’s message is indeed ridiculous, to say the least. Highest standard, but an error was published and a correction was denied.
Is such an editor acting in a rational way?

—J. M. S. Simões-Pereira
Department of Mathematics
University of Coimbra, Portugal

siper@mat.uc.pt

(Received August 6, 2013)

Can Bulletin Papers Be Made More Readable?

My purpose in writing is to raise the question: Is there a better format for some of the papers in the Bulletin of the AMS—better meaning, more likely to achieve the goal of the Bulletin as implied by the statement on the inside of its front cover: The Bulletin publishes expository articles on contemporary mathematics research written in a way that gives insight to mathematicians who may not be experts in the particular topic.

This question was motivated by the paper in the July 2013 issue of the Bulletin, “Chern-Weil Forms and Abstract Homotopy Theory”. Let me hasten to say that I have no doubt the paper describes research results that are an important contribution to the relevant field. I am raising a question about format, not content.

In particular, the question was motivated by my realization, soon after I began attempting to read the paper, that I had no chance of understanding most of it. It seemed to me to be a paper written for specialists. And so I began asking myself the following questions:

(1) What are the criteria that the editorial staff uses to determine if a paper is likely to give insight to mathematicians who may not be experts in the particular topic?

(2) Does the staff conduct tests on randomly-selected members of the readership to determine to what degree the goal of the Bulletin is being met?

(3) What is the minimum knowledge that the staff assumes that any reader should have?

It seems to me that some policies that might improve readability are: (A) written specification, for use by editorial staff, of the minimum level of knowledge assumed for any reader; (B) in each paper containing terms outside this minimum level, an index, with specific references to definitions or brief informal explanations of terms in the paper; (C) structured proofs (à la structured programs) so readers could read proofs top down, hence only to the depth of detail they were interested in; (D) a statement at the beginning of each paper as to why it was chosen for the readership—what is important about it, etc.

—Peter Schorer
Occam Press
peteschorer@gmail.com

(Received August 9, 2013)

Reply to Letter of Spencer Bloch

Thanks to Professor Bloch for his thoughtful comments (Letter to the Editor from Spencer Bloch, Notices, October 2013). It is nice to know that my article was read and stimulated some reactions. Actually I am pleased to have heard from a number of mathematics departments in institutions nationally and internationally that are engaged in discussing teaching practices for their mathematics classes.

I agree with Professor Bloch that evaluating teaching is a challenging task. What particular teaching style works for some students may not work for others. Therefore any generalizations about teaching practices must be offered with caution. Having said that, I think the pioneering work that Carl Wieman (Nobel Prize in Physics in 2001) has done in science education is worthy of careful study and discussion by faculty members in mathematics departments. Much of the innovation in teaching being advocated in science education is based on evidence-based teaching practices. While successful evidence-based teaching practices may differ among the sciences, indeed even among teachers, it seems that many mathematics department seriously discussing teaching practices would want to engage in some self-examination.

The goal of a departmental self-study would not necessarily be to identify a particular teaching approach, but rather to learn more about what kinds of teaching practices work best in what specific mathematics classes with what types of students. This research involves multiple variables, many of which are difficult if not impossible to control. Such research is generally considered in the mathematics education domain, but more mathematicians are needed in this effort. Research of this type is complex, always messy, and may be excruciating to the researchers engaged in this effort. I am reminded of the book Mathematics Education Research: A Guide for the Research Mathematician, by C. McKnight, A. Magid, T. Murphy, and M. McKnight (AMS, 2000), which identifies some of the challenges faced. This book might provide a nice starting point.

—Robert Reys
Curators’ Professor Emeritus
Mathematics Education
University of Missouri
ReysR@missouri.edu

(Received September 3, 2013)

“AMS to Launch New Open Access Research Journals”: A Step in the Wrong Direction!

I firmly believe that offering two new gold open access journals is not in the best interest of the average member of the AMS; see Notices, August 2013, p. 873. The “author-pays model” [1] is not even in the best interests of the most talented mathematicians: it will introduce a filter that pre-selects among mathematicians of similar quality only those who are able and willing to spend money for their publications, even before any referee is able to evaluate their results. The attempt to equate the quality of research with money is a step in the wrong direction that will sooner or later backfire. From an ethical perspective, it looks even worse than impact factor manipulation.

—Thomaz Pisanski
University of Ljubljana
Tomaz.Pisanski@fmf.uni-lj.si

(Received August 23, 2013)
Blog on Math Blogs

Two mathematicians tour the mathematical blogosphere. Editors Brie Finegold and Evelyn Lamb, both Ph.D. mathematicians, blog on blogs — on topics related to mathematics research, applied mathematics, mathematicians, math in the news, mathematics education, math and the arts and more.
blogs.ams.org/blogonmathblogs

PhD + epsilon Blog

An early-career mathematician blogs about her experiences and challenges. Adriana Salerno, Assistant Professor at Bates College, and 2007 AMS-AAAS Media Fellow, writes about her experiences and challenges as an early-career mathematician. All mathematicians are encouraged to join the community of her followers and post comments.
blogs.ams.org/phdplus

e-Mentoring Network in the Mathematical Sciences

Connecting students and mentors. Editors Ricardo Cortez and Dagan Karp, with regular contributors Erika Camacho, Rebecca Garcia, Edray Goins, Herbert A. Medina, Talithia Williams and Robin Wilson, engage students and mentors — ask and answer questions, provide feedback, and share links on meetings, networking and research opportunities, articles, non-academic career information, and other helpful resources.
blogs.ams.org/mathmentoringnetwork

AMS Graduate Student Blog

A blog for and by math grad students. Tyler Clark is editor-in-chief and Frank Morgan is publisher. Contributions, comments, and other involvement are welcome.
blogs.ams.org/mathgradblog

On The Market

A job search blog for the mathematical sciences community by the Joint Committee on Employment Opportunities. This blog is moderated by Sue Geller, Professor, Texas A&M University.
blogs.ams.org/onthemarket

Joint Mathematics Meetings Blog

These blogs are about the scientific program sessions, events, and other aspects of the annual Joint Mathematics Meetings of the AMS and MAA.
blogs.ams.org/jmm2013

Followers may set up an RSS feed for all the blogs.
Research in mathematics education can be partitioned in many ways. If research in elementary mathematics education is partitioned into just two categories, content and method, this article may seem to belong only to the latter. It argues that consideration of the way in which the content of elementary mathematics is organized and presented is worthwhile for both U.S. and Chinese elementary mathematics educators. But, as illustrated in this article, organizing structure may affect the content that is presented.

Two distinguishing features of organizing structures for elementary mathematics are categorizations of elementary mathematics content and the nature of the relationship among the categories. These features are illustrated by the two examples in Figure 1 below.

Example A has a “core-subject structure”. The large gray cylinder in the center represents school arithmetic. Its solid outline indicates that it is a “self-contained subject”. (The next section of this article elaborates the meaning of this term.) School arithmetic consists of two parts: whole numbers (nonnegative integers) and fractions (nonnegative rational numbers). Knowledge of whole numbers is the foundation upon which knowledge of fractions is built. The smaller cylinders represent the four other components of elementary mathematics, shown according to the order in which they appear in instruction. These are: measurement (M); elementary geometry, simple equations (E); and simple statistics (S). (The last is similar to the U.S. “measurement and data” and includes tables, pie charts, line graphs, and bar graphs.) The dotted outlines and interiors of these components indicate that they are not self-contained subjects. The sizes of the five cylinders reflect their relative proportions within elementary mathematics, and their positions reflect their relationship with arithmetic: arithmetic is the main body of elementary mathematics, and the other components depend on it. Each nonarithmetic component occurs at a stage in the development of school arithmetic that allows the five components to interlock to form a unified whole.

Example B has a “strands structure”. Its components are juxtaposed but not connected. Each of the ten cylinders represents one standard in Principles and Standards for School Mathematics. The content standards appear in the front, and the process standards appear in the back. No self-contained subject is shown. This type of structure has existed in the U.S. for almost fifty years, since the beginning of the 1960s. Over the decades, the strands have been given different names (e.g., “strands”, “content areas”, or “standards”) and their number, form, and content have varied many times.

In these two structural types, the main difference is that the core subject structure has a self-contained subject that continues from beginning to end. In contrast, the strands structure does not, and all its components continue from beginning...
to end of elementary mathematics instruction. School arithmetic, the core subject in Figure 1A, does not appear as a category in Figure 1B.

U.S. elementary mathematics used to have a structural type like that of Example A. However, in the 1960s it began to change radically, eventually acquiring the structural type illustrated by Example B. The next two sections describe the features, origins, and evolution of these two structural types.

Core-Subject Structure: Features, Origin, and Evolution

Notable Features of Example A

Because I was not able to obtain the pre–2001 Chinese mathematics education framework, the details shown in Figure 2 are drawn from a set of Chinese elementary textbooks published in 1988.¹ The main part of Figure 2 is school arithmetic, the content of the gray cylinder in Figure 1A. The large rectangle shows arithmetic instruction beginning at the bottom in grade 1 and continuing upward to grade 6. Light gray indicates whole number content, and dark gray indicates fraction content (including decimals, ratio, and proportion).

The small boxes at the right represent the remaining four components: measurement (M), elementary geometry (G), simple equations (E), and simple statistics (S). Their placement indicates their order in instruction. The arrows indicate when each nonarithmetic section occurs relative to arithmetic instruction.

The dotted vertical lines at the left and numbers beside them indicate the grades in which the topics occur. The white rhombus indicates the end of the first semester; the black rhombus indicates the end of the school year.²

Next we will discuss the features of Example A that are visible in Figure 2.

The first feature is the large portion of the figure occupied by arithmetic. Together the twelve textbooks used for grades 1 to 6 have 1,352 pages.³ Arithmetic occupies 1,103 pages, which is 81.6 percent of the total. As for other components,

Measurement occupies 36 pages, elementary geometry 135 pages, simple equations 23 pages, simple statistics 18 pages, and 37 pages are for abacus.⁴ All the nonarithmetic content (including abacus) is only 18.4 percent.

The second feature visible in Figure 2 is the relationship between arithmetic and nonarithmetic content. Please note the insertion points for

[Please notice the differences between Chinese and U.S. elementary mathematics textbooks. The series of textbooks for six years has twelve small books, one book for each semester. All their content is considered essential rather than optional. On average, each book in the series has 113 pages, with pages dimensions of 8 inches by 6 inches. Of all these books, only the first uses color and that occurs on only two pages. Each student gets his or her own set of textbooks. In contrast, in the U.S. an elementary mathematics textbook for one year often has about six hundred pages, frequently uses color, and has pages approximately twice the size of the Chinese textbook pages. In general, the textbooks are the property of the school district rather than the student, and students are not able to bring the textbooks home.

There are two sections devoted to abacus instruction. The first, on addition and subtraction, occurs during the last unit of the first semester of grade 4. The second, on multiplication and division, occurs during the last unit of the first semester of grade 4. In order to simplify Figure 2, these are not shown.]
nonarithmetic content indicated by arrows. We can perceive the thirty sections of arithmetic in Figure 2 as several larger chunks, each with its own mathematical unity. That unity is supported by instructional continuity; that is, within a chunk, consecutive sections of arithmetic content occur in instruction without interruption from nonarithmetic content. For example, the first thirty weeks of instruction consist only of arithmetic—numbers 0 to 10 and their addition and subtraction, followed by numbers from 11 to 20 and their addition and subtraction (including regrouping), followed by numbers to 100 and their addition and subtraction. These three sections are tightly connected, supporting students’ learning of numbers less than 100 and their addition and subtraction, thus laying a solid cornerstone for later learning. Another unified chunk is formed by the section on divisibility to the section on percents, allowing students to learn the four operations with fractions (which is difficult) without interruption. Moreover, in the twelve semesters of the six years, ten semesters start with arithmetic, and nonarithmetic content occurs at the end of the semester. In this organization, arithmetic is noticeably emphasized.

The third feature visible in Figure 2 is the ordering of the instructional sections. This order attends to both mathematical relationships among calculation techniques and considerations of learning. For example, the first three sections of grade 1 are ordered by calculation technique. If technique were the sole consideration, these would be immediately followed by addition and subtraction of numbers less than 1000. However, in the textbook the fourth and fifth sections are on multiplication tables and using multiplication tables to do division. Learning multiplication tables and doing division with them allows students to continue their study of numbers up to 100 with a new approach. That is very beneficial for creating a solid foundation for elementary mathematics learning. Another example: after the section “Fractions: the basic concepts”, the textbook does not immediately continue with “Fractions and operations”. Instead it has a section on decimals. Calculation techniques for operations with decimals are very similar to those of whole numbers, but the concept of decimals is a special case of the concept of fractions. This arrangement affords understanding of the concept of decimals, review of the four operations with whole numbers, and preparation for future learning of fractions, their properties, and operations with fractions. (Note that this organization affords but does not guarantee this understanding. Curriculum design and instruction also need to be consistent with this goal.)

There are also three features worth noting about the nonarithmetic sections shown in Figure 2. First, in the whole process of elementary mathematics learning, the nonarithmetic content is supported by the arithmetic content that precedes it but, at the same time, reinforces that arithmetic content. In general, each section of nonarithmetic content occurs when arithmetic learning has arrived at a stage that prepares students to learn that content. For example, the section on units of Chinese money occurs immediately after “Numbers up to 100: addition and subtraction”. At that point, students have acquired significant knowledge of numbers within 100 and are able to add and subtract these numbers. That forms the foundation for students to learn the units of Chinese money. (Chinese money has three units: fen, yuan, jiao: 1 yuan is 10 jiao, 1 jiao is 10 fen; thus 1 yuan is 100 fen.) At the same time, learning the units of Chinese money provides students a new perspective on the arithmetic that they have just learned, allowing them to review and consolidate their prior learning. Similarly, because reading an analogue clock relies on multiples of 5, the section on units of time allows students the opportunity to apply the multiplication that they have just learned and reinforce this knowledge.

The four nonarithmetic components appear consecutively except for one short overlap. The first component is measurement, which consists of seven instructional sections, all of which occur before third grade. Next is elementary geometry, which is formed by eight sections, distributed from third grade to sixth grade. At the end of the first semester of fifth grade, the component simple equations occurs. This component has only one section and occurs between two sections of elementary geometry. After geometry, almost at the end of sixth grade, simple statistics occurs. This kind of arrangement ensures that one type of nonarithmetic content is finished before a new type begins.

The third notable feature is that the sizes of the nonarithmetic components are different. If we consider the total nonarithmetic content as 100 percent, their sizes are, from greatest to smallest: elementary geometry (64 percent), measurement (17 percent), simple equations (11 percent), simple statistics (8 percent). That means that the core-subject structure doesn’t treat nonarithmetic components equally but emphasizes some more than others. The one receiving most emphasis is elementary geometry. In fact, if the measurement of length in the measurement component is counted as part of elementary geometry, then elementary geometry occupies even more than 64 percent. This noticeable emphasis on elementary geometry is associated with the mathematical content of middle school. In elementary school, arithmetic prepares the foundation for learning algebra, and elementary geometry prepares the foundation for learning geometry.

In summary, if considered individually, the sections shown in Figure 2 may not seem remarkable
or interesting. However, when their interrelationships are considered, these sections are revealed as a tightly connected, carefully designed six-year-long path for learning mathematics.

Essential Feature of Core-Subject Structure: An Underlying Theory

If Chinese elementary mathematics had only the features visible in Figure 2, it would not deserve the label "core-subject structure". These features do not indicate whether the school arithmetic shown is a collection of skills or a self-contained subject with principles similar to those of the discipline of mathematics. The latter is true: there is a theory of school arithmetic that underlies the topics in the gray column of Figure 2.

The precursor of school arithmetic was "commercial mathematics", which existed in Europe for several hundred years after Arabic numbers were introduced. Its content was computational algorithms without explanations. In the mid-nineteenth century, with the movement toward public education in the U.S. and Europe, mathematical scholars participated in producing elementary school arithmetic textbooks. Their exemplar was Euclid’s *Elements*, the most influential mathematics textbook in history. These scholars followed the approach of the *Elements*, striving to establish a system of definitions for operations with whole numbers and fractions. Near the end of the nineteenth century this system was almost complete. Interestingly, although this system is fairly exhaustive, China did not contribute to its construction. On the contrary, in the U.S. elementary mathematics textbooks of the late nineteenth century, we see the efforts and contributions of U.S. scholars.

Rather than starting from self-evident geometrical concepts such as line and point as Euclid did, these scholars began with the self-evident concept of unit to create a definition system for all of school arithmetic. For example, relying on the definition of unit 1, two basic quantitative relationships—the sum of two numbers and the product of two numbers—are defined. The operations of addition and subtraction are defined in terms of the former, and multiplication and division in terms of the latter. With this definition system, school arithmetic is self-contained in the sense that each of its concepts is defined in terms of previous concepts, tracing back to the starting point, the unit 1. The concepts in the system are sufficient to explain the algorithms for the four operations on whole numbers and fractions that elementary students learn. With this definition system, we cannot only make coherent explanations for operations with whole numbers and fractions but can also analyze fairly complicated quantitative relationships using the definitions of the system. For example, the problem given on the tomb of the famous mathematician Diophantus can be solved using such an analysis. The elementary students who learn operations with whole numbers and fractions with this definition system master the algorithms for computation while learning abstract thinking. The definition system of school arithmetic is the main part of the theory of school arithmetic. In China and some other countries, this system of definitions still underlies instruction for operations with whole numbers and fractions.

Judging Whether a Country’s School Arithmetic Has an Underlying System of Definitions

How can one judge whether a country has a definition system unifying its school arithmetic? The following problem can provide an efficient test. Moreover, by showing the complexity of the quantitative relationships that can be analyzed, it illustrates the intellectual power of school arithmetic with an underlying definition system.

A few years ago the field of U.S. mathematics education experienced a small shock from a word problem in a fifth-grade Singapore textbook.

Mrs. Chen made some tarts. She sold 3/5 of them in the morning and 1/4 of the remainder in the afternoon. If she sold 200 more tarts in the morning than in the afternoon, how many tarts did she make?

*As Keith Devlin points out in Chapter 4 of his book *The Man of Numbers*, although Fibonacci provided explanations based on the Elements in his Liber Abaci, "how-to" books for commercial arithmetic focused on worked examples.

*The term "mathematical scholars" is intended to suggest the difference between present-day mathematicians and some of those nineteenth-century contributors. The latter included professors of mathematics such as Charles Davies, whose mathematical activity was not centered on research.

*See the supplementary online material at http://lipingma.net/math/math.html for more details.

*This problem is: “God vouchsafed that he should be a boy for the sixth part of his life; when a twelfth was added, his cheeks acquired a beard; He kindled for him the light of marriage after a seventh, and in the fifth year after his marriage He granted him a son. Alas! late-begotten and miserable child, when he had reached the measure of half his father’s life, the chill grave took him. After consoling his grief by this science of numbers for four years, he reached the end of his life”. Using the definition system, a solution is obtained from \((5 + 4) \div (1/2 - 1/6 - 1/12 - 1/7) = 84\).

*There is no evidence that the definition system in Chinese elementary mathematics was adopted directly from the U.S.

Although people educated in the U.S. could solve this problem with nonarithmetic approaches, no one knew how to solve it using an arithmetic equation, such as

\[200 \div \left[\frac{3}{5} - \frac{1}{4} \times (1 - \frac{3}{5}) \right] = 200 \div 1/2 = 400 \] Answer: 400 tarts.

Because concepts other than “unit” in the definition system are defined in terms of earlier concepts, the later a concept is defined, the more previously defined concepts it may rely on. The concept needed to solve the tarts problem occurs in the last section of the definition system. People whose elementary mathematics instruction included all the concepts of the definition system are prepared to solve this problem. Otherwise they are not prepared to solve this problem using an arithmetic equation. Thus, testing elementary students after they learn fractions by asking them to solve this word problem provides evidence of whether or not their country still uses a fairly complete definition system. This definition system underlies elementary mathematics in Singapore; thus, at the end of elementary school, Singapore students are prepared to solve this problem using arithmetic. In the U.S., not only elementary students but their teachers and the educators of those teachers are not able to solve the problem with arithmetic. This suggests that the definition system has, at least, decayed in the U.S.

The Construction of School Arithmetic

Examination of U.S. elementary textbooks suggests that, after the end of the nineteenth century, when most of the definition system was established, the development of school arithmetic as a subject came to a halt. However, in some other countries, the development of school arithmetic continued. From the content of Chinese elementary mathematics we can see three kinds of later evolution.

First, introduction of the basic laws: commutative, associative, distributive, and compensation laws. These do not appear in nineteenth-century U.S. arithmetic textbooks. With these laws, explanations for computational algorithms become more concise, and applications of the algorithms become more flexible. Knowledge of these laws also forms a good foundation for learning algebra.

In some early twentieth-century writings in U.S. mathematics education, such as Buckingham’s Elementary Arithmetic: Its Meaning and Practice, we see evidence of further exploration of the definition system. However, I have found no evidence that such explorations affected elementary mathematics textbooks.

Second, types of word problems were introduced that described quantitative relationships in contexts, such as the relationship of distance, time, and velocity. These problem types came from ancient civilizations such as Rome and China and reflected an approach to mathematics different from that of Euclid. The theory of school arithmetic established by following the approach of the Elements emphasizes rigorous reasoning, but these word problems provide prototypical examples of quantitative relationships. Solving variants of these problems promotes flexible use of these relationships. These types of word problems rarely appeared in late nineteenth-century U.S. elementary textbooks, but elementary textbooks in China, Russia, and perhaps other countries introduce them systematically. To solve these word problems by analyzing the quantitative relationships on the reasoning within the theory is a supplement and a contrast. The supplement comes from seeing a different approach to mathematics. The contrast comes from the differences in the two approaches and underlying mathematical traditions. Moreover, it broadens students’ thinking and enriches the mathematical content.

Third, the pedagogy of school arithmetic developed further. The definition system of school arithmetic that we see in late nineteenth-century U.S. textbooks was presented with rigorous wording and in logical order. Although it was rigorous according to the discipline of mathematics, as presented it was too abstract for elementary school students. That might be a reason why the construction of the theory of school arithmetic stopped in early twentieth-century America. However, with many years of effort, China and some other countries have found instructional approaches for teaching school arithmetic that has this underlying theory. These approaches vary in at least three ways: in the order of the content, how it is represented, and the design of

See the supplementary online material at http://lipingma.net/math/math.html for more details.
exercises. “Three approaches to one-place addition and subtraction” [Ma, n. d.] gives examples of how these three aspects can work together to introduce concepts defined within a system and basic laws to first-grade students.

After these changes—introduction of basic laws, introduction of prototypical problems, and pedagogical advances—the construction of school arithmetic as a subject was basically complete. It consisted of four components:

- Arabic numerals and notation for whole numbers, fractions, and operations on them, inherited from commercial arithmetic.
- Definition system augmented by basic laws.
- Prototypical word problems with variants.
- Instructional approaches.

This school arithmetic was self-contained: it had an underlying theory following the approach of the Elements. It was open: although based on the Euclidean tradition of Greek mathematics, it included mathematical traditions of other civilizations. It was teachable: developments in pedagogical approaches created a school arithmetic that was learnable by following the character of students’ thinking and leading students step by step to progressively more abstract thinking.

In the U.S., although much of the definition system had been established by the end of the nineteenth century, during several decades of the progressive education movement the three types of developments discussed above did not occur in significant ways. Thus in the U.S. the construction of school arithmetic as a subject was never really completed. In other words, a well-developed school arithmetic never really existed as a subject to be taught to U.S. children.

U.S. Strands Structure: Origin, Features, and Development

Although it never had a well-developed school arithmetic, after the beginning of elementary education, arithmetic was the core of elementary mathematics in the U.S. for almost one hundred years. However, today’s U.S. elementary mathematics has a different type of structure. When did this change happen? How did it evolve into the structure shown in Figure 1B? What did this change in structure mean to U.S. elementary mathematics?

We begin with the creation of this structure in the first California mathematics framework.

During the past few decades, the relationship between mathematics education in California and the rest of the nation has been intriguing. In some sense, we can say that California has been the forerunner of the rest of the United States. In her book *California Dreaming: Reforming Mathematics Education* Suzanne Wilson mentions several times how mathematics reform in California has influenced that of the entire nation. She points out that the 1989 NCTM *Curriculum and Evaluation Standards for School Mathematics* and the 1985 *California Mathematics Framework* “drew on the same research, commitments, and ideas” (2003, p. 26).

What we will discuss here, however, is an even earlier, more profound, California influence on national mathematics education. This is the fundamental change in the structure of elementary mathematics content initiated by the first California mathematics framework known as “The Strands Report”.

The First California Mathematics Framework: Creation of Strands Structure

In October of 1957 the Soviet Union launched Sputnik. This unusual event caused the U.S. to reflect on its science and mathematics education.

In 1958 the National Science Foundation funded the School Mathematics Study Group (SMSG), led by the mathematician Edward Begle, to promote the reform of U.S. mathematics curriculum, later known as “new math”.

In 1960 California formed the State Advisory Committee on Mathematics, with Begle as its chief consultant to launch the statewide reform of mathematics education. The committee was composed of three subcommittees. The first subcommittee on “Strands of Mathematical Ideas” consisted mainly of mathematics professors. Its charge was to decide the new mathematical structure of the new curriculum. The charge of the other two subcommittees was to implement the new curriculum: one to decide how to prepare teachers for the new curriculum and the other to investigate “the more recent ‘new’ mathematics programs that have attracted national attention” and study “commercially produced materials that could be used profitably to supplement the state adopted materials” (p. v).

In 1963 the reports from the three committees were published as *Summary of the Report of the Advisory Committee on Mathematics to the California State Curriculum Commission*. Because its main section was “The Strands of Mathematics” the whole report was known as “The Strands Report”.

![Figure 3. The structure suggested by the First Strands Report.](image-url)
Report”. Later, its official name became the First California Mathematics Framework. In this report, the arithmetic-centered structure of elementary mathematics was replaced by a different type of structure consisting of juxtaposed components, creating the strands structure.

“The Strands Report” began:

The curriculum which we recommend departs but little from the topics normally studied in kindergarten and grades one through eight, topics which long ago proved their enduring usefulness. But it is essential that this curriculum be presented as one indivisible whole in which the many skills and techniques which compose the present curriculum are tied together by a few basic strands of fundamental concepts which run through the entire curriculum. (pp. 1–2, emphasis added)

According to the report, these “basic strands” are:

1. Numbers and operations
2. Geometry
3. Measurement
4. Application of mathematics
5. Sets
6. Functions and graphs
7. The mathematical sentence
8. Logic

The idea of tying together elementary mathematics content with these eight strands meant a twofold revolution in the elementary mathematics curriculum. One was the revolution in the components of content. Arithmetic was no longer considered to be the main content. Instead, concepts from advanced mathematics such as sets, functions, and logic were introduced into elementary mathematics. Second was a revolution in the structural type, establishing a new strands structure for elementary mathematics.

Each of the eight strands was represented as a few concepts from a branch of mathematics but not as a self-contained subject. Although the report discussed a few important concepts for each strand, there was no evidence that these important concepts sufficed to form a system that provided explanations for the operations of elementary mathematics. For example, the strand “Numbers and operations”, which might be considered closest to arithmetic, included fifteen concepts, such as one-to-one correspondence, place value, number and numeral, and Cartesian product (CSED, pp. 4–13). The report claimed that these fifteen concepts were important but did not explain how they were related. The other seven strands were discussed in a similar way.

From the earlier quotation, we can see that the authors of “The Strands Report” intended to express all of elementary mathematics in terms of a few basic concepts and thus unify its content. However, realization of this idea was not widespread in U.S. elementary education. In this way, the newly introduced concepts from advanced mathematics did not unify elementary mathematics, although the earlier definition system of school arithmetic was officially abandoned. Since then, the concepts in U.S. elementary mathematics education have never had an underlying definition system that played the same role as the earlier one.

Today, when we read “The Strands Report”, we should admit that it has some interesting and inspiring ideas and discussions. We can also understand that its authors, facing concerns about national security at that time, wished to introduce concepts from advanced mathematics. However, maybe because of insufficient time or other reasons that we don’t know, they didn’t even make an argument for the new approach. Why change the previous elementary mathematics curriculum with arithmetic at its center to this curriculum with eight strands? What is the advantage of doing so? Why these eight strands and not others? Why were these eight strands the most appropriate for making elementary mathematics into “one indivisible whole”?

“The Strands Report” presented the wish of unifying elementary mathematics curriculum into an indivisible whole; however, its structure militated against this aim. It did not present evidence that the eight strands would form an indivisible whole. Moreover, because its structure consisted of juxtaposed categories without evidence to show that

16The fifteen concepts in the Numbers and operations strand are: One-to-one correspondence (p. 4), Place value (p. 5), Number and numeral (p. 6), Order: The number line (p. 6), Operations: Cartesian-product (pp. 7–8), Array (p. 7), Closure (p. 8), Commutativity (p. 9), Associativity (p. 9), Identity elements—zero and one (p. 10), Distributivity (p. 10), Base (p. 11), The decimal system (p. 12), Square root (p. 13).

17The report says: “The arithmetic…must not appear to the pupil as a sequence of disconnected fragments or computational tricks. Some of the important unifying ideas are discussed briefly in the following section of this report” (p. 4). The report did not mention that there was a self-contained definition system underlying late nineteenth-century U.S. elementary mathematics. From this, I infer that the authors of the report were not aware of the definition system.

15The report may have drawn on two intellectual resources: Bruner’s Process of Education (1960) and Nicolas Bourbaki’s Elements of Mathematics. Discussion of their possible influence on the first Strands Report is beyond the scope of this article.
these categories were the only appropriate choice, changes in the strands were unavoidable. In fact, such changes occurred only a few years later and have continued to occur.

The direct result of representing elementary mathematics as a strands structure is that arithmetic stopped being its core. “The Strands Report” put some “arithmetic topics” into the Numbers and operations strand and some into other strands. From that point on, school arithmetic, which had stopped its development in the early twentieth century, officially disintegrated.

The Second California Mathematics Framework: First Change in the Strands
Four years later, in 1967, the California State Mathematics Advisory Committee submitted its second Strands Report. This was formally published in 1972 as The Second Strands Report: Mathematics Framework for California Public Schools. In this second report, the number and names of the strands changed.

The “Mathematical sentence” strand was removed. Two new strands, “Statistics and probability” and “Problem solving”, were added, changing the number of strands from eight to nine. At the same time, the “Logic” strand was changed to “Logical thinking”. No explanation of these changes was given in the document.

As we have seen, the strands structure allowed an unlimited number of possibilities for changing the names, number, content, and features of the strands. After this, U.S. elementary mathematics lost its stability and coherence. After only four years, the same mathematics professors who wrote the first two Strands Reports was abandoned. Mathematicians were no longer the leaders in writing frameworks.

The “Back to Basics” Framework: Same Structure, Different Vision
Three years after the publication of the second Strands Report, the direction of mathematics education in California changed dramatically. The education department decided to give up the “new math” promoted in the two earlier frameworks and emphasize “the acquisition of basic mathematics skills” (CSDE, 1975, Preface). An ad hoc Mathematics Framework Committee was formed, led by a high school teacher. In 1975 the third California mathematics framework was published. The Superintendent of Public Instruction wrote in the foreword that although this new framework could be called a “post-new math framework”, he himself preferred to call it the “basics framework”. He emphasized that “the contents reflect the concerns of teachers rather than those of mathematicians.” It is obvious that the vision of this framework is fundamentally different from that of the earlier two. The vision of the mathematicians who wrote the first two Strands Reports was abandoned. Mathematicians were no longer the leaders in writing frameworks.

As a sign of the end of “new math”, the “Sets” strand was removed. The new framework combined “Problem solving”, the last strand of the previous framework, with its fourth strand “Application of mathematics”. Two strands had their names changed: “Numbers and operations” changed to “Arithmetic, numbers and operations”, and “Functions and graphs” changed to “Relations and functions” (see Figure 4).

Another type of change in the “basics framework” was the way in which objectives were presented. The first framework had abandoned the traditional presentation of content by grade, instead

...From this version on, California frameworks addressed grades K through 12. In this article I discuss only the aspects of the frameworks that pertain to elementary mathematics.
With the advent of low cost, high performance microprocessors and calculators, it becomes possible for computations to be done more accurately and in less time than in the past. This allows more time for problem solving, the major focus of the mathematics curriculum. (CSDE, 1982, p. 75)

To emphasize the importance of problem solving, the addendum took one strand from the previous framework and made it an umbrella for the other strands, which were called “skill and concept areas” to emphasize their subordinate role (CSDE, 1982, p. 59). This idea was emphasized by a figure (see Figure 5).

The approach of the 1980 Addendum differentiated the strands, making some more important than others. This approach was continued in the next framework and influenced the 1989 NCTM Curriculum and Evaluation Standards.

1985 California Framework and 1989 NCTM Curriculum and Evaluation Standards: Creation of Subitems

The 1985 California framework and the 1989 NCTM standards shared a similar new vision of mathematics education. The new, exciting vision presented in these two documents was to let every student, not only academic elites, acquire “mathematical power” (CSDE, 1985) and become “mathematically literate” (NCTM, 1989).

As mentioned earlier, during the new math movement mathematicians intended to use fundamental mathematical concepts such as “set” and “function” to explain the content of elementary mathematics. However, the 1980s round of reform seems to have been influenced by cognitive science. Terms related to cognition, such as “ability”, “cognition”, “number sense”, “spatial sense”, “to communicate”, “to understand”, appear frequently in these documents.

The 1985 California framework stated:

Mathematical power, which involves the ability to discern mathematical relationships, reason logically, and use mathematical techniques effectively, must be the central concern of mathematics education and must be the context in which skills are developed.... The goal of this framework is to structure mathematics education so that students experience the enjoyment and fascination of mathematics as they gain mathematical power. (pp. 1-2)

The 1989 NCTM standards suggested that to become mathematically literate involved five goals for students:

1. to value mathematics
2. to become confident in their ability to do mathematics
3. to become mathematical problem solvers
4. to learn to communicate mathematically
5. to learn to reason mathematically

The authors were convinced that if students are “exposed to the kinds of experience outlined in the Standards, they will gain mathematical power” (p. 5).

The structural type of the NCTM standards was visibly influenced by the earlier California frameworks. Although the frameworks referred to “strands” or “areas” and the standards referred to “standards”, these items were organized in very similar ways. Via the NCTM standards, the strands structure that originated in the first California framework had a national impact. Wilson wrote:

The boundaries between the national and California discussions of mathematics education and its reform were porous and permeable. It was hard—as observers—to separate those discussions and to determine where ideas originated.... Many California schoolteachers were part of the writing of and the reaction to the development of the NCTM 1989 Standards. (2003, p. 127)

Although it was based on the 1980 Addendum, the 1985 framework had a new kind of item: “major areas of emphasis that are reflected throughout the framework” (CSDE, 1985, p. 2), which occurred before the discussion of the strands. There were five of these areas:

1. problem solving
2. calculator technology
3. computational skills
4. estimation and mental arithmetic
5. computers in mathematics education

The 1985 framework changed some of the strands. “Problem solving/application” changed from a strand to a major area of emphasis and a new strand called “Algebra” was added. Some strands had their names changed: “Arithmetic, number and operation” to “Number”; “Relations and functions” to “Patterns and functions”; “Logical thinking” changed back to “Logic”; “Probability and statistics” to “Statistics and probability”. In this way, five major “areas of emphasis” plus seven “strands” or “areas” became the twelve parts of the strands structure in the new framework.

This framework created a new kind of strands structure that had items and subitems. Under each strand a list of student understandings and actions was given. Although they were stated as objectives, their content suggested a partition of each strand. For example, under “Number” there are seven objectives. Under “Measurement” there are nine objectives. The 1985 framework had seven strands with forty-one objectives.

The NCTM 1989 standards used a similar structure. It set up thirteen standards:

Each standard starts with a statement of what mathematics the curriculum should include. This is followed by a description of the student activities associated with that mathematics and a discussion that includes instructional examples. (NCTM, 1989, p. 7)

Like the 1985 framework, the 1989 NCTM standards separated the thirteen standards into two groups. The first four standards formed one group shared by all the grades: “Mathematics as problem solving”, “Mathematics as communication”, “Mathematics as reasoning”, and “Mathematics as connections”. The remaining nine standards formed a group related to content, and their names differed by grade band. For example, the names of the K–4 standards were “Estimation”, “Number sense and numeration”, “Concepts of whole number operations”, “Geometry and spatial sense”, “Measurement”, “Statistics and probability”, “Fractions and decimals”, and “Patterns and relationships”.

Similar to the 1985 framework, the 1989 NCTM standards had several objectives listed for each standard. Thus, both the 1985 framework and the 1989 standards had two layers: items (strands or standards), each of which was followed by a bulleted list of more detailed subitems. In general, a teacher concerned about addressing the standards seems more likely to have attended to the bullets rather than to the more general strands or standards. For example, when a K–4 teacher sees the first standard, “Mathematics as problem solving”, he or she might think of one standard. When seeing the five bullets listed for this standard, the teacher’s attention may be attracted to these, because they are supposed to be implemented in teaching. Thus, the content and number of subitems may have a direct impact on classroom teaching.

Table 1 lists the thirteen standards and fifty-six bullets of the K–4 standards (NCTM, 1989, pp. 23–61).

If one has the patience to read all fifty-six bullets in Table 1, one will find that many descriptions are vague and the relationships of the bullets are not visible. Several items are hard to understand without further explanation, which the document does not give.

Some examples occur in Standard 8: Whole number computation which has as the last three of its four goals: relate the mathematical language and symbolism of operations to problem situations and informal language. Recognize that a wide variety of problem structures can be represented by a single operation. Develop operations sense.
Table 1. 1989 NCTM K–4 Standards and Bullets

<table>
<thead>
<tr>
<th>Standard 1: Mathematics as problem solving</th>
<th>Standard 7: Concepts of whole number operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Use problem-solving approaches to investigate and understand mathematical content;</td>
<td>28. Develop meaning for the operations by modeling and discussing a rich variety of problem situations;</td>
</tr>
<tr>
<td>2. Formulate problems from everyday and mathematical situations;</td>
<td>29. Relate the mathematical language and symbolism of operations to problem situations and informal language;</td>
</tr>
<tr>
<td>3. Develop and apply strategies to solve a wide variety of problems;</td>
<td>30. Recognize that a wide variety of problem structures can be represented by a single operation;</td>
</tr>
<tr>
<td>4. Verify and interpret results with respect to the original problem;</td>
<td>31. Develop operations sense.</td>
</tr>
<tr>
<td>5. Acquire confidence in using mathematics meaningfully.</td>
<td></td>
</tr>
</tbody>
</table>

Standard 2: Mathematics as communication

6. Relate physical materials, pictures, and diagrams to mathematical ideas;
7. Reflect on and clarify their thinking about mathematical ideas and situations;
8. Relate their everyday language to mathematical language and symbols;
9. Realize that representing, discussing, reading, writing, and listening to mathematics are a vital part of learning and using mathematics.

Standard 3: Mathematics as reasoning

10. Draw logical conclusions about mathematics;
11. Use models, known facts, properties, and relationships to explain their thinking;
12. Justify their answers and solution processes;
13. Use patterns and relationships to analyze mathematical situations;
14. Believe that mathematics makes sense.

Standard 4: Mathematical connections

15. Link conceptual and procedural knowledge;
16. Relate various representations of concepts or procedures to one answer;
17. Recognize relationships among different topics in mathematics;
18. Use mathematics in other curriculum areas;
19. Use mathematics in their daily lives.

Standard 5: Estimation

20. Explore estimation strategies;
21. Recognize when an estimate is appropriate;
22. Determine the reasonableness of results;
23. Apply estimation in working with quantities, measurement, computation, and problem solving.

Standard 6: Number sense and numeration

24. Construct number meanings through real-world experiences and the use of physical materials;
25. Understand our numeration system by relating counting, grouping, and place-value concepts
26. Develop number sense;
27. Interpret the multiple uses of numbers encountered in their real world.

Standard 7: Concepts of whole number operations

28. Develop meaning for the operations by modeling and discussing a rich variety of problem situations;
29. Relate the mathematical language and symbolism of operations to problem situations and informal language;
30. Recognize that a wide variety of problem structures can be represented by a single operation;
31. Develop operations sense.

Standard 8: Whole number computation

32. Model, explain, and develop reasonable proficiency with basic facts and algorithms;
33. Use a variety of mental computation and estimation techniques;
34. Use calculators in appropriate computational situations;
35. Select and use computation techniques appropriate to specific problems and determine whether the results are reasonable.

Standard 9: Geometry and spatial sense

36. Describe, model, draw, and classify shapes;
37. Investigate and predict the results of combining, subdividing, and changing shapes;
38. Develop spatial sense;
39. Relate geometric ideas to number and measurement ideas.

Standard 10: Measurement

41. Understand the attributes of length, capacity, weight, mass, area, volume, time, temperature, and angle;
42. Develop the process of measuring and concepts related to units of measurement;
43. Make and use estimates of measurement;
44. Make and use measurements in problem and everyday situation.

Standard 11: Statistics and probability

45. Collect, organize, and describe data;
46. Construct, read, and interpret displays of data;
47. Formulate and solve problems that involve collecting and analyzing data;
48. Explore concepts of chance.

Standard 12: Fractions and decimals

49. Develop concepts of fraction, mixed numbers, and decimals;
50. Develop number sense for fractions and decimals;
51. Use models to relate fractions to decimals and to find equivalent fractions;
52. Use models to explore operations on fractions and decimals;
53. Apply fractions and decimals to problem situations.

Standard 13: Patterns and relationships

54. Recognize, describe, extend, and create a wide variety of patterns;
55. Represent and describe mathematical relationships;
56. Explore the use of variables and open sentences to express relationships.
The 1989 NCTM standards were intended to guide teachers’ mathematics teaching by providing standards for curriculum and assessment. But, in my opinion, whether the reader is a curriculum designer, assessment creator, or teacher, these fifty-six bullets will be overwhelming and eventually ignored. Here I must point out that the strands structure opened the door for the existence of this disconnected list.

In 1992 California published a new mathematics framework in order to make the content taught in California closer to that described in the NCTM standards. These, in turn, had been inspired by the previous California framework.

A major disadvantage of representing the goals of elementary mathematics instruction in terms of cognitive actions or behaviors related to mathematics is that implementation of such descriptions is difficult. Of course mathematics learning is a cognitive activity. However, the descriptors of those cognitive activities are often vague and have multiple meanings, even for cognitive scientists. For example, “developing number sense” (bullet 26) is an important goal of the 1989 NCTM standards. However, what is number sense? There are so many interpretations it is hard to choose. In his article “Making sense of number sense”, Daniel Berch noted, “Gersten et al. pointed out that no two researchers define number sense in exactly the same way. What makes this situation even more problematic, however, is that cognitive scientists and math educators define the concept of number sense in very different ways” (2005, p. 333). Then “after perusing the relevant literature in the domains of mathematical cognition, cognitive development, and mathematics education,” Berch “compiled a list of presumed features of number sense” with thirty items, some of them quite different (2005, p. 334). To require teachers to work towards teaching goals which are so vaguely defined is not practical.

1999 California Framework, 2000 NCTM Standards: Establishment of Sub-subitems
In 1999 California published its sixth mathematics framework. In 2000 NCTM published its Principles and Standards for School Mathematics. The vision of these two documents differed from that of their three immediate predecessors. The computational skills deemphasized in the previous round of reform received more emphasis. The 1999 framework arranged mathematical content by grades and changed “strands” to “standards”. The 2000 NCTM standards reduced the previous thirteen standards to ten. The last five of these standards, which were similar to the first four standards of 1989, were called “process standards”. The first five were called “content standards”. Thus, for example, in 1989, “Mathematics as problem solving” was first in the list of thirteen standards. In 2000 “Problem solving” was sixth in the list of ten standards, suggesting a change in status.

In these two documents, items and subitems appeared as in previous documents, together with a new structural feature, sub-subitems. The 1999 framework had five standards. Each standard had subitems, and each subitem had sub-subitems. The 2000 NCTM standards retained the structure of the 1989 standards, with each standard partitioned into several goals. A new structural feature, however, was that under each content standard goal were listed several expectations. For example, in the pre K–2 grade band, the first standard, “Number and operation”, is partitioned into three goals. Together the three goals consist of twelve expectations. For pre K–2, the total number of goals for process standards and expectations for content standards is sixty-three. Thus, compared with the 1989 standards, although the number of standards was reduced, there was an increase in the number of the most specific items. The continued increases in the number of specific items in the strands structure may be an important reason why the U.S. elementary mathematics curriculum became broader and shallower.

In 2006, in order to change the “mile wide and inch deep” U.S. curriculum, NCTM made a significant move, publishing Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics (known as “Focal Points”), which provided “descriptions of the most significant mathematical concepts and skills at each grade level” (NCTM, 2006, p. 1). “Focal Points” adopted the approach of California’s 1999 framework of arranging content by grade rather than by grade band.

“Focal Points” gives three focal points for each year with detailed descriptions of each. This approach helps to emphasize a few ideas; however, given that the strands structure was retained, there is no single self-contained subject which serves as the core of the curriculum. The wide and shallow curriculum could become narrower because the number of items had been reduced, but narrowing does not automatically produce depth.

Conclusion

Notable Aspects of the Strands Structure: Not Stable, Not Continuous, Not Coherent
The big influence of the first California framework, “The Strands Report”, published during the new math movement, was to fundamentally change the structure of U.S. mathematics content from a core-subject structure to a strands structure. During the past few decades, although the names of items changed from “strands” to “areas” to “standards”, the strands structure has remained. The damage this structure has caused to U.S. elementary mathematics education is the instability of content,

learning to have continuity. This is an invisible but severe injury to students’ learning.

Incoherence among concepts. The many concepts of the present-day U.S. elementary curriculum do not cohere. Some come from current standards, and some remain from earlier standards. For example, although the new math movement has been dormant for a long time, some of its concepts remain in elementary education. For the meanings of the four operations on whole numbers and the concepts of addition and subtraction on whole numbers, the eleven models described by researchers who study children’s cognitive activity are popular. Concepts of multiplication on whole numbers include “repeated addition”, “equal-sized groups”, and various interpretations of “Cartesian product”. But concepts of the four operations on fractions are not described in ways that are connected to these operations on whole numbers.

The field of mathematics education has noticed this incoherence. Almost all of the ten frameworks and standards documents created since the 1960s mention the idea of unification. However, this unification was never widespread in school mathematics during these decades. In my opinion, the largest obstacle to unification is the strands structure. In order to get their textbooks adopted, publishers need to demonstrate adherence to state frameworks or standards. This is often done by using their categories and organization. If curriculum materials adhere to the strands structure without further unification of the concepts, then unification becomes the responsibility of teachers. Teachers who are able to do this must (1) have a unified and deep knowledge of the discipline of mathematics and (2) be very familiar with features of student learning. It is not impossible to produce people who meet these requirements, but it has a very high social cost. The quantity of elementary school mathematics teachers is so large that producing sufficient numbers of such people is an extremely difficult problem.

I think that readers will agree that these features—instability, discontinuity of teaching and learning, and incoherence among concepts—have damaged U.S. elementary student learning. These are inherent in the strands structure.

To Reconsider School Arithmetic and Its Potential: One Suggestion for U.S. Mathematics Education

Is there any subject that can unify the main content of elementary mathematics: the four operations on whole numbers and fractions, their algorithms, and quantitative relations? Yes, this is school arithmetic. U.S. scholars contributed to this arithmetic as it was being constructed, but it

22 For an example, see Ginsburg, Klein, & Starkey, 1998, pp. 437–438.
Since the early 1960s, from the new math until today, in U.S. elementary mathematics I see a trend of pursuing advanced concepts such as set theory, number theory, functions, and advanced cognitive abilities such as problem solving, mathematical thinking, and "thinking like a mathematician." During recent decades, efforts have been made to put algebra content into early grades. It seems that only by pursuing those advanced concepts and abilities can the quality of school mathematics be raised. However, together with the intent to pursue advanced concepts and cognitive abilities, we see "math phobia" among teachers and students.

One reason that U.S. elementary mathematics pursues advanced ideas is that the potential of school arithmetic to unify elementary mathematics is not sufficiently known. This is a blind spot for current U.S. elementary mathematics. One popular, but oversimplified, version of this trend is to consider arithmetic to be solely "basic computational skills" and consider these basic computational skills as equivalent to an inferior cognitive activity such as rote learning. Thus for many people arithmetic has become an ugly duckling, although in the eyes of mathematicians it is often a swan.

I would like to mention two things: (1) Some countries considered to have good mathematics education, such as Singapore, have elementary mathematics with arithmetic as its core subject; (2) The Russian elementary mathematics textbooks with algebraic content that have attracted attention from those concerned about U.S. elementary mathematics have an underlying theory of school arithmetic from grade 1 onward. The algebra content in the Russian elementary textbooks available in the U.S. is founded on this underlying theory. The precursor of school arithmetic was "commercial mathematics", a collection of algorithms without explanations for computing operations on whole numbers and fractions. This may not qualify as mathematics; however, after scholars built a theory in the manner of the Elements, commercial mathematics was reborn as a subject that embodied mathematical principles. The profound understanding of fundamental mathematics that I discuss in my book [Ma, 1999] is an understanding of this reborn arithmetic from a teacher's perspective. The Chinese elementary teachers that I interviewed for my book Knowing and Teaching Elementary Mathematics had not studied any advanced mathematics. However, most had a sound understanding of elementary mathematics. A subgroup of very experienced teachers (about 10 percent of my sample) had what I called a "profound understanding of fundamental mathematics." Their profound understanding was acquired by studying and teaching school mathematics with this arithmetic as its core. What I called "fundamental mathematics" is more accurately described as the foundation for learning mathematics. School arithmetic is the cornerstone of this foundation. Therefore, I suggest that U.S. elementary mathematics education reconsider school arithmetic, its content, and its potential in mathematics education.

Chinese Standards: A Cautionary Tale

In 2001 and 2012 China published mathematics curriculum standards (called, respectively, “experimental version” and “2011 version”). Reading these curriculum standards, we can see the authors' intent to have a Chinese character; however, it is obvious that they have borrowed significant ideas, wording, and writing style from the 1989 NCTM standards.

One of my main concerns is that Chinese curriculum standards, like the first California framework of 1963, may radically change the structure of Chinese elementary mathematics. The 2001 Chinese standards have four categories of general goals. These four categories and four areas are very similar to the two groups of standards in the 1989 Curriculum and Evaluation Standards. In this way, the previous Chinese core-subject elementary mathematics has been changed to a strands structure.

The eight items have the same noticeable features as the U.S. strands items: (1) there is no item that is a self-contained subject and (2) the relationships among the items are not described. Therefore, although there are phrases such as "connect", "tightly connected", and "interwoven", these phrases are used in a way that is similar to

Figure 6. Changes in Chinese Standards.

<table>
<thead>
<tr>
<th>2001 Chinese Standards</th>
<th>2011 Chinese Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Number sense</td>
<td>1. Number sense</td>
</tr>
<tr>
<td>2. Symbol sense</td>
<td>2. Disposition to attend to symbols</td>
</tr>
<tr>
<td>3. Spatial concepts</td>
<td>3. Spatial concepts</td>
</tr>
<tr>
<td>5. Disposition to apply mathematics</td>
<td>5. Data analysis concepts</td>
</tr>
<tr>
<td>6. Reasoning ability</td>
<td>6. Computational ability</td>
</tr>
<tr>
<td></td>
<td>7. Reasoning ability</td>
</tr>
<tr>
<td></td>
<td>8. Disposition to model</td>
</tr>
<tr>
<td></td>
<td>9. Disposition to apply mathematics</td>
</tr>
<tr>
<td></td>
<td>10. Disposition for innovation</td>
</tr>
</tbody>
</table>

23 See Chapter 6 of [Ma, 1999].
the “unify” and “consistent” discussed before; that is, they have no concrete referent. In this way Chinese elementary mathematics may follow U.S. elementary mathematics and step by step become unstable, inconsistent, and incoherent. In fact, the problems of the strands structure have already appeared in China.

We must note that the influence of structural change will be deep and long. Visions of education can be adjusted. Teaching methods can be revised. But if the structure of the subject to be taught decays, it is hard to restore it. No matter what direction mathematics education reform takes, we should not ignore questions about changes in the structure of the subject as it is organized and presented to teachers, curriculum designers, assessment developers, and others concerned with mathematics education.

Acknowledgments. Support from the Brookhill Foundation for the writing and editing of this article is gratefully acknowledged. It is part of a larger project supported by the Carnegie Foundation for the Advancement of Teaching while the author was a senior scholar there between 2001 and 2008. Thanks to Cathy Kessel for her work on editing this article, which included shaping of ideas as well as words. Thanks also to the reviewers for their comments on an earlier version of this article.

References: Standards Documents

California Frameworks
1963. *Summary of the Report of the Advisory Committee on Mathematics to the California State Curriculum Commission*
1972. *Mathematics Framework for California Public Schools, Kindergarten through Grade Eight*
1975. *Mathematics Framework for California Public Schools, Kindergarten through Grade Twelve*
1982. *Mathematics Framework and the 1980 Addendum for California Public Schools, Kindergarten through Grade Twelve*
1985. *Mathematics Framework for California Public Schools, Kindergarten through Grade Twelve*
1992. *Mathematics Framework for California Public Schools, Kindergarten through Grade Twelve*
1999. *Mathematics Framework for California Public Schools, Kindergarten through Grade Twelve*
2006. *Mathematics Framework for California Public Schools, Kindergarten through Grade Twelve*

NCTM Standards
2000. *Principles and Standards for School Mathematics*
2006. *Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics*

Chinese Mathematics Curriculum Standards

Other References
What Do Secondary Preservice Mathematics Teachers Need to Know? Content Courses Connecting Secondary and Tertiary Mathematics

Eileen Murray and Jon R. Star

The recently released report *The Mathematical Education of Teachers II (MET-II)* [Conference Board of the Mathematical Sciences (CBMS), 2012] notes that, while most secondary mathematics teachers major in mathematics, many of the courses taken focus on mathematics needed for graduate study or careers in business. Prospective mathematics teachers could be better served by courses that “provide opportunities for future teachers to learn the mathematics they need to know to be well-prepared beginning teachers who will continue to learn new mathematical content and deepen their understanding of familiar topics” [CBMS, 2012, p. 5]. At present we appear to be in an exciting period of innovation and experimentation in the development of such courses, as mathematicians with interest in secondary education have created a wide array of new courses designed specifically for mathematics majors studying to become teachers.

Teacher education programs include a variety of courses designed to improve teachers’ knowledge. These courses fall largely into two categories: mathematics courses offered by mathematics departments and teaching methods courses offered by education departments. Many teaching methods courses have begun to incorporate content knowledge, especially as it relates to the mathematics prospective teachers will teach and the specialized mathematical knowledge needed for the specific tasks of teaching [Ball, Thames, and Phelps, 2008]. Yet there does not appear to have been substantial change in the types of mathematics content courses that prospective teachers (as mathematics majors) take, with one exception. There are a growing number of courses offered by mathematics departments where prospective teachers learn new mathematics while simultaneously building connections between tertiary and secondary mathematics. These *connections courses* are presumed to help prospective secondary mathematics teachers (PSMT) situate and motivate the mathematics that they will teach.

The impetus for the increasing number of connections courses has come about for at least two reasons. First, research over the past twenty-plus years has articulated the need for such knowledge, expanded our thinking about what mathematics teachers need to know, and pushed us to think about how this knowledge develops. Second, we see an increasing number of productive and sustained collaborations between mathematicians and mathematics educators, such that many in the...
mathematics community are now engaged in efforts to improve K–12 mathematics education.

To better understand the landscape of connections courses, we conducted an informal survey of institutions to uncover some of the innovative courses that are currently offered to PSMT. We looked at department websites, spoke with colleagues in mathematics and mathematics education, collected syllabi, and interviewed course instructors. We concluded that the landscape of connections courses appears to be composed of two distinct types of courses: (a) secondary mathematics from an advanced standpoint and (b) tertiary mathematics with connections.

In secondary mathematics from an advanced standpoint courses, secondary mathematics topics are covered at a level of depth and rigor suitable for undergraduate mathematics students, but the connections to the mathematics content PSMT will be teaching are explicitly investigated. Such focus allows teachers to see the importance of the mathematics they are required to take in undergraduate and contemplate pedagogical strategies that might support students’ thinking in ways that can make advanced mathematics more accessible.

For example, mathematicians and mathematics educators at Michigan State University (MSU) have developed a capstone course for mathematics majors planning on becoming secondary teachers. The course aims to deepen PSMT understanding of secondary mathematics by focusing specifically on analysis and algebra, as well as to help PSMT describe the connections among secondary topics and connections between secondary and tertiary mathematics. Since the course is an upper-level mathematics course, it is not simply a high school mathematics class, but one that (according to the course syllabus) provides students “insight and understanding of high school mathematics from the viewpoint of junior/senior-level college mathematics.” Objectives include analyses of alternative approaches to mathematical ideas, extensions and generalizations of familiar theorems, and discussions of relations between topics studied in this course and contemporary high school curricula.

To achieve these objectives, the MSU course uses two textbooks: Mathematics for High School Teachers—An Advanced Perspective [Usiskin et al., 2002] and Field Theory and Its Classical Problems [Hadlock, 1979]. The first textbook approaches secondary topics using tertiary mathematics, such as by considering algebraic structures and solving equations by considering seemingly simple questions such as, When do the equations $a + x = b$ and $ax = b$ have solutions? When are those solutions unique? When are there no solutions? These questions extend high school algebra to abstract algebra through the generalization of the operations of addition and subtraction to any binary operation. Such explorations can deepen teachers’ knowledge about solving equations and the nature of solutions.

The second textbook delves into interesting problems in Galois theory but requires nothing more than knowledge of calculus and linear algebra. Hadlock illustrates connections between tertiary and secondary mathematics by discussing classical Greek problems that are presented in high school but never proved (e.g., trisecting an angle) and by devoting significant attention to polynomials, a secondary topic, using fields and field extensions. When approaching classical problems, the course prompts MSU students to create a bridge between the mathematics they will teach and solutions that may require more complex mathematics.

The second type of connections course, tertiary mathematics with connections, aims to provide PSMT with the knowledge necessary to teach mathematics effectively by beginning with tertiary content and subsequently focusing on the importance of these topics within secondary mathematics. These courses generally focus on one content area, such as algebra, real analysis, or geometry, which appears to be most relevant to high school teaching. The courses largely use advanced textbooks, and connections are drawn from class discussion or supplementary materials usually written by the instructor.

For example, the University of Illinois-Chicago offers a tertiary-mathematics-with-connections course in real analysis for PSMT, Mathematical Analysis for Teachers. The goals are to provide PSMT with the knowledge necessary to teach mathematics effectively by beginning with tertiary content and subsequently focusing on the importance of these topics within secondary mathematics. These courses generally focus on one content area, such as algebra, real analysis, or geometry, which appears to be most relevant to high school teaching. The courses largely use advanced textbooks, and connections are drawn from class discussion or supplementary materials usually written by the instructor.

Secondary mathematics teachers need deep knowledge of mathematics to be effective. Recent policy documents, including the MET-II report,
make clear that secondary mathematics teachers not only need high-quality content courses but also a set of different kinds of learning experiences that help make connections between tertiary and secondary mathematics.

We have focused on two types of courses: secondary mathematics from an advanced standpoint and tertiary mathematics with connections. While we feel confident in the legitimacy of these two categories of connections courses, we acknowledge that there may be courses and categories we were unable to detect in our inquiry. However, our goal was to try to capture the range of what might exist at present, showcase some of the courses that are working to build specific content knowledge for PSMT, and stimulate dialogue. We hope that our work can become a springboard for more systematic analyses of the spectrum of content courses now being offered and developed across the U.S. We believe that these courses can help prepare our future mathematics teachers by building a strong foundation of mathematical content knowledge.

References
Principles for Implementing a Potential Solution to the Middle East Conflict

Thomas L. Saaty and H. J. Zoffer

Introduction
The purpose of this paper is to show how the Analytic Hierarchy Process (AHP) applies mathematics to deal with the most complex problems of the world in a comprehensive and holistic way—in this case the Israeli-Palestinian conflict. This process has been helpful in finding solutions to some of the world’s most complex struggles, including those in South Africa and Northern Ireland. But it has not been used extensively to address the Middle East conflict because of the unique aspects of that struggle.

Five years ago, we began preliminary work to organize the excruciatingly difficult issues associated with that six-decades-old confrontation. We began by testing how this retributive conflict (one in which both sides profess to desiring a solution but are equally committed to inflicting pain on the other party) could be profitably addressed by the AHP. This paper should serve as an illustration of how mathematics can help quantify the value of tradeoffs through relative scales (priorities derived from pairwise comparison judgments). The reader can find the mathematical foundations of the theory in an article recently published by the first author in these Notices in February 2013 [3]; see also [4]. Figure 1 shows a map of Israel and Palestine as the borders currently exist, as well as the countries which share borders with them. The other figures are self-explanatory.

Figure 1. Israel and Palestine.

Figure 2. The ancient Wailing Wall.
The advantages of the AHP in dealing with conflicts were detailed in our earlier papers [1, 2], but for those unfamiliar with the AHP, suffice it to say that the process creatively decomposes complex issues into smaller and more manageable segments. It also minimizes the impact of unrestrained emotions by imposing a mathematical construct, pairwise comparisons, and prioritization with a numerical ordering of the issues and concessions. Ultimately, the process yields tradeoffs that are quantitatively developed to equate costs and benefits for each side that ensure a fair solution. No other approach can produce similar outcomes and measure a category of factors, including both tangible and intangible items. All of this can occur without the bloody confrontations that are reflective of the face-to-face negotiations previously used to address this situation.

The intuitive idea behind the AHP is as follows. The AHP uses what is known as a fundamental scale of absolute numbers derived from stimulus-response theory to quantify judgments in making reciprocal pairwise comparisons of elements in a matrix as to dominance with respect to a given property. Using this scale of numbers, priorities of the relative dominance of each element over all the others are then derived using the normalized sum of all the numbers in each row. These numbers indicate how much each element dominates every other element. But all the elements are not equally important. If we knew how important they are, we would use that priority of importance to weight each judgment and then add the weighted numbers in each row and get these priorities back. Not knowing the priorities, we start by assuming that all the elements are equally important and use the same constant number to weight the judgments in each row and add over that row. Doing that, we get a first estimate of the priorities. This estimate comprises the exact priorities when we have measurements. But, when we don’t have measurements, we have an estimate of the priorities again used to weight the judgments in each row and sum the weighted numbers in each row to get a new estimate of the priorities of the elements. We stop if the first set of priorities is identical to the second set. Otherwise, we again use this second set of priorities to weight the judgments in each row and add the weighted numbers to get a third estimate. We continue the process until the last estimate of the priorities is close enough for our need for accuracy to the one before it. Now we have the priorities we are looking for. Computing the principal eigenvector does exactly what we just described above.

From individual judgments one derives a representative group judgment by using the geometric mean and also, when necessary, by using the priorities of the wisdom of the judges to raise their quantitative judgments to the power of their priority. This contradicts Arrow’s theory which proves the impossibility of combining individual judgments if one uses only “A is preferred to B” or “B is preferred to A”.

A referee observed that Notices is about mathematics and the AHP has a very sophisticated mathematics at its core, but space limitations make it hard to dwell both on the details of the AHP and those of the application involved.
Making Peace without Peacemakers

Why has the Middle East conflict proved impervious to all blandishments in every negotiation and to the pressures from internal and external policymakers for so many decades?

It is not because no one has identified a potential solution that would achieve an end to the most complex conflict of our time. Indeed, more presidents, prime ministers, special envoys, journalists, and academics have devoted their time and effort to pursuing success in resolving this problem than perhaps any other modern-day controversy. The truth of the matter is that some of those most closely and intimately involved with the process believe that the outline for the settlement is generally well known and cries out for implementation.

One could say that the closer one comes to a reasonable solution, the less likelihood there seems to be of a commonly accepted willingness to achieve the potential of the work that has been done. The war of words continues to suggest that each side in the Middle East controversy is willing and able to achieve a solution, but when the feet hit the ground, there is always an impediment, a prerequisite, a new complaint, or an aggravating opinion expressed by the other side.

Let us now examine in depth the potential disposition of the parties involved. It seems logical that in any controversy where resources, fiscal and human, are at risk that the parties would inevitably seek peace to benefit their communities and the people they represent. The fact that these parties have been willing to fail to conclude what is fast approaching another hundred-years war must mean that there are factors in place that are not generally spoken about. It is impossible to know exactly whether these factors are or are not at work, but in the interest of transparency, our offering a set of suppositions at least exposes some possible reasons why progress has been so impeded.

The first factor that needs identifying is the difference in power between the parties. While many may deny the impact of the power differential, what seems clear is that most of the power function resides in the Israeli community. The second factor is the supposition that delaying settlement of the controversy has some advantages for both sides. A third factor may be that the Israeli government is so committed to the problem posed for them by Iran that they see this as a higher-priority issue than making immediate peace with the Palestinians. A fourth factor may be a feeling on one or both sides that, in spite of protestations to the contrary, the current American administration is not totally supportive of either the Israeli or Palestinian position. A fifth factor may apply only to the Palestinian side and relates to the question of a one-state or a two-state solution. While most analysts of the situation believe that only a two-state solution has any chance of a long-lasting peace, there are some who believe that a single state has many advantages, particularly for the Palestinians. Israelis feel that it is totally unacceptable, because birthrate factors will eventually yield a Palestinian majority.

The foregoing factors are purely speculative and may or may not account for the lack of progress in achieving a peaceful solution. For whatever reason, which may include or not include factors noted above, there has been a noticeable reluctance on the part of both sides to extend themselves to achieve peace.

Why Use the Analytic Hierarchy Process

In other applications of the AHP where the problem addressed was the resolution of a conflict, it was not always necessary to go into a second stage of detail to develop an implementation plan. That is, when the final analysis was completed, it was clear what the optimal solution would be based on the judgments of the participants. However, in the case of the Israeli-Palestinian conflict, it seems clear that an agreement as to the optimal solution represents the first stage in a two-stage process.

The question of dissemination of results is a tricky matter. In spite of the willingness of participants to present an agreed-upon outcome to their governments, those currently in charge may resist the process because of a variety of political reasons. It will be a challenge to engage United States or European Union diplomats to apply pressure on the parties to allow the process to be officially condoned using representatives that the leaders appoint. Obviously, there is a long shot that the implementable solution devised by the current participants will be accepted by the respective parties. But, even if it is not, the leaders will be under some pressure to allow the AHP to be used with official blessings. All of this depends on the current Pittsburgh Principles being successfully implemented to yield an acceptable solution, even if it is only one of the possible solutions.

Admittedly, we have been focusing on the process itself rather than on the solution, since the participants were not official representatives of their governments. But their willingness to take the principles and the subsequent implementation agreement to their respective governments to show them that a feasible potential solution exists gives us hope that what we thought would be a virtual solution might actually yield a proposal that can be considered by both governments.

One might ask why it is that so many distinguished politicians and negotiators have failed to
reach consensus after sixty years of trying. Here are some possible reasons:

1. They had no way to measure the importance and value of intangible factors which can dominate the process.
2. They had no overall unifying structure to organize and prioritize issues and concessions.
3. They had no mechanism to trade off concessions by measuring their worth.
4. They had no way to capture each party’s perception of the other side’s benefits and costs.
5. They had no way to provide confidence to the other party that the opposing party is not gaining more than they are.
6. They had no way to avoid the effect of intense emotions and innuendoes which negatively affect the negotiation process.
7. They had no way to test the sensitivity and stability of the solution to changes in their judgments with respect to the importance of the factors that determined the best outcome.

It is not a coincidence that the Analytic Hierarchy Process addresses each of these reasons in a comprehensive and deliberate way, thus eliminating many of the obstructions for moving forward to identify an equitable solution.

We report here on a meeting of the two sides that was held in Pittsburgh, Pennsylvania, in August 2011. Much to the participants’ surprise, the process itself had created an environment in which finding common ground was far more possible than at the beginning of the seminar. The participants began very tentatively to explore the wording of each principle so it was acceptable to the other side. At the end of the seminar they found ten major issues on which they could reach agreement and wording acceptable to each side. Each group worked separately in articulating these principles, and the coordinators of each group went back and forth between the groups to modify the wording of each principle so it was acceptable to the other side. At the end of the seminar they had total agreement on ten principles, which they proudly dubbed the “Pittsburgh Principles”.

It seems clear that while we have achieved important milestones in addressing the structure of the conflict and identification of the issues and possible concessions, there remains a complex implementation process that needs to be addressed. In general, the current status of the planning literature has not paid sufficient attention to the crucial task of implementing carefully drawn plans. It is equally apparent that the “devil” is indeed “in the details”. We are optimistic that these participants have developed trust and camaraderie as a result of their week in Pittsburgh wrestling with the AHP. The likelihood of success in coming to agreement on implementation strategies is substantially enhanced as a result of their prior interactions.

In planning for the implementation seminar that we report on here, we intend to take advantage of the expertise of those in both communities who have specialized knowledge of the matters noted in the Principles. These experts will provide written papers, probably often in disagreement, for the participants to review prior to their arriving in Pittsburgh. It will be necessary to engage in a number of AHP analyses before arriving at an agreed-upon implementation plan. This will be a complex and comprehensive initiative but one that will yield a suggested solution to the controversy if these participants had been officially designated by their respective governments.

The Retributive Function and Tradeoffs

Given the entrenchment of both sides, a negotiator has an opportunity in an appropriate setting to call attention to the gap between the perceived benefits and costs of the concessions made by both sides and to help each party to reach a conclusion through the introduction of “bargaining chips”. In the negotiation setting, if A and B are participants, then A considers a particular concession not only with respect to the incremental benefit (cost) to A but also the cost (benefit) to B in providing (receiving) the concession. The greater the perceived cost of each concession to B, the greater the value of that concession to A.

Hence A’s gain from a given concession from B may be described as the product of A’s benefits and B’s costs (as perceived by A). We have the following ratios for the two parties A and B:

\[
A\text{'s ratio: } \frac{\text{Gain to } A \text{ from } B\text{'s Concession}}{A\text{'s Perception of } B\text{'s Gain from } A\text{'s Concession}} = \frac{\sum A\text{'s Benefits from } B\text{'s Concession} - A\text{'s Costs from } B\text{'s Concession}}{\sum B\text{'s Perceived Benefits from } A\text{'s Concession} - \text{Gain to } A\text{}}
\]

where \(\sum \) is the sum over all the benefits obtained by A in the numerator and by B in the denominator. Hence, given A’s ratio, A’s gain is a product of both the utility benefit received and the cost to B in providing that benefit as described in the numerator of the equation. The total gain to A is diminished by the product of the cost to A in concessions given to B and the perception of the benefit received by B for A’s concessions in the
denominator. A’s benefits and costs are readily measured by A; however, the costs and gains to B are not readily available to A and are therefore estimated as perceived by A. A expects to have a gain ratio greater than one, which suggests that the gains to A are greater than the perceived benefits to B. Likewise, B expects to have a gain ratio greater than one. For equality in “trade” to be achieved, the two parties should be nearly equal in value, which suggests that the two gain as much as the perceived benefits to and costs of concessions to the other. B’s utility is given by the function:

\[
\text{(According to B’s perceptions)}
\]

\[
B’s \text{ ratio:} \quad \frac{G\text{ain to B from A’s Concession}}{G\text{ain to B from A’s Concession}} = \frac{\sum B’s \text{ Benefits} \times A’s \text{ Costs from A’s Concession}}{A’s \text{ Perception of B’s Concession}} = \frac{\sum A’s \text{ Perceived Benefits} \times B’s \text{ Costs from B’s Concession}}{B’s \text{ Perceived Benefits}}
\]

The measure of equality between the parties in the trade of concessions may be calculated as the ratio of the two ratios.

The retributive gain is the amount that A benefits from making B “pay”, while a loss is accounted for by the amount that A “lost” in the negotiation process. Under no circumstance would we expect A to agree to concessions when there is a perceived loss when A has dominance over B. In the case where A has dominance over B, B is the best that B can do is minimize the disparity in gains.

How to Select Concessions from One Party to Match Concessions from Another Party

To decide how to match the concessions of one party with the concessions from another party we need to first create all possible concession bundles for both parties. A concession bundle is a set of individual concessions. The parties can then trade concession bundles. The problem is that there are many possible concession bundles even when the parties in conflict have a moderately small number of possible concessions. For example, if one party had 13 concessions and another had 14 concessions, there are 8,191 and 16,383 possible concession bundles, respectively. Since we need to match a bundle of one party with all possible bundles of the other party to determine which concession bundle is more advantageous, we need to solve 7,563 matching problems for one party and 14,787 problems for the other party. The problem would be even more difficult to solve, because the problem would involve 8191 × 16383 = 134,193,153 variables. A possible solution is to divide the concessions into groups, such as short, medium, and long-term sets, and then form the bundles.

Let \(C_A \) and \(C_B \) be the set of concession bundles of two parties A and B in a conflict. Let \(c_{ij}(k) \) be the \(i \)th concession bundle of party \(k \). Let \(p(i, A | j, B) \) be the ratio gain from the \(i \)th concession bundle of party A when party B offers the \(j \)th concession. Let \(q(j, B | i, A) \) be the ratio gain from the \(j \)th concession bundle of party B when party A offers the \(i \)th concession. Let \(x_{ij} \) be a binary variable where \(x_{ij} = 1 \) if the \(i \)th concession bundle of A is matched with the \(j \)th concession bundle of B.

Concession bundles from one party can be paired with concession bundles of the other party. Thus, the total gain of party A is given by \(\sum_{i \in C_A} \sum_{j \in C_B} p(i, A | j, B) x_{ij} \), and the total gain of party B is given by \(\sum_{j \in C_B} \sum_{i \in C_A} q(j, B | i, A) x_{ij} \). To balance both gains and provide both parties with the maximum gain, we solve a MaxMin problem, i.e., a maximization model whose objective function is an arbitrary variable such that \(\sum_{i \in C_A} \sum_{j \in C_B} p(i, A | j, B) x_{ij} \geq x_0 \) and \(\sum_{j \in C_B} \sum_{i \in C_A} q(j, B | i, A) x_{ij} \geq x_0 \). If all the concessions are matched, then \(\sum_{i \in C_A} x_{ij} = 1 \) and \(\sum_{j \in C_B} x_{ij} = 1 \). If only a subset of \(S_A \subseteq C_A \) is matched with \(C_B \), then \(\sum_{j \in C_B} x_{ij} = 1 \) for \(i \in S_A \) and \(\sum_{i \in C_A} x_{ij} = 1 \). If only a subset \(S_A \subseteq C_A \) is matched with a subset \(S_B \subseteq C_B \), then \(\sum_{i \in S_A} x_{ij} = 1 \) for \(i \in S_A \) and \(\sum_{j \in S_B} x_{ij} = 1 \) for \(j \in S_B \).

Outcomes of the August 2011 Meeting

The details of applying the AHP process to the conflict in South Africa and its implementation, to that in Northern Ireland, and to the Israeli-Palestinian conflict have been outlined in several
articles published over the past several years. For this reason they will not be repeated here. The major difference between the earlier experiments and the August 2011 meeting in Pittsburgh is that the participants in the latest meeting were all residents of either Israel or Palestine and were well known in their communities for their involvement in and knowledge of the multitude of negotiations between the parties. They represented a level of involvement not previously possible in earlier meetings. In addition, the process was carried to a conclusion that yielded principles for an ultimate solution to the problem.

One of the first tasks the participants faced was identifying all possible issues that were required to be addressed, if peace was to be a reality. In earlier experiments with this approach we identified more than a hundred such issues. They were then categorized into a number of groupings. The participants in this meeting reviewed these groupings and added and deleted issues according to their relevance. The final list of issues is shown in Table 1.

We then considered all of the possible concessions that each side might make to address these issues in seeking an acceptable solution. No possible concession was to be ignored, no matter how unlikely it was that one side or the other would agree to such a concession. Participants were free to suggest concessions they could make or the other side could make. This is one of the basic components of the AHP process: namely, that neither side can deny the other side the opportunity to present concessions they feel are relevant to the discussion.

The August 2011 participants were furnished with a list of concessions that earlier meetings had identified, and they were asked to add any other concessions that they could conceive of. When this process was completed, the list of possible concessions for consideration was as in Table 1a.

The listing of issues and possible concessions is only the first step in beginning the AHP process. Eventually the Israeli participants will determine the gains to the Israelis from the Palestinian concessions, the Israeli costs from the Israeli concessions, the Israeli perception of Palestinian gains from Israeli concessions, and the Israeli perception of Palestinian gains from Israeli concessions. Similarly, the Palestinian participants will determine the Palestinian gains from Israeli concessions, the Palestinian costs from Palestinian concessions, Palestinian perception of Israeli gains from Palestinian concessions, and the Palestinian perception of Israeli costs from Israeli concessions.

The process continues with the participants on each side identifying a set of criteria for their side for each of the four concerns mentioned above. Each participant makes pairwise comparisons of the criteria as to their importance in serving the goal of that party in deciding on benefits and costs. Then they rate the importance of each concession, one at a time, with respect to each criterion in terms of how strongly it contributes to that criterion.

Table 2 shows how this process works. Participants evaluate each criterion against all the others in terms of the dominance of a criterion on the left with respect to a criterion at the top, here only identified by the number of each criterion on the left. There are five elements in each cell which represent the judgments of the five participants in the same order on the one-to-nine fundamental scale of the AHP. The number "one" in the cell where the criterion is compared with itself automatically represents the judgments of all the participants and could have been shown as five separate "ones". Reciprocals are automatically entered in the position where the first element of a comparison was the second one in an earlier comparison and the second element was the first in the earlier comparison. Thus if A dominates B five times, then B dominates A with the reciprocal value 1/5 times. The diagonal itself consists of "ones". This explains why the bottom part below the main diagonal in the table is left blank, because it is understood to be made of reciprocal values to those above the main diagonal.

The next problem is how to combine the five judgments in each cell into a single judgment that represents the group as a whole. The arithmetic mean does not work to combine numbers into a single number whose reciprocal value is equal to one obtained by applying the arithmetic mean to the reciprocal values of those numbers. However, the geometric mean turns out to be the only way to make the reciprocal of a synthesized value of a set of judgments equal to the synthesized value of the reciprocal judgments. Table 3 gives those synthesized values with their reciprocals below the main diagonal. The column on the right gives the priorities of the elements in these comparisons.

The foregoing two tables were developed to obtain priorities for Israeli gains from Palestinian concessions. There are seven other sets of tables, not shown here, from which priorities, as in the last column of the second table mentioned above, are similarly obtained. These priorities are each listed immediately below their criteria on top of each of the following eight tables for the evaluation of concessions. For example, the priority for Integrity and Unity of Israeli Society Post Agreement, is .0753, as shown in Table 3. This same value appears underneath that criterion in Table 4a. Thus the eight tables (Tables 4a–4d, 5a–5d) represent the criteria listed at the top with their priorities listed immediately below them. The priorities of the
criteria in each table sum to 1. The concessions are listed at the left of each table. Under the word “Score” in each of the tables is the column of synthesized priorities of each concession, obtained by weighting the score of the concession in each row by the corresponding priority of that criterion and adding. For example, the score of concession 1 is

\[
0.8905 = 0.95 \times 0.753 + 0.78 \times 1.636 + 0.49 \\
\times 0.477 + 0.782 \times 0.397 + 0.96 \times 0.2216 + 0.98 \\
\times 0.654 + 0.96 \times 0.529 + 0.78 \times 0.959 + 1.0 \\
\times 1.899 + 0.93 \times 0.479.
\]

We have included the full complement of tables so that the reader can trace the origins of the numbers.

Tables 6a and 6b summarize the gains and losses of each side. In each of the columns of scores in the previous tables we divided by the largest entry in that column to obtain the two tables below. Columns four and seven in each table are the product of the two columns to their left multiplied by one thousand to make them more manageable without changing their relative values.

For the Israelis, for example, for a given concession, to trade it with a concession from the Palestinians, we compute the gain-to-loss ratio by multiplying the numbers in the fourth and seventh columns for the Palestinian concession and dividing it by the corresponding product of the fourth and seventh columns of the first table for the Israeli concession. If the ratio is less than one, there is no trade and a zero is assigned to the ratio. If the ratio is more than one, then the trade could take place, provided that the gain-to-loss ratio of the Palestinians is also greater than one and within a reasonably defined percentage from the Israeli ratio. Note that one can do the same for several concessions for one party, but this requires the use of an optimization model to find out how the concessions map against each other.

In the table where the Israeli and Palestinian concessions are matched, the numbers to the right of the concessions correspond to the Israeli and Palestinian ratios, respectively, obtained from Tables 7a and 7b. For example, the Israeli concession “Comply with all UN applicable resolutions” when matched with the Palestinian concession yields a ratio equal to 1.062 located in the (12, 6) position of the Israeli’s ratios table. Similarly, the corresponding Palestinian ratio for this concession in the Palestinian’s ratios table position (12, 6) yields a value equal to 1.052. These concessions were coupled for tradeoff because their ratios satisfy the closeness criterion of being within no more than 1% of each other. The model [6] produces this result.

\[
\text{Israeli Ratio for (I-12, P-6)}:
\]

\[
\text{Gain to I’s from P’s Concession #6} \\
\text{I’s perception of P’s gain from I’s Concession #12} \\
= \frac{I’s\ benefits (0.8741) \times I’s\ perception\ of\ P’s\ costs\ (1)}{I’s\ costs (0.8596) \times I’s\ perception\ of\ P’s\ benefits\ (0.9571)} \\
= \frac{0.8741}{0.8228} = 1.062.
\]

\[
\text{Palestinian Ratio for (P-6, I-12)}:
\]

\[
\text{Gain to P’s from I’s Concession #12} \\
P’s\ perception\ of\ I’s\ gain\ from\ P’s\ Concession\ #6 \\
= \frac{P’s\ benefits (0.9787) \times P’s\ perception\ of\ I’s\ costs\ (0.9075)}{P’s\ costs (0.90353) \times P’s\ perception\ of\ I’s\ benefits\ (0.9343)} \\
= \frac{0.8882}{0.8443} = 1.052.
\]

Similarly, ratios for the tradeoff of all single concessions were computed and matched for their values. Only those that were within 1% of each other were selected. This process yielded a few tradeoffs. The percentage limitation was then extended to 5% and then to 10% and corresponding concessions were selected. The total trading value for each side using these three percentage values yielded virtually equivalent totals, shown at the bottom of Table 8a, indicating that the process performed well.

Once this information was available to the participants, they were then asked to identify the six most important concessions that the other side could make. The Israelis chose the six concessions, they would most like to see the Palestinians make, and the Palestinians chose the six concessions they would most like to see the Israelis make. These are listed in Table 10 according to the numbered order in the list of concessions shown earlier in the paper. This listing is not related to any sort of tradeoff nor with regard to the importance of the concessions. However, the inclusion of any concessions on either side in this listing is indicative of the fact that both sides considered them to be significant concessions. If only one side felt a concession was significant, it was not included in the listing.

The participants in the seminar saw only table 8a. When we finished trading off one concession against another concession, there still remained a number of concessions that had not been traded off. However, it was possible to conclude the analysis by using the one-on-one tradeoffs.

The principal investigators wondered whether bundling two or three concessions together might provide an even more precise outcome to the process. Following the seminar we developed Tables 8b and 8c in a similar way for trading off two and three concessions at a time, respectively. It is significant to note that it can happen in the one-on-one tradeoff procedure that some concessions are not addressed because one or both parties do not consider them important. However, when trading off two against two or
three against three, these concessions add some positive value to the tradeoff. Our analysis suggests that, by including the two-against-two and three-against-three analyses, the process does not yield significantly incremental improvement over the one-on-one process, though it does make use of more concessions and extends the process to its ultimate conclusion. While it is speculative as to whether the final outcome might have changed, it is not the final outcome that we were emphasizing. It was whether or not the AHP process could yield a fair solution to the controversy.

Frequently in conflicts there are controversial issues that one side feels have more significance than the other side does and thus lead to frustration and prolonged disagreement. The AHP provides an opportunity to include many of these issues through bundling to avoid the criticism that these issues are ignored.

Development of the Pittsburgh Principles
The participants carefully considered the information on tradeoffs, which was presented in Table 8a. The majority of concessions were traded off within the limitations of the process. Some were traded off within 1% limitations, and others with 5% and 10% limitations. If this had been an exercise where the participants had been chosen by the principals on each side, the next step would have been to examine the tradeoffs and begin to produce a solution to the controversy. But the participants knew that there remained the major task of addressing implementation issues, which had impeded the success of other peace programs. They felt that, in the absence of an implementation structure, the best they could do was to see if there was any agreement on basic principles.

This discussion began with the participants identifying, in their judgment, the six most crucial concessions that the other side could make. This led to slight changes in wording that did not change the essential meaning of the concessions. The Palestinians identified six concessions which represented particularly important actions on the part of the Israelis. Similarly, the Israelis identified what they thought to be the most important concessions which the Palestinians could make to further the cause of peace. Both Palestinian and Israeli concessions are shown in Table 10.

The participants recognized that, if their work was to be completed, they would need to spend at least another week using the AHP process to create an implementation plan for the Pittsburgh Principles. They indicated that they would like to return to Pittsburgh to complete this work, even though the principal investigators offered them several options closer to their home territory.

Conclusions
It seems clear that, while we have achieved important milestones in addressing the structure of the conflict and identification of the issues and possible concessions, there remains a complex implementation process that needs to be addressed. In general, the current status of the planning literature has not paid sufficient attention to the crucial task of implementing carefully drawn plans. It is equally apparent that the “devil” is indeed “in the details”. We are optimistic that these participants have developed trust and camaraderie as a result of their week wrestling with the AHP. The likelihood of success in coming to agreement on implementation strategies is substantially enhanced as a result of their prior interactions.

In planning for the implementation seminar, we intend to take advantage of the expertise of those in both communities who have specialized knowledge of the matters noted in the Principles. These experts will provide written papers, probably often in disagreement, for the participants to review prior to their arriving in Pittsburgh. It will be necessary to engage in a number of AHP analyses before arriving at an agreed-upon implementation plan. This will be a complex and comprehensive initiative but one that will yield a suggested solution to the controversy if these participants have been officially designated by their respective governments.

The Pittsburgh Principles, which were the ultimate outcome of this experiment, may seem to be a modest statement, but in the eyes of the participants they were a daunting achievement. As one of the participants wrote in assessing his involvement in the seminar:

I participated in quite a few meetings with Palestinians in Palestine, and almost every country in Europe, including Belfast, Northern Ireland. They usually had a similar format: travel for the weekend, meet in a nice place and start talking. Very quickly, the polite conversation includes cynical and insulting comments, and eventually deteriorates to shouting at each other. The discussion ends with the rift as large as it was before the meeting and waiting for the next round of talks to narrow it. We have become “peace talkers”. We keep on talking without anything actually happening. Because of that, when I received the invitation, I was curious but also skeptical. After all, with so many failed attempts, it is difficult to remain optimistic. I told myself that the experiment might be challenging and interesting intellectually. So I accepted the invitation and everything since then is history.
Another participant who could not leave Pittsburgh without expressing his surprise and enthusiasm for the experiences he had undergone wrote to the principal investigators as follows:

I must admit that, before we started, I was skeptical about our chance to develop something serious, but it proved that I was wrong and we did develop a very impressive paper of principles which reflects what both sides accept at a moment of truth and will not accept if it is only to satisfy their political ambitions in front of the street demagogy. I must congratulate you that your theory worked well. I had been in hundreds of meetings between Israelis and Palestinians where we tried to reach a joint statement but failed because in most of the cases each side was trying to score points and court his own public opinion rather than being objective and try to be real and responsible.

Yet a third participant, after processing what he had been through in the prior week, admitted that he feared that the process would be somewhat academic and removed from the urgency of the moment. He wrote:

After a week with the senior figures you have impressively collected for this program, nothing seems more relevant and influential. This is the most serious engagement Israelis and Palestinian have had (considering the seniority of the political/professional level of participants). It has proven that a structured and fair process, handled by honest mediators, can and should work. The system offers, for the first time in the history of resolving this conflict, a smart way to quantify the emotional intangibles that have hindered past processes and help offset the regular positional bargaining dynamics.

With the kinds of responses noted above, the principal investigators feel emboldened to push forward to complete the final phase of this initiative. The participants represented experienced, significant, informed, and committed representatives of their communities. Their enthusiasm for the process outlined above gives us hope that there are yet new bandages to be applied to old wounds.

Some have said and argued quite convincingly that the time for a two-state solution has either passed or is very close to that position. While there may be several reasons for this argument, some of them seemingly valid, we believe that reducing the options available to the parties is counterproductive to producing a fair solution acceptable to both sides. The basis of the work done so far has rested on the conclusion of a previous AHP study made by Israelis and Palestinians that a two-state solution has the highest priority. The main danger in suggesting that a two-state solution is no longer an option, no matter how appealing that may be to some people, is that lack of a second viable option poses a serious impediment to the process yielding an equitable outcome to both sides.

Acknowledgment
We are grateful to the Benter Foundation for supporting this work and for being an advocate of solving the conflict in the Middle East.

References
<table>
<thead>
<tr>
<th>GEOGRAPHIC and DEMOGRAPHIC ISSUES</th>
<th>POLITICAL ISSUES</th>
<th>POLITICAL ISSUES Behavioral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access of Palestinians to Available Natural Resources</td>
<td>Accountability and Reasonability of Hamas in the Gaza Strip</td>
<td>Bad Faith Negotiations</td>
</tr>
<tr>
<td>Archeological Issues</td>
<td>Agreement on One-State Solution</td>
<td>Compromise</td>
</tr>
<tr>
<td>Golan Heights</td>
<td>Agreement on Two-State Solution</td>
<td>Confidence-Building Measures</td>
</tr>
<tr>
<td>How to Address the Palestinian Diaspora</td>
<td>AIPAC (American Israel Political Action Committee)</td>
<td>Corruption</td>
</tr>
<tr>
<td>How to Resettle Palestinian Refugees</td>
<td>American Politicians</td>
<td>Deception and Manufacturing of History</td>
</tr>
<tr>
<td>Immigration</td>
<td>Citizenship Rights of Palestinian Community in Israel</td>
<td>Equal Treatment of All Parties</td>
</tr>
<tr>
<td>Palestinian Access to the Mediterranean Sea</td>
<td>Colonialism</td>
<td>Ethnic Cleansing</td>
</tr>
<tr>
<td>Palestinian Problem of Split Land Mass between Gaza and the West Bank</td>
<td>Condemnation of Violence as a Tool of Negotiation</td>
<td>Harassment</td>
</tr>
<tr>
<td>Population</td>
<td>Control</td>
<td>Human Rights</td>
</tr>
<tr>
<td>Problems for Israel in Living in an Ocean of Arab Countries</td>
<td>Denunciation of Irrelevant United Nations Resolutions</td>
<td>Human Shields</td>
</tr>
<tr>
<td>Right of Palestinians to Return to Their Homes in Israel</td>
<td>European Acceptance of Responsibility for the Holocaust and Settlement of Israelis in Israel</td>
<td>Intermarriage</td>
</tr>
<tr>
<td>Rights of Palestinians to Israeli-Controlled Land</td>
<td>Funding of Terrorism</td>
<td>Learning to Forgive without Forgetting</td>
</tr>
<tr>
<td>Status of Israeli Settlements</td>
<td>Historical Legitimacy of Ownership of Land in the Area</td>
<td>Love</td>
</tr>
<tr>
<td>Water</td>
<td>How to Deal with Charges of Apartheid</td>
<td>Mutual Recognition of Rights of Each Party</td>
</tr>
<tr>
<td>ECONOMIC and BUSINESS ISSUES</td>
<td>International Relationships</td>
<td>Nonviolence</td>
</tr>
<tr>
<td>Compensation for Victims of Terrorism</td>
<td>Islamic State</td>
<td>Psychological Barriers</td>
</tr>
<tr>
<td>Compensation to Palestinians for Loss of Land</td>
<td>Jewish Refugee Issues</td>
<td>Psychological Damage</td>
</tr>
<tr>
<td>Dealing with Property Confiscation Issues</td>
<td>Mutual Compensation</td>
<td>Racism</td>
</tr>
<tr>
<td>Economic Choices</td>
<td>Problems Associated with Hamas</td>
<td>Recognition of the Holocaust</td>
</tr>
<tr>
<td>How to Resettle Palestinian Refugees</td>
<td>Residency Rights</td>
<td>Recognition of the Nakba Condition</td>
</tr>
<tr>
<td>Restitution</td>
<td>Role of the Druze in Negotiations</td>
<td>Religious Fundamentalism</td>
</tr>
<tr>
<td>EDUCATION ISSUES</td>
<td>Sovereignty</td>
<td>Representation of Women in the Negotiations</td>
</tr>
<tr>
<td>Education</td>
<td>Status of Israel</td>
<td>Respect</td>
</tr>
<tr>
<td>Incitement in the Educational School System</td>
<td>Status of Jerusalem</td>
<td>Subjugation and Humiliation</td>
</tr>
<tr>
<td>Indoctrination</td>
<td>Status of Palestinian Authority</td>
<td>Suicide Bombers</td>
</tr>
<tr>
<td>Industrial Parks</td>
<td>Status of Ramallah</td>
<td>Trust</td>
</tr>
<tr>
<td>Lack of Creativity and Problem Solving</td>
<td>Syrian Accommodation for Settlement of Palestinian Refugees</td>
<td>MILITARY ISSUES</td>
</tr>
<tr>
<td>Language Training</td>
<td>SOCIAL ISSUES</td>
<td>Arms Smuggling</td>
</tr>
<tr>
<td>Stolen Culture</td>
<td>Basic Human Needs</td>
<td>Disarmament</td>
</tr>
<tr>
<td>SECURITY ISSUES</td>
<td>RELIGIOUS and IDEOLOGICAL ISSUES</td>
<td>House Demolition</td>
</tr>
<tr>
<td>Bombing of Israeli Children</td>
<td>Armageddon</td>
<td>Invasion</td>
</tr>
<tr>
<td>Gilad Shalit (Release of Prisoners)</td>
<td>Christian Zionism (Evangelists)</td>
<td>Missile Building</td>
</tr>
<tr>
<td>Safe Passage</td>
<td>Holy Places</td>
<td>Nuclear Responsibility</td>
</tr>
<tr>
<td>Safety and Security</td>
<td>Jewish Zionism</td>
<td>War Crimes</td>
</tr>
<tr>
<td>Terrorism</td>
<td>Palestinian Christians</td>
<td>LEGAL ISSUES</td>
</tr>
<tr>
<td>The Wall</td>
<td>Religious Prophecy</td>
<td>International Law</td>
</tr>
<tr>
<td></td>
<td>Prisoners</td>
<td></td>
</tr>
<tr>
<td>Israelis’ Concessions</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Abandon the idea of a Jewish state</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Accept Palestinian full control of the borders of the Palestinian state and its outlets</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Accept the historical responsibility for the Palestinian refugee problem</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Accept the Palestinian refugees’ right to return</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Accept to abide by the status quo in the holy places in Jerusalem</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Accept to abolish the law of return</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Accept to respect the integrity of the West Bank and Gaza by allowing free and safe passage between the two areas</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Accept East Jerusalem as the capital of the Palestinian state</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Accept a two-state solution on the borders of June 4, 1967</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Allow all parties to have equal access to and control of religious sites and holy places</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Allow the sharing of all natural resources between Palestinians and Israelis</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Comply with all applicable UN resolutions</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Evacuate settlers of Jewish settlements on land claimed by the Palestinians with or without compensation</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Release all political prisoners, including those who are Israeli citizens</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Share Jerusalem as two capitals of two states</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Solve the Palestinian refugee problem in a just and agreed-upon manner</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Stop incitement by the religious and national education and religious leaders in Israel against Muslims and Arabs and guarantee the rights of Israeli minorities</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Palestinians’ Concessions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Accept mutually agreed-upon land swap</td>
</tr>
<tr>
<td>2</td>
<td>Accept settlers under Palestinian sovereignty as residents</td>
</tr>
<tr>
<td>3</td>
<td>Accept the temporary presence of a multinational military monitoring system in the Jordan Valley</td>
</tr>
<tr>
<td>4</td>
<td>Accept a two-state solution</td>
</tr>
<tr>
<td>5</td>
<td>Accept a two-state solution which includes a noncontiguous state</td>
</tr>
<tr>
<td>6</td>
<td>Acknowledge Israel’s existence as a Jewish state</td>
</tr>
<tr>
<td>7</td>
<td>Acknowledge Israel’s existence as an independent state</td>
</tr>
<tr>
<td>8</td>
<td>Agree to compromise on the demand of the right of return</td>
</tr>
<tr>
<td>9</td>
<td>Agree with Palestinian demilitarized state</td>
</tr>
<tr>
<td>10</td>
<td>Preserve the status quo in the holy places of Jerusalem</td>
</tr>
<tr>
<td>11</td>
<td>Allow Israel to use Palestinian airspace</td>
</tr>
<tr>
<td>12</td>
<td>Declare against Iranian nuclear development</td>
</tr>
<tr>
<td>13</td>
<td>Denounce and rein in violence</td>
</tr>
<tr>
<td>14</td>
<td>Denounce Iranian pursuit of nuclear arms and support Israeli effort to remove the threat</td>
</tr>
<tr>
<td>15</td>
<td>Lobby Arab states to allow both Israelis and Palestinians to have the right to return to their land of origin</td>
</tr>
<tr>
<td>16</td>
<td>Compromise on the status of Jerusalem</td>
</tr>
<tr>
<td>17</td>
<td>Guarantee that any agreement reached with Israel will be accepted and supported by the majority of the Palestinian people, both in Gaza and the West Bank</td>
</tr>
<tr>
<td>18</td>
<td>Refrain from and work against any anti-Israel sentiments in Palestinian schools</td>
</tr>
<tr>
<td>19</td>
<td>Seek assistance for a legitimate settlement of refugees</td>
</tr>
<tr>
<td>20</td>
<td>Share natural resources</td>
</tr>
<tr>
<td>21</td>
<td>Work cooperatively and in active engagement with Israel</td>
</tr>
</tbody>
</table>
Table 2. Values Assigned by Five Israeli Participants.

Table 3. The Geometric Means and Derived Priorities in the Last Column.

Table 4a. Israeli Benefits from Palestinian Concessions.
Table 4a. Israeli Perception of Palestinian Costs from Palestinian Concessions.

Table 4b. Israeli Costs from Israeli Concessions.

Table 4c. Israeli Perception of Palestinian Costs from Palestinian Concessions.
www.ams.org/notices

Table 4d. Israeli Perception of Palestinian Benefits from Israeli Concessions.

<table>
<thead>
<tr>
<th>Score</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.72</td>
<td>0.32</td>
<td>0.80</td>
<td>0.84</td>
<td>0.35</td>
<td>0.80</td>
<td>0.84</td>
<td>0.35</td>
</tr>
<tr>
<td>0.55</td>
<td>0.72</td>
<td>0.55</td>
<td>0.72</td>
<td>0.55</td>
<td>0.72</td>
<td>0.55</td>
<td>0.72</td>
</tr>
<tr>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Table 5a. Palestinian Benefits from Israeli Concessions.

<table>
<thead>
<tr>
<th>Score</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
</tr>
<tr>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 5b. Palestinian Costs from Palestinian Concessions.

<table>
<thead>
<tr>
<th>Score</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.89</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.79</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.69</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.59</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.49</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.39</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.29</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

November 2013
Notices of the AMS
Table 5c. Palestinian Perception of Israeli Benefits from Palestinian Concessions.

<table>
<thead>
<tr>
<th></th>
<th>State</th>
<th>Score</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Accept mutually agreed upon land swap</td>
<td>0.12</td>
<td>0.20</td>
</tr>
<tr>
<td>2</td>
<td>Accept settlements and Palestinian sovereignty as residents</td>
<td>0.12</td>
<td>0.20</td>
</tr>
<tr>
<td>3</td>
<td>Accept the temporary presence of multinational military monitoring system in Jordan Valley</td>
<td>0.12</td>
<td>0.20</td>
</tr>
<tr>
<td>4</td>
<td>Accept Partition Solution</td>
<td>0.12</td>
<td>0.20</td>
</tr>
<tr>
<td>5</td>
<td>Acceptance of a Two-State solution which includes a Non-Contiguous State</td>
<td>0.12</td>
<td>0.20</td>
</tr>
<tr>
<td>6</td>
<td>Acceptance of the inalienable rights of the Palestinian refugees and their descendants</td>
<td>0.12</td>
<td>0.20</td>
</tr>
<tr>
<td>7</td>
<td>Property restitution and compensation</td>
<td>0.37</td>
<td>0.68</td>
</tr>
<tr>
<td>8</td>
<td>Territory gains by the Israelis</td>
<td>0.98</td>
<td>0.89</td>
</tr>
<tr>
<td>9</td>
<td>Economic relations and new markets</td>
<td>0.73</td>
<td>0.50</td>
</tr>
<tr>
<td>10</td>
<td>Regaining territorial gains</td>
<td>0.79</td>
<td>0.78</td>
</tr>
<tr>
<td>11</td>
<td>Acquiring with Palestinian dominated state for a limited time period</td>
<td>0.97</td>
<td>0.98</td>
</tr>
<tr>
<td>12</td>
<td>Property restitution and compensation</td>
<td>0.37</td>
<td>0.68</td>
</tr>
<tr>
<td>13</td>
<td>Territory gains by the Israelis</td>
<td>0.98</td>
<td>0.89</td>
</tr>
<tr>
<td>14</td>
<td>Economic relations and new markets</td>
<td>0.73</td>
<td>0.50</td>
</tr>
<tr>
<td>15</td>
<td>Regaining territorial gains</td>
<td>0.79</td>
<td>0.78</td>
</tr>
<tr>
<td>16</td>
<td>Acquiring with Palestinian dominated state for a limited time period</td>
<td>0.97</td>
<td>0.98</td>
</tr>
<tr>
<td>17</td>
<td>Property restitution and compensation</td>
<td>0.37</td>
<td>0.68</td>
</tr>
<tr>
<td>18</td>
<td>Territory gains by the Israelis</td>
<td>0.98</td>
<td>0.89</td>
</tr>
<tr>
<td>19</td>
<td>Economic relations and new markets</td>
<td>0.73</td>
<td>0.50</td>
</tr>
<tr>
<td>20</td>
<td>Regaining territorial gains</td>
<td>0.79</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Table 5d. Palestinian Perception of Israeli Costs from Israeli Concessions.

<table>
<thead>
<tr>
<th></th>
<th>Property restitution and compensation</th>
<th>Settlements evacuation and Compensation</th>
<th>Establishing occupied settlements on Palestinian territories</th>
<th>Establishing settlers from the occupied territories</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abandon the Idea of Jewish State</td>
<td>0.8198</td>
<td>0.98</td>
<td>0.79</td>
</tr>
<tr>
<td>2</td>
<td>Accept Palestinian full control of the borders of the Palestinian State and its outlets</td>
<td>0.8228</td>
<td>0.98</td>
<td>0.83</td>
</tr>
<tr>
<td>3</td>
<td>Accept the historical responsibility for the Palestinian refugee problem</td>
<td>0.6633</td>
<td>0.70</td>
<td>0.11</td>
</tr>
<tr>
<td>4</td>
<td>Accept the Palestinian refugee rights to return</td>
<td>0.8053</td>
<td>0.98</td>
<td>0.83</td>
</tr>
<tr>
<td>5</td>
<td>Accept to abide by the status quo in the holy places in Jerusalem</td>
<td>0.54</td>
<td>0.68</td>
<td>0.89</td>
</tr>
<tr>
<td>6</td>
<td>Accept to abolish law of return</td>
<td>0.6237</td>
<td>0.70</td>
<td>0.11</td>
</tr>
<tr>
<td>7</td>
<td>Accept to respect the integrity of the West Bank and Gaza by allowing free and safe passage between the two areas.</td>
<td>0.7661</td>
<td>0.98</td>
<td>0.79</td>
</tr>
<tr>
<td>8</td>
<td>Accept Two-State Solution on the borders of the 4th of June 1967</td>
<td>0.7687</td>
<td>0.83</td>
<td>0.89</td>
</tr>
<tr>
<td>9</td>
<td>Allow all parties to have equal access to and control of religious sites and holy places</td>
<td>0.4622</td>
<td>0.4</td>
<td>0.79</td>
</tr>
<tr>
<td>10</td>
<td>Allow the sharing of all natural resources between Palestinians and Israelis</td>
<td>0.4453</td>
<td>0.37</td>
<td>0.68</td>
</tr>
<tr>
<td>11</td>
<td>Comply with all applicable UN Resolutions</td>
<td>0.7687</td>
<td>0.83</td>
<td>0.89</td>
</tr>
<tr>
<td>12</td>
<td>Accept East Jerusalem as the capital of the Palestinian State</td>
<td>0.6307</td>
<td>0.70</td>
<td>0.11</td>
</tr>
<tr>
<td>13</td>
<td>Evacuate settlers of Jewish settlements on land claimed by the Palestinians with or without compensation</td>
<td>0.8466</td>
<td>0.98</td>
<td>0.66</td>
</tr>
<tr>
<td>14</td>
<td>Release all political prisoners including those who are Israeli citizens</td>
<td>0.551</td>
<td>0.55</td>
<td>0.66</td>
</tr>
<tr>
<td>15</td>
<td>Share Jerusalem as two capitals of two states</td>
<td>0.6209</td>
<td>0.70</td>
<td>0.11</td>
</tr>
<tr>
<td>16</td>
<td>Solve the Palestinian refugee problem in a just and agreed upon manner</td>
<td>0.7767</td>
<td>0.84</td>
<td>0.89</td>
</tr>
<tr>
<td>17</td>
<td>Stop incitement by the religious and national education and religious leaders in Israel against Muslims and Arabs</td>
<td>0.422</td>
<td>0.42</td>
<td>0.34</td>
</tr>
</tbody>
</table>
Table 6a. Summary for Israelis.

<table>
<thead>
<tr>
<th>Concessions</th>
<th>Israel's Costs (1)</th>
<th>Israelis' Total Loss (1)*(2)*1000 (3)</th>
<th>Palestinians' Benefits (4)</th>
<th>Palestinians' Total Gain (3)*(4)*1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1000.00</td>
<td>0.8830</td>
<td>0.9683</td>
</tr>
<tr>
<td>2</td>
<td>0.6445</td>
<td>0.7637</td>
<td>492.18</td>
<td>0.9894</td>
</tr>
<tr>
<td>3</td>
<td>0.9051</td>
<td>0.2705</td>
<td>244.88</td>
<td>0.9574</td>
</tr>
<tr>
<td>4</td>
<td>0.9470</td>
<td>0.8253</td>
<td>781.53</td>
<td>0.8830</td>
</tr>
<tr>
<td>5</td>
<td>0.1961</td>
<td>0.5405</td>
<td>106.01</td>
<td>0.7979</td>
</tr>
<tr>
<td>6</td>
<td>0.8824</td>
<td>0.4280</td>
<td>377.70</td>
<td>0.5426</td>
</tr>
<tr>
<td>7</td>
<td>0.1984</td>
<td>0.5149</td>
<td>102.15</td>
<td>0.9787</td>
</tr>
<tr>
<td>8</td>
<td>0.8299</td>
<td>0.8068</td>
<td>669.54</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0.0545</td>
<td>0.8205</td>
<td>44.75</td>
<td>0.9787</td>
</tr>
<tr>
<td>10</td>
<td>0.1006</td>
<td>0.5323</td>
<td>53.55</td>
<td>0.8085</td>
</tr>
<tr>
<td>11</td>
<td>0.1120</td>
<td>0.2853</td>
<td>31.96</td>
<td>0.6702</td>
</tr>
<tr>
<td>12</td>
<td>0.8596</td>
<td>0.9571</td>
<td>822.76</td>
<td>0.9787</td>
</tr>
<tr>
<td>13</td>
<td>0.3993</td>
<td>0.8915</td>
<td>320.31</td>
<td>0.9253</td>
</tr>
<tr>
<td>14</td>
<td>0.5178</td>
<td>0.4781</td>
<td>247.56</td>
<td>0.7553</td>
</tr>
<tr>
<td>15</td>
<td>0.1633</td>
<td>0.6027</td>
<td>98.42</td>
<td>0.8511</td>
</tr>
<tr>
<td>16</td>
<td>0.1806</td>
<td>0.7329</td>
<td>132.34</td>
<td>0.8830</td>
</tr>
<tr>
<td>17</td>
<td>0.0741</td>
<td>0.1110</td>
<td>8.23</td>
<td>0.4149</td>
</tr>
</tbody>
</table>

Table 6b. Summary for Palestinians.

<table>
<thead>
<tr>
<th>Concessions</th>
<th>Israel's Costs (1)</th>
<th>Israelis' Total Loss (1)*(2)*1000 (3)</th>
<th>Palestinians' Benefits (4)</th>
<th>Palestinians' Total Gain (3)*(4)*1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1000.00</td>
<td>0.8830</td>
<td>0.9683</td>
</tr>
<tr>
<td>2</td>
<td>0.6445</td>
<td>0.7637</td>
<td>492.18</td>
<td>0.9894</td>
</tr>
<tr>
<td>3</td>
<td>0.9051</td>
<td>0.2705</td>
<td>244.88</td>
<td>0.9574</td>
</tr>
<tr>
<td>4</td>
<td>0.9470</td>
<td>0.8253</td>
<td>781.53</td>
<td>0.8830</td>
</tr>
<tr>
<td>5</td>
<td>0.1961</td>
<td>0.5405</td>
<td>106.01</td>
<td>0.7979</td>
</tr>
<tr>
<td>6</td>
<td>0.8824</td>
<td>0.4280</td>
<td>377.70</td>
<td>0.5426</td>
</tr>
<tr>
<td>7</td>
<td>0.1984</td>
<td>0.5149</td>
<td>102.15</td>
<td>0.9787</td>
</tr>
<tr>
<td>8</td>
<td>0.8299</td>
<td>0.8068</td>
<td>669.54</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0.0545</td>
<td>0.8205</td>
<td>44.75</td>
<td>0.9787</td>
</tr>
<tr>
<td>10</td>
<td>0.1006</td>
<td>0.5323</td>
<td>53.55</td>
<td>0.8085</td>
</tr>
<tr>
<td>11</td>
<td>0.1120</td>
<td>0.2853</td>
<td>31.96</td>
<td>0.6702</td>
</tr>
<tr>
<td>12</td>
<td>0.8596</td>
<td>0.9571</td>
<td>822.76</td>
<td>0.9787</td>
</tr>
<tr>
<td>13</td>
<td>0.3993</td>
<td>0.8915</td>
<td>320.31</td>
<td>0.9253</td>
</tr>
<tr>
<td>14</td>
<td>0.5178</td>
<td>0.4781</td>
<td>247.56</td>
<td>0.7553</td>
</tr>
<tr>
<td>15</td>
<td>0.1633</td>
<td>0.6027</td>
<td>98.42</td>
<td>0.8511</td>
</tr>
<tr>
<td>16</td>
<td>0.1806</td>
<td>0.7329</td>
<td>132.34</td>
<td>0.8830</td>
</tr>
<tr>
<td>17</td>
<td>0.0741</td>
<td>0.1110</td>
<td>8.23</td>
<td>0.4149</td>
</tr>
<tr>
<td>Israeli Ratios</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accept mutually agreed upon land swap</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accept settlers under Palestinian sovereignty as residents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accept the temporary presence of multinational military monitoring system in Jordan Valley</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accept Two-State Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceptance a Two-State solution which includes a Non-Contiguous State</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acknowledge Israel’s Existence as a Jewish State</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acknowledge Israel’s Existence as an Independent State</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agree to Compromise to the Demand of the Right of Return</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agreeing with Palestinian demilitarized state</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preserve the Status Quo in the Holy places of Jerusalem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allow Israel to use Palestinian airspace</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Declare Against Iranian Nuclear Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denounce & Reign in Violence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denounce Iranian pursuit of nuclear arms and support Israelis effort to remove the threat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobby Arab States to Allow both Israelis and Palestinians to Have the Right to Return to their land of origin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Make Compromise on the Status of Jerusalem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palestinians must guarantee that any agreement reached with Israel will be accepted and supported by the majority of the Palestinian people both in Gaza and the West Bank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constrain and work against any anti-Israel sentiments in Palestinian schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seek Assistance for a Legitimate Settlement of Refugees</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sharing of Natural Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Cooperatively and in active engagement w/ Israel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7b. Palestinian Ratios.
<table>
<thead>
<tr>
<th>Israeli Concessions</th>
<th>Trade Value</th>
<th>Palestinian Concessions</th>
<th>Trade Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Comply with all applicable UN Resolutions</td>
<td>1.06</td>
<td>5%</td>
<td>1.06</td>
</tr>
<tr>
<td>14 Accept Two-State Solution on the borders of the 4th of June 1967</td>
<td>5.08</td>
<td>5%</td>
<td>3 Accept two-State solution which includes a Non-Contiguous State</td>
</tr>
<tr>
<td>15 Accept to respect the integrity of the West Bank and Gaza by allowing free and safe passage between the two areas</td>
<td>4.88</td>
<td>5%</td>
<td>7 Acknowledge Israel's Existence as an Independent State</td>
</tr>
<tr>
<td>16 Solve the Palestinian refugee problem in a just and agreed upon manner</td>
<td>4.43</td>
<td>5%</td>
<td>1 Accept mutually agreed upon land swap</td>
</tr>
<tr>
<td>17 Evacuate settlers of Jewish settlements on land claimed by the Palestinians with or without compensation</td>
<td>4.61</td>
<td>5%</td>
<td>19 Seek Assistance for a legitimate Settlement of Refugees</td>
</tr>
<tr>
<td>18 Allow the sharing of all natural resources between Palestinians and Israelis</td>
<td>2.3</td>
<td>10%</td>
<td>23 lobby Arab States to Allow both Israelis and Palestinians to Have the Right to Return to their land of origin</td>
</tr>
<tr>
<td>19 Share Jerusalem as two capitals of two states</td>
<td>4.36</td>
<td>10%</td>
<td>17 Palestinians must guarantee that any agreement reached with Israel will be accepted and supported by the majority of the Palestinian people both in Gaza and the West Bank</td>
</tr>
<tr>
<td>20 Allow all parties to have equal access to and control of religious sites and holy places</td>
<td>2.64</td>
<td>10%</td>
<td>18 Refrain and work against any anti-Israel sentiments in Palestinian schools</td>
</tr>
<tr>
<td>21 Stop incitement by the religious and national education and religious leaders in Israel against Muslims and Arabs</td>
<td>1.68</td>
<td>10%</td>
<td>12 Declare Against Iranian Nuclear Development</td>
</tr>
<tr>
<td>22 Accept East Jerusalem as the capital of the Palestinian State</td>
<td>1.28</td>
<td>10%</td>
<td>8 Agree to Compromise to the Demand of the Right of Return</td>
</tr>
<tr>
<td>23 Accept Palestinian full control of the borders of the Palestinian State and its outlets</td>
<td>5.43</td>
<td>1%</td>
<td>2 Accept settlers under Palestinian sovereignty as residents</td>
</tr>
<tr>
<td>24 Accept to abide by the status quo in the holy places in Jerusalem</td>
<td>37.95</td>
<td>4</td>
<td>16 Make Compromise on the Status of Jerusalem</td>
</tr>
</tbody>
</table>

Table 8a. One-to-one concessions
<table>
<thead>
<tr>
<th>#</th>
<th>Israeli Concessions</th>
<th>Palestinian Concessions</th>
<th>Trade Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Acknowledge Israel’s Existence as a Jewish State</td>
<td>Accept to respect the integrity of the West Bank and Gaza by allowing free and safe passage between the two areas.</td>
<td>20.25</td>
</tr>
<tr>
<td>11</td>
<td>Solve the Palestinian refugee problem in a just and agreed upon manner</td>
<td>Accept to respect the integrity of the West Bank and Gaza by allowing free and safe passage between the two areas.</td>
<td>10.95</td>
</tr>
<tr>
<td>12</td>
<td>Work Cooperatively and in active engagement w/ Israel</td>
<td>Accept to respect the integrity of the West Bank and Gaza by allowing free and safe passage between the two areas.</td>
<td>11.05</td>
</tr>
<tr>
<td>13</td>
<td>Allow all parties to have equal access to and control of religious sites and holy places</td>
<td>Denounce Iranian pursuit of nuclear arms and support Israelis effort to remove the threat.</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>Palestinians must guarantee that any agreement reached with Israel will be accepted and supported by the majority of the Palestinian people both in Gaza and the West Bank</td>
<td>Palestinians must guarantee that any agreement reached with Israel will be accepted and supported by the majority of the Palestinian people both in Gaza and the West Bank</td>
<td>9.83</td>
</tr>
<tr>
<td>15</td>
<td>Share Jerusalem as two capitals of two states</td>
<td>Share Jerusalem as two capitals of two states</td>
<td>9.88</td>
</tr>
<tr>
<td>16</td>
<td>Accept Palestinian full control of the borders of the Palestinian State and its outlets</td>
<td>Accept Palestinian full control of the borders of the Palestinian State and its outlets</td>
<td>9.89</td>
</tr>
<tr>
<td>17</td>
<td>Stop incitement by the religious and national education and religious leaders in Israel against Muslims and Arabs</td>
<td>Stop incitement by the religious and national education and religious leaders in Israel against Muslims and Arabs</td>
<td>11.62</td>
</tr>
<tr>
<td>18</td>
<td>Commit to a Just and Agreed Upon Solution of the Palestinian Refugee Problem</td>
<td>Commit to a Just and Agreed Upon Solution of the Palestinian Refugee Problem</td>
<td>13.2</td>
</tr>
<tr>
<td>19</td>
<td>Accept to abide by the status quo in the holy places in Jerusalem</td>
<td>Accept to abide by the status quo in the holy places in Jerusalem</td>
<td>5.43</td>
</tr>
<tr>
<td>20</td>
<td>Accept East Jerusalem as the capital of the Palestinian State</td>
<td>Accept to abide by the status quo in the holy places in Jerusalem</td>
<td>4.33</td>
</tr>
<tr>
<td>21</td>
<td>Make Compromise on the Status of Jerusalem</td>
<td>Accept to abide by the status quo in the holy places in Jerusalem</td>
<td>5.46</td>
</tr>
<tr>
<td>22</td>
<td>Accept the historical responsibility for the Palestinian refugee problem</td>
<td>Accept the historical responsibility for the Palestinian refugee problem</td>
<td>4.34</td>
</tr>
<tr>
<td>23</td>
<td>Accept to abolish law of return</td>
<td>Accept to abolish law of return</td>
<td>67.94</td>
</tr>
<tr>
<td>24</td>
<td>Accept the historical responsibility for the Palestinian refugee problem</td>
<td>Accept the historical responsibility for the Palestinian refugee problem</td>
<td>68.27</td>
</tr>
<tr>
<td>#</td>
<td>Israeli Concessions</td>
<td>Trade Value</td>
<td>#</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>Accept to respect the integrity of the West Bank and Gaza by allowing free and safe passage between the two areas.</td>
<td>33.07</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>Accept East Jerusalem as the capital of the Palestinian State</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>17</td>
<td>Stop incitement by the religious and national education and religious leaders in Israel against Muslims and Arabs</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td>Accept Palestinian full control of the borders of the Palestinian State and its outlets</td>
<td>18.66</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>Accept Two-State Solution on the borders of the 4th of June 1967</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>Evacuate settlers of Jewish settlements on land claimed by the Palestinians with or without compensation</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>Allow the Palestinian refugee rights to return</td>
<td>15.62</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>Comply with all applicable UN Resolutions</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>Abandon the idea of Jewish State</td>
<td>10.15</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Accept to abide by the status quo in the holy places in Jerusalem</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>Allow all parties to have equal access to and control of religious sites and holy places</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Accept the historical responsibility for the Palestinian refugee problem</td>
<td>8.88</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Share Jerusalem as two capitals of two states</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>Solve the Palestinian refugee problem in a just and agreed upon manner</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Accept to abolish law of return</td>
<td>2.32</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>Release all political prisoners including those who are Israeli citizens</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Table 8c. Three-to-three concessions.
Table 9. The Pittsburgh Principles.

<table>
<thead>
<tr>
<th>Issue</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A Two-State Solution on the borders of the 4th of June 1967, with mutually agreed upon land swaps</td>
</tr>
<tr>
<td>2</td>
<td>Israel must respect the integrity of the West Bank and Gaza by allowing free and safe passage between the two areas, and the Palestinian State must guarantee that any agreement reached with Israel will be accepted and supported by the majority of the Palestinian people both in Gaza and the West Bank.</td>
</tr>
<tr>
<td>3</td>
<td>East Jerusalem will be the capital of the Palestinian State. The parties will maintain the Status Quo of the Holy places in Jerusalem</td>
</tr>
<tr>
<td>4</td>
<td>Acknowledge Israel’s Existence as a Jewish State without jeopardizing the rights of its minority Israeli citizens</td>
</tr>
<tr>
<td>5</td>
<td>Evacuation of Israeli settlers from the Palestinian territories that are not included in the land swaps</td>
</tr>
<tr>
<td>6</td>
<td>Palestinian full control of the borders of the Palestinian State and its outlets, and deployment of a temporary agreed upon multinational military monitoring system in the Jordan Valley.</td>
</tr>
<tr>
<td>7</td>
<td>Solve the Palestinian refugee problem in a just and agreed upon manner</td>
</tr>
<tr>
<td>8</td>
<td>A demilitarized Palestinian state</td>
</tr>
<tr>
<td>9</td>
<td>Agreed upon international monitoring mechanism and agreed upon binding international arbitration mechanisms</td>
</tr>
<tr>
<td>10</td>
<td>The full implementation of these principles concludes the end of the conflict and the claims of the two parties</td>
</tr>
</tbody>
</table>
Table 10. The Set of Six Most Important Concessions.

<table>
<thead>
<tr>
<th>#</th>
<th>Israeli Concessions</th>
<th>#</th>
<th>Palestinian Concessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Accept Palestinian full control of the borders of the Palestinian State and its outlets</td>
<td>1</td>
<td>Accept mutually agreed-upon land swap</td>
</tr>
<tr>
<td>7</td>
<td>Accept to respect the integrity of the West Bank and Gaza by allowing free and safe passage between the two areas</td>
<td>3</td>
<td>Accept the temporary presence of a multinational military monitoring system in Jordan Valley</td>
</tr>
<tr>
<td>8</td>
<td>Accept East Jerusalem as the capital of the Palestinian State</td>
<td>6</td>
<td>Acknowledge Israel’s existence as a Jewish state</td>
</tr>
<tr>
<td>9</td>
<td>Accept a Two-State Solution on the borders of the 4th of June, 1967</td>
<td>9</td>
<td>Agree with a Palestinian demilitarized state</td>
</tr>
<tr>
<td>13</td>
<td>Evacuate settlers of Jewish settlements on land claimed by the Palestinians, with or without compensation</td>
<td>10</td>
<td>Preserve the status quo in the holy places of Jerusalem</td>
</tr>
<tr>
<td>16</td>
<td>Solve the Palestinian refugee problem in a just and agreed upon manner</td>
<td>17</td>
<td>Guarantee that any agreement reached with Israel will be accepted and supported by the majority of the Palestinian people both in Gaza and the West Bank</td>
</tr>
</tbody>
</table>
New journals published by the
European Mathematical Society

Editors-in-Chief:
Gérard H. E. Duchamp (Université Paris XIII, France)
Vincent Rivasseau (Université Paris XI, France)
Alan Sokal (New York University, USA and University College London, UK)

Managing Editor
Adrian Tanasa (Université Paris XIII, France)

Aims and Scope
Annales de l’Institut Henri Poincaré D is dedicated to publishing high-quality original research articles and survey articles in which combinatorics and physics interact in both directions. Combinatorial papers should be motivated by potential applications to physical phenomena or models, while physics papers should contain some interesting combinatorial development.

Editors-in-Chief:
Nicola Bellomo (Politecnico di Torino, Italy)
Simon Salamon (King’s College London, UK)

Aims and Scope
The EMS Surveys in Mathematical Sciences is dedicated to publishing authoritative surveys and high-level expositions in all areas of mathematical sciences. It is a peer-reviewed periodical which communicates advances of mathematical knowledge to give rise to greater progress and cross-fertilization of ideas. Surveys should be written in a style accessible to a broad audience, and might include ideas on conceivable applications or conceptual problems posed by the contents of the survey.

Editors:
Anton Alekseev, David Cimasoni, Daniel Coray, Pierre de la Harpe, Anders Karlsson, Tatiana Smirnova-Nagnibeda, András Szenes (all Université de Genève, Switzerland), Nicolas Monod (EPFL, Switzerland), John Steinig, Vaughan F. R. Jones (University of California at Berkeley, USA)

Aims and Scope
The journal L’Enseignement Mathématique was founded in 1899 by Henri Fehr (Geneva) and Charles-Ange Laisant (Paris). It is intended primarily for publication of high-quality research and expository papers in mathematics. Approximately 60 pages each year will be devoted to book reviews.
Before attempting to answer the question from the title, it would be useful to say a few words about another question: what kind of problems have flag algebras been invented for?

Let us consider three similar combinatorial puzzles. Assume that we have a (simple, undirected) graph with \(n \) vertices. What is the minimal number of edges \(m \) (as a function in \(n \)) that guarantees the existence of a triangle? Also, assuming that \(m \) is above this threshold, how many triangles are guaranteed to exist? Let us now offset everything by one, and instead of graphs consider (simple) 3-graphs, i.e., sets of unordered triples (called 3-edges) on \(n \) vertices. We again ask, what is the minimal number \(m \) of 3-edges that guarantees the existence of four vertices such that all four possible triples spanned by these vertices are in the set of 3-edges?

The subarea of discrete mathematics that deals with questions of this sort is called extremal combinatorics, and it is very strategically located at a crossroads between "pure" mathematics and its applications. One good way to describe flag algebras is as an attempt to expose and emphasize some common mathematical structure underlying many standard techniques in extremal combinatorics, and a survey of concrete results obtained in this way can be found in [1]. Before going into more detail, however, let me encourage the reader to put this article aside and try to predict the current status of the three problems from the previous paragraph.

Ready? The first problem (on the threshold value \(m(n) \)) was solved in a classic paper by Mantel published in 1907. The second problem (on the minimal number of triangles beyond the threshold) had been open for some forty years. It was asymptotically solved only recently using flag algebras. The generalization to 3-graphs was suggested by Turán in another classic paper written in 1941; he conjectured that \(m \leq \left(\frac{2}{3} + o(1) \right) \left(\frac{n}{3} \right) \) and gave the first construction attaining this bound. This conjecture remains unsolved despite repeated attempts by many strong researchers, and it has greatly stimulated the development of the whole field. Some partial results toward Turán’s (3,4)-conjecture (by the way, its analogues are open for any values of the parameters 4 and 3 as long as \(4 > 3 > 2 \)), though, were obtained with the help of flag algebras. As Sidorenko, one of the leading experts in the area, put it in his survey dated 1995, “The general problem of Turán having an extremely simple formulation but being extremely hard to solve, has become one of the most fascinating extremal problems in combinatorics.”

Now, let us do one of the many proofs of Mantel’s result: it will serve as a motivating running example for our definitions. Let \(d_1, \ldots, d_n \) be vertex degrees in our graph, and let \(e(v) \approx d_v/n \) be the relative degree of the vertex \(v \in \{1, 2, \ldots, n\} \). (Strictly speaking, \(e(v) = d_v/(n-1) \), but systematically ignoring low-order terms is one of the most basic principles of the theory we are discussing.) We
have

\[
0 \leq \frac{1}{n} \sum_{v=1}^{n} (e(v) - \frac{1}{2})^2 \approx \frac{1}{n^2} \sum_{v} d(v)^2 - \frac{1}{n^2} \sum_{v} d(v) + \frac{1}{4}.
\]

The term \((1/n^2) \sum_v d(v)\) is easy to interpret: it is simply (remember we are ignoring low-order terms!) the edge density \(\rho (= m/n^2)\). To calculate \((1/n^2) \sum_v d(v)^2\), we use double counting and we look at configurations in our graph spanned by three vertices. We can see there are 0, 1, 2, or 3 edges, and let us denote by \(I_3, P_3, P_3, K_3\) the respective densities or probabilities with which these configurations occur ("I" stands for "independent", "\(P\)" stands for "path", "\(K\)" stands for "complement of a path", and "\(K\)" stands for a misspelled "clique"). Then a moment’s reflection reveals that \((1/n^2) \sum_v d(v)^2 = (1/3)P_3 + K_3\); only these two cases contribute to the sum, and \(K_3\) contributes thrice as much since we have three different choices of \(v\) in it. But \(\rho\) can also be expressed in these terms as \(\rho = \frac{1}{3}P_3 + \frac{2}{3}P_3 + K_3\). we generate a random pair of vertices in two steps, first by picking a random \(3\)-tuple and then by selecting a random pair within this triple. Plugging all this into (1), after simple calculations we conclude that \(\rho \leq (1/2)P_3 + K_3\). Thus, \(\rho > 1/2\) implies the existence of triangles, and, moreover, their density \(K_3\) satisfies \(K_3 \geq \rho - 1/2\). If we are slightly more careful and instead of \((1/n) \cdot \sum_v(e(v) - 1/2)^2\) compute \((1/n) \cdot \sum_v(e(v) - \rho)^2\) (that is, the actual variance of the degree sequence), we will get a better bound \(K_3 \geq \rho(2\rho - 1)\) proved by Goodman in 1959. This latter bound had remained the best known for the second problem on our list until it was superseded in a beautiful paper by Bollobás (1975).

Let us now see which kind of structure we can extract from this template (all this material can be found in [2]). Our target graph \(G\) is large and unknown. Thus, for every fixed graph \(H\) we introduce a formal real-valued variable with the same name and the intuitive meaning “the density of induced copies of \(H\) in \(G\)” (in the argument above, \(H\) was one of \(\rho, I_3, P_3, P_3, \) or \(K_3\)). As we often need to sum these quantities with real coefficients, we form the linear space of formal (finite) linear combinations of these variables. The identity \(\rho = \frac{1}{3}P_3 + \frac{2}{3}P_3 + K_3\) that we used above can be widely generalized: the density of any fixed graph \(H\) can be expressed in terms of densities of graphs with a fixed but larger number of vertices. We factor our space out by these relations. Multiplication is also available: for example, \(\rho^2\) can be expressed as a linear combination of [the densities of] graphs on four vertices; this is done by double counting similar to our calculation of \((1/n^3) \sum_v d(v)^2\). All these developments give us a commutative associative algebra \(\mathcal{A}^0\).

Furthermore, when the size of the target graph \(G\) tends to infinity, the densities of induced copies of \(H\) converge to an algebra homomorphism \(\phi\) from \(\mathcal{A}^0\) to \(\mathbb{R}\). These algebra homomorphisms possess an extra property that \(\phi(H)\), being a density, is nonnegative for any graph \(H\). Then it turns out that we also have an important “completeness result”: every abstract algebra homomorphism from \(\mathcal{A}^0\) to \(\mathbb{R}\) with this nonnegativity property (let us call their set \(\text{Hom}^+ (\mathcal{A}^0, \mathbb{R})\)) can be obtained from a convergent sequence \(\{G_n\}\). In other words, the object \(\text{Hom}^+ (\mathcal{A}^0, \mathbb{R})\) defined in the best mathematical traditions quite abstractly nonetheless corresponds exactly to the class of extremal problems we intend to study. For example, the second problem on our list can be reformulated like this: given \(x \in [0, 1]\), compute the minimal possible value of \(\phi(K_3)\), where \(\phi \in \text{Hom}^+ (\mathcal{A}^0, \mathbb{R})\) satisfies \(\phi(\rho) = x\), and, yes, we do mean min here, not inf, since \(\text{Hom}^+ (\mathcal{A}^0, \mathbb{R})\) is compact. The computation does begin with the words “let us fix once and for all an extremal \(\phi\).”

Having thus reformulated the questions of study in the appropriate language, the rest of the theory is basically devoted to developing useful syntactic tools for proving theorems about the behavior of the limit densities \(\phi(H)\). Most of these tools have evolved from analogous methods employed in finite arguments, but, again, the mathematical structure allows us to search for the desired proofs either completely automatically or in an interactive computer-human mode. This allows us to expand the search space by an order of (literally!) hundreds or thousands. We once more refer to [1] for a survey of concrete results that have been obtained with this method, and now we review some of these tools.

Our account above was tailored to the case of ordinary graphs, but this was done only for simplicity of exposition. The theory of flag algebras was deliberately set up in such a way that it applies in a uniform way to arbitrary combinatorial structures: hypergraphs, directed graphs, mixtures of these, colored versions of these, you name it. In logical terms, the set-up can be described as a “universal theory in a language containing only predicate symbols,” but the only property that is actually needed is that a subset of vertices of a model spans an (induced) submodel. This is paramount since structures other than simple graphs are where the most important open problems in the area reside, Turán’s (3,4)-problem being just the tip of the iceberg.

Next, our definitions can be readily generalized to the case when all our models are required to contain \(k\) distinguished “base” vertices (for an
The choice of the term “flag” to stand for “a partially labeled combinatorial structure in which labeled vertices span a prescribed model” is admittedly somewhat arbitrary. It is largely suggested by a visual association: a few vertices are fixed rigidly while many more are “free” and “waving” through the model we are studying. It has very little to do with other usages of this term in mathematics…incidentally, I have never seen a good explanation of what increasing sequences of linear spaces have to do with corporeal flags, either.
situations, it is more difficult to come up with a calculus that is good not only theoretically but also allows us to get new concrete results. Some work in this direction, however, has already been done; see [1, Section 4.2].

Last, but definitely not least, we are often interested not only in the properties of the limit densities \(\phi \) itself, but also in what is the actual limit object these densities correspond to (or, in more logical terms, in the associated model theory). This leads to the deep and beautiful theory of graph limits with many connections to other disciplines, and we highly recommend Lovász's recent book [3] for an introduction to the subject. We strongly feel that emphasizing more connections between the syntactical (flag algebras) and semantical (graph limits) approaches to the same class of objects should be very beneficial for both.

References
In one of his “Monday Chats” in 1850, Charles-Augustin Sainte-Beuve wrote, “The idea of a classic contains in itself something that has a consequence and consistency, that produces cohesion and tradition, that forms itself, that transmits itself and that endures.” While it is perhaps too soon to say whether each of the problems Gorroochurn discusses could be described as a monumentum ære perennius, there is no doubt that some of the older ones have displayed the desired quality of endurance, and a number have led to later ones and may even be seen as precursors of modern research topics.

This book, the author notes, “is targeted primarily to readers who have had at least a basic course in probability. Readers in the history of probability might also find it useful” (p. ix). Gorroochurn urges the reader not to focus on the problems and their solutions to the neglect of the discussions, and indeed I, for one, found these discussions the most useful and absorbing parts of the text. Some problems certainly require a more advanced knowledge than that to be gained in a basic course in probability for their full understanding and development (e.g., Borel’s paradox and Jacob Bernoulli’s Law of Large Numbers), but this in no way detracts from one’s enjoyment of the text as a whole.

Andrew I. Dale is emeritus professor of statistics at the University of KwaZulu-Natal in Durban, South Africa. His email address is dale@ukzn.ac.za.

Many of the problems discussed here are well known, and the student of probability either will have been or certainly should be exposed to them. They are arranged in time order, ranging from one in Cardano’s Liber de ludo aleeæ (1539/1663) to Parrondo’s game-theoretic paradox of 1996. We find here well-known curiosities (and sometimes perplexities) such as the de Méré paradoxes, Buffon’s needle problem, Bertrand’s chords, and birthday coincidences, and also those less well known in general, such as Montmort’s matches problem, a question posed by Samuel Pepys to Isaac Newton, Newcomb’s problem, and Simpson’s paradox.

Some of the problems discussed here are described as “paradoxes”. The more one thinks about this word, however, the less clear one becomes about its meaning. What exactly is a paradox? Székely [16, p. xii] says “It is important to distinguish paradoxes from fallacies. The first one is a true though surprising theorem while the second one is a false result obtained by reasoning that seems correct.” Quoting one Phillips (probably Sir Richard Phillips, 1767–1840), de Morgan [5, vol. I, p. 3] finds added to the notion of strangeness the notion of absurdity, and he points out that a paradox is “contrary to common opinion.” And if the touch of absurdity is to be preserved, then we must be grateful to the Oxford English Dictionary for advising us that, in the early nineteenth century, “paradox” was an alternative name for Ornithorhynchus anatinus, the duck-billed platypus.

De Morgan [5, vol. I, p. 31] can perhaps be seen as having anticipated Székely by writing:

The counterpart of paradox, the isolated opinion of one or of few, is the general opinion held by all the rest; and the counterpart of false and absurd paradox is what is called the “vulgar error”, the pseudodox.

The masterpiece on this last-mentioned topic is, of course, Sir Thomas Browne’s Pseudodoxia Epidemica, first published in 1646.
Crudely speaking, one may classify the solutions of the problems discussed by Gorroochurn as the orthodox, the heterodox, and the paradox (using the latter word here as an obsolete adjective), for we have problems such as Cardano’s (a simple one involving dice tossing and indisputable reasoning), d’Alembert’s coin tossing problem (whose solution hinges heavily, I believe, on the acceptance of an appropriate, if unusual, sample space), and Simpson’s paradox (in which, for example, a positive association between treatment and survival among men and among women may, somewhat surprisingly, be reversed or disappear altogether when the populations are combined).

Let’s look at a few of Gorroochurn’s problems. De Méré’s (first) problem is stated by Gorroochurn (p. 13) as follows:

When a die is thrown four times, the probability of obtaining at least one six is a little more than 1/2. However, when two dice are thrown 24 times, the probability of getting at least one double-six is a little less than 1/2. Why are the two probabilities not the same, given the fact that \(\Pr[\text{double-six for a pair of dice}] = 1/36 = 1/6 \cdot \Pr[\text{a six for a single die}] \), and you compensate for the factor of 1/6 by throwing 6 \(\cdot 4 = 24 \) times when using two dice?

The phrase “at least one” is used by many English authors who discuss this problem (e.g., Feller [8]). However, the original version, given in David [4, p. 137], runs as follows (my translation):

If one undertakes to throw a six with one die, there is an advantage in undertaking to do it in 4 throws, as 671 to 625. If one undertakes to throw double-six with two dice there is a disadvantage in undertaking to do it in 24 throws.

The problem was later discussed by Christiaan Huygens in Propositions X and XI of his *De ratiocinii in ludo aleæ* of 1657 (an annotated reprint of this book was given by Jacob Bernoulli in his *Ars Conjectandi* of 1713). These propositions are translated by Arbuthnot [1, vol. II, pp. 273–274] as follows:

To find at how many Times one may undertake to throw 6 with one Die ...To find out how many Times one may undertake to throw 12 with two Dice.

Note that Arbuthnot gives, in the case of both four and five throws, the odds on a six as 671 against 625.

The question is then whether the original should be interpreted in the sense of “at least one”. Independent of the formulation of the question, however, in all cases the solution to the second part of this problem is that he who undertakes to do it in 24 throws lacks an even chance of winning, while he who undertakes to do it in 25 throws has a better than even chance of winning.

In November 1693 Samuel Pepys asked Newton for help with the following problem:

A—has 6 dyes in a box with which he is to fling a 6
B—has in another box 12 dyes with which he is to fling 2 sixes
C—has in another box 18 dyes with which he is to fling 3 sixes.
Q—Whether B and C have not as easy a taske as A at even luck?

Chaundy and Bullard [3] note that Pepys had been asked to solve this problem by John Smith, writing master of Christ’s Hospital in London, an institution of which Pepys was a governor. It has been suggested that Smith’s interest was perhaps not altogether academic, since he was later dismissed from his post on being found to have charged the boys for the use of pens and paper.

Gorroochurn takes care to note that, while Pepys originally posed the problem in terms of an exact number of sixes, Newton pointed out that “in reading the Question it seemed to me at first to be ill stated,” and he therefore changed it to “at least one six.” It is interesting to note that a variation on this old problem has recently been applied to size-estimation problems (see Varagnolo et al. [17]).

In Bertrand [2, p. 2] we find the following problem (stated slightly differently by Gorroochurn):

Three chests, identical in appearance, each have two drawers, each drawer containing one coin [médaillle]. The coins in the first chest are gold, those in the second are silver, while the third chest has one gold and one silver. One chest is chosen. What is the probability that it contains one gold coin and one silver coin in its drawers?

Note that Bertrand does not say, as Gorroochurn does, that the chest is chosen at random, though that this is so emerges from the subsequent discussion (the answer is clearly 1/3). Then a drawer in the selected chest is chosen (again, it transpires, at random) and opened. It might be argued, suggests Bertrand, that no matter what coin is revealed, there are only two possible cases: the closed drawer contains either a coin of the same metal as the one displayed or a different one. Of these two cases only one is favorable to the event that the chest has different coins, and thus the probability that one has chosen the chest with different coins is 1/2.
Such an argument, Bertrand notes, although it may appear correct, is in fact false: the two possible cases after the chosen drawer has been opened are not equally probable. Using Bayes’s Theorem (Problem 14 in Gorroochurn), any first-year student should be able to solve this problem. What is interesting, though, as Gorroochurn notes, is its connection to the Prisoner’s Problem and the now notorious Monty Hall problem.

Simpson’s paradox, Senn [15] has noted, is closely connected with the Will Rogers phenomenon. (Will Rogers was an American humorist who suggested during the depression of the 1930s that “When the Okies left Oklahoma and went to California, they raised the average intelligence level of both states.”) This was perhaps first described in the 1980s by Feinstein et al. who found survival improvement stage by stage in different groups of cancer patients but no evidence of overall improvement.

A basic principle of rational behavior is the sure-thing principle, stated by Savage [14, p. 21] as follows:

If the person would not prefer \(f \) to \(g \), either knowing that the event \(B \) obtained, or knowing that the event \(\sim B \) obtained, then he does not prefer \(f \) to \(g \)

(here \(f \) and \(g \) are possible acts). Put otherwise, the sure-thing principle says that one’s preferences should not be affected by outcomes that occur regardless of which actions are taken (i.e., that are “sure-things”) or that elements common to any pair of outcomes may be ignored. Simpson’s paradox, like the intransitivity of some preference orderings in matters of social choice, violates this principle.

Finally, let us have a look at Parrondo’s paradox, the solution of which requires some knowledge of game theory and Markov chains. The idea here is that two losing games can produce a winning expectation when they are played in an alternating sequence. Harmer and Abbott [9] have suggested that such games may have important applications in sociology, physics, genetics, and biology. Commenting on the counterintuitive nature of this paradox, Gorroochurn writes (p. 273), “by randomly playing two losing games, the player comes out a winner!” But before one gets too excited about this, one must remember that the idea of a “fair game” is known to be correctly formulated in terms of a martingale, where the “impossibility of gambling systems” holds (see Feller [8]).

It must be almost impossible to write a book with the wealth of detail that Gorroochurn has provided without a few slips. I mention two here: the first is in connection with the photograph of Adrien-Marie Legendre on page 98. This is now known to be of the French politician Louis Legendre, not the mathematician [6]. The second and more serious problem is on page 133. Here the myth is perpetuated that the person depicted is Thomas Bayes. The attribution apparently first occurred in Terence O’Donnell’s book [12]; for remarks casting grave doubt on O’Donnell’s attribution, see [10].

For those readers who already have copies of the books by Mosteller [11], Székely [16], and Whitworth [18] (any one of the many editions) on their shelves, this book will form a useful adjunct, perhaps particularly for the excellence of its coverage of modern references. Those who do not have easy access to these works will benefit enormously from Classic Problems of Probability.

References

Sources in the Development of Mathematics
Ranjan Roy
Cambridge University Press, 2011
US$89.10, 994 pages

For much of the twentieth century, writing about the history of mathematics emphasized above all the development of pure mathematics—and pure mathematics seen in a certain light. Abstract mathematics, of both the Bourbaki and non-Bourbaki varieties, dominated the cultural landscape of twentieth-century mathematics and formed a natural focus for historians studying that period. The creation of abstract structures, new worlds such as those of non-Euclidean geometry, and the apparently progressive evolution of rigor all posed special challenges for historians. These developments also had significant philosophical resonance, as the names Russell and Gödel suffice to underline, and the importance of the history of mathematics for philosophy was well illustrated (remains well illustrated) by the work of Lakatos.

The world changes, as does its mathematics, and historians looking at the mathematical world now tend to see a somewhat different picture. Many of the same issues remain fundamentally important, but they are no longer seen as providing a complete account of all important aspects of mathematical activity. The consensus about what mathematics is, as seen in twentieth-century historical writings about mathematics, no longer dominates. Historical writers today need to encompass a larger range of mathematical activity in their studies.

One way to achieve such a fresh and broad viewpoint is to seek unifying themes that cut across contemporary mathematical subfields. Ranjan Roy’s erudite and broad study does just that, and in so doing provides an alternative thread through much historical mathematics of the last few centuries. Using series and products, both finite and infinite, as a leitmotif, Roy’s forty-one chapters give us just short of one thousand pages in which mathematics is a concrete entity and mathematicians are working on a wide variety of problems. Calculations, formulas, manipulations, and brilliant insights into pattern are massed together by Roy to provide the “sources” of mathematical development described in the title. While most of the time the path of this thread remains close to analysis, the points of contact with many other major areas of mathematical research are plentiful, and the associations often both stimulating and surprising. The book is a personal view based on an evidently long immersion in both primary and secondary sources. It reads well and easily, and while there are many associations between the chapters, each one can be read as a self-contained vignette. It is broadly accessible, so that while some of the more recent or more technical developments described will perhaps be out of the reach of beginners, most people with mathematical training can read a great deal of the work and be both informed and entertained. It would be a great book to take on summer vacation (well, provided you are not kayaking or backpacking—it’s a bit heavy).

The treatment is not strictly chronological over the course of the book, though chronology informs its organization: subjects that “started” later are typically treated later. Indeed, the care with which the subject has been divided in order to give both details and a big picture is one of
the real services of the work. Given the titles of chapters, the contents often surprise in a good way. Let’s take an example: the short (sixteen-page) chapter on inequalities. This begins with a survey section, discussing the arithmetic-geometric mean inequality and its treatment by Thomas Harriot (before 1631), Descartes, Newton, Maclaurin, and Cauchy; then noting that Cauchy’s method inspired Jensen, tying this to Rogers, Hölder, and Schwarz; and concluding with Hilbert and Riesz. The chapter continues with individual sections that provide additional detail on aspects of the mathematical work on this subject by Harriot, Newton, Maclaurin, Jensen, and Riesz. For example, the section on Harriot introduces his own notation, then gives his own proof of the arithmetic-geometric mean inequality, while the section on Riesz gives his proof of the Minkowski inequality. A concluding section (there is one of these for every chapter) points to primary and secondary literature of high quality. Along the way, many other mathematicians are both referred to and quoted; one can savor here, for example, Harald Bohr’s remark that “all analysts spend half their time hunting through the literature for inequalities which they want to use and cannot prove.” The chapter also has five pages of exercises, usually with quite direct and explicit links to historical literature. This organization is typical of the book as a whole.

Since there are forty-one chapters, making a list of what is treated is not possible here. Roy is perhaps most widely known for his book with Richard Askey and George Andrews, so chapters on the hypergeometric series, \(q \)-series, and partitions are not surprising, nor are many other chapters that touch on closely related areas of classical analysis involving series and products. There is quite a bit of number theory (\(L \)-series, distribution of primes, transcendence), complex analysis (value distribution theory, for example), and there are even chapters on solvability by radicals and finite fields. We can remark on some things that are perhaps quite unexpected features. The first chapter is about power series in Kerala in the fifteenth century, for example—a nice addition. There are many places where items that are perhaps less well known than they should be are brought to light: I noted with pleasure Harkness and Morley’s proof of the binomial theorem; Zolotarev’s method for Lagrange inversion with remainder; Hermite on approximate integration; Lagrange’s proof of Wilson’s theorem; Bohr, Mollerup, and Artin on the \(\Gamma \) function. There are many, many more such instances. I just spent a semester teaching a seminar for seniors on classical analysis, and the book was tremendously useful as a resource.

Some of the longer survey chapters are in many cases attractive and motivating introductions to the subjects they treat. As an example, I’ll mention the two chapters on elliptic functions in the eighteenth and nineteenth centuries. The two form a unified historical account at an introductory level to the basic ideas of the theory, culminating with a discussion of Eisenstein’s application of the ideas to reciprocity laws. Much of the same material is covered (more succinctly, with more required input from the reader, and aiming squarely at modern results) by McKean and Moll in their lovely book \textit{Elliptic Curves}. But in Roy’s account the historical aspects are treated more fully, the pace is more leisurely, and the connections between the various developments are presented in a way that makes us more fully aware of the mathematical context of the developments at the time. Often Roy provides what feels like reliable insight into the innovations he describes, for example, with Euler’s realization that \(dt/\sqrt{1-t^2} \) could not be rationalized by substitution, since this would imply that the equation \(x^2 = 1 - 4y^4 \) had integer solutions (as Euler knew from Fermat to be false).

Partly because this is material I find interesting— it is a \textit{kind} of mathematics I particularly like and believe to be central to much mathematical endeavor that grew from these roots—I found the book charming. If I make a few minor points about what the work does not provide and indicate things that I could wish were otherwise, it does not detract from my overall view that this is a fine work. As an historian, I would love to have seen more thorough references, though the forest of citations that would result might have detracted from readability, and it can be argued that in some cases such references can be filled in with relative ease. For example, the statement (p. 83) that “some historians have suggested with some justification” that personal contact between Descartes and Faulhaber could have sent us to Kenneth Manders’s paper of 2006, but it didn’t, and the literature survey at the end of the chapter didn’t either. Sometimes such statements contain an implicit historical analysis that may be correct but isn’t provided: “one can see in the work of Newton, Leibniz, and others that they were implicitly aware of the method [of summation by parts]” (p. 195). A fair response to this kind of criticism is that “it is not that kind of book,” but I decided to mention it given the many very welcome references to recent historical work that the author does bring to the reader’s attention. There are a few typographical errors, even in proper names. Reisz and Fréchet should have been caught by the copy editors, who no longer seem to exist. The book’s title might encapsulate the author’s view of what he aims to do but unfortunately does not describe the work clearly; some variant of the subtitle using the words “series” and “products”
would have been better in my view. To counter these negative remarks, allow me to compliment the figures and the index, both of which are well done and useful.

I recommend this book to a wide audience. Undergraduates can learn of the truly vast amount of material that lies alongside some of their more standard endeavors, many of which involve only elementary matters: sums, products, limits, calculus. Graduate students and nonspecialist faculty can wonder at the ingenuity of their predecessors and the connections between now disparate areas that are afforded by this very classical view. They’ll also get lots of good ideas for teaching (and they may waste a good deal of time on the problems, as well). Historians, philosophers, and others should read this book, if only for the view of mathematics it propounds. And specialized researchers in the area of special functions and related fields should simply have a good time. All of these readers can benefit from the remarkable expository talents of the author and his careful choice of material. Among personal views of mathematics that use history as a key to understanding, Roy’s book stands out as a model.

Research topic: A three-week summer program for
Geometry and graduate students
Materials
Education Theme: undergraduate students
Making Mathematical mathematics researchers
Connections undergraduate faculty

IAS/Park City Mathematics Institute (PCMI)
June 29 – July 19, 2014 – Park City, Utah

Organizers: Mark Bowick, Syracuse University; David Kinderlehrer, Carnegie Mellon University; Govind Menon, Brown University; and Charles Radin, University of Texas
Graduate Summer School Lecturers: Michael P. Brenner, Harvard University; Henry Cohn, Microsoft; Veit Elser, Cornell University; Daan Frenkel, University of Cambridge; Richard D. James, University of Minnesota; Robert V. Kohn, Courant Institute; Roman Kotecký, University of Warwick; and Peter Palffy-Muhorray, Kent State University
Clay Senior Scholars in Residence: L. Mahadevan, Harvard University; and Felix Otto, Max-Planck Institut für Mathematik in den Naturwissenschaften, Leipzig
Other Organizers: Undergraduate Summer School and Undergraduate Faculty Program: Steve Cox, Rice University; and Tom Garrity, Williams College. Summer School Teachers Program: Gail Burrill, Michigan State University; Carol Hattan, Skyview High School, Vancouver, WA; and James King, University of Washington

Applications: pcmi.ias.edu
Deadline: January 31, 2014
IAS/Park City Mathematics Institute
Institute for Advanced Study, Princeton, NJ 08540
Financial Support Available
PCMI receives major financial support from the National Science Foundation
Stuck in the Middle: Cauchy’s Intermediate Value Theorem and the History of Analytic Rigor

Michael J. Barany

Intermediate Values
With the restoration of King Louis XVIII of France in 1814, one revolution had come to an end, but another was just beginning. Historians often describe the French Revolution of 1789, along with its reactions and repercussions, as the start of the modern era. For many historians of mathematics, however, the modern era began with the Bourbon Restoration and the mathematics of Augustin-Louis Cauchy.

In a 1972 talk at a Mathematical Association of America sectional meeting, Judith Grabiner offered an important interpretation of this critical juncture in the history of mathematics [5]. Asking whether mathematical truth was time dependent, Grabiner argued that while truths themselves may not depend on time, our knowledge certainly does. She stressed the revolutionary character of Cauchy and his contemporaries’ efforts to set mathematical analysis on a rigorous footing, which required applying a fundamentally new point of view to the problems and methods of their eighteenth-century forebears. One of Grabiner’s leading illustrations of this point, both in her talk and in her 1981 book on Cauchy’s calculus [6], is Cauchy’s proof of the intermediate value theorem, that a continuous real-valued function \(f \) on an interval \([a, b]\) assumes every value between \(f(a) \) and \(f(b) \) on that interval.

Today the intermediate value theorem (IVT) is one of the first theorems about functions that advanced undergraduates learn in courses on mathematical analysis. These courses in turn are often the first places such students are comprehensively taught the methods of rigorous proof at the heart of contemporary mathematics. Here the theorem and its proof exemplify several important aspects of rigorous analysis. At first glance, the theorem seems obvious. Indeed, generations of mathematicians before Cauchy thought its idea so obvious as not to need explicit statement or justification. On the other hand, that the theorem can be proved with just some simple notions about continuity, convergence, and the system of real numbers is something quite remarkable. Students learn to take nothing for granted, to proceed systematically, and to use approximations and limiting principles to turn vague intuitions about the nature of functions into indubitable theorems.

Cauchy’s undergraduate course in analysis at the École Royale Polytechnique, which he began teaching in 1816, was among the first to include a proof of the intermediate value theorem. His 1821 textbook [4] (recently released in full English translation [3]) was widely read and admired by a generation of mathematicians looking to build a new mathematics for a new era, and his proof of the intermediate value theorem in that textbook bears a striking resemblance to proofs of the...
When Cauchy’s language and methods are carefully dissected, he begins to look less like a far-sighted revolutionary who simply saw profound new meanings in old results. Instead, I argue (see also [1]) that Cauchy was “stuck in the middle”: struggling to reclaim what he saw to be a neglected approach to mathematics while (perhaps inadvertently) pushing mathematicians toward a particular understanding of analytic rigor that would help define their future.

A Mathematical Revolution
Underneath the slogans of liberty, equality, and fraternity and behind the barricades and the bluster of the French Revolution, there was a massive transformation in the organization of the French state and society. For the world of mathematics, these transformations meant that, for the first time, a large cadre of elite military and civil engineers began to receive a common training in Paris in the most advanced mathematics of the day. These engineers took their mathematics and applied it to the pressing problems of the modern world: mass infrastructure, navigation, mining, energy, and war. The flagship institution where these students learned to draw, compute Taylor expansions, and see the world through mathematical eyes was the École Polytechnique (renamed the École Royale Polytechnique after Napoleon’s defeat and the monarchy’s return), and it was there that Cauchy made his mark as a student and then as an instructor.

Despite his acclaim beyond the walls of the École, Cauchy was not the most popular instructor among either his students or his fellow faculty. He regularly overran his allotted lecture time; his courses could be dense and difficult to follow; he revised the curriculum with abandon, disregarding the pleas of those teaching courses for which his was a prerequisite. His foes among the faculty grumbled that Cauchy, a devout Catholic and staunch supporter of the monarchy, was a bitter reactionary who owed his job more to the changing winds of national politics than to his brilliance as a teacher.¹

In Cauchy’s view, however, a restoration was just as much due for mathematics as it had been after the regrettable revolution in France, and it was no use arguing with the misguided mathematical Jacobins or Bonapartists who would have it otherwise. When Cauchy looked at the mathematics of the eighteenth century, he saw a discipline that had lost its discipline. Undoubtedly, the century had witnessed a host of marvelous mathematical innovations, but at what cost? Mathematicians such as Leonhard Euler freely toyed with nonconvergent series and ungrounded formal expressions and did not bat an eyelash when these produced absurd conclusions. Amidst the swirl of infinities, heuristics, imaginary numbers and more, it was hard to know what to believe.

At stake for Cauchy was the proper relationship between algebra and geometry. Geometry, as most saw it, was the ancient and noble science of magnitudes initiated by the Greeks and particularly associated with Euclid.² On the one hand, geometry referred to a specific body of problems and techniques associated with shapes and magnitudes. On the other hand, however, geometry was an emblem of philosophical exactitude and precision. Mathematicians and philosophers alike sought to proceed in the more geometrico, or geometric way, stating their assumptions carefully and reasoning systematically in order to produce results with absolute certainty.

Algebra, like geometry, could refer to a body of problems and techniques. From Viète and Descartes to Laplace and Lagrange, mathematicians (not all of them French) had developed the symbolic methods of algebra into a powerful tool for studying a wide range of mathematical phenomena, including those traditionally associated with geometry.³ Also, like geometry, algebra had an implicit philosophical meaning that tied it to the unrestrained pursuit of mathematical ideas, regardless of whether each individual step had a clear geometric or physical interpretation. Eighteenth-century mathematicians saw in algebra a versatile tool for obtaining deep understandings of the world around them.

Algebra and geometry thus represented competing values. Algebraic mathematicians valued the profound mathematical truths their methods could reveal and ridiculed geometric mathematicians for their overzealous commitment to tedious proofs at the expense of vital creativity. Geometric

¹ On Cauchy’s interconnected politics, religion, and pedagogy, see [2].

² When Cauchy wrote his textbook, non-Euclidean geometries were still just over the horizon of mathematical theory.

³ The specific body of theory and techniques we now call abstract algebra was, like non-Euclidean geometry, still just beginning to emerge as Cauchy wrote. Some of Cauchy’s earliest work was on problems we might now consider in this area.
mathematicians like Cauchy, by contrast, reviled the monstrosities that algebraic mathematics occasionally produced and sought protection in the rigorous certainties of their methods. Cauchy’s textbook famously declared his desire to give his methods “all the rigor one requires in geometry, in such a way as never to resort to reasons drawn from the generality of algebra.” Rarely, of course, were the values of algebra and geometry so sharply delineated. It was often in polemical writings such as Montucla’s monumental history of mathematics [7, e.g., pp. 11, 270] or the introduction to Cauchy’s textbook rather than in everyday mathematical work or in the École’s courses on drawing and practical mathematics that these stakes loomed large. Nevertheless, the tension was real, and (at least as Cauchy saw it) algebra was winning.

Two Proofs

Cauchy’s textbook introduces the intermediate value theorem by noting a “remarkable property of continuous functions of a single variable”: that they can represent the geometric ordinates of continuous curves [4, p. 43]. Contrary to our present emphasis on the theorem in terms of the analytic properties of continuous functions, for Cauchy the theorem is foremost about the relationship between functions and geometry. This, we shall see, was not just his motivation but the central idea in his proof.

The theorem’s statement is recognizable to readers today, even if the precise wording and notation appear unusual:

Theorem (Cauchy’s IVT). *If the function* \(f(x) \) *is continuous with respect to the variable* \(x \) *between the limits* \(x = x_0 \) *and* \(x = X \) *and if* \(b \) *designates a quantity between* \(f(x_0) \) *and* \(f(X) \), *one can always satisfy the equation* \(f(x) = b \)

for one or several real values of \(x \) *between* \(x_0 \) *and* \(X \).

But Cauchy’s main proof of the theorem looks nothing like the proof we now associate with him. Here is a rather literal translation:

Proof. To establish the preceding proposition, it suffices to see that the curve whose equation is

\[y = f(x) \]

meets one or more times the straight line whose equation is

\[y = b \]

in the interval between the ordinates that correspond to the abscissas \(x_0 \) and \(X \). Yet it is clear that this will take place under our hypotheses. Indeed, as the function \(f(x) \) is continuous between the limits \(x = x_0 \) [and] \(x = X \), the curve whose equation is \(y = f(x) \) passing first through the point with coordinates \(x_0, f(x_0) \) and second through the point with coordinates \(X \) and \(f(X) \) will be continuous between these two points; and, as the constant ordinate \(b \) of the line whose equation is \(y = b \) is found between the ordinates \(f(x_0) \) and \(f(X) \) of the two points under consideration, the line [corresponding to \(y = b \)] will necessarily pass between these two points so that it cannot avoid crossing the above-mentioned curve [corresponding to \(y = f(x) \)] in the interval.

The first thing to notice is that, while Cauchy employs several variables and equations, he uses these symbolic expressions purely to describe curves and lines in a plane. There are no algebraic manipulations whatsoever, much less sequences, bounds, or limits. He presents the continuous function \(f(x) \) as an unbroken curve connecting two points, and his proof hinges on a claim that a level line corresponding to the desired intermediate value must cross this curve. The argument is vague and unsystematic by our standards. Even though Cauchy has just given a definition of continuity,\(^4\) his proof makes no use of it. Instead, the notion of continuity in this proof means simply that the function’s corresponding curve remains unbroken.

Was Cauchy sloppy, lazy, or inconsistent with this proof? I have found nothing to suggest that he or his contemporaries had second thoughts about it.\(^5\) Instead, we should see this as evidence of Cauchy’s faith in geometric reasoning and his lingering distrust of algebra. Arguments based on unbroken planar curves were sensible and trustworthy to Cauchy in a way that arguments based on symbols and equations were not. Because

\(^{4}\) Cauchy’s definition of continuity will also appear unusual to those expecting epsilons, deltas, quantifiers, and convergence. He defines continuous functions as those for which the difference \(f(x + \alpha) - f(x) \) is infinitesimally small when \(\alpha \) is. See [4, pp. 34–35]. There is considerable secondary literature on Cauchy’s “infinitesimally small quantities” and their relationship to various ideas about variables, continuity, and convergence. In particular, while some have argued his notions were ultimately equivalent to ideas developed in either “epsilontic” or nonstandard analysis, most agree that Cauchy omitted or left implicit many important ideas and intuitions about his infinitesimally small quantities.

\(^{5}\) One might be tempted to dismiss this proof as merely a pedagogically oriented plausibility argument, but Cauchy himself makes no such excuse for it, and such a move would be exceptional in a textbook meant to showcase his model of rigor. His allusion to the “direct and purely analytic” proof in the appendix is sometimes read as an admission that the above proof is inadequate, but this view substitutes later values of analytic rigor where Cauchy’s own priorities are at best unclear. The best evidence of Cauchy’s view remains the fact that he calls this argument a proof (something he does not do for every argument following a stated theorem) and places it prominently in the body of his textbook.
he could visualize two curves crossing, he needed no further argument to establish his theorem. Here the “rigor of geometry” involved not just careful systematic reasoning but the use of a fundamentally geometric argument.

Cauchy’s more famous proof of the intermediate value theorem comes in an appendix on solving equations numerically. Here the above theorem becomes a corollary to the first theorem of the appendix, which states that if a function is continuous between \(x = x_0 \) and \(x = X \) and if \(f(x_0) \) and \(f(X) \) have opposite signs, then there is at least one root satisfying \(f(x) = 0 \) between \(x_0 \) and \(X \). One applies this result to the function \(f(x) - b \) to obtain the familiar theorem.

Grabiner [5, p. 362] is among many who note that the proof in Cauchy’s appendix is based on a method of approximating roots that was well known in Cauchy’s time. Cauchy supposes that the interval between \(x_0 \) and \(X \) has length \(h \) and divides the interval into \(m \) parts of length \(h/m \) for some \(m \) greater than 1. Inspecting values of \(f \) for consecutive terms of this sequence and picking one pair of such terms where the corresponding values of \(f \) have opposite signs, Cauchy then subdivides this new interval of length \(h/m \) into \(m \) parts of length \(h/m^2 \) and repeats the process to produce two sequences of \(x \) values. The first, denoted \(x_0, x_1, x_2, \ldots \), is increasing, while the second, \(X, X', X'', \ldots \), is decreasing, with corresponding terms in the two sequences coming closer and closer together.

From this, Cauchy concludes that the sequences have a common limit \(a \). Without citing his earlier theorem that continuous functions map convergent sequences to convergent sequences, he then simply stipulates that the sequences

\[
f(x_0), f(x_1), f(x_2), \ldots
\]

and

\[
f(X), f(X'), f(X''), \ldots
\]

must both converge to \(f(a) \). Finally, Cauchy claims that, because corresponding terms of these two sequences have opposite signs, \(f(a) \) must have the value 0.

At first glance, this is a pure example of the rigorous algebraic analysis for which Cauchy is known today. Nevertheless, we can still see Cauchy’s preference for geometric reasoning. On the one hand, Cauchy’s proof does more than one would expect if the goal were simply to prove the existence of a root. Why, for instance, carry out the argument with an arbitrary value of \(m \) when simply halving the interval each time is sufficient? Cauchy’s rhetoric makes it clear that he continues to see his procedure primarily as a tool of approximation rather than as an existence proof. Thus he makes repeated reference to the possibility of there being multiple roots and elaborates on this point in two of the three scholia that follow the proof. The first such scholium is even more directly about approximation: it notes that the average of the terms \(x_n \) and \(X^{(n)} \) is at most a distance \(\frac{1}{m^n} \) from the desired root \(a \)—an observation that is extraneous (in the context of Cauchy’s argument) to the question of whether such a root exists but is important when one cares about rates of convergence for approximations.

Why, for that matter, did Cauchy try to find a root instead of an arbitrary intermediate value \(b \)? The proof would need few modifications to fit this more general case. Making this theorem about roots rather than arbitrary values allowed Cauchy to preserve it as an argument about a curve meeting a line (in this case, the \(x \)-axis). At the same time, while finding arbitrary values was (simply put) a rather arbitrary thing to do, the engineers-in-training at the École would have had many occasions to find roots in the course of their work and studies.

On the other hand, Cauchy leaves several potentially important ideas between the lines. We know, for instance, what it means for terms to be pairwise of opposite signs, but what does this mean in the limit of a sequence? Proofs today typically specify one sequence of values as approaching the intermediate value from below and the other from above. Indeed, it is striking that, though the proof discusses sequences and values with opposite signs, the only symbolic inequalities in the entire argument are used for values of \(x \) and never for values of \(f(x) \). For both \(x \) and \(f(x) \), Cauchy refers frequently not just to values but to \textit{quantities}, implying that they have geometric magnitudes.

This explains, in part, why Cauchy so freely makes claims about the convergence and limits of the sequences obtained in his proof. As a pure matter of algebraic abstractions, one needs a lemma to assert that the common limit of the sequences \(f(x_0), f(x_1), \ldots \) and \(f(X), f(X'), f(X''), \ldots \) would equal \(f(a) \). As a matter of geometry, however, the identity might not strike one as requiring a separate argument or citation.

It would not be until several decades after Cauchy’s course was published that mathematicians would systematically attempt to define teratological functions that defied the intuitions associated with the usual mechanical problems of polytechnical mathematics. In Cauchy’s time, mathematical analysis remained first and foremost the mathematical study of the world—a world filled with complex phenomena but also a world exhibiting profound regularities. Cauchy’s course, for instance, assumes that all continuous functions are differentiable; indeed, all the continuous functions he might care to differentiate were more or
less smooth. In a sense, then, Cauchy’s preference for geometry reflected a desire to remain true to the world and to use only those mathematical techniques that genuinely reflected worldly magnitudes, even if this limited what he could say mathematically about that world.6

Stuck in the Middle

The peculiarities of Cauchy’s proofs help us see that the rigor Cauchy prized was something quite different from the rigor we now associate with his name. When Cauchy objected to the mathematics of his predecessors, he did not find them lacking in their adherence to formal rules for symbolic manipulation. Quite the contrary, he felt mathematicians in the preceding century trusted such rules altogether too much. With this in mind, it is not surprising that Cauchy’s project of reform was not, at its heart, based on carefully placed quantifiers, deftly manipulated sequences and inequalities, and meticulous logical exactitude.

To tame the dangerous fashion for algebra, Cauchy demanded a return to geometry in both its senses. He is remembered today for making his proofs systematic and logical, but his own proofs place a clearer emphasis on the geometry of magnitudes, not the geometry of methods. Cauchy sought to save mathematical analysis by ensuring that its powerful algebraic tools stayed true to the world of geometry, hence his insistence on convergence and his caution when defining imaginary and even negative numbers. Where he did not see any danger of symbols losing their geometric referents, as in his proofs of the intermediate value theorem, he could in fact be quite lax with their use.

In this sense, Cauchy’s analysis appears surprisingly regressive. The rigor he advocated was a return to geometric reasoning that a century of mathematicians had rejected as stale, tedious, and counterproductive. His methods were difficult, and his students and colleagues frequently lamented their cumbersome impracticality. And yet, Cauchy seems now to have won the day.

How could such a reactionary mathematician so transform the mathematics of his generation in a way that now appears progressive and visionary? Cauchy realized he could not do away with algebra even in his own mathematics. Rather than throw algebra out entirely, he worked to endow algebra with the virtuous rigors of geometry by developing algebraic criteria to match geometric reasoning. In so doing, he advanced the idea that it was possible to have it both ways: to enjoy the power of algebraic thinking while still adhering to the discipline and certitude of geometry. All one needed was to put the demands of geometry in algebraic terms.

Thus Cauchy’s rules for convergence and his attention to the limits of formal expressions’ validity created new problems and new opportunities. He opened up ways of studying mathematical phenomena that remain vital nearly two centuries later. While his approach proved durable, its initial motivation could easily be forgotten. The ensuing generation of European mathematicians latched on to his disciplined way of studying the meanings of formal expressions while jettisoning his preoccupation with the geometry of magnitudes. From them, we have the beginnings of the set-theoretic foundations of analysis that undergirds the mathematics of his generation of European mathematicians latched on to his disciplined way of studying the meanings of formal expressions while jettisoning his preoccupation with the geometry of magnitudes. From them, we have the beginnings of the set-theoretic foundations of analysis that undergraduates learn today.

Of course not even the set theorists had the final word on rigor. Mathematicians must constantly balance what methods are worthwhile, what arguments are convincing, and what values are worth conveying to students. Those dismayed by the lack of consensus on these points today or wishing that opponents could simply see that their positions are illogical, unrigorous, or counterproductive can take comfort in the fact that these debates are not just a normal part of the history of mathematics, but that they can help to spur new ideas and approaches, often in unexpected ways. Studying the history of mathematics, we can appreciate that in some ways we are all, like Cauchy, stuck in the middle between our discipline’s past and its open-ended future.

References

6I elaborate in [1] how this mathematical impulse relates to Cauchy’s religious and political conservatism.
Introducing NEW journal titles from

International Press of Boston, Inc.

Notices of the International Congress of Chinese Mathematicians

Editors-in-Chief: Shiu-Yueng Cheng (Hong Kong University of Science and Technology), Ming Chang Kang (National Taiwan University), Kefeng Liu (University of California at Los Angeles), Chi-Wang Shu (Brown University), Lo Yang (Chinese Academy of Sciences) and Shing-Tung Yau (Harvard University)

International Press of Boston is pleased to announce publication of the first issue (July 2013) of its all new Notices of the International Congress of Mathematicians (or ICCM Notices for short), the official periodical of the ICCM organization. The ICCM Notices brings news, research, and presentation of various perspectives, relevant to Chinese mathematics development and education. It will be published semi-annually. The ICCM Notices will be of interest to all people — whether of Chinese background or not — who are interested in following Chinese mathematics. To submit a paper, please contact Editorial Assistant Chun-Chien Chen, yassist@tims.ntu.edu.tw. The first issue of the ICCM Notices, Vol. 1, No. 1 has been published and is available for purchase as an individual book, list price $50. Sales of the ICCM Notices as a formal subscription begin with subscription year 2014. A 2014 subscription will be print-only, include two issues and is priced at $125 when shipped within the US and $150 when shipped outside the US. The subscription price includes shipping. For more information, please visit http://intlpress.com/ICCM.

Geometry, Imaging and Computing

Editors: Xianfeng Gu (SUNY Stony Brook), Stanley Osher (UCLA), Chi-Wang Shu (Brown University), Stephen Wong (Methodist Hospital Research Institute) and Shing-Tung Yau (Harvard University)

International Press of Boston is pleased to announce the forthcoming journal Geometry, Imaging and Computing (GIC), which will cover topics in applied geometry, imaging sciences, and their computational aspects. The journal’s main theme is differential geometry-based modeling/computation in 3D and higher dimensions, with applications to imaging, computer visions, and graphics. The journal will publish high-quality papers over a broad range of topics, including computational differential geometry, geometry processing, shape analysis, shape registration, image processing, image analysis, image understanding, computer graphics, visions, and visualizations; with applications to science, medicine, engineering, and other fields. The first issue is dedicated to Prof. David Mumford of Brown University, in honor of his 75th birthday, and in recognition of his tremendous contributions in applying geometry to imaging and computer visions. We now invite submissions of papers addressing the relationship between geometry and imaging, and their numerical/computational aspects. All submitted papers will be peer reviewed. To submit a paper, or for further information, please e-mail gic@intlpress.com or visit intlpress.com/GIC. The 2014 volume will contain four issues.
Problem Solving: Moving from Routine to Nonroutine and Beyond

Barry Garelick

An important part of the job of teaching math in K–12 is to stretch students—to teach them creative and personal engagement with the material. At some point this must involve expecting students to come up with previously unfamiliar steps on their own for new problems that do not lend themselves to known algorithms, prescribed methods, and predictable approaches. An effective way of doing this is to extend routine problems that students know how to solve into nonroutine problems.

Over the past two decades, however, disagreements between advocates of traditional or conventional math teaching and the math reform movement have resulted in a fragmented approach to teaching math. A key area of disagreement centers on the distinction between “exercises” and “problems”. Math reformers generally believe that conventional math teaching consists mainly of routine problems that are nonthinking, repetitive, tedious and do not lead to students learning to solve nonroutine problems.

One math reform approach has been to present students with a steady diet of “challenging problems” that neither connect with the students’ lessons and instruction nor develop any identifiable or transferrable skills. The following problem from Hjalmarson and Diefes-Dux (2008) is one example: How many boxes would be needed to pack and ship one million books collected in a school-based book drive? In this problem the size of the books is unknown and varied, and the size of the boxes is not stated. While some teachers consider the open-ended nature of the problem to be deep, rich, and unique, students will generally lack the skills required to solve such a problem, skills such as knowledge of proper experimental approaches, systematic and random errors, organizational skills, and validation and verification.

Based on my experiences as both student and teacher, as well as the experiences of veteran math teachers, I submit that a substantial education in mathematics should steer a middle course between the proliferation of routine problems and reliance upon unique, complex projects. Students should learn to apply basic principles in a much wider variety of situations than typically presented in texts. Such problems, however, should not be as complex or as time consuming as the example above. A math problem is not necessarily useful just because it requires outside-of-the-box insight.
and/or inspiration and will generally not result in a problem-solving “habit of mind”.

Extending Routine Algorithmic Problems to Nonroutine Problems

Problems that are extensions of routine problems, (as suggested by Henderson and Pingry (1953)) can effectively build upon prior knowledge and develop a larger problem-solving repertoire. Such extensions require students to synthesize ideas and procedures from two or more areas of learned procedures and are frequently multistep. For example, while most students have learned how to factor \(a^2 - b^2 \), they are likely to find the following difficult to factor: \(x^2 + 2bx - b^2 \). This problem requires students to synthesize what they know about perfect square trinomials, how they are factored, and how these ultimately relate to factoring the difference between two squares. An intermediate problem may be introduced, such as \(a^2 - (m - n)^2 \), to serve as scaffolding for the more challenging version.

The factoring of the difference of two squares can be extended even further: Find two positive integers “\(a \)” and “\(b \)” such that \(a^2 - b^2 = 2011 \). A student may first factor to obtain \((a + b)(a - b) = 2011 \). Some students may not be able to go any further. Others will see that expressing the right-hand side of the equation as the product of two factors \(xy \) puts them on the pathway to solving it. Students may be stumped and will overlook the fact that 2,011 and 1 can represent \(x \) and \(y \).

Extending Routine Word Problems to Nonroutine Problems

A frequent criticism of word problems in textbooks is that they present a worked example/method for solving a particular type of problem, followed by a set of almost identical problems to solve. Students may experience the practice of applying a memorized technique and mechanically look for the data to plug in to the appropriate equations without having to read the problem. But what if you are given values with different units in a distance/rate problem? And what if you are given two legs and two different rates and need to find your average rate? Word problems can and should be varied for improving problem-solving ability.

This is, in fact, what is done in well-written algebra textbooks or in problem sets devised by teachers. Students are given instruction via worked examples and some initial practice problems. After that, the problems vary. For example, consider the following two distance/rate problems from Dolciani et al. (1962):

A freight train left Beeville at 5 AM at 30 miles per hour. At 7 AM an express train traveling 50 miles per hour left the same station. When did the express overtake the freight?

An airplane traveling 280 miles per hour leaves San Francisco 13½ hours after a steamship has sailed. If the plane overtakes the ship in 1½ hours, find the rate of the steamship.

While the variations between these two problems are slight (one asks for time traveled, the other speed), they present a challenge to beginning students. Varying the structure of the basic problem forces the student to read each problem carefully. They must identify what the question is, what data are provided, and how to transform it into an equation. The variation and difficulty increases so that the last problems of the set are more complex and nonroutine:

A ship must average 22 miles per hour to make its ten-hour run on time. During the first four hours, bad weather caused it to reduce speed to 16 miles per hour. What should its speed be for the rest of the trip to keep the ship to its schedule?

Extending the nonroutine distance problem even further, students can be given the following problem in an Algebra 2 course:

Two boys in a canoe are at a confluence of a lake and a river. A house upriver and a boulder on the other side of the lake are equidistant from the boys. Would it take the same amount of time to paddle across the lake to the boulder and back as it would to paddle to the house upriver and back (at the same speed relative to the water each way for both options)? If not, which option would take longer?

This problem does not allow a “plug-in” solution. Students must model the situation using symbols and apply their knowledge of expressing time as a function of rate and distance. Many students will assume that either route will take the same amount of time, reasoning that the amount that the canoe is slowed down by the current when traveling upstream is canceled by the additional speed the current imparts when traveling downstream. Proving or disproving the initial intuitive response, however, requires mathematics. Ultimately, it involves an inequality that does not lend itself to an algorithmic solution.

Building a Problem-Solving Repertoire

Students should routinely be presented with nonroutine problems. Even if a student fails to solve such a problem, seeing its solution opens up pathways in which they discover relationships between content and what they know about solving routine problems.
Sweller et al. (2010) state that problem solving cannot be taught independently of basic tools and basic thinking. Over time, students build up a repertoire of problem-solving techniques. Ultimately, the difference between someone who is good and someone who is bad at solving nonroutine problems is not that the good problem solver has learned to solve novel, previously unseen problems. It is more the case that, as students increase their expertise, more nonroutine problems appear to them as routine.

References

In Memory of Professor Francisco Federico Raggi Cárdenas

María José Arroyo, Rogelio Fernández-Alonso González, Sergio R. López-Permouth, José Ríos Montes, and Carlos Signoret

Professor Francisco Federico Raggi Cárdenas passed away June 12, 2012, in Mexico City. Professor Raggi was born in Mexico City in 1940. He obtained his undergraduate degree from Universidad Nacional Autónoma de México (UNAM), a master's degree from Harvard, and a doctorate from UNAM. In 1962 he joined the Institute of Mathematics of UNAM, where he worked until his passing. He held visiting positions in universities throughout the world, including institutions in Germany, the United States, Belgium, Canada, Spain, and Italy.

Professor Raggi taught modern algebra at all levels to many generations of students in Mexico. In particular, he had four Ph.D. students. Raggi was author or coauthor of five books that are prominently used in universities throughout Mexico. As he traveled constantly and taught at many places throughout Mexico, Raggi's commitment to the

Maria José Arroyo is professor of mathematics at Universidad Autónoma Metropolitana Iztapalapa. Her email address is mja@xanum.uam.mx.

Rogelio Fernández-Alonso González is professor of mathematics at Universidad Autónoma Metropolitana Iztapalapa. His email address is rojo99@prodigy.net.mx.

Sergio R. López-Permouth is professor of mathematics at Ohio University. His email address is lopez@ohio.edu.

José Ríos Montes is professor of mathematics at Universidad Nacional Autónoma de México. His email address is jrios@matem.unam.mx.

Carlos Signoret is professor of mathematics at Universidad Autónoma Metropolitana Unidad Iztapalapa. His email address is casi@xanum.uam.mx.

DOI: http://dx.doi.org/10.1090/noti1052
Sweller et al. (2010) state that problem solving cannot be taught independently of basic tools and basic thinking. Over time, students build up a repertoire of problem-solving techniques. Ultimately, the difference between someone who is good and someone who is bad at solving nonroutine problems is not that the good problem solver has learned to solve novel, previously unseen problems. It is more the case that, as students increase their expertise, more nonroutine problems appear to them as routine.

References
Mary Dolciani, S. L. Berman, and J. Freilich (1962), Modern Algebra, Book 1, Houghton Mifflin Co. Boston, MA.

In Memory of Professor Francisco Federico Raggi Cárdenas

María José Arroyo, Rogelio Fernández-Alonso González, Sergio R. López-Permouth, José Ríos Montes, and Carlos Signoret

Professor Francisco Federico Raggi Cárdenas passed away June 12, 2012, in Mexico City. Professor Raggi was born in Mexico City in 1940. He obtained his undergraduate degree from Universidad Nacional Autónoma de México (UNAM), a master's degree from Harvard, and a doctorate from UNAM. In 1962 he joined the Institute of Mathematics of UNAM, where he worked until his passing. He held visiting positions in universities throughout the world, including institutions in Germany, the United States, Belgium, Canada, Spain, and Italy.

Professor Raggi taught modern algebra at all levels to many generations of students in Mexico. In particular, he had four Ph.D. students. Raggi was author or coauthor of five books that are prominently used in universities throughout Mexico. As he traveled constantly and taught at many places throughout Mexico, Raggi's commitment to the

María José Arroyo is professor of mathematics at Universidad Autónoma Metropolitana Iztapalapa. Her email address is mja@xanum.uam.mx.

Rogelio Fernández-Alonso González is professor of mathematics at Universidad Autónoma Metropolitana Iztapalapa. His email address is rojo99@prodigy.net.mx.

DOI: http://dx.doi.org/10.1090/noti1052

Sergio R. López-Permouth is professor of mathematics at Ohio University. His email address is lopez@ohio.edu.

José Ríos Montes is professor of mathematics at Universidad Nacional Autónoma de México. His email address is jrios@matem.unam.mx.

Carlos Signoret is professor of mathematics at Universidad Autónoma Metropolitana Unidad Iztapalapa. His email address is casi@xanum.uam.mx.
development of mathematics in his country was unequivocal.

Professor Raggi was a man of principles; he was widely recognized for his integrity and trustworthiness. He will be remembered as a fun-loving, friendly person who loved his family, art, good food, music, movies, and science fiction. Everyone who knew him agrees that he was a wonderful conversationalist with whom it was very enjoyable to talk for hours about any imaginable topic.

Professor Raggi was involved in the organization of special sessions of most joint meetings of the American Mathematical Society and the Sociedad Matemática Mexicana (SMM). Professor Raggi was one of the pioneers in the introduction of ring theory to Mexico; his focus on the subject was from a lattice-theoretic perspective. He was the author of thirty-eight research articles. His work had four main streams:

1) **Ring arithmetic theory and group rings.** Raggi’s first works are dedicated to the study of the group of units of certain rings. They were published in Spanish and constituted the basis for his Ph.D. thesis. These papers have many citations, such as the classic books *Commutative group algebras*, by Karpilovski, and *Topics in group rings*, by Sehgal.

2) **Lattices associated with the category of R-modules and hereditary torsion theories.** Raggi was interested in the general theory of localization, introduced by Gabriel, and related concepts such as Gabriel topologies, hereditary torsion theories, and left exact radicals. Some of the papers are cited by Golan in his book *Torsion Theories*. Raggi also studied nonhereditary torsion theories, which form a lattice that is not necessarily a set, and related this lattice with the lattice of hereditary torsion theories.

3) **Dimension theory for rings, defined for several classes of modules.** Raggi was interested in the Krull dimension, as defined by Gordon and Robson. He defined the finite length dimension and compared it with the Krull dimension and the dual Krull dimension. He also studied Serre subcategories.

4) **The big lattice of preradicals over a ring.** In 2002 Raggi considered for the first time the big lattice of preradicals over a ring from the lattice theory point of view. In the paper “The lattice structure of preradicals” it is proven that the lattice of preradicals is atomic and coatomic, describing the sets of atoms and coatoms. Using this lattice structure, he characterized semisimple Artinian rings, V-rings, and rings which are a finite product of simple rings. In other papers Raggi studied operators and partitions induced by them. He also defined prime preradicals and prime submodules of a module, relating both concepts. In one of his last works, Raggi defined the concept of a main injective module, whose fully invariant submodules are in bijective correspondence with all the left exact preradicals. In another paper he considered the case when the ring itself is a main injective module and proved that this occurs precisely when it is a QF ring.

The Sociedad Matemática Mexicana (SMM) honored Raggi posthumously with a memorial in his honor during their national meeting in Queretaro, Mexico, on October 30, 2012.

About the Cover

Can mathematics help resolve serious conflicts?

The idea and some images for this month’s cover were taken from the article “Principles for implementing a potential solution to the Middle East conflict” by Thomas L. Saaty and H. J. Zoffer in this issue. They make an intriguing proposal. In a way, it is just an application of the standard technique for solving mathematical problems: break a large problem down into smaller ones.

—Bill Casselman

Graphics Editor
(notices-covers@ams.org)

The photo of the Palestinian refugee camp (lower right) is © Mohammed Asad/Apaimages/ZUMA Press/Corbis.
Mathematics People

Vogelius Named MPS Director

Michael Vogelius of Rutgers, the State University of New Jersey, has been named Division Director of the Mathematics and Physical Sciences (MPS) directorate of the National Science Foundation (NSF). He will assume the position in January 2014.

Vogelius earned his Ph.D. in mathematics from the University of Maryland, College Park, in 1980. He has served on the faculty of the University of Maryland and has held visiting appointments at Stanford University, Ecole Polytechnique Federale de Lausanne, and the University of Copenhagen. He has been on the Rutgers faculty since 1989 and served as the department chair from 2009–2013. He has published more than ninety articles and is a Fellow of the American Mathematical Society, a Foreign Member of the Royal Danish Academy of Sciences and Letters, and a recipient of a Sloan Research Fellowship. He is an associate editor of the SIAM Journal on Mathematical Analysis and serves on the editorial boards of several other mathematical journals. His research interests include mathematical analysis, partial differential equations, and numerical analysis.

—From an NSF announcement

Vélez Receives AWM Humphreys Award

William Y. Vélez of the University of Arizona has been named the recipient of the fourth annual M. Gweneth Humphreys Award of the Association for Women in Mathematics (AWM).

The prize citation reads in part: “Vélez is legendary for his ability to encourage women to study mathematics and pursue mathematical careers. Particularly impressive is his success in instilling confidence in first-generation and minority students who are often struggling to overcome expectations based on culture and gender.”

In 1988 he cofounded the Minority Calculus Advising Program at the University of Arizona, through which he encouraged students to continue taking mathematics courses. In 1997 he received a President’s Award for Excellence in Science, Mathematics, and Engineering Mentoring.

The Humphreys Award is given annually to a mathematics teacher, female or male, who has encouraged female undergraduate students to pursue mathematical careers and/or the study of mathematics at the graduate level.

—From an AWM announcement

Beckmann Receives Louise Hay Award

Sybilla Beckmann of the University of Georgia has been named the recipient of the 2014 Louise Hay Award of the Association for Women in Mathematics (AWM). The award recognizes outstanding achievements in any area of mathematics education.

According to the prize citation, Beckmann was recognized for “her vision, persistence, and leadership in enhancing the teaching and learning of mathematics in this country and beyond. Her work is based on her insight that sustainable improvement in mathematics education can only occur when the mathematical culture in the schools and the universities is ‘built on respect for the innate mathematical abilities that are the birthright of every student.’ She has worked to energize every link of this chain, from the daily challenges that teachers face in their classrooms to the highest levels of the national discussions of K–12 education.”

Beckmann received her Ph.D. in mathematics from the University of Pennsylvania and taught at Yale University before moving to the University of Georgia in 1988. She also spent a year teaching sixth grade and has written a textbook, Mathematics for Elementary Teachers. She created and directs the Mathematicians Educating Future Teachers program, funded by a Vertical Integration of Research and Education (VIGRE) grant from the National Science Foundation. She was one of the writers of the National Council for Teachers of Mathematics (NCTM) “Curriculum Focal Points for Pre-Kindergarten through Grade Eight” and two supplemental books and played a significant role in writing the Common Core State Standards in Mathematics. Her awards for teaching include the General Sandy Beaver Teaching Professorship of the College of Arts and Sciences at the University of Georgia; the Josiah Meigs Distinguished Teaching Professorship, the highest teaching honor at the University of Georgia; and the Regents’ Teaching Award from the University System of Georgia. Her research interests include arithmetic geometry and algebraic number theory and Galois theory, as well as the mathematical education of teachers.

—From an AWM announcement

2013 International Mathematical Olympiad

More than five hundred young mathematicians from ninety-seven countries competed in the fifty-fourth International Mathematical Olympiad.
Mathematical Olympiad (IMO), which was held in July 2013 in Santa Marta, Colombia. The IMO is the preeminent mathematical competition for high-school-age students from around the world. The IMO consists of solving six extremely challenging mathematical problems in a nine-hour competition administered over two days.

The team from the People’s Republic of China finished first. The team from the Republic of Korea (South Korea) finished second, and the United States team finished third. Four members of the U.S. team won gold medals. In alphabetical order, the gold medal winners for the United States were: MARK SELKE, William Henry Harrison High School, Evansville, Indiana; BOBBY SHEN, Dulles High School, Sugar Land, Texas; JAMES TAO, Illinois Mathematics and Science Academy, Aurora, Illinois; and VICTOR WANG, Ladue Horton Watkins High School, St. Louis, Missouri. The silver medal recipients were RAY LI, Phillips Exeter Academy, Exeter, New Hampshire; and THOMAS SWAYZE, Canyon Crest Academy, San Diego, California. Shen and Swayze were gold medalists in the 2012 competition. The 2014 IMO will be held in Cape Town, South Africa, July 3–13, 2014.

—From an IMO announcement

Ford Foundation Fellowships Awarded

Three young mathematicians have been awarded National Research Council-Ford Foundation fellowships for 2013. MICHAEL L. JEMISON of Princeton University and MICHAEL SANTANA of the University of Illinois–Urbana-Champaign received predoctoral fellowships. ARNULO PEREZ of Indiana University was awarded a dissertation fellowship.

—From a Ford Foundation announcement

Pi Mu Epsilon Student Paper Presentation Awards

Pi Mu Epsilon (PME), the U.S. honorary mathematics society, makes annual awards to recognize the best papers by undergraduate students presented at a PME student paper session. This year PME held a session in conjunction with the Mathematical Association of America MathFest held July 31–August 3 in Hartford, Connecticut. The AMS and the American Statistical Association sponsor awards to student speakers for excellence in exposition and research. Each awardee receives a check for US$150. The names, chapters, institutions, and paper titles of the award-winning students follow.

CAMRON BAGHERI, Ohio Xi Chapter, Youngstown State University, “Applications of linear algebra to the Fibonacci sequence”; MICHAEL BAKER, Ohio Xi Chapter, Youngstown State University, “A study of optical gain in three-component multilayered films”; MATTHEW BARRY, Texas

Craig Appointed Director of the Fields Institute

WALTER CRAIG of McMaster University has been appointed director of the Fields Institute for Research in Mathematical Sciences. He received his Ph.D. from the Courant Institute of Mathematical Sciences in 1981 and has held positions at the California Institute of Technology, Stanford University, and Brown University. His research interests include partial differential equations, Hamiltonian dynamical systems, and their applications to the physical sciences. He is a fellow of the Royal Society of Canada, the American Association for the Advancement of Science, and the American Mathematical Society, as well as of the Fields Institute.

—From a Fields Institute announcement

Correction

Correction to the article “Voevodsky’s univalence axiom in homotopy type theory” by S. Awodey, A. Pelayo, and M. Warren in the October 2013 issue: A misprint was introduced in press in the third footnote on page 1, where it should have read that M. Warren was a member of the School of Mathematics at the IAS from 2011 to 2013.

—Álvaro Pelayo
Mathematics Opportunities

American Mathematical Society Centennial Fellowship

Invitation for Applications for Awards for 2014–2015
Deadline December 1, 2013

Description: The AMS Centennial Research Fellowship Program makes awards annually to outstanding mathematicians to help further their careers in research. The number of fellowships to be awarded is small and depends on the amount of money contributed to the program. The Society supplements contributions as needed. One fellowship will be awarded for the 2014–2015 academic year. A list of previous fellowship winners can be found at http://www.ams.org/profession/prizes-awards/ams-awards/centennial-fellow

Eligibility: The eligibility rules are as follows. The primary selection criterion for the Centennial Fellowship is the excellence of the candidate’s research. Preference will be given to candidates who have not had extensive fellowship support in the past. Recipients may not hold the Centennial Fellowship concurrently with another research fellowship, such as a Sloan or NSF Postdoctoral fellowship. Under normal circumstances, the fellowship cannot be deferred. A recipient of the fellowship shall have held his or her doctoral degree for at least three years and not more than twelve years at the inception of the award (that is, received between September 1, 2002, and September 1, 2011). Applications will be accepted from those currently holding a tenured, tenure-track, postdoctoral, or comparable (at the discretion of the selection committee) position at an institution in North America. Applications should include a cogent plan indicating how the fellowship will be used. The plan should include travel to at least one other institution and should demonstrate that the fellowship will be used for more than reduction of teaching at the candidate’s home institution. The selection committee will consider the plan in addition to the quality of the candidate's research and will try to award the fellowship to those for whom the award would make a real difference in the development of their research careers. Work in all areas of mathematics, including interdisciplinary work, is eligible.

Deadline: The deadline for receipt of applications is December 1, 2013. The award recipient will be announced in February 2014 or earlier if possible.

Application information: Find Centennial information and application form at http://www.ams.org/ams-fellowships/ For paper copies of the form, write to the Membership and Programs Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294; prof-serv@ams.org; 401-455-4105.

—AMS announcement

AMS Epsilon Fund

The AMS Epsilon Fund awards grants to summer mathematics programs that support and nurture mathematically talented high school students in the United States. The deadline to apply for funding for summer 2014 programs is December 15, 2013. Applications are now being taken online at MathPrograms.org [http://www.mathprograms.org]. For more information about the program and updated application information, go to http://www.ams.org/programs/edu-support/epsilon/emp-epsilon. For more information contact the AMS Membership and Programs Department by email at prof-serv@ams.org or by telephone at 800-321-4267, ext. 4113.

—AMS announcement

Jefferson Science Fellows Program

The Jefferson Science Fellows (JSF) program at the U.S. Department of State is intended to involve the American academic science, technology, and engineering communities in the formulation and implementation of U.S. foreign policy. Each fellow will spend one year at the U.S. Department of State or the U.S. Agency for International Development (USAID) for an on-site assignment in Washington, D.C., that may also involve extended stays at U.S. foreign embassies and/or missions. Each fellow will receive a stipend of up to US$50,000. An additional US$10,000 is awarded for travel associated with assignments at the U.S. Department of State/USAID. Following the fellowship year, the Jefferson Science Fellow will return to his or her academic career but will remain available to the U.S. Department of State for short-term projects over the following five years. The JSF program is administered by the National Academies and is supported through a partnership of the U.S. science, technology, and academic communities, professional scientific societies, and the U.S. Department of State. The deadline for applications is January 13, 2014. For further information, email jsf@nas.edu, telephone 202-334-2643, or see the website http://sites.nationalacademies.org/PGA/Jefferson/PGA_046612

—From a National Academies announcement

AMS Congressional Fellowship

The AMS, in conjunction with the American Association for the Advancement of Science (AAAS), will sponsor a Congressional Fellow from September 2014 through August 2015. The fellow will spend the year working on the staff
of a member of Congress or a congressional committee as a special legislative assistant in legislative and policy areas requiring scientific and technical input.

The fellowship is designed to provide a unique public policy learning experience, to demonstrate the value of science-government interaction, and to bring a technical background and external perspective to the decision-making process in Congress.

An AMS Fellowship Committee will select the AMS Congressional Fellow. The fellowship stipend is US$74,872 for the fellowship period, with allowances for relocation and professional travel and a contribution toward health insurance.

Deadline for applications is February 15, 2014. Applicants must have a Ph.D. or an equivalent doctoral-level degree in the mathematical sciences by the application deadline. For further information, please consult the webpage http://www.ams.org/programs/ams-fellowships/ams-aaas/ams-aaas-congressional-fellowship or contact the AMS Washington Office at 202-588-1100, email: amsdc@ams.org.

—AMS Washington Office

Research Opportunities for U.S. Graduate Students in Asia and Australia

The National Science Foundation (NSF) is sponsoring a summer research program in Australia, China, Japan, Korea, Taiwan, New Zealand, and Singapore for U.S. graduate students during the summer of 2014. The East Asia and Pacific Summer Institutes (EAPSI) provide U.S. graduate students in science and engineering with firsthand research experience in the aforementioned countries, an introduction to the science and science policy infrastructure of the respective locations, and orientation to the culture and language. The primary goals of EAPSI are to introduce students to East Asian and Pacific science and engineering in the context of a research laboratory and to initiate personal relationships that will better enable them to collaborate with foreign counterparts in the future. The institutes last approximately eight weeks (ten weeks in Japan) from June to August and are administered in the United States by the NSF.

Applicants must be U.S. citizens or permanent residents. They must be enrolled at U.S. institutions in a research-oriented master’s or Ph.D. program (including joint degree programs) in fields of science or engineering research and education that are supported by the NSF and that also are represented among the potential host institutions. International travel will be provided, and each awardee will receive a stipend of US$5,000.

The deadline for full proposals is November 14, 2013. Proposers are required to prepare and submit all proposals for this announcement/solicitation through the FastLane system. Further information and detailed instructions are available at http://www.nsf.gov/pubs/2012/

—From an NSF announcement

NSF Graduate Research Fellowships

The National Science Foundation’s Graduate Research Fellowship Program (GRFP) recognizes and supports outstanding graduate students in NSF-supported science, technology, engineering, and mathematics disciplines who are pursuing research-based master’s and doctoral degrees at accredited U.S. institutions. The NSF welcomes applications from all qualified students and strongly encourages underrepresented populations, including women, underrepresented racial and ethnic minorities, and persons with disabilities, to apply for this fellowship.

Fellows benefit from a three-year annual stipend of US$32,000 along with a US$12,000 cost-of-education allowance to the institution for tuition and fees, opportunities for international research and professional development, and the freedom to conduct their own research at any accredited U.S. institution of graduate education they choose.

The next deadline to apply for the GRFP is November 5, 2013. For further information, visit the website http://www.nsfgrfp.org/

—From NSF announcements

AAUW Educational Foundation Fellowships and Grants

The American Association of University Women (AAUW) has programs for supporting women students and scholars at various stages of their careers: American Fellowships, Career Development Grants, Community Action Grants, International Fellowships, International Project Grants, and Selected Professions Fellowships. The latter fellowships support women students in areas in which women’s participation has traditionally been low, including computer/information sciences and mathematics/statistics.

For further information about the fellowships, application procedures, and deadlines, visit the website http://www.aauw.org/what-we-do/educational-funding-and-awards/. Questions by phone or postal mail must be directed to the Iowa City office of the AAUW. Please do not contact the AAUW office in Washington, D.C., or local branches for application information. Please call 319-337-1716, ext. 60; email aauw@act.org; or write to the customer service center at: AAUW Fellowships and Grants, c/o ACT, Inc., P.O. Box 4030, Iowa City, IA 52243-4030.

—From AAUW website

November 2013 Notices of the AMS 1347
NRC-Ford Foundation Fellowships

Through its Fellowship Programs, the Ford Foundation seeks to increase the diversity of the nation’s college and university faculties by increasing their ethnic and racial diversity, to maximize the educational benefits of diversity, and to increase the number of professors who can and will use diversity as a resource for enriching the education of all students. The fellowships are administered by the Fellowships Office of the National Research Council.

All citizens or nationals of the United States are eligible regardless of race, national origin, religion, gender, age, disability, or sexual orientation. The fellowships are awarded to individuals who demonstrate superior academic achievement (such as grade-point average, class rank, honors, or other designations) and who are committed to a career in teaching and research at the college or university level.

Sixty Predoctoral Fellowships will be awarded. These fellowships provide three years of support for individuals engaged in graduate study leading to a Doctor of Philosophy (Ph.D.) or Doctor of Science (Sc.D.) degree. The online application deadline is November 20, 2013.

Thirty-five Dissertation Fellowships will be awarded. These fellowships provide one year of support for individuals working to complete a dissertation leading to a Ph.D. or Sc.D. degree. The online application deadline is November 15, 2013.

Approximately twenty-four Postdoctoral Fellowships will be awarded. These fellowships provide one year of support for individuals engaged in postdoctoral study after the attainment of the Ph.D. or Sc.D. degree. The online application deadline is November 15, 2013.

Awards will be announced in April 2014. For further information visit http://sites.nationalacademies.org/pgp/fordfellowships/ or contact: Fellowships Office, Keck 576, National Research Council, 500 Fifth Street, NW, Washington, DC 20001; tel: 202-334-2872; fax: 202-334-3419; email: infofell@nas.edu.

—From the Ford Foundation Fellowships website

AMS Department Chairs Workshop

The annual workshop for department chairs will be held a day before the start of the Joint Mathematics Meetings in Baltimore, Maryland, on Tuesday, January 14, 2014, from 8:00 a.m. to 6:30 p.m. This one-day session for mathematical sciences department chairs is organized in a workshop format so as to stimulate discussion among attendees. Sharing ideas and experiences with peers creates an environment that enables attending chairs to address departmental challenges from new perspectives.

Workshop leaders will be: William “Bus” Jaco, professor, Department of Mathematics, Oklahoma State University; Alex Smith, professor and chair, Department of Mathematics, University of Wisconsin-Eau Claire; Michel Smith, professor, Department of Mathematics and Statistics, Auburn University; and Judy Walker, professor and chair, Department of Mathematics, University of Nebraska-Lincoln.

Past workshop sessions have focused on a range of issues facing departments, including planning and budgeting, personnel management, assessment, outreach, faculty development, communications, student learning, and departmental leadership.

The workshop registration fee of US$100 is in addition to and separate from the Joint Meetings registration. An invitation to attend the workshop will be sent to department chairs this fall. Information will also be posted on the AMS website. For further information, please contact the AMS Washington Office at 202-588-1100 or amsdc@ams.org.

—AMS Washington Office

Mathematics Research Communities 2014

The AMS invites mathematicians just beginning their research careers—those who are close to finishing their doctorates or who have recently finished—to become part of Mathematics Research Communities, a unique and successful program that builds social and collaborative networks through which individuals inspire and sustain each other in their work. Women and underrepresented minorities are especially encouraged to participate. Supported by the National Science Foundation, the structured

AWM Essay Contest

To increase awareness of women’s ongoing contributions to the mathematical sciences, the Association for Women in Mathematics (AWM) and Math for America are cosponsoring an essay contest for biographies of contemporary women mathematicians and statisticians in academic, industrial, and government careers.

Each essay will be based primarily on an interview with a woman currently working in a mathematical sciences career. This contest is open to students in the following categories: Grades 6–8, Grades 9–12, and College Undergraduate. At least one winning submission will be chosen from each category. Winners will receive a prize, and their essays will be published online at the AWM website.

Additionally, a grand prize winner will have his or her submission published in the AWM Newsletter.

The deadline for the 2013 AWM Essay Contest is January 31, 2014. AWM is also currently seeking women mathematicians to volunteer as the subjects of these essays. For more information or to sign up as a volunteer, contact the contest organizer, Heather Lewis, at hlewis5@naz.edu. See https://sites.google.com/site/awmmath/home for complete information.

—AWM announcement
program engages and guides all participants as they start their careers.

Those accepted into the program will receive support for the summer conference and will be partially supported for their participation in the Joint Mathematics Meetings that follow in January 2015. The summer conferences of the MRC are held in the breathtaking mountain setting of the Snowbird Resort, Utah, where participants can enjoy the natural beauty and a collegial atmosphere. The program also includes discussion networks by research topic and a longitudinal study of early-career mathematicians.

Four conferences will be held in summer 2014 on the following topics.

Week 1: June 8–14, 2014: Cluster Algebras. Organizers: Michael Gekhtman, University of Notre Dame; Mark Gross, University of California, San Diego; Gregg Musiker, University of Minnesota; David Speyer, University of Michigan; Gordana Todorov, Northeastern University.

Week 2: June 15–21, 2014: Algebraic and Geometric Methods in Applied Discrete Mathematics. Organizers: Carina Curto, University of Nebraska-Lincoln; Jesús A. DeLoera, University of California, Davis; Christine Heitsch, Georgia Institute of Technology; Michael Orrison, Harvey Mudd College; Francis Edward Su, Harvey Mudd College.

Week 3a: June 24–30, 2014: Mathematics of Quantum Phases of Matter and Quantum Information. Organizers: Siu-Hung Ng, Iowa State University; Eric C. Rowell, Texas A&M University; Zhengan Wang, Microsoft Station Q and University of California Santa Barbara.

Week 3b: June 24–30, 2014: Network Science. Organizers: Aaron Clauset, University of Colorado, Boulder; David Kempe, University of Southern California; Mason A. Porter, University of Oxford.

Individuals within one to two years before the receipt of their Ph.D.’s or within one to three years after receipt of their Ph.D.’s are welcome to apply. The MRC program is open to individuals who are U.S. citizens, as well as to those who are affiliated with U.S. institutions. A few international participants may be accepted. Women and underrepresented minorities are especially encouraged to apply. All participants are expected to be active in the full MRC program. Detailed instructions and the online application will be available on November 1, 2013.

Situated in a breathtaking mountain setting, Snowbird Resort provides an extraordinary environment for the MRC. The atmosphere is comparable to the collegial gatherings at Oberwolfach and other conferences that combine peaceful natural ambience with stimulating meetings. MRC participants have access to a range of activities, such as a tram ride to the top of the mountain, guided hikes, swimming, mountain bike tours, rock climbing, plus heated outdoor pools. More than a dozen walking and hiking trails head deep into the surrounding mountains. Participants also enjoy the simpler pleasures of convening on the patios at the resort to read, work, and socialize. In the evenings colleagues enjoy informal gatherings to network and continue discussion of the day’s sessions over refreshments. Within a half hour of the University of Utah, Snowbird is easily accessible from the Salt Lake City International Airport. For more information about Snowbird Resort, see http://www.snowbird.com.

For further information on Mathematics Research Communities, visit the website http://www.ams.org/programs/research-communities/mrc-14 or contact Ellen J. Maycock at ejm@ams.org.

—AMS announcement

Free Grant-Writing Workshop Offered

The AMS, in conjunction with the National Science Foundation Directorate for Education and Human Resources (NSF-EHR), is pleased to offer a **FREE** workshop entitled “Writing a Competitive Grant Proposal to NSF-EHR”. This grant-writing workshop will be held prior to the start of the Joint Mathematics Meetings on Monday, January 13, 2014, from 3:00 p.m. to 6:00 p.m. at the Marriott Inner Harbor Hotel in Baltimore, Maryland.

Workshop Goals:

- To familiarize participants with current direction/priorities in EHR
- To familiarize participants with key EHR education research and development programs
- To consider common issues of competitive proposals
- To prepare participants to write a competitive proposal

Topics covered will include: discussion of key programs in EHR, the merit review process and merit review criteria, discussion of scenarios—short passages drawn from proposals in the EHR portfolio designed to stimulate discussion about strengths and weaknesses of a proposal, opportunity to discuss possible proposal ideas with program officers.

This free workshop is open to all interested participants. The deadline for registration is December 24, 2013. To register see the website http://tinyurl.com/ka4fcd.

—AMS Washington Office

Call for Nominations for the 2014 Alan T. Waterman Award

The National Science Foundation (NSF) is soliciting nominations for the 2014 Alan T. Waterman Award. The award recognizes an outstanding young researcher in any field of science or engineering supported by the NSF. The award consists of a US$1,000,000 grant over a five-year period for research at the institution of the recipient’s choice. The deadline for nominations is October 25, 2013. Nominations must be submitted electronically using NSF’s FastLane system at https://www.fastlane.nsf.gov/honawards/index.jsp For more details about the award, see http://www.nsf.gov/od/waterman/waterman.jsp.

—From an NSF announcement
News From MSRI

With funding from the National Science Foundation (NSF), and the National Security Agency (NSA), the Mathematical Sciences Research Institute (MSRI) will hold six workshops in Model Theory, Arithmetic Geometry and Number Theory; and Algebraic Topology during the spring of 2014. Established researchers, postdoctoral fellows and graduate students are invited to apply for funding. It is the policy of MSRI to actively seek to achieve diversity in its workshops. Thus, a strong effort is made to remove barriers that hinder equal opportunity, particularly for those groups that have been historically underrepresented in the mathematical sciences. The workshops to be held are as follows:

—From an MSRI announcement

Inside the AMS

From the AMS Public Awareness Office

Mathematical Moments. How has math helped us understand communication pathways in the brain? How does mathematics help architects design freeform buildings? Why is it important to understand the properties of bubbles and foam? These are some of the questions answered in recent Mathematical Moments. Hear podcast interviews with Frank Morgan, James Sethian, Helmut Portmann, Van Wedeen, and others; download and print the PDFs of these and more than one hundred other topics; and see translated versions at [http://www.ams.org/mathmoments/]

AMS on Google+. The AMS joins the mathematical community on Google+ to engage with new and existing Google+ users by sharing research and publication content, membership and program news, meeting updates, and other subjects of interest to the mathematics research community. The AMS invites mathematicians worldwide to add AMS to your circles. Find AMS at +American Mathematical Society.

Math in the Media. This monthly online magazine is a centralized site at which to find coverage of mathematics, interviews with themselves or other mathematicians, and radio or television programs that highlight mathematics. Math in the Media also includes the Reviews section: links to reviews of recent books, plays, and films of general interest. [http://www.ams.org/mathmedia]

—Annette Emerson and Mike Breen
AMS Public Awareness Officers
paoffice@ams.org

Deaths of AMS Members

Michael I. Aissen, of Santa Cruz, California, died on January 7, 2013. Born on January 16, 1921, he was a member of the Society for 64 years.

Russell G. Bilyeu, of Chico, Texas, died on March 12, 2012. Born on January 22, 1930, he was a member of the Society for 53 years.

Jan Boal, of Atlanta, Georgia, died on January 16, 2013. Born on October 20, 1930, he was a member of the Society for 55 years.

Robert A. Clark, of Cleveland, Ohio, died on December 19, 2012. Born on May 3, 1923, he was a member of the Society for 68 years.

Marc Fontaine, of Houston, Texas, died on January 14, 2013. Born on March 27, 1926, he was a member of the Society for 58 years.

A. Raymond Harvey, of La Jolla, California, died on February 6, 2013. Born on January 12, 1921, he was a member of the Society for 69 years.

John E. Kimber, of Pittsburg, California, died on January 18, 2013. Born on August 5, 1925, he was a member of the Society for 59 years.
The Reference section of the Notices is intended to provide the reader with frequently sought information in an easily accessible manner. New information is printed as it becomes available and is referenced after the first printing. As soon as information is updated or otherwise changed, it will be noted in this section.

Contacting the Notices

The preferred method for contacting the Notices is electronic mail. The editor is the person to whom to send articles and letters for consideration. Articles include feature articles, memorial articles, communications, opinion pieces, and book reviews. The editor is also the person to whom to send news of unusual interest about other people’s mathematics research.

The managing editor is the person to whom to send items for “Mathematics People”, “Mathematics Opportunities”, “For Your Information”, “Reference and Book List”, and “Mathematics Calendar”. Requests for permissions, as well as all other inquiries, go to the managing editor. The electronic-mail addresses are notices@math.wustl.edu in the case of the editor and smf@ams.org in the case of the managing editor. The fax numbers are 314-935-6839 for the editor and 401-331-3842 for the managing editor. Postal addresses may be found in the masthead.

Upcoming Deadlines

November 1, 2013: Applications for November review for National Academies Research Associatehip Programs. See the website http://sites.nationalacademies.org/PGA/RAP/PGA_050491 or contact Research Associatehip Programs, National Research Council, Keck 568, 500 Fifth Street, NW, Washington, DC 20001; telephone: 202-334-2760; fax: 202-334-2759; email: rap@nas.edu.

November 5, 2013: Applications for NSF Graduate Research Fellowships. See “Mathematics Opportunities” in this issue.

December 1, 2013: Applications for AMS Centennial Fellowship. See http://www.ams.org/ams-fellowships/. For paper copies of the form, write to the Membership and Programs Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294; prof-serv@ams.org; 401-455-4105.

December 1, 2013: Applications for MSRI research memberships and postdoctoral fellowships. See https://www.msri.org/web/msri/scientific/member-application.

December 1, 2013: Applications for PIMS postdoctoral fellowships. See the website http://www.pims.math.ca/scientific/postdoctoral, or contact assistant director@pims.math.ca.

Reference and Book List

Where to Find It

A brief index to information that appears in this and previous issues of the Notices.

AMS Bylaws—January 2012, p. 73
AMS Email Addresses—February 2013, p. 249
AMS Ethical Guidelines—June/July 2006, p. 701
AMS Officers 2012 and 2013 Updates—May 2013, p. 646
AMS Officers and Committee Members—October 2012, p. 1290
Contact Information for Mathematical Institutes—August 2013, p. 629
Conference Board of the Mathematical Sciences—September 2013, p. 1067
IMU Executive Committee—December 2011, p. 1606
Information for Notices Authors—June/July 2013, p. 776
National Science Board—January 2013, p. 109
NRC Board on Mathematical Sciences and Their Applications—March 2013, p. 350
NSF Mathematical and Physical Sciences Advisory Committee—February 2013, p. 252
Program Officers for Federal Funding Agencies—October 2013, p. 1188 (DoD, DoE); December 2012, p. 1585 (NSF Mathematics Education)
Program Officers for NSF Division of Mathematical Sciences—November 2013, p. 1352

February 1, 2014: Applications for AWM Travel Grants, Mathematics Education Research Travel Grants, Mathematics Mentorship Travel Grants, and Mathematics Education Research Mentorship Travel Grants. See https://sites.google.com/site/awmmath/programs/travel-grants; or contact: Math in Moscow, P. O. Box 524, Wynnewood, PA 19096; fax: +17095-291-65-01; email: mim@mccme.ru. Information and application forms for the AMS scholarships are available on the AMS website at http://www.ams.org/programs/travel-grants/mimowcow, or contact: Math in Moscow Program, Membership and Programs Department, American Mathematical Society, 201 Charles Street, Providence RI 02904-2294; email: student-serv@ams.org.

May 1, 2014: Applications for AWM Travel Grants and Mathematics Education Research Travel Grants. See https://sites.google.com/site/awmmath/programs/travel-grants; telephone: 703-934-0163; or email: awm@awm-math.org; or contact: Math in Moscow Program, Membership and Programs Department, American Mathematical Society, 201 Charles Street, Providence RI 02904-2294; email: student-serv@ams.org.

February 1, 2014: Applications for AWM Travel Grants, Mathematics Education Research Travel Grants, Mathematics Mentorship Travel Grants, and Mathematics Education Research Mentorship Travel Grants. See https://sites.google.com/site/awmmath/programs/travel-grants; telephone: 703-934-0163; or email: awm@awm-math.org; or contact: Math in Moscow, P. O. Box 524, Wynnewood, PA 19096; fax: +17095-291-65-01; email: mim@mccme.ru. Information and application forms for the AMS scholarships are available on the AMS website at http://www.ams.org/programs/travel-grants/mimowcow, or contact: Math in Moscow Program, Membership and Programs Department, American Mathematical Society, 201 Charles Street, Providence RI 02904-2294; email: student-serv@ams.org.

May 1, 2014: Applications for AWM Travel Grants and Mathematics Education Research Travel Grants. See https://sites.google.com/site/awmmath/programs/travel-grants; telephone: 703-934-0163; or email: awm@awm-math.org; or contact: Math in Moscow Program, Membership and Programs Department, American Mathematical Society, 201 Charles Street, Providence RI 02904-2294; email: student-serv@ams.org.

NSF Division of Mathematical Sciences

Listed below are names and email addresses for the program directors for the present academic year in the Division of Mathematical Sciences (DMS) of the National Science Foundation. The postal address is: Division of Mathematical Sciences, National Science Foundation, Room 1025, 4201 Wilson Boulevard, Arlington, VA 22230. The DMS webpage is http://www.nsf.gov/div/index.jsp?div=DMS. Phone numbers are available on the webpage.

Algebra and Number Theory
Tie Luo
tluo@nsf.gov

Andrew Pollington
adpollin@nsf.gov

Vicki Powers
vpowers@nsf.gov

Applied Mathematics
James Curry
jcurry@nsf.gov

Pedro Embid
pembid@nsf.gov

Mary Ann Horn
mhorn@nsf.gov

Victor Roytburd
vroytbur@nsf.gov

Michael Steuerwalt
msteuerw@nsf.gov

Combinatorics
Tomek Bartoszynski
tbartosz@nsf.gov

Qing Xiang
qxiang@nsf.gov

Computational Mathematics
Leland M. Jameson
ljameson@nsf.gov

A. J. Meir
ajmeir@nsf.gov

Thomas Russell
trussell@nsf.gov

Junping Wang
jwang@nsf.gov

Foundations
Tomek Bartoszynski
tbartosz@nsf.gov

Geometric Analysis and Topology
Ricardo Castaño-Bernard
rcastano@nsf.gov

Joanna Kania-Bartoszynska
jkaniaba@nsf.gov

Christopher W. Stark
cstark@nsf.gov

Analysis
Changfeng Gui
cgui@nsf.gov

Jane Hawkins
jhawksins@nsf.gov

Bruce Palka
bpalka@nsf.gov

Eric Sommers
esommers@nsf.gov

NSF Division of Mathematical Sciences

Listed below are names and email addresses for the program directors for the present academic year in the Division of Mathematical Sciences (DMS) of the National Science Foundation. The postal address is: Division of Mathematical Sciences, National Science Foundation, Room 1025, 4201 Wilson Boulevard, Arlington, VA 22230. The DMS webpage is http://www.nsf.gov/div/index.jsp?div=DMS. Phone numbers are available on the webpage.

Algebra and Number Theory
Tie Luo
tluo@nsf.gov

Andrew Pollington
adpollin@nsf.gov

Vicki Powers
vpowers@nsf.gov

Applied Mathematics
James Curry
jcurry@nsf.gov

Pedro Embid
pembid@nsf.gov

Mary Ann Horn
mhorn@nsf.gov

Victor Roytburd
vroytbur@nsf.gov

Michael Steuerwalt
msteuerw@nsf.gov

Combinatorics
Tomek Bartoszynski
tbartosz@nsf.gov

Qing Xiang
qxiang@nsf.gov

Computational Mathematics
Leland M. Jameson
ljameson@nsf.gov

A. J. Meir
ajmeir@nsf.gov

Thomas Russell
trussell@nsf.gov

Junping Wang
jwang@nsf.gov

Foundations
Tomek Bartoszynski
tbartosz@nsf.gov

Geometric Analysis and Topology
Ricardo Castaño-Bernard
rcastano@nsf.gov

Joanna Kania-Bartoszynska
jkaniaba@nsf.gov

Christopher W. Stark
cstark@nsf.gov

Analysis
Changfeng Gui
cgui@nsf.gov

Jane Hawkins
jhawksins@nsf.gov

Bruce Palka
bpalka@nsf.gov

Eric Sommers
esommers@nsf.gov

NSF Division of Mathematical Sciences

Listed below are names and email addresses for the program directors for the present academic year in the Division of Mathematical Sciences (DMS) of the National Science Foundation. The postal address is: Division of Mathematical Sciences, National Science Foundation, Room 1025, 4201 Wilson Boulevard, Arlington, VA 22230. The DMS webpage is http://www.nsf.gov/div/index.jsp?div=DMS. Phone numbers are available on the webpage.

Algebra and Number Theory
Tie Luo
tluo@nsf.gov

Andrew Pollington
adpollin@nsf.gov

Vicki Powers
vpowers@nsf.gov

Applied Mathematics
James Curry
jcurry@nsf.gov

Pedro Embid
pembid@nsf.gov

Mary Ann Horn
mhorn@nsf.gov

Victor Roytburd
vroytbur@nsf.gov

Michael Steuerwalt
msteuerw@nsf.gov

Combinatorics
Tomek Bartoszynski
tbartosz@nsf.gov

Qing Xiang
qxiang@nsf.gov

Computational Mathematics
Leland M. Jameson
ljameson@nsf.gov

A. J. Meir
ajmeir@nsf.gov

Thomas Russell
trussell@nsf.gov

Junping Wang
jwang@nsf.gov

Foundations
Tomek Bartoszynski
tbartosz@nsf.gov

Geometric Analysis and Topology
Ricardo Castaño-Bernard
rcastano@nsf.gov

Joanna Kania-Bartoszynska
jkaniaba@nsf.gov

Christopher W. Stark
cstark@nsf.gov

Analysis
Changfeng Gui
cgui@nsf.gov

Jane Hawkins
jhawksins@nsf.gov

Bruce Palka
bpalka@nsf.gov

Eric Sommers
esommers@nsf.gov
The DMS administrative staff includes:

Division Director
Michael Vogelius
(as of January 2014)

Deputy Division Director (Acting Division Director through 12/31/13)
Henry A. Warchall
hwarchal@nsf.gov

Acting Deputy Division Director
(through 12/31/13)
Thomas Russell
trussell@nsf.gov

Program Support Manager
Patricia A. Page
ppage@nsf.gov

Operations Specialist
Sharon J. Alston
salston@nsf.gov

Division Secretary
Jennifer A. Connell
jconnell@nsf.gov

Program Specialist
Onica Andrews
oandrews@nsf.gov

Book List

The Book List highlights recent books that have mathematical themes and are aimed at a broad audience potentially including mathematicians, students, and the general public. Suggestions for books to include on the list may be sent to notices-booklist@ams.org.

*Added to “Book List” since the list’s last appearance.

Sources in the Development of Mathematics: Series and Products
New! eMR Sections
Electronic Mathematical Reviews® Sections

You can now stay informed of new research published in your subject area by subscribing to the electronic Mathematical Reviews® (eMR) Section of your choice. Subject areas are assigned using MSC 2010.

- Improved accessibility and portability because eMR Section issues will be posted monthly and available as downloadable PDFs
- New content notifications via RSS feed Perpetual access
- Discounted pricing for MR Reviewers and AMS individual members
- Low-cost option for researchers and faculty whose institutions don’t currently subscribe to the full database, MathSciNet®

MR2954056 03-03 01470 68-03 81P89 94-03 94C10

Written in the lucid style of the author’s many best-selling books “popularizing” mathematics, The logician and the engineer pays homage to the careers of George Boole and Claude Shannon in their pioneering work prior to the modern computer era. After two fascinating mini-biographies, the author turns his attention to switching circuits, combinatorial and sequential logic design, probability and information theory, each impacted by the significant contributions of Boole and Shannon. Interesting and informative chapter-ending notes enhance and expand the scope of the Investigations, often providing technical details that would otherwise have impeded the flow of the narrative. Most valuable to this reviewer, and likely to many potential readers, is the closing chapter, aptly titled “Beyond Boole and Shannon”. Here is provided an introduction to quantum computing and its logic, possibly portending the future of computers, yet unmistakably bearing the footprints of the two early pioneers. It is an unexpected yet fitting conclusion to this thoroughly enjoyable read.

Ronald E. Prather

For order information, please visit:
www.ams.org/bookstore/emrsections

American Mathematical Society
MathSciNet
Mathematical Reviews

Sample eMR Section

Reference and Book List

Undiluted Hocus-Pocus
The Autobiography of Martin Gardner
Martin Gardner
With a foreword by Persi Diaconis and an afterword by James Randi

“Informative, original, unexpected, and always charmingly written with his uniquely subtle sense of fun, this final autobiographical work of Martin Gardner sums up his own life and opinions, in the way that has become so familiar and inspirational to us from his well-known writings on puzzles, mathematics, philosophy, and the oddities of the world.”
—Roger Penrose, author of Cycles of Time

Cloth $24.95 978-0-691-15991-1

The Universe in Zero Words
The Story of Mathematics as Told through Equations
Dana Mackenzie

“Extremely entertaining and stimulating. . . . [Mackenzie’s] Universe in Zero Words will seduce any scientist, but also anyone with some curiosity and desire to get more familiar with the history of human thinking and knowledge.”
—Jean-Baptiste Gramain, LMS Newsletter

Paper $19.95 978-0-691-16016-0

Will You Be Alive 10 Years from Now?
And Numerous Other Curious Questions in Probability
Paul J. Nahin

“Readers of this absorbing book will gain significant pleasure as well as a broadened understanding of the nuances of mathematics, along with a wonderful picture of how analytics and simulations complement each other. Nahin is a master at this. I love this book!”
—Joseph Mazur, author of What’s Luck Got to Do with It?

Cloth $27.95 978-0-691-15680-4

Spaces of PL Manifolds and Categories of Simple Maps
Friedhelm Waldhausen, Bjørn Jahren & John Rognes

Since its introduction by Friedhelm Waldhausen in the 1970s, the algebraic K-theory of spaces has been recognized as the main tool for studying parametrized phenomena in the theory of manifolds. However, a full proof of the equivalence relating the two areas has not appeared until now. This book presents such a proof, essentially completing Waldhausen’s program from more than thirty years ago.

Paper $75.00 978-0-691-15776-4
Cloth $165.00 978-0-691-15775-7

Degenerate Diffusion Operators Arising in Population Biology
Charles L. Epstein & Rafe Mazzeo

This book provides the mathematical foundations for the analysis of a class of degenerate elliptic operators defined on manifolds with corners, which arise in a variety of applications such as population genetics, mathematical finance, and economics. The results discussed in this book prove the uniqueness of the solution to the Martingale problem and therefore the existence of the associated Markov process.

Paper $75.00 978-0-691-15715-3
Cloth $165.00 978-0-691-15712-2

Four Colors Suffice
How the Map Problem Was Solved, Revised Color Edition
Robin Wilson

With a new foreword by Ian Stewart

“Wilson appeals to the mathematical novice with an unassuming lucidity. It’s thrilling to see great mathematicians fall for seductively simple proofs, then stumble on equally simple counter-examples. Or swallow their pride.”
—Jascha Hoffman, Boston Globe

Princeton Science Library
Paper $24.95 978-0-691-15822-8

See our E-Books at press.princeton.edu
The American Mathematical Society has reciprocity agreements with a number of mathematical organizations around the world. A current list of the reciprocating societies appears here; for full details of the agreements, see www.ams.org/membership/individual/mem-reciprocity.

Allahabad Mathematical Society
Argentina Mathematical Society
Australian Mathematical Society
Austrian Mathematical Society
Azerbaijan Mathematical Society
Balkan Society of Geometers
Belgian Mathematical Society
Berliner Mathematische Gesellschaft
Bharata Ganita Parisad
Brazilian Mathematical Society
Brazilian Society of Computational and Applied Mathematics
Calcutta Mathematical Society
Canadian Mathematical Society
Catalan Mathematical Society
Chilean Mathematical Society
Columbian Mathematical Society
Croatian Mathematical Society
Danish Mathematical Society
Dutch Mathematical Society
Edinburgh Mathematical Society
Egyptian Mathematical Society
European Mathematical Society
Finnish Mathematical Society
German Mathematical Society
German Society for Applied Maths and Mechanics
Glasgow Mathematical Association
Hellenic Mathematical Society
Icelandic Mathematical Society
Indian Mathematical Society
Indonesian Mathematical Society
Iranian Mathematical Society
Irish Mathematical Society
Israel Mathematical Union
Italian Mathematical Union
János Bolyai Mathematical Society
Korean Mathematical Society
London Mathematical Society
Luxembourg Mathematical Society
Macedonian Mathematical Society Association Mathematics/Computer Science
Malaysian Mathematical Science Society
Mathematical Society of France
Mathematical Society of Japan
Mathematical Society of the Philippines
Mathematical Society of the Republic of China
Mathematical Society of Serbia
Mexican Mathematical Society
Mongolian Mathematical Society
Nepal Mathematical Society
New Zealand Mathematical Society
Nigerian Mathematical Society
Norwegian Mathematical Society
Palestine Society for Mathematical Sciences
Parana’s Mathematical Society
Polish Mathematical Society
Portuguese Mathematical Society
Punjab Mathematical Society
Ramanujan Mathematical Society
Romanian Mathematical Society
Romanian Society of Mathematicians
Royal Spanish Mathematical Society
Saudi Association for Mathematical Sciences
Singapore Mathematical Society
Sociedad Matemática de la Republica Dominicana
Sociedad Uruguaaya de Matemática y Estadística
Société de Mathématiques Appliquées et Industrielles (SMAI)
Society of Mathematicians, Physicists, and Astronomers of Slovenia
South African Mathematical Society
Southeast Asian Mathematical Society
Spanish Society of Applied Mathematics
Swedish Mathematical Society
Swiss Mathematical Society
Tunisian Mathematical Society
Turkish Mathematical Society
Ukrainian Mathematical Society
Union of Bulgarian Mathematicians
Union of Czech Mathematicians and Physicists
Union of Slovak Mathematicians & Physicists
Vietnam Mathematical Society
Vijnana Parishad of India
From the AMS Secretary

Bylaws of the American Mathematical Society

Article I

Officers
Section 1. There shall be a president, a president elect (during the even-numbered years only), an immediate past president (during the odd-numbered years only), three vice presidents, a secretary, four associate secretaries, a treasurer, and an associate treasurer.

Section 2. It shall be a duty of the president to deliver an address before the Society at the close of the term of office or within one year thereafter.

Article II

Board of Trustees
Section 1. There shall be a Board of Trustees consisting of eight trustees, five trustees elected by the Society in accordance with Article VII, together with the president, the treasurer, and the associate treasurer of the Society ex officio. The Board of Trustees shall designate its own presiding officer and secretary.

Section 2. The function of the Board of Trustees shall be to receive and administer the funds of the Society, to have full legal control of its investments and properties, to make contracts, and, in general, to conduct all business affairs of the Society.

Section 3. The Board of Trustees shall have the power to appoint such assistants and agents as may be necessary or convenient to facilitate the conduct of the affairs of the Society and to fix the terms and conditions of their employment. The Board may delegate to the officers of the Society duties and powers normally inhering in their respective corporative offices, subject to supervision by the Board. The Board of Trustees may appoint committees to facilitate the conduct of the financial business of the Society and delegate to such committees such powers as may be necessary or convenient for the proper exercise of those powers. Agents appointed, or members of committees designated, by the Board of Trustees need not be members of the Board.

Nothing herein contained shall be construed to empower the Board of Trustees to divest itself of responsibility for, or legal control of, the investments, properties, and contracts of the Society.

Article III

Committees
Section 1. There shall be eight editorial committees as follows: committees for the Bulletin, for the Proceedings, for the Colloquium Publications, for the Journal, for Mathematical Surveys and Monographs, for Mathematical Reviews; a joint committee for the Transactions and the Memoirs; and a committee for Mathematics of Computation.

Section 2. The size of each committee shall be determined by the Council.

Article IV

Council
Section 1. The Council shall consist of fifteen members at large and the following ex officio members: the officers of the Society specified in Article I, except that it shall include only one associate secretary, the chairman of each of the editorial committees specified in Article III, any former secretary for a period of two years following the terms of office, and members of the Executive Committee (Article V) who remain on the Council by the operation of Article VII, Section 4.

The chairman of any committee designated as a Council member may name a deputy from the committee as substitute. The associate secretary shall be the one charged with the scientific program of the meeting at which the Council meets except that at a meeting associated with no scientific meeting of the Society the secretary may designate the associate secretary.
Section 2. The Council shall formulate and administer the scientific policies of the Society and shall act in an advisory capacity to the Board of Trustees.

Section 3. In the absence of the secretary from any meeting of the Council, a member may be designated as acting secretary for the meeting, either by written authorization of the secretary, or, failing that, by the presiding officer.

Section 4. All members of the Council shall be voting members. Each member, including deputies and the designated associate secretary, shall have one vote. The method for settling matters before the Council at any meeting shall be by majority vote of the members present. If the result of a vote is challenged, it shall be the duty of the presiding officer to determine the true vote by a roll call. In a roll call vote, each Council member shall vote only once (although possibly a member of the Council in several capacities).

Section 5. Any five members of the Council shall constitute a quorum for the transaction of business at any meeting of the Council.

Section 6. Between meetings of the Council, business may be transacted. Votes shall be counted as specified in Section 4 of this Article, “members present” being replaced by “members voting”. An affirmative vote on any proposal shall be declared if, and only if, (a) more than half of the total number of possible votes is received by the time announced for the closing of the polls, and (b) at least three-quarters of the votes received by then are affirmative. If five or more members request postponement at the time of voting, action on the matter at issue shall be postponed until the next meeting of the Council, unless either (1) at the discretion of the secretary, the question is made the subject of a second vote, in connection with which brief statements of reason, for and against, are circulated; or (2) the Council places the matter at issue before the Executive Committee for action.

Section 7. The Council may delegate to the Executive Committee certain of its duties and powers. Between meetings of the Council, the Executive Committee shall act for the Council on such matters and in such ways as the Council may specify. Nothing herein contained shall be construed as empowering the Council to divest itself of responsibility for formulating and administering the scientific policies of the Society.

Section 8. The Council shall also have power to speak in the name of the Society with respect to matters affecting the status of mathematics or mathematicians, such as proposed or enacted federal or state legislation; conditions of employment in universities, colleges, or business, research or industrial organizations; regulations, policies, or acts of governmental agencies or instrumentalties; and other items which tend to affect the dignity and effective position of mathematics.

With the exception noted in the next paragraph, a favorable vote of two-thirds of the entire membership of the Council shall be necessary to authorize any statement in the name of the Society with respect to such matters. With the exception noted in the next paragraph, such a vote may be taken only if written notice shall have been given to the secretary by the proposer of any such resolution not later than one month prior to the Council meeting at which the matter is to be presented, and the vote shall be taken not earlier than one month after the resolution has been discussed by the Council.

If, at a meeting of the Council, there are present twelve members, then the prior notification to the secretary may be waived by unanimous consent. In such a case, a unanimous favorable vote by those present shall empower the Council to speak in the name of the Society.

The Council may also refer the matter to a referendum of the entire membership of the Society and shall make such reference if a referendum is requested, prior to final action by the Council, by two hundred or more members. The taking of a referendum shall act as a stay upon Council action until the votes have been canvassed, and thereafter no action may be taken by the Council except in accordance with a plurality of the votes cast in the referendum.

Article V

Executive Committee

Section 1. There shall be an Executive Committee of the Council, consisting of four elected members and the following ex officio members: the president, the secretary, the president elect (during even-numbered years), and the immediate past president (during odd-numbered years).

Section 2. The Executive Committee of the Council shall be empowered to act for the Council on matters which have been delegated to the Executive Committee by the Council. If three members of the Executive Committee request that any matter be referred to the Council, the matter shall be so referred. The Executive Committee shall be responsible to the Council and shall report its actions to the Council. It may consider the agenda for meetings of the Council and may make recommendations to the Council.

Section 3. Each member of the Executive Committee shall have one vote. An affirmative vote on any proposal before the Executive Committee shall be declared if, and only if, at least four affirmative votes are cast for the proposal. A vote on any proposal may be determined at a meeting of the Executive Committee, but it shall not be necessary to hold a meeting to determine a vote.

Article VI

Executive Director

Section 1. There shall be an Executive Director who shall be a paid employee of the Society. The Executive Director shall have charge of the offices of the Society, except for the office of the secretary, and shall be responsible for the general administration of the affairs of the Society in accordance with the policies that are set by the Board of Trustees and by the Council.

Section 2. The Executive Director shall be appointed by the Board of Trustees with the consent of the Council. The terms and conditions of employment shall be fixed by the Board of Trustees, and the performance of the Executive Director will be reviewed regularly by the Board of Trustees.
From the AMS Secretary

Section 3. The Executive Director shall be responsible to and shall consult regularly with a liaison committee consisting of the president as chair, the secretary, the treasurer, and the chair of the Board of Trustees.

Section 4. The Executive Director shall attend meetings of the Board of Trustees, the Council, and the Executive Committee, but shall not be a member of any of these bodies.

Article VII

Election of Officers and Terms of Office

Section 1. The term of office shall be one year in the case of the president elect and the immediate past president; two years in the case of the president, the secretary, the associate secretaries, the treasurer, and the associate treasurer; three years in the case of vice presidents and members at large of the Council, one vice president and five members at large retiring annually; and five years in the case of the trustees. In the case of members of the editorial committees and appointed members of the communications committees, the term of office shall be determined by the Council. The term of office for elected members of the Executive Committee shall be four years, one of the elected members retiring annually. All terms of office shall begin on February 1 and terminate on January 31, with the exception that the officials specified in Articles I, II, III, IV, and V (excepting the president elect and immediate past president) shall continue to serve until their successors have been duly elected or appointed and qualified.

Section 2. The president elect, the vice presidents, the trustees, and the members at large of the Council shall be elected by ballot. The secretary shall send notification to each member of the Society about the slate of candidates and the voting procedure on or before October 10, and legitimate ballots received by an established deadline at least 30 days later will be counted. Each ballot shall contain one or more names proposed by the Council for each office to be filled, with blank spaces in which the voter may substitute other names. A plurality of all votes cast shall be necessary for election. In case of failure to secure a plurality for any office, the Council shall choose by ballot among the members having the highest number of votes. The secretary, the associate secretaries, the treasurer, and the associate treasurer shall be appointed by the Council in a manner designated by the Council. Each committee named in Article III shall be appointed by the Council in a manner designated by the Council. Each such committee shall elect one of its members as chairman in a manner designated by the Council.

Section 3. The president becomes immediate past president at the end of the term of office and the president elect becomes president.

Section 4. On or before February 15, the secretary shall send to all members of the Council a ballot containing two names for each place to be filled on the Executive Committee. The nominees shall be chosen by a committee appointed by the president. Members of the Council may vote for persons not nominated. Any member of the Council who is not an *ex officio* member of the Executive Committee (see Article V, Section 1) shall be eligible for election to the Executive Committee. In case a member is elected to the Executive Committee for a term extending beyond the regular term on the Council, that person shall automatically continue as a member of the Council during the remainder of that term on the Executive Committee.

Section 5. The president and vice presidents shall not be eligible for immediate re-election to their respective offices. A member at large or an *ex officio* member of the Council shall not be eligible for immediate election (or re-election) as a member at large of the Council.

Section 6. If the president of the Society should die or resign while a president elect is in office, the president elect shall serve as president for the remainder of the year and thereafter shall serve the regular two-year term. If the president of the Society should die or resign when no president elect is in office, the Council, with the approval of the Board of Trustees, shall designate one of the vice presidents to serve as president for the balance of the regular presidential term. If the president elect of the Society should die or resign before becoming president, the office shall remain vacant until the next regular election of a president elect, and the Society shall, at the next annual meeting, elect a president for a two-year term. If the immediate past president should die or resign before expiration of the term of office, the Council, with the approval of the Board of Trustees, shall designate a former president of the Society to serve as immediate past president during the remainder of the regular term of the immediate past president. Such vacancies as may occur at any time in the group consisting of the vice presidents, the secretary, the associate secretaries, the treasurer, and the associate treasurer shall be filled by the Council with the approval of the Board of Trustees. If a member of an editorial or communications committee should take temporary leave from duties, the Council shall then appoint a substitute. The Council shall fill from its own membership any vacancy in the elected membership of the Executive Committee.

Section 7. If any elected trustee should die while in office or resign, the vacancy thus created shall be filled for the unexpired term by the Board of Trustees.

Section 8. If any member at large of the Council should die or resign more than one year before the expiration of the term, the vacancy for the unexpired term shall be filled by the Society at the next annual meeting.

Section 9. In case any officer should die or decline to serve between the time of election and the time to assume office, the vacancy shall be filled in the same manner as if that officer had served one day of the term.

Article VIII

Members and Their Election

Section 1. Election of members shall be by vote of the Council or of its Executive Committee.

Section 2. There shall be four classes of members, namely, ordinary, contributing, corporate, and institutional.

Section 3. Application for admission to ordinary membership shall be made by the applicant on a blank provided...
by the secretary. Such applications shall not be acted upon until at least thirty days after their presentation to the Council (at a meeting or by mail), except in the case of members of other societies entering under special action of the Council approved by the Board of Trustees.

Section 4. An ordinary member may become a contributing member by paying the dues for such membership. (See Article IX, Section 3.)

Section 5. A university or college, or a firm, corporation, or association interested in the support of mathematics may be elected a corporate or an institutional member.

Article IX
Dues and Privileges of Members
Section 1. Any applicant shall be admitted to ordinary membership immediately upon election by the Council (Article VIII) and the discharge within sixty days of election of the first annual dues. Dues may be discharged by payment or by remission when the provision of Section 7 of this Article is applicable. The first annual dues shall apply to the year of election, except that any applicant elected after August 15 of any year may elect to have the first annual dues apply to the following year.

Section 2. The annual dues of an ordinary member of the Society shall be established by the Council with the approval of the Trustees. The Council, with the approval of the Trustees, may establish special rates in exceptional cases and for members of an organization with which the Society has a reciprocity agreement.

Section 3. The minimum dues for a contributing member shall be three-halves of the dues of an ordinary member per year. Members may, upon their own initiative, pay larger dues.

Section 4. The minimum dues of an institutional member shall depend on the scholarly activity of that member. The formula for computing these dues shall be established from time to time by the Council, subject to approval by the Board of Trustees. Institutions may pay larger dues than the computed minimum.

Section 5. The privileges of an institutional member shall depend on its dues in a manner to be determined by the Council, subject to approval by the Board of Trustees. These privileges shall be in terms of Society publications to be received by the institution and of the number of persons it may nominate for ordinary membership in the Society.

Section 6. Dues and privileges of corporate members of the Society shall be established by the Council subject to approval by the Board of Trustees.

Section 7. The dues of an ordinary member of the Society shall be remitted for any years during which that member is the nominee of an institutional member.

Section 8. After retirement from active service on account of age or on account of long-term disability, any ordinary or contributing member who is not in arrears of dues and with membership extending over at least twenty years may, by giving proper notification to the secretary, have dues remitted. Such a member shall receive the Notices and Bulletin as privileges of membership during each year until membership ends.

Section 9. An ordinary or contributing member shall receive the Notices and Bulletin as privileges of membership during each year for which dues have been discharged.

Section 10. The annual dues of ordinary, contributing, and corporate members shall be due by January 1 of the year to which they apply. The Society shall submit bills for dues. If the annual dues of any member remain undischarged beyond what the Board of Trustees deems to be a reasonable time, the name of that member shall be removed from the list of members after due notice. A member wishing to discontinue membership at any time shall submit a resignation in writing to the Society.

Section 11. An eligible member may become a life member by making a one-time payment of dues. The criteria for eligibility and the amount of dues shall be established by the Council, subject to approval by the Board of Trustees. A life member is subsequently relieved of the obligation of paying dues. The status and privileges are those of ordinary members.

An eligible member of the Society by reciprocity who asserts the intention of continuing to be a member by reciprocity may purchase a life membership by a one-time payment of dues. The criteria for eligibility and the amount of dues shall be established by the Council, subject to approval by the Board of Trustees.

Article X
Meetings
Section 1. The annual meeting of the Society shall be held between the fifteenth of December and the tenth of February next following. Notice of the time and place of this meeting shall be sent by the secretary or an associate secretary to each member of the Society. The times and places of the annual and other meetings of the Society shall be designated by the Council.

Section 2. There shall be a business meeting of the Society only at the annual meeting. The agenda for the business meeting shall be determined by the Council. A business meeting of the Society can take action only on items notified to the full membership of the Society in the call for the meeting. A business meeting can act on items recommended to it jointly by the Council and the Board of Trustees; a majority of members present and voting is required for passage of such an item. A business meeting of the Society can place action items on the agenda for a future business meeting. Final action on an item proposed by a previous business meeting can be taken only provided there is a quorum of 400 members, a majority of members at a business meeting with a quorum being required for passage of such an item.

Section 3. Meetings of the Executive Committee may be called by the president. The president shall call a meeting at any time upon the written request of two of its members.

Section 4. The Council shall meet at the annual meeting of the Society. Special meetings of the Council may be called by the president. The president shall call a special meeting at any time upon the written request of five of its members. No special meeting of the Council shall be held unless written notice of it shall have been sent to all
members of the Council at least ten days before the day set for the meeting.

Section 5. The Board of Trustees shall hold at least one meeting in each calendar year. Meetings of the Board of Trustees may be called by the president, the treasurer, or the secretary of the Society upon three days’ notice of such meetings sent to each trustee. The secretary of the Society shall call a meeting upon the receipt of a written request of two of the trustees. Meetings may also be held by common consent of all the trustees.

Section 6. Papers intended for presentation at any meeting of the Society shall be passed upon in advance by a program committee appointed by or under the authority of the Council, and only such papers shall be presented as shall have been approved by such committee. Papers in form unsuitable for publication, if accepted for presentation, shall be referred to on the program as preliminary communications or reports.

Article XI

Publications

Section 1. The Society shall publish an official organ called the *Bulletin of the American Mathematical Society.* It shall publish four journals, known as the *Journal of the American Mathematical Society*, the *Transactions of the American Mathematical Society*, the *Proceedings of the American Mathematical Society*, and *Mathematics of Computation*. It shall publish a series of mathematical papers known as the *Memoirs of the American Mathematical Society*. The object of the *Journal, Transactions, Proceedings, Memoirs*, and *Mathematics of Computation* is to make known important mathematical researches. It shall publish a periodical called *Mathematical Reviews*, containing abstracts or reviews of current mathematical literature. It shall publish a series of volumes called *Colloquium Publications* which shall embody in book form new mathematical developments. It shall publish a series of monographs called *Mathematical Surveys and Monographs* which shall furnish expositions of the principal methods and results of particular fields of mathematical research. It shall publish a news periodical known as the *Notices of the American Mathematical Society*, containing programs of meetings, items of news of particular interest to mathematicians, and such other materials as the Council may direct.

Section 2. The editorial management of the publications of the Society listed in Section 1 of this article, with the exception of the *Notices*, shall be in the charge of the respective editorial committees as provided in Article III, Section 1. The editorial management of the *Notices* shall be in the hands of a committee chosen in a manner established by the Council.

Article XII

Indemnification

Any person who at any time serves or has served as a trustee or officer of the Society, or as a member of the Council, or, at the request of the Society, as a director or officer of another corporation, whether for profit or not for profit, shall be indemnified by the Society and be reimbursed against and for expenses actually and necessarily incurred in connection with the defense or reasonable settlement of any action, suit, legal or administrative proceeding, whether civil, criminal, administrative or investigative, threatened, pending or completed, to which that person is made a party by reason of being or having been such trustee, officer or director or Council member, except in relation to matters as to which the person shall be adjudged in such action, suit, or proceeding to be liable for negligence or misconduct in the performance of official duties. Such right of indemnification and reimbursement shall also extend to the personal representatives of any such person and shall be in addition to and not in substitution for any other rights to which such person or personal representatives may now or hereafter be entitled by virtue of the provisions of applicable law or of any other agreement or vote of the Board of Trustees, or otherwise.

Article XIII

Amendments

These bylaws may be amended or suspended on recommendation of the Council and with the approval of the membership of the Society, the approval consisting of an affirmative vote by two-thirds of the members present at a business meeting or of two-thirds of the members voting in a mail ballot in which at least ten percent of the members vote, whichever alternative shall have been designated by the Council, and provided notice of the proposed action and of its general nature shall have been given in the call for the meeting or accompanies the ballot in full.

As amended December 2003
AMS Lecturers, Officers, Prizes, and Funds

Colloquium Lecturers

<table>
<thead>
<tr>
<th>Year</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1896</td>
<td>James Pierpont</td>
</tr>
<tr>
<td></td>
<td>Maxime Böcher</td>
</tr>
<tr>
<td>1898</td>
<td>W. F. Osgood</td>
</tr>
<tr>
<td></td>
<td>A. G. Webster</td>
</tr>
<tr>
<td>1901</td>
<td>Oskar Bolza</td>
</tr>
<tr>
<td></td>
<td>E. W. Brown</td>
</tr>
<tr>
<td></td>
<td>H. S. White</td>
</tr>
<tr>
<td></td>
<td>F. S. Woods</td>
</tr>
<tr>
<td></td>
<td>E. B. Van Vleck</td>
</tr>
<tr>
<td>1905</td>
<td>E. H. Moore</td>
</tr>
<tr>
<td>1906</td>
<td>E. J. Wilczynski</td>
</tr>
<tr>
<td></td>
<td>Max Mason</td>
</tr>
<tr>
<td>1907</td>
<td>G. A. Bliss</td>
</tr>
<tr>
<td>1909</td>
<td>Edward Kasner</td>
</tr>
<tr>
<td>1913</td>
<td>L. E. Dickson</td>
</tr>
<tr>
<td>1916</td>
<td>Oswald Veblen</td>
</tr>
<tr>
<td>1920</td>
<td>G. D. Birkhoff</td>
</tr>
<tr>
<td></td>
<td>E. J. Wilczynski</td>
</tr>
<tr>
<td>1925</td>
<td>L. P. Eisenhart</td>
</tr>
<tr>
<td></td>
<td>Dunham Jackson</td>
</tr>
<tr>
<td></td>
<td>E. T. Bell</td>
</tr>
<tr>
<td></td>
<td>Anna Pell-Wheeler</td>
</tr>
<tr>
<td></td>
<td>A. B. Coble</td>
</tr>
<tr>
<td></td>
<td>R. L. Moore</td>
</tr>
<tr>
<td>1930</td>
<td>Solomon Lefschetz</td>
</tr>
<tr>
<td>1931</td>
<td>Marston Morse</td>
</tr>
<tr>
<td>1932</td>
<td>J. F. Ritt</td>
</tr>
<tr>
<td>1933</td>
<td>R. E. A. C. Paley</td>
</tr>
<tr>
<td></td>
<td>Norbert Wiener</td>
</tr>
<tr>
<td>1935</td>
<td>H. S. Vandiver</td>
</tr>
<tr>
<td>1936</td>
<td>E. W. Chittenden</td>
</tr>
<tr>
<td></td>
<td>John von Neumann</td>
</tr>
<tr>
<td>1937</td>
<td>A. A. Albert</td>
</tr>
<tr>
<td>1939</td>
<td>M. H. Stone</td>
</tr>
<tr>
<td>1940</td>
<td>G. T. Whyburn</td>
</tr>
<tr>
<td></td>
<td>Oystein Ore</td>
</tr>
<tr>
<td>1941</td>
<td>R. L. Wilder</td>
</tr>
<tr>
<td></td>
<td>E. J. McShane</td>
</tr>
<tr>
<td>1943</td>
<td>Einar Hille</td>
</tr>
<tr>
<td>1944</td>
<td>Tibor Radó</td>
</tr>
<tr>
<td>1946</td>
<td>Hassler Whitney</td>
</tr>
<tr>
<td>1947</td>
<td>Oscar Zariski</td>
</tr>
<tr>
<td>1948</td>
<td>Richard Brauer</td>
</tr>
<tr>
<td>1949</td>
<td>G. A. Hedlund</td>
</tr>
<tr>
<td></td>
<td>Deane Montgomery</td>
</tr>
<tr>
<td></td>
<td>Alfred Tarski</td>
</tr>
<tr>
<td></td>
<td>Antoni Zygmund</td>
</tr>
<tr>
<td></td>
<td>Nathan Jacobson</td>
</tr>
<tr>
<td></td>
<td>Salomon Bochner</td>
</tr>
<tr>
<td></td>
<td>N. E. Steenrod</td>
</tr>
<tr>
<td></td>
<td>J. L. Doob</td>
</tr>
<tr>
<td></td>
<td>S. S. Chern</td>
</tr>
<tr>
<td>1961</td>
<td>G. W. Mackey</td>
</tr>
<tr>
<td></td>
<td>Saunders Mac Lane</td>
</tr>
<tr>
<td></td>
<td>C. B. Morrey, Jr.</td>
</tr>
<tr>
<td></td>
<td>Peter Sarnak</td>
</tr>
<tr>
<td></td>
<td>Sun-Yung Alice Chang</td>
</tr>
<tr>
<td></td>
<td>Robert K. Lazarsfeld</td>
</tr>
<tr>
<td></td>
<td>Hendrik W. Lenstra Jr.</td>
</tr>
<tr>
<td></td>
<td>Andrei Okounkov</td>
</tr>
<tr>
<td></td>
<td>Wendelin Werner</td>
</tr>
<tr>
<td></td>
<td>Gregory Margulis</td>
</tr>
<tr>
<td></td>
<td>Richard P. Stanley</td>
</tr>
<tr>
<td></td>
<td>Alexander Lubotsky</td>
</tr>
<tr>
<td></td>
<td>Edward Frenkel</td>
</tr>
<tr>
<td></td>
<td>Alice Guionnet</td>
</tr>
<tr>
<td></td>
<td>K. O. Friedrichs</td>
</tr>
<tr>
<td></td>
<td>K. E. Lee</td>
</tr>
<tr>
<td></td>
<td>H. J. Muller</td>
</tr>
<tr>
<td></td>
<td>J. M. Burgers</td>
</tr>
<tr>
<td></td>
<td>Julian Schwinger</td>
</tr>
<tr>
<td></td>
<td>J. J. Stoker</td>
</tr>
<tr>
<td></td>
<td>C. N. Yang</td>
</tr>
<tr>
<td></td>
<td>C. E. Shannon</td>
</tr>
<tr>
<td></td>
<td>Lars Onsager</td>
</tr>
<tr>
<td></td>
<td>D. H. Lehmer</td>
</tr>
<tr>
<td></td>
<td>Martin Schwarzschild</td>
</tr>
<tr>
<td></td>
<td>Mark Kac</td>
</tr>
<tr>
<td></td>
<td>E. P. Wigner</td>
</tr>
<tr>
<td></td>
<td>R. L. Wilder</td>
</tr>
<tr>
<td></td>
<td>W. H. Munk</td>
</tr>
<tr>
<td></td>
<td>E. F. F. Hopf</td>
</tr>
<tr>
<td></td>
<td>F. J. Dyson</td>
</tr>
<tr>
<td></td>
<td>E. P. Wigner</td>
</tr>
<tr>
<td></td>
<td>R. L. Wilder</td>
</tr>
<tr>
<td></td>
<td>W. H. Munk</td>
</tr>
<tr>
<td></td>
<td>E. F. F. Hopf</td>
</tr>
<tr>
<td></td>
<td>F. J. Dyson</td>
</tr>
</tbody>
</table>

Gibbs Lecturers

<table>
<thead>
<tr>
<th>Year</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1923</td>
<td>M. I. Pupin</td>
</tr>
<tr>
<td></td>
<td>Robert Henderson</td>
</tr>
<tr>
<td></td>
<td>James Pierpont</td>
</tr>
<tr>
<td></td>
<td>H. B. Williams</td>
</tr>
<tr>
<td></td>
<td>E. W. Brown</td>
</tr>
<tr>
<td></td>
<td>G. H. Hardy</td>
</tr>
<tr>
<td></td>
<td>Irving Fisher</td>
</tr>
<tr>
<td></td>
<td>E. B. Wilson</td>
</tr>
<tr>
<td></td>
<td>R. C. Tolman</td>
</tr>
<tr>
<td></td>
<td>Albert Einstein</td>
</tr>
<tr>
<td></td>
<td>Vannevar Bush</td>
</tr>
<tr>
<td></td>
<td>H. N. Russell</td>
</tr>
<tr>
<td></td>
<td>C. A. Kraus</td>
</tr>
<tr>
<td></td>
<td>Theodore von Kármán</td>
</tr>
<tr>
<td></td>
<td>Sewall Wright</td>
</tr>
<tr>
<td></td>
<td>Harry Bateman</td>
</tr>
<tr>
<td></td>
<td>John von Neumann</td>
</tr>
<tr>
<td></td>
<td>J. C. Slater</td>
</tr>
<tr>
<td></td>
<td>S. Chandrasekhar</td>
</tr>
<tr>
<td></td>
<td>P. M. Morse</td>
</tr>
<tr>
<td></td>
<td>Hermann Weyl</td>
</tr>
<tr>
<td></td>
<td>Norbert Wiener</td>
</tr>
<tr>
<td></td>
<td>G. E. Uhlenbeck</td>
</tr>
<tr>
<td></td>
<td>Kurt Gödel</td>
</tr>
<tr>
<td></td>
<td>Marston Morse</td>
</tr>
<tr>
<td></td>
<td>Wassily Leontief</td>
</tr>
<tr>
<td></td>
<td>K. O. Friedrichs</td>
</tr>
<tr>
<td></td>
<td>J. E. Mayer</td>
</tr>
<tr>
<td></td>
<td>M. H. Stone</td>
</tr>
<tr>
<td></td>
<td>H. J. Muller</td>
</tr>
<tr>
<td></td>
<td>J. M. Burgers</td>
</tr>
<tr>
<td></td>
<td>Julian Schwinger</td>
</tr>
<tr>
<td></td>
<td>J. J. Stoker</td>
</tr>
<tr>
<td></td>
<td>C. N. Yang</td>
</tr>
<tr>
<td></td>
<td>C. E. Shannon</td>
</tr>
<tr>
<td></td>
<td>Lars Onsager</td>
</tr>
<tr>
<td></td>
<td>D. H. Lehmer</td>
</tr>
<tr>
<td></td>
<td>Martin Schwarzschild</td>
</tr>
<tr>
<td></td>
<td>Mark Kac</td>
</tr>
<tr>
<td></td>
<td>E. P. Wigner</td>
</tr>
<tr>
<td></td>
<td>R. L. Wilder</td>
</tr>
<tr>
<td></td>
<td>W. H. Munk</td>
</tr>
<tr>
<td></td>
<td>E. F. F. Hopf</td>
</tr>
<tr>
<td></td>
<td>F. J. Dyson</td>
</tr>
</tbody>
</table>

Gibbs Lecturers

<table>
<thead>
<tr>
<th>Year</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1923</td>
<td>M. I. Pupin</td>
</tr>
<tr>
<td>1927</td>
<td>Robert Henderson</td>
</tr>
<tr>
<td>1931</td>
<td>Marston Morse</td>
</tr>
<tr>
<td>1932</td>
<td>J. F. Ritt</td>
</tr>
<tr>
<td>1933</td>
<td>R. E. A. C. Paley</td>
</tr>
<tr>
<td>1934</td>
<td>Norbert Wiener</td>
</tr>
<tr>
<td>1935</td>
<td>H. S. Vandiver</td>
</tr>
<tr>
<td>1936</td>
<td>E. W. Chittenden</td>
</tr>
<tr>
<td>1937</td>
<td>John von Neumann</td>
</tr>
<tr>
<td>1938</td>
<td>A. A. Albert</td>
</tr>
<tr>
<td>1939</td>
<td>M. H. Stone</td>
</tr>
<tr>
<td>1940</td>
<td>G. T. Whyburn</td>
</tr>
<tr>
<td>1941</td>
<td>Oystein Ore</td>
</tr>
<tr>
<td>1942</td>
<td>R. L. Wilder</td>
</tr>
<tr>
<td>1943</td>
<td>E. J. McShane</td>
</tr>
<tr>
<td>1944</td>
<td>Einar Hille</td>
</tr>
<tr>
<td>1945</td>
<td>Tibor Radó</td>
</tr>
<tr>
<td>1946</td>
<td>Hassler Whitney</td>
</tr>
<tr>
<td>1947</td>
<td>Oscar Zariski</td>
</tr>
<tr>
<td>1948</td>
<td>Richard Brauer</td>
</tr>
<tr>
<td>1949</td>
<td>G. A. Hedlund</td>
</tr>
<tr>
<td>1951</td>
<td>Deane Montgomery</td>
</tr>
<tr>
<td>1952</td>
<td>Alfred Tarski</td>
</tr>
<tr>
<td>1953</td>
<td>Antoni Zygmund</td>
</tr>
<tr>
<td>1955</td>
<td>Nathan Jacobson</td>
</tr>
<tr>
<td>1956</td>
<td>Salomon Bochner</td>
</tr>
<tr>
<td>1957</td>
<td>N. E. Steenrod</td>
</tr>
<tr>
<td>1959</td>
<td>J. L. Doob</td>
</tr>
<tr>
<td>1960</td>
<td>S. S. Chern</td>
</tr>
<tr>
<td>1961</td>
<td>G. W. Mackey</td>
</tr>
<tr>
<td>1963</td>
<td>Saunders Mac Lane</td>
</tr>
<tr>
<td>1964</td>
<td>C. B. Morrey, Jr.</td>
</tr>
<tr>
<td>1965</td>
<td>Peter Sarnak</td>
</tr>
<tr>
<td>1967</td>
<td>Sun-Yung Alice Chang</td>
</tr>
<tr>
<td>1971</td>
<td>Robert K. Lazarsfeld</td>
</tr>
<tr>
<td>1972</td>
<td>Hendrik W. Lenstra Jr.</td>
</tr>
<tr>
<td>1973</td>
<td>Andrei Okounkov</td>
</tr>
<tr>
<td>1974</td>
<td>Wendelin Werner</td>
</tr>
<tr>
<td>1975</td>
<td>Gregory Margulis</td>
</tr>
<tr>
<td>1976</td>
<td>Richard P. Stanley</td>
</tr>
<tr>
<td>1977</td>
<td>Alexander Lubotsky</td>
</tr>
<tr>
<td>1978</td>
<td>Edward Frenkel</td>
</tr>
<tr>
<td>1979</td>
<td>Alice Guionnet</td>
</tr>
<tr>
<td>1980</td>
<td>K. O. Friedrichs</td>
</tr>
<tr>
<td>1981</td>
<td>J. J. Stoker</td>
</tr>
<tr>
<td>1982</td>
<td>C. N. Yang</td>
</tr>
<tr>
<td>1983</td>
<td>C. E. Shannon</td>
</tr>
<tr>
<td>1984</td>
<td>Lars Onsager</td>
</tr>
<tr>
<td>1985</td>
<td>D. H. Lehmer</td>
</tr>
<tr>
<td>1986</td>
<td>Martin Schwarzschild</td>
</tr>
<tr>
<td>1987</td>
<td>Mark Kac</td>
</tr>
<tr>
<td>1988</td>
<td>E. P. Wigner</td>
</tr>
<tr>
<td>1989</td>
<td>R. L. Wilder</td>
</tr>
<tr>
<td>1990</td>
<td>W. H. Munk</td>
</tr>
<tr>
<td>1991</td>
<td>E. F. F. Hopf</td>
</tr>
<tr>
<td>1992</td>
<td>F. J. Dyson</td>
</tr>
</tbody>
</table>
From the AMS Secretary

Prizes

The George David Birkhoff Prize in Applied Mathematics

This prize was established in 1967 in honor of Professor George David Birkhoff. The initial endowment was contributed by the Birkhoff family and there have been subsequent additions by others. It is awarded to a member of either the AMS or SIAM for an outstanding contribution to "applied mathematics in the highest and broadest sense." Currently, the prize amount is US$5,000, and it is awarded every three years. The award is made jointly by the American Mathematical Society and the Society for Industrial and Applied Mathematics.

First award, 1968: To Jürgen K. Moser for his contributions to the theory of Hamiltonian dynamical systems, especially his proof of the stability of periodic solutions of Hamiltonian systems having two degrees of freedom and his specific applications of the ideas in connection with this work.

Second award, 1973: To Fritz John for his outstanding work in partial differential equations, in numerical analysis, and, particularly, in nonlinear elasticity theory; the latter work has led to his study of quasi-isometric mappings as well as functions of bounded mean oscillation, which have had impact in other areas of analysis.
Third award, 1973: To James B. Serrin for his fundamental contributions to the theory of nonlinear partial differential equations, especially his work on existence and regularity theory for nonlinear elliptic equations, and applications of his work to the theory of minimal surfaces in higher dimensions.

Fourth award, 1978: To Garrett Birkhoff for bringing the methods of algebra and the highest standards of mathematics to scientific applications.

Fifth award, 1978: To Mark Kac for his important contributions to statistical mechanics and to probability theory and its applications.

Sixth award, 1978: To Clifford A. Truesdell for his outstanding contributions to our understanding of the subjects of rational mechanics and nonlinear materials, for his efforts to give precise mathematical formulation to these classical subjects, for his many contributions to applied mathematics in the fields of acoustic theory, kinetic theory, and nonlinear elastic theory, and the thermodynamics of mixtures, and for his major work in the history of mechanics.

Seventh award, 1983: To Paul R. Garabedian for his important contributions to partial differential equations, to the mathematical analysis of problems of transonic flow and airfoil design by the method of complexification, and to the development and application of scientific computing to problems of fluid dynamics and plasma physics.

Eighth award, 1988: To Elliott H. Lieb for his profound analysis of problems arising in mathematical physics.

Ninth award, 1994: To Ivo Babuška for important contributions to the reliability of finite element methods, the development of a general framework for finite element error estimation, and the development of p and h-p finite element methods; and to S. R. S. Varadhan for important contributions to the martingale characterization of diffusion processes, to the theory of large deviations for functionals of occupation times of Markov processes, and to the study of random media.

Tenth award, 1998: To Paul H. Rabinowitz for his deep influence on the field of nonlinear analysis.

Eleventh award, 2003: To John Mather for being a mathematician of exceptional depth, power, and originality; and to Charles S. Peskin for devoting much of his career to understanding the dynamics of the human heart and bringing an extraordinarily broad range of expertise to bear on this problem.

Twelfth award, 2006: To Cathleen Synge Morawetz for her deep and influential work in partial differential equations, most notably in the study of shock waves, transonic flow, scattering theory, and conformally invariant estimates for the wave equation.

Thirteenth award, 2009: To Joel Smoller for his leadership, originality, depth, and breadth of work in dynamical systems, differential equations, mathematical biology, shock wave theory, and general relativity.

Fourteenth award, 2012: To Bjorn Engquist for his contributions to a wide range of powerful computational methods over more than three decades.

Next award: January 2015

The Bôcher Memorial Prize
This prize, the first to be offered by the AMS, was founded in memory of Professor Maxime Bôcher, who served as president of the AMS 1909–1910. The original endowment was contributed by members of the Society. It is awarded for a notable paper in analysis published during the preceding six years. To be eligible, the author should be a member of the American Mathematical Society or the paper should have been published in a recognized North American journal. Currently, the US$5,000 prize is awarded every three years.

Eighth award, 1953: To Norman Levinson for his contributions to the theory of linear, nonlinear, ordinary, and partial differential equations contained in his papers of recent years.

Ninth award, 1959: To Louis Nirenberg for his work in partial differential equations.

Eleventh award, 1969: To I. M. Singer in recognition of his work on the index problem, especially his share in two
From the AMS Secretary

Twelfth award, 1974: To Donald S. Ornstein in recognition of his paper *Bernoulli shifts with the same entropy are isomorphic*, Advances in Mathematics 4 (1970), pp. 337–352.

Thirteenth award, 1979: To Alberto P. Calderón in recognition of his fundamental work on the theory of singular integrals and partial differential equations, and in particular for his paper *Cauchy integrals on Lipschitz curves and related operators*, Proceedings of the National Academy of Sciences, USA, 74 (1977), pp. 1324–1327.

Fourteenth award, 1984: To Luis A. Caffarelli for his deep and fundamental work in nonlinear partial differential equations, in particular his work on free boundary problems, vortex theory, and regularity theory.

Fifteenth award, 1984: To Richard M. Schoen for his work on the application of partial differential equations to differential geometry, in particular his completion of the solution to the Yamabe Problem in *Conformal deformation of a Riemannian metric to constant scalar curvature*, Journal of Differential Geometry 20 (1984), pp. 479–495.

Sixteenth award, 1989: To Leon Simon for his profound contributions toward understanding the structure of singular sets for solutions of variational problems.

Seventeenth award, 1994: To Daniel Tataru for his fundamental work in the analysis of nonlinear dispersive equations.

Eighteenth award, 1999: To Demetrios Christodoulou for his contributions to the mathematical theory of general relativity, to Sergiu Klainerman for his contributions to nonlinear hyperbolic equations, and to Thomas Wolff for his work in harmonic analysis.

Twentieth award, 2005: To Frank Merle for his fundamental work in the analysis of nonlinear dispersive equations.

Twenty-first award, 2008: To Alberto Bressan for his fundamental works on hyperbolic conservation laws; and to Charles Fefferman for his many fundamental contributions to different areas of analysis; and to Carlos Kenig for his important contributions to harmonic analysis, partial differential equations, and nonlinear dispersive PDE.

Twenty-second award, 2011: To Gunther Uhlmann for his fundamental work on inverse problems; and to Assaf Naor for introducing new invariants of metric spaces and for applying his new understanding of the distortion between various metric structures to theoretical computer science.

Next award: January 2014.

The Frank Nelson Cole Prize in Algebra

This prize (and the Frank Nelson Cole Prize in Number Theory) was founded in honor of Professor Frank Nelson Cole on the occasion of his retirement as secretary of the American Mathematical Society after twenty-five years of service and as editor-in-chief of the *Bulletin* for twenty-one years. The original fund was donated by Professor Cole from moneys presented to him on his retirement and was augmented by contributions from members of the Society. The fund was later doubled by his son, Charles A. Cole. The prize is for a notable paper in algebra published during the preceding six years. To be eligible, the author should be a member of the American Mathematical Society or the paper should have been published in a recognized North American journal. Currently, the US $5,000 prize is awarded every three years.

First award, 1928: To L. E. Dickson for his book *Algebren und ihre Zahlentheorie*, Orell Füssli, Zürich and Leipzig, 1927.

Second award, 1939: To A. Adrian Albert for his papers on the construction of Riemann matrices published in the *Annals of Mathematics*, Series 2, 35 (1934) and 36 (1935).

Third award, 1944: To Oscar Zariski for four papers on algebraic varieties published in the *American Journal of Mathematics* 61 (1939) and 62 (1940), and in the *Annals of Mathematics*, Series 2, 40 (1939) and 41 (1940).

Fifth award, 1954: To Harish–Chandra for his papers on representations of semisimple Lie algebras and groups, and particularly for his paper *On some applications of the universal enveloping algebra of a semisimple Lie algebra*, Transactions of the American Mathematical Society 70 (1951), pp. 28–96.

Seventh award, 1965: To Walter Feit and John G. Thompson for their joint paper *Solvability of groups of odd order*, Pacific Journal of Mathematics 13 (1963), pp. 775–1029.

Ninth award, 1975: To Hyman Bass for his paper *Unitary algebraic K-theory*, Springer Lecture Notes in Mathematics 343, 1973; and to Daniel G. Quillen for his

Eleventh award, 1985: To George Lusztig for his fundamental work on the representation theory of finite groups of Lie type. In particular for his contributions to the classification of the irreducible representations in characteristic zero of the groups of rational points of reductive groups over finite fields, appearing in *Characters of Reductive Groups over Finite Fields*, Annals of Mathematics Studies 107, Princeton University Press, 1984.

Twelfth award, 1990: To Shigefumi Mori for his outstanding work on the classification of algebraic varieties and, in particular, for his paper *Flip theorem and the existence of minimal models for 3-folds*, Journal of the American Mathematical Society 1 (1988), pp. 117–253.

Thirteenth award, 1995: To Michel Raynaud and David Harbater for their solution of Abhyankar’s conjecture. This work appeared in the papers *Revêtements de la droite affine en caractéristique p > 0*, Invent. Math. 116 (1994), pp. 425–462 (Raynaud); and *Abhyankar’s conjecture on Galois groups over curves*, Invent. Math. 117 (1994), pp. 1–25 (Harbater).

Fourteenth award, 2000: To Andrei Suslin for his work on motivic cohomology, and to Aise Johan de Jong for his important work on the resolution of singularities by generically finite maps.

Fifteenth award, 2003: To Hiraku Nakajima for his work in representation theory and geometry.

Sixteenth award, 2006: To János Kollár for his outstanding achievements in the theory of rationally connected varieties and for his illuminating work on a conjecture of Nash.

Seventeenth award, 2009: To Christopher Hacon and James McKernan for their groundbreaking joint work on higher-dimensional birational algebraic geometry.

Eighteenth award, 2012: To Alexander S. Merkurjev for his work on the essential dimension of groups.

Next award: January 2015.

The Frank Nelson Cole Prize in Number Theory

This prize (and the Frank Nelson Cole Prize in Algebra) was founded in honor of Professor Frank Nelson Cole on the occasion of his retirement as secretary of the American Mathematical Society after twenty-five years of service and as editor-in-chief of the *Bulletin* for twenty-one years. The original fund was donated by Professor Cole from moneys presented to him on his retirement and was augmented by contributions from members of the Society. The fund was later doubled by his son, Charles A. Cole. The prize is for a notable paper in number theory published during the preceding six years. To be eligible, the author should be a member of the American Mathematical Society or the paper should have been published in a recognized North American journal. Currently, the US$5,000 prize is awarded every three years.

First award, 1931: To H. S. Vandiver for his several papers on Fermat’s last theorem published in the *Transactions of the American Mathematical Society* and in the *Annals of Mathematics* during the preceding five years, with special reference to a paper entitled *On Fermat’s last theorem*, Transactions of the American Mathematical Society 31 (1929), pp.-613–642.

Second award, 1941: To Claude Chevalley for his paper *La théorie du corps de classes*, Annals of Mathematics, Series 2, 41 (1940), pp.-394–418.

Third award, 1946: To H. B. Mann for his paper *A proof of the fundamental theorem on the density of sums of sets of positive integers*, Annals of Mathematics, Series 2, 43 (1942), pp.-523–527.

Fourth award, 1951: To Paul Erdős for his many papers in the theory of numbers, and in particular for his paper *On a new method in elementary number theory which leads to an elementary proof of the prime number theorem*, Proceedings of the National Academy of Sciences 35 (1949), pp.-374–385.

Fifth award, 1956: To John T. Tate for his paper *The higher dimensional cohomology groups of class field theory*, Annals of Mathematics, Series 2, 56 (1952), pp.-294–297.

Tenth award, 1982: To Robert P. Langlands for pioneering work on automorphic forms, Eisenstein series and product formulas, particularly for his paper *Base change for GL(2)*, Annals of Mathematics Studies 96, Princeton University Press, 1980; and to Barry Mazur for outstanding work on elliptic curves and Abelian varieties, especially on rational points of finite order, and his paper *Modular curves and the Eisenstein ideal*, Publications Mathématiques

Twelfth award, 1992: To Karl Rubin for his work in the area of elliptic curves and Iwasawa theory, with particular reference to his papers "Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication" and "The main conjectures" in Iwasawa theory for imaginary quadratic fields; and to Paul Vojta for his work on Diophantine problems, with particular reference to his paper "Siegel's theorem in the compact case".

Seventeenth award, 2011: To Chandrashekhar Khare and Jean-Pierre Wintenberger for their remarkable proof of Serre’s modularity conjecture.

Next award: January 2014.

Joseph L. Doob Prize
This prize was established by the AMS in 2003 to recognize a single, relatively recent, outstanding research book that makes a seminal contribution to the research literature, reflects the highest standards of research exposition, and promises to have a deep and long-term impact in its area. The book must have been published within the six calendar years preceding the year in which it is nominated. Books may be nominated by members of the Society, by members of the selection committee, by members of AMS editorial committees, or by publishers. The US$5,000 prize is awarded every three years.

The prize (originally called the Book Prize) was endowed in 2005 by Paul and Virginia Halmos and renamed in honor of Joseph L. Doob. Paul Halmos (Professor Emeritus at Santa Clara University) was Doob’s first Ph.D. student. Doob received his Ph.D. from Harvard in 1932 and three years later joined the faculty at the University of Illinois, where he remained until his retirement in 1978. He worked in probability theory and measure theory, served as AMS president in 1963-1964, and received the AMS

The Steele Prize in 1984 “for his fundamental work in establishing probability as a branch of mathematics.” Doob passed away on June 7, 2004, at the age of ninety-four.

Next award: January 2014.

Leonard Eisenbud Prize for Mathematics and Physics

This prize was established in 2006 in memory of the mathematical physicist, Leonard Eisenbud (1913–2004), by his son and daughter-in-law, David and Monika Eisenbud. Leonard Eisenbud was a student of Eugene Wigner. He was particularly known for the book, Nuclear Structure (1958), which he co-authored with Wigner. A friend of Paul Erdős, he once threatened to write a dictionary of “English to Erdős and Erdős to English.” He was one of the founders of the Physics Department at SUNY Stony Brook, where he taught from 1957 until his retirement in 1983. In later years he became interested in the foundations of quantum mechanics and in the interaction of physics with culture and politics, teaching courses on the anti-science movement. His son, David, was President of the American Mathematical Society 2003–2004.

The prize will honor a work or group of works that brings the two fields closer together. Thus, for example, the prize might be given for a contribution to mathematics inspired by modern developments in physics or for the development of a physical theory exploiting modern mathematics in a novel way.

The US$5,000 prize will be awarded every three years for a work published in the preceding six years.

Second award, 2011: To Herbert Spohn for his group of works on stochastic growth processes.

Next award: January 2014.

The Delbert Ray Fulkerson Prize

The Fulkerson Prize for outstanding papers in the area of discrete mathematics is sponsored jointly by the Mathematical Programming Society (MPS) and the American Mathematical Society (AMS). Up to three awards of US$1,500 each are presented at each (triennial) International Symposium of the MPS. Originally, the prizes were paid out of a memorial fund administered by the AMS that was established by friends of the late Delbert Ray Fulkerson to encourage mathematical excellence in the fields of research exemplified by his work. The prizes are now funded by an endowment administered by the MPS.

Seventh award, 1997: To Jeong Han Kim for The Ramsey number R(3,1) has order of magnitude, which appeared in

November 2013 Notices of the AMS 1369
From the AMS Secretary

Twelfth award, 2012: Sanjeev Arora, Satish Rao, and Umesh Vazirani for improving the approximation ratio for graph separators and related problems from $O(\log n)$ to $

Anders Johansson, Jeff Kahn, and Van H. Vu for determining the threshold of edge density above which a random graph can be covered by disjoint copies of a given smaller graph.

László Lovász and Balázs Szegedy for characterizing subgraph multiplicity in sequences of dense graphs.

Next award: August 2015.

E. H. Moore Research Article Prize

This prize was established in 2002 in honor of E. H. Moore. Among other activities, Moore founded the Chicago branch of the American Mathematical Society, served as the Society’s sixth president (1901–1902), delivered the Colloquium Lectures in 1906, and founded and nurtured the Transactions of the AMS. The US$5,000 prize will be awarded every three years for an outstanding research article to have appeared in one of the AMS primary research journals (namely, the Journal of the AMS, Proceedings of the AMS, Transactions of the AMS, Memoirs of the AMS, Mathematics of Computation, Electronic Journal of Conformal Geometry and Dynamics, and Electronic Journal of Representation Theory) during the six calendar years ending a full year before the meeting at which the prize is awarded.

Next award: January 2016.

The Frank and Brennie Morgan Prize for Outstanding Research in Mathematics by an Undergraduate Student

This prize, which was established in 1995, is to be awarded to an undergraduate student (or students having submitted joint work) for outstanding research in mathematics. It is entirely endowed by a gift from Mrs. Frank (Brennie) Morgan. Any student who is an undergraduate in a college or university in Canada, Mexico, or the United States or its possessions is eligible to be considered for this US$1,200 prize, which is to be awarded annually. The award is made jointly by the American Mathematical Society, the Mathematical Association of America, and the Society for Industrial and Applied Mathematics.

First award, 1995: To Kannan Soundararajan for truly exceptional research in analytic number theory. Honorable mention: Kiran Kedlaya.

Fourth award, 1998: To Daniel Biss for his remarkable breadth, as well as depth. The most exciting aspect of his submission was his extension of a category which more closely binds the associations between combinatorial group theory and combinatorial topology. Honorable mention: Aaron E. Archer.

Fifth award, 1999: To Sean McLaughlin for his proof of the Dodecahedral Conjecture, a major problem in discrete geometry related to, but distinct from, Kepler’s
sphere packing problem and a conjecture that has resisted the efforts of the strongest workers in this area for nearly sixty years. Honorable mention: Samit Dasgupta.

Sixth award, 2000: To Jacob Lurie for his paper “On simply laced Lie algebras and their miniscule representations”. Honorable mention: Wai Ling Yee.

Seventh award, 2001: To Ciprian Manolescu for making a fundamental advance in the field by giving an elegant construction of Floer homology. Honorable mention: Michael A. Levin.

Eighth award, 2002: To Joshua Greene for his work in combinatorics.

Tenth award, 2004: To Reid W. Barton for his paper “Packing densities of patterns”. Honorable mention: Po-Shen Loh.

Eleventh award, 2006: To Jacob Fox for a most astounding collection of research papers by any undergraduate mathematician.

Twelfth award, 2007: To Daniel Kane for establishing a research record that would be the envy of many professional mathematicians.

Thirteenth award, 2008: To Aaron Pixton for five impressive papers he has written, in addition to his Princeton senior thesis.

Fourteenth award, 2009: To Nathan Kaplan for four impressive papers in algebraic number theory.

Fifteenth award, 2010: To Scott Duke Kominers for his outstanding and prolific record of undergraduate research spanning a broad range of topics, including number theory, computational geometry, and mathematical economics.

Sixteenth award, 2011: To Maria Monks for her impressive work in combinatorics and number theory, which has appeared in Advances in Applied Mathematics, Proceedings of the AMS, Electronic Journal of Combinatorics, Discrete Mathematics, and Journal of Combinatorial Theory, Series A.

Seventeenth award, 2012: To John Pardon for solving a problem on distortion of knots posed in 1983 by Mikhail Gromov.

Eighteenth award, 2013: To Fan Wei for her wide range of scholarly contributions.

Next award: January 2014.

David P. Robbins Prize
This prize was established in 2005 in memory of David P. Robbins by members of his family. Robbins, who died in 2003, received his Ph.D. in 1970 from MIT. He was a long-time member of the Institute for Defense Analysis Center for Communications Research and a prolific mathematician whose work (much of it classified) was in discrete mathematics. The prize is for a paper with the following characteristics: it shall report on novel research in algebra, combinatorics, or discrete mathematics and shall have a significant experimental component; and it shall be on a topic which is broadly accessible and shall provide a simple statement of the problem and clear exposition of the work. The US$5,000 prize will be awarded every three years.

First award, 2007: To Samuel P. Ferguson and Thomas C. Hales, for the paper A proof of the Kepler conjecture, by Thomas C. Hales, Annals of Mathematics, 162 (2005), 1065–1185 (Section 5 of this paper is jointly authored with Ferguson).

Third award, 2013: To Alexander Razborov, of the University of Chicago for his paper “On the minimal density of triangles in graphs” Combinatorics, Probability and Computing 17 (2008), no. 4, 603–618, and for introducing a new powerful method, flag algebras, to solve problems in extremal combinatorics.

Next award: January 2016.

The Ruth Lyttle Satter Prize in Mathematics
The prize was established in 1990 using funds donated by Joan S. Birman in memory of her sister, Ruth Lyttle Satter. Professor Birman requested that the prize be established to honor her sister’s commitment to research and to encouraging women in science. The US$5,000 prize is awarded every two years to recognize an outstanding contribution to mathematics research by a woman in the previous six years.

First award, 1991: To Dusa McDuff for her outstanding work during the past five years on symplectic geometry.

Second award, 1993: To Lai-Sang Young for her leading role in the investigation of the statistical (or ergodic) properties of dynamical systems.

Third award, 1995: To Sun-Yung Alice Chang for her deep contributions to the study of partial differential equations on Riemannian manifolds and in particular for her work on extremal problems in spectral geometry and the compactness of isospectral metrics within a fixed conformal class on a compact 3-manifold.

Fourth award, 1997: To Ingrid Daubechies for her deep and beautiful analysis of wavelets and their applications.

Fifth award, 1999: To Bernadette Perrin-Riou for her number theoretical research on p-adic L-functions and Iwasawa Theory.

Sixth award, 2001: To Karen E. Smith for her outstanding work in commutative algebra, and to Sijue Wu for her work on a long-standing problem in the water wave equation.

Seventh award, 2003: To Abigail Thompson for her outstanding work in 3-dimensional topology.

Ninth award, 2007: To Claire Voisin for her deep contributions to algebraic geometry, and in particular for her recent solutions to two long-standing open problems:

Tenth award, 2009: To Laure Saint-Raymond for her fundamental work on the hydrodynamic limits of the Boltzmann equation in the kinetic theory of gases.

Eleventh award, 2011: To Amie Wilkinson for her remarkable contributions to the field of ergodic theory of partially hyperbolic dynamical systems.

Twelfth award, 2013: To Maryam Mirzakhani for her deep contributions to the theory of moduli spaces of Riemann surfaces.

Next award: January 2015.

The Leroy P. Steele Prize for Lifetime Achievement
The Leroy P. Steele Prize for Mathematical Exposition
The Leroy P. Steele Prize for Seminal Contribution to Research

These prizes were established in 1970 in honor of George David Birkhoff, William Fogg Osgood, and William Caspar Graustein and are endowed under the terms of a bequest from Leroy P. Steele. From 1970 to 1976 one or more prizes were awarded each year for outstanding published mathematical research; most favorable consideration was given to papers distinguished for their exposition and covering broad areas of mathematics. In 1977 the Council of the AMS modified the terms under which the prizes are awarded. Since then, up to three prizes have been awarded each year in the following categories: (1) for the cumulative influence of the total mathematical work of the recipient, high level of research over a period of time, particular influence on the development of a field, and influence on mathematics through Ph.D. students; (2) for a book or substantial survey or expository research paper; (3) for a paper, whether recent or not, that has proved to be of fundamental or lasting importance in its field, or a model of important research. In 1993 the Council formalized the three categories of the prize by naming each of them: (1) The Leroy P. Steele Prize for Lifetime Achievement, (2) The Leroy P. Steele Prize for Mathematical Exposition, and (3) The Leroy P. Steele Prize for Seminal Contribution to Research. Each of these three US$5,000 prizes is awarded annually.

Special Note: Beginning with the 1994 prize, there has been a five-year cycle of fields for the Seminal Contribution to Research Award. That cycle would have the 2008 prize awarded in discrete mathematics (discrete mathematics alternates with logic every five years), then analysis in 2009, algebra in 2010, applied mathematics in 2011, geometry/topology in 2012, and then logic in 2013, renewing the cycle.

1976, 1977, 1978: No awards were made.

January 1979: To Salomon Bochner for his cumulative influence on the fields of probability theory, Fourier analysis, several complex variables, and differential geometry.

August 1979: To Antoni Zygmund for his cumulative influence on the theory of Fourier series, real variables, and related areas of analysis.

August 1979: To Robin Hartshorne for his expository research article Equivalence relations on algebraic cycles and subvarieties of small codimension, Proceedings of Symposia in Pure Mathematics, volume 29, American
From the AMS Secretary

August 1980: To André Weil for the total effect of his work on the general course of twentieth-century mathematics, especially in the many areas in which he has made fundamental contributions.

August 1980: To Gerhard P. Hochschild for his significant work in homological algebra and its applications.

August 1981: To Oscar Zariski for his work in algebraic geometry, especially his fundamental contributions to the algebraic foundations of this subject.

August 1982: To Tsit-Yuen Lam for his expository work in his book Algebraic Theory of Quadratic Forms (1973), and four of his papers: \(K_0 \) and \(K_1 \)—an introduction to algebraic K-theory (1975), Ten lectures on quadratic forms over fields (1977), Serre’s conjecture (1978), and The theory of ordered fields (1980).

August 1982: To Fritz John for the cumulative influence of his total mathematical work, high level of research over a period of time, particular influence on the development of a field, and influence on mathematics through Ph.D. students.

August 1983: To Paul R. Halmos for his many graduate texts in mathematics and for his articles on how to write, talk, and publish mathematics.

August 1983: To Shing-Shen Chern for the cumulative influence of his total mathematical work, high level of research over a period of time, particular influence on the development of the field of differential geometry, and influence on mathematics through Ph.D. students.

August 1984: To Joseph L. Doob for his fundamental work in establishing probability as a branch of mathematics and for his continuing profound influence on its development.

August 1985: To Hassler Whitney for his fundamental work on geometric problems, particularly in the general theory of manifolds, in the study of differentiable functions on closed sets, in geometric integration theory, and in the geometry of the tangents to a singular analytic space.

January 1986: To Saunders Mac Lane for his many contributions to algebra and algebraic topology, and in
From the AMS Secretary

August 1987: To Martin Gardner for his many books and articles on mathematics and particularly for his column “Mathematical Games” in Scientific American.

August 1987: To Samuel Eilenberg for his fundamental contributions to topology and algebra, in particular for his classic papers on singular homology and his work on axiomatic homology theory, which had a profound influence on the development of algebraic topology.

August 1988: To Deane Montgomery for his lasting impact on mathematics, particularly mathematics in America. He is one of the founders of the modern theory of transformation groups and is particularly known for his contributions to the solution of Hilbert’s fifth problem.

August 1989: To Irving Kaplansky for his lasting impact on mathematics, particularly mathematics in America. By his energetic example, his enthusiastic exposition, and his overall generosity, he has made striking changes in mathematics and has inspired generations of younger mathematicians.

August 1990: To Bertram Kostant for his paper On the existence and irreducibility of certain series of representations, Lie Groups and Their Representations (1975), pp. 231–329.

August 1990: To Raoul Bott for having been instrumental in changing the face of geometry and topology with his incisive contributions to characteristic classes, K-theory, index theory, and many other tools of modern mathematics.

August 1991: To Eugenio Calabi for his fundamental work on global differential geometry, especially complex differential geometry.

August 1991: To Armand Borel for his extensive contributions in geometry and topology, the theory of Lie groups, their lattices and representations and the theory of automorphic forms, the theory of algebraic groups and their representations, and extensive organizational and educational efforts to develop and disseminate modern mathematics.

January 1993: To Peter D. Lax for his numerous and fundamental contributions to the theory and applications of linear and nonlinear partial differential equations and functional analysis, for his leadership in the development of computational and applied mathematics, and for his extraordinary impact as a teacher.

August 1993 – Seminal Contribution to Research: To Louis de Branges for his proof of the Bieberbach Conjecture.

August 1993 – Lifetime Achievement: To Eugene B. Dynkin for his foundational contributions to Lie algebras and probability theory over a long period and his production of outstanding research students in both Russia and the United States, countries to whose mathematical life he has contributed so richly.

August 1994 – Seminal Contribution to Research: To Louis Nirenberg for his numerous basic contributions to linear and nonlinear partial differential equations and their application to complex analysis and differential geometry.

pp. 97–112. In these papers he showed for the first time how to use the powerful tools of probability theory to attack the hard analytic questions of constructive quantum field theory, controlling renormalizations with estimates in the first paper, and in the second turning Euclidean quantum field theory into a subset of the theory of stochastic processes.

August 1995 – Lifetime Achievement: To John T. Tate for scientific accomplishments spanning four and a half decades. He has been deeply influential in many of the important developments in algebra, algebraic geometry, and number theory during this time.

August 1996 – Lifetime Achievement: To Goro Shimura for his important and extensive work on arithmetical geometry and automorphic forms; concepts introduced by him were often seminal and fertile ground for new developments, as witnessed by the many notations in number theory that carry his name and that have long been familiar to workers in the field.

January 1997 – Mathematical Exposition: To Anthony W. Knapp for his book Representation Theory of Semisimple Groups (An overview based on examples), Princeton University Press, 1986, a beautifully written book which starts from scratch but takes the reader far into a highly developed subject.

January 1997 – Seminal Contribution to Research: To Mikhail Gromov for his paper Pseudo-holomorphic curves in symplectic manifolds, Inventiones Math. 82 (1985), pp. 307–347, which revolutionized the subject of symplectic geometry and topology and is central to much current research activity, including quantum cohomology and mirror symmetry.

January 1997 – Lifetime Achievement: To Ralph S. Phillips for being one of the outstanding analysts of our time. His early work was in functional analysis: his beautiful theorem on the relation between the spectrum of a semigroup and its infinitesimal generator is striking as well as very useful in the study of PDEs. His extension theory for dissipative linear operators predated the interpolation approach to operator theory and robust control. He made major contributions to acoustical scattering theory in his joint work with Peter Lax, proving remarkable results on local energy decay and the connections between poles of the scattering matrix and the analytic properties of the resolvent. He later extended this work to a spectral theory for the automorphic Laplace operator, relying on the Radon transform on horospheres to avoid Eisenstein series. In the last fifteen years, Ralph Phillips has done brilliant work, in collaboration with others, on spectral theory for the Laplacian on symmetric spaces, on the existence and stability of cusps forms for general noncompact quotients of the hyperbolic plane, on the explicit construction of sparse optimal expander graphs, and on the structure of families of isospectral sets in two dimensions (the collection of drums that sound the same).

January 1998 – Lifetime Achievement: To Nathan Jacobson for his many contributions to research, teaching, exposition, and the mathematical profession. Few mathematicians have been as productive over such a long career or have had as much influence on the profession as has Professor Jacobson.

January 1999 – Lifetime Achievement: To Richard V. Kadison. For almost half a century, Professor Kadison has been one of the world leaders in the subject of operator algebras, and the tremendous flourishing of this subject in the last thirty years is largely due to his efforts.

January 2000 – Lifetime Achievement: To Isadore M. Singer. Singer’s series of five papers with Michael F. Atiyah on the Index Theorem for elliptic operators (which appeared in 1968–71) and his three papers with Atiyah and V. K. Patodi on the Index Theorem for manifolds with boundary (which appeared in 1975–76) are among the great classics of global analysis.

January 2000 – Seminal Contribution to Research: To Barry Mazur for his paper Modular curves and the Eisen-

January 2000 – Mathematical Exposition: To John H. Conway in recognition of his many expository contributions in automata, the theory of games, lattices, coding theory, group theory, and quadratic forms.

January 2001 – Lifetime Achievement: To Harry Kesten for his many and deep contributions to probability theory and its applications.

January 2001 – Mathematical Exposition: To Richard P. Stanley in recognition of the completion of his two-volume work Enumerative Combinatorics.

January 2002 – Lifetime Achievement: To Michael Artin for helping to weave the fabric of modern algebraic geometry and to Elias Stein for making fundamental contributions to different branches of analysis.

January 2003 – Lifetime Achievement: To Ron Graham for being one of the principal architects of the rapid development worldwide of discrete mathematics in recent years and to Victor Guillemin for playing a critical role in the development of a number of important areas in analysis and geometry.

January 2004 – Lifetime Achievement: To Cathleen Synge Morawetz for greatly influencing mathematics in the broad sense throughout her long and distinguished career.

January 2004 – Mathematical Exposition: To John W. Milnor in recognition of a lifetime of expository contributions ranging across a wide spectrum of disciplines, including topology, symmetric bilinear forms, characteristic classes, Morse theory, game theory, algebraic K-theory, iterated rational maps,...and the list goes on.

January 2005 – Lifetime Achievement: To Israel M. Gelfand for profoundly influencing many fields of research through his own work and through his interactions with other mathematicians and students.

January 2005 – Seminal Contribution to Research: To Robert P. Langlands for his paper Problems in the theory of automorphic forms, Springer Lecture Notes in Math., volume 170, 1970, pp. 18–86. This is the paper that introduced what are now known as the Langlands conjectures.

January 2006 – Lifetime Achievement: To Frederick W. Gehring for being a leading figure in the theory of quasiconformal mappings for over fifty years; and to Dennis P. Sullivan for his fundamental contributions to many branches of mathematics.

January 2007 – Lifetime Achievement: To Henry P. McKean for his rich and magnificent mathematical career and for his work in analysis, which has a strong orientation towards probability theory.

January 2007 – Seminal Contribution to Research: To Karen Uhlenbeck for her foundational contributions in analytic aspects of mathematical gauge theory. These results appeared in the two papers: Removable singularities in Yang-Mills fields, Communications in Mathematical Physics, 83 (1982), 11–29 and Connections with L bounds on curvature, Communications in Mathematical Physics, 83 (1982), 31–42.

January 2008 – Lifetime Achievement: To George Lusztig for entirely reshaping representation theory, and, in the process, changing much of mathematics.

January 2009 – Lifetime Achievement: To Luis Caffarelli, one of the world’s greatest mathematicians studying nonlinear partial differential equations (PDE).

January 2010 – Lifetime Achievement: To William Fulton for playing a pivotal role in shaping the direction of algebraic geometry, forging and strengthening ties between algebraic geometry and adjacent fields, and teaching and mentoring several generations of younger mathematicians.

January 2011 – Lifetime Achievement: To John W. Milnor for standing out from the list of great mathematicians in terms of his overall achievements and his influence on mathematics in general, both through his work and through his excellent books.

January 2011 – Mathematical Exposition: To Henryk Iwaniec for his long record of excellent exposition, both in books and in classroom notes.

January 2012 – Lifetime Achievement: To Ivo M. Babuška for his many pioneering advances in the numerical solution of partial differential equations over the last half century.

January 2013 – Lifetime Achievement: To Yakov Sinai for his pivotal role in shaping the theory of dynamical systems and for his groundbreaking contributions to ergodic theory, probability theory, statistical mechanics, and mathematical physics.

Next awards: January 2014.

The Oswald Veblen Prize in Geometry

This prize was established in 1961 in memory of Professor Oswald Veblen through a fund contributed by former students and colleagues. The fund was later doubled by the widow of Professor Veblen. It is awarded in recognition of a notable research memoir in geometry or topology published in the preceding six years. To be considered, the candidate should be a member of the Society or the memoir should have been published in a recognized North American journal. Currently, the US$5,000 prize is awarded every three years.

Third award, 1966: To Steven Smale for his contributions to various aspects of differential topology.

Fourth award, 1966: To Morton Brown and Barry Mazur for their work on the generalized Schoenflies theorem.

Seventh award, 1976: To William P. Thurston for his work on foliations.

Eighth award, 1976: To James Simons for his work on minimal varieties and characteristic forms.

Ninth award, 1981: To Mikhail Gromov for his work relating topological and geometric properties of Riemannian manifolds.

Tenth award, 1981: To Shing-Tung Yau for his work in nonlinear partial differential equations, his contributions to the topology of differentiable manifolds, and for his work on the complex Monge-Ampère equation on compact complex manifolds.

Eleventh award, 1986: To Michael H. Freedman for his work in differential geometry and, in particular, the solution of the four-dimensional Poincaré conjecture.

Twelfth award, 1991: To Andrew J. Casson for his work on the topology of low-dimensional manifolds and to Clifford H. Taubes for his foundational work in Yang-Mills theory.
Thirteenth award, 1996: To Richard Hamilton for his continuing study of the Ricci flow and related parabolic equations for a Riemannian metric, and to Gang Tian for his contributions to geometric analysis.

Fourteenth award, 2001: To Jeff Cheeger for his work in differential geometry, to Yakov Eliashberg for his work in symplectic and contact topology, and to Michael J. Hopkins for his work in homotopy theory.

Fifteenth award, 2004: To David Gabai in recognition of his work in geometric topology, in particular, the topology of 3-dimensional manifolds.

Sixteenth award, 2007: To Peter Kronheimer and Tomasz Mrowka for their joint contributions to both three- and four-dimensional topology through the development of deep analytical techniques and applications; and to Peter Ozsváth and Zoltán Szabó for their contributions to 3- and 4-dimensional topology through their Heegaard Floer homology theory.

Seventeenth award, 2010: To Tobias H. Colding and William P. Minicozzi II for their profound work on minimal surfaces; and to Paul Seidel for his fundamental contributions to symplectic geometry.

Eighteenth award, 2013: To Ian Agol, for his many fundamental contributions to hyperbolic geometry, 3-manifold topology, and geometric group theory and to Daniel Wise, for his deep work establishing subgroup separability (LERF) for a wide class of groups and for introducing and developing with Frédéric Haglund the theory of special cube complexes which are of fundamental importance for the topology of three-dimensional manifolds.

Next award: January 2016.

The Albert Leon Whiteman Memorial Prize
This prize was established in 1998 using funds donated by Mrs. Sally Whiteman in memory of her husband, Albert Leon Whiteman, to recognize notable exposition and exceptional scholarship in the history of mathematics. Starting in 2009, the US$5,000 prize will be awarded every three years.

First award, 2001: To Thomas Hawkins to recognize an outstanding historian of mathematics whose current research and numerous publications display the highest standards of mathematical and historical sophistication.

Second award, 2005: To Harold M. Edwards to pay tribute to his many publications over several decades that have fostered a greater understanding and appreciation of the history of mathematics, especially the theory of algebraic numbers.

Third award, 2009: To Jeremy John Gray for his many historical works, which have not only shed great light on the history of modern mathematics but also have given an example of the ways in which historical scholarship can contribute to the understanding of mathematics and its philosophy.

Fourth award, 2013: To Joseph Warren Dauben for his contributions to the history of Western and Chinese mathematics, and for deepening and broadening the international mathematical community’s awareness and understanding of its history and culture.

Next award: January 2015.

The Norbert Wiener Prize in Applied Mathematics
This prize was established in 1967 in honor of Professor Norbert Wiener and was endowed by a fund from the Department of Mathematics of the Massachusetts Institute of Technology. The prize is awarded for an outstanding contribution to “applied mathematics in the highest and broadest sense”. The award is made jointly by the American Mathematical Society and the Society for Industrial and Applied Mathematics. The recipient must be a member of one of these societies and a resident of the United States, Canada, or Mexico. Beginning in 2004, the US$5,000 prize will be awarded every three years.

First award, 1970: To Richard E. Bellman for his pioneering work in the area of dynamic programming and for his related work on control, stability, and differential-delay equations.

Second award, 1975: To Peter D. Lax for his broad contributions to applied mathematics, in particular, for his work on numerical and theoretical aspects of partial differential equations and on scattering theory.

Third award, 1980: To Tosio Kato for his distinguished work in the perturbation theory of quantum mechanics.

Fourth award, 1980: To Gerald B. Whitham for his broad contributions to the understanding of fluid dynamical phenomena and his innovative contributions to the methodology through which that understanding can be constructed.

Fifth award, 1985: To Clifford S. Gardner for his contributions to applied mathematics in the areas of supersonic aerodynamics, plasma physics and hydromagnetics, and especially for his contributions to the truly remarkable development of inverse scattering theory for the solution of nonlinear partial differential equations.

Sixth award, 1990: To Michael Aizenman for his outstanding contribution of original and nonperturbative mathematical methods in statistical mechanics, by means of which he was able to solve several long open important problems concerning critical phenomena, phase transitions, and quantum field theory; and to Jerrold E. Marsden for his outstanding contributions to the study of differential equations in mechanics: he proved the existence of chaos in specific classical differential equations; his work on the momentum map, from abstract foundations to detailed applications, has had great impact.

Seventh award, 1995: To Hermann Flaschka for deep and original contributions to our understanding of completely integrable systems, and to Ciprian Foias for basic contributions to operator theory, analysis, and dynamics and their applications.

Eighth award, 2000: To Alexandre J. Chorin in recognition of his seminal work in computational fluid dynamics, statistical mechanics, and turbulence; and to Arthur T. Winfree in recognition of his profound impact on the field of biological rhythms, otherwise known as coupled nonlinear oscillators.

Ninth award, 2004: To James A. Sethian for his seminal work on the computer representation of the motion of curves, surfaces, interfaces, and wave fronts, and for his brilliant applications of mathematical and computational ideas to problems in science and engineering.
From the AMS Secretary

Tenth award, 2007: To Craig Tracy and Harold Widom for their deep and original work on Random Matrix Theory, a subject which has remarkable applications across the scientific spectrum, from the scattering of neutrons off large nuclei to the behavior of the zeros of the Riemann zeta-function.

Eleventh award, 2010: To David L. Donoho for introducing novel fundamental and powerful mathematical tools in signal processing and image analysis.

Twelfth award, 2013: To Andrew Majda for his groundbreaking work in theoretical fluid mechanics and its application to problems in atmospheric science and oceanography.

Next award: January 2016.

Awards

AMS Centennial Fellowships

A Research Fellowship Fund was established by the AMS in 1973 to provide one-year fellowships for research in mathematics. In 1988 the Fellowship was renamed to honor the AMS Centennial. The number of fellowships granted each year depends on the contributions received; the Society supplements contributions as needed. The primary selection criterion for the Centennial Fellowship is the excellence of the candidate’s research. A recipient of the fellowship shall have held his or her doctoral degree for at least three years and not more than twelve years at the inception of the award. Applications will be accepted from those currently holding a tenured, tenure-track, postdoctoral, or comparable (at the discretion of the selection committee) position at an institution in North America. The amount of the fellowship varies each year. See the last entry on the list below to find the amount and number of fellowships awarded most recently. To make a contribution to the Centennial Fellowship Fund, see http://www.ams.org/development/centennialfund.html. To apply for a Centennial Fellowship, see http://www.ams.org/employment/centflyer.html.

Twenty-seventh award, 2000–2001: Siqi Fu, Christopher Herald, Wei-Dong Ruan, Vasily Strela.

JPBM Communications Award

This award was established by the Joint Policy Board for Mathematics (JPBM) in 1988 to reward and encourage communicators who, on a sustained basis, bring mathematical ideas and information to nonmathematical audiences. Both mathematicians and nonmathematicians are eligible. Currently, the US$1,000 award is made annually. JPBM is a collaborative effort of the American Mathematical Society, the Mathematical Association of America, the Society for Industrial and Applied Mathematics, and the American Statistical Association.
First award, 1988: To James Gleick for sustained and outstanding contributions in communicating mathematics to the general public.

Second award, 1990: To Hugh Whitemore for contributions to communicating mathematics to the public in his play Breaking the Code, which chronicles the brilliant but troubled life of British mathematician Alan Turing.

Third award, 1991: To Ivars Peterson for exceptional skill in communicating mathematics to the general public over the last decade.

Fourth award, 1993: To Joel Schneider for Square One TV.

Fifth award, 1994: To Martin Gardner, for authoring numerous books and articles about mathematics, including his long-running Scientific American column “Mathematical Games”, and his books Fads and Fallacies in the Name of Science and Mathematical Carnival.

Sixth award, 1996: To Gina Kolata for consistently giving outstanding coverage to many of the most exciting breakthroughs in mathematics and computer science over the past twenty years.

Seventh award, 1997: To Philip J. Davis for being a prolific communicator of mathematics to the general public.

Eighth award, 1998: To Constance Reid for writing about mathematics with grace, knowledge, skill, and clarity.

Ninth award, 1999: To Ian Stewart for communicating the excitement of science and mathematics to millions of people around the world for more than twenty years. Also a “Special Communications Award” to John Lynch and Simon Singh for their exceptional contributions to public understanding of mathematics through their documentary on Andrew Wiles and the Fermat Conjecture, entitled Fermat’s Last Theorem (shown on NOVA as “The Proof”).

Eleventh award, 2001: To Keith J. Devlin for his many contributions to public understanding of mathematics through great numbers of radio and television appearances; public talks; books; and articles in magazines, newsletters, newspapers, journals, and online.

Twelfth award, 2002: To Helaman and Claire Ferguson for dazzling the mathematical community and a far wider public with exquisite sculptures embodying mathematical ideas, along with artful and accessible essays and lectures elucidating the mathematical concepts.

Thirteenth award, 2003: To Robert Osserman for being an erudite spokesman for mathematics, communicating its charm and excitement to thousands of people from all walks of life.

2004: No award given.

Fourteenth award, 2005: To Barry Cipra for writing about mathematics of every kind—from the most abstract to the most applied—for nearly twenty years. His lucid explanations of complicated ideas at the frontiers of research have appeared in dozens of articles in newspapers, magazines, and books.

Fifteenth award, 2006: To Roger Penrose for the discovery of Penrose tilings, which have captured the public’s imagination, and for an extraordinary series of books that brought the subject of consciousness to the public in mathematical terms.

Sixteenth award, 2007: To Steven H. Strogatz for making a consistent effort to reach out to a wider audience. He has made significant contact with the wider scientific community. The style of his book, Sync: The Emerging Science of Spontaneous Order (2003), and its sales indicate that it is intended for and has reached an even wider audience. The volume of this work is impressive, but the quality and breadth are spectacular as well.

Seventeenth award, 2008: To Carl Bialik for increasing the public’s understanding of mathematical concepts.

Eighteenth award, 2009: To George Csicsery for communicating the beauty and fascination of mathematics and the passion of those who pursue it.

Nineteenth award, 2010: To Marcus du Sautoy for complementing his love of mathematical discovery with a passion for communicating mathematics to a broad public.

Twentieth award, 2011: To Nicolas Falacci and Cheryl Heuton for their positive portrayal of the power and fun of mathematics through their hit TV series, Numb3rs.

Twenty-first award, 2012: To Dana Mackenzie for his remarkably broad and deep body of writing for experts and nonexperts alike over the last fifteen years.

Twenty-second award, 2013: To John Allen Paulos because his books, columns, reviews, speeches, and editorials have for more than twenty-five years brought mathematically informed ideas, information, opinion, and humor to a broad nonspecialist audience.

Next award: January 2014

AMS Epsilon Awards for Young Scholars Programs
In 1999 the American Mathematical Society started the Epsilon Fund to help support existing summer programs for mathematically talented high school students. The name for the fund was chosen in remembrance of the late Paul Erdős, who was fond of calling children “epsilons”. At its meeting in November 2000, the AMS Board of Trustees approved the Society’s engagement in a sustained effort to raise an endowment for the Epsilon Fund. In addition, a Board-designated fund of US$500,000 was created as a start for the endowment. As a start for the program, the AMS used money from its Program Development Fund to award Epsilon grants for activities during summers 2000, 2001, 2002, and 2003. The Epsilon Fund now stands at a level where it can annually provide grants to support ten separate programs that touch approximately 600 talented and highly motivated mathematics students every year.

To make a contribution to the Epsilon Fund, see http://www.ams.org/about-us/support-ams/giving_op/epsilon. To apply for an Epsilon grant, see http://www.ams.org/programs/edu-support/epsilon/emp-epsilon.

First awards, 2000: To All Girls/All Math (University of Nebraska, Lincoln), Hampshire College Summer Studies in Mathematics, Mathcamp, PROMYS (Boston University), Ross Young Scholars Program (Ohio State University), SWT Honors Summer Math Camp (Southwest Texas State University), and the University of Michigan Math Scholars.

Second awards, 2001: To All Girls/All Math (University of Nebraska), Mathcamp (Port Huron, Michigan), Michigan Math & Science Scholars (University of Michigan, Ann Arbor), and highly motivated mathematics students every year. To make a contribution to the Epsilon Fund, see http://www.ams.org/about-us/support-ams/giving_op/epsilon. To apply for an Epsilon grant, see http://www.ams.org/programs/edu-support/epsilon/emp-epsilon.

First awards, 2000: To All Girls/All Math (University of Nebraska, Lincoln), Hampshire College Summer Studies in Mathematics, Mathcamp, PROMYS (Boston University), Ross Young Scholars Program (Ohio State University), SWT Honors Summer Math Camp (Southwest Texas State University), and the University of Michigan Math Scholars.

Second awards, 2001: To All Girls/All Math (University of Nebraska), Mathcamp (Port Huron, Michigan), Michigan Math & Science Scholars (University of Michigan, Ann Arbor), and highly motivated mathematics students every year. To make a contribution to the Epsilon Fund, see http://www.ams.org/about-us/support-ams/giving_op/epsilon. To apply for an Epsilon grant, see http://www.ams.org/programs/edu-support/epsilon/emp-epsilon.
Arbor), Mathematics Scholars Academy (Oklahoma State University), Hampshire College Summer Studies in Mathematics (Hampshire College), PROMYS (Boston University), Young Scholars Program (University of Chicago), and Ross Mathematics Program (The Ohio State University).

Third awards, 2002: To All Girls/All Math (University of Nebraska), Hampshire College Summer Studies in Mathematics (Amherst, Massachusetts), Mathcamp (Mathematics Foundation of America), Michigan Math and Science Scholars (University of Michigan, Ann Arbor), PROMYS (Boston University), Ross Mathematics Program (The Ohio State University), SWT Honors Summer Math Camp (Southwest Texas State University), and University of Chicago Young Scholars Program.

Fourth awards, 2003: To All Girls/All Math (University of Nebraska), Canada/USA Mathcamp (Mathematics Foundation of America), Hampshire College Summer Studies in Mathematics (Amherst, Massachusetts), PROMYS (Boston University), Ross Mathematics Program (The Ohio State University), Stanford University Mathematics Camp (Stanford University), SWT Honors Summer Math Camp (Southwest Texas State University), and University of Chicago Young Scholars Program.

Fifth awards, 2004: To Ross Mathematics Program (The Ohio State University), Texas State University Honors Summer Math Camp, PROMYS (Boston University), Canada/USA Mathcamp (Mathematics Foundation of America), Hampshire College Summer Studies in Mathematics (Amherst, Massachusetts), All Girls/All Math (University of Nebraska), University of Chicago Young Scholars Program, and MathPath (MathPath Foundation).

Sixth awards, 2005: To All Girls/All Math Summer Camp for High School Girls (University of Nebraska, Lincoln), Canada/USA Mathcamp (Reed College, Portland, Oregon), Hampshire College Summer Studies in Mathematics (Hampshire College, Amherst, Massachusetts), MathPath, (Colorado College, Colorado Springs), Michigan Math and Science Scholars Program (University of Michigan, Ann Arbor), PROMYS (Boston University), Ross Mathematics Program (The Ohio State University), Texas State Honors Summer Math Camp (Texas State University, San Marcos), and University of Chicago Young Scholars Program.

Seventh awards, 2006: To All Girls/All Math Summer Camp for High School Girls (University of Nebraska, Lincoln), Canada/USA Mathcamp (University of Puget Sound, Tacoma, Washington), Hampshire College Summer Studies in Mathematics (Hampshire College, Amherst, Massachusetts), MathPath, (University of California, Santa Cruz), Michigan Math and Science Scholars Program (University of Michigan, Ann Arbor), PROMYS (Boston University), Puerto Rico Opportunities for Talented Students in Mathematics (PROTaSM) (University of Puerto Rico, Mayaguez), Ross Mathematics Program (Ohio State University, Columbus), Summer Explorations and Research Collaborations for High School Girls (SEARCH) (Mount Holyoke College, South Hadley, Massachusetts), Texas State Honors Summer Math Camp (Texas State University, San Marcos), Texas Tech University Summer Mathematics Academy (Texas Tech University, Lubbock), and University of Chicago Young Scholars Program (University of Chicago).

Eighth awards, 2007: Hampshire College Summer Studies in Mathematics, Amherst, Massachusetts; Michigan Math and Science Scholars Summer Program, University of Michigan, Ann Arbor; PROMYS, Boston University; Ross Mathematics Program, Ohio State University, Columbus; Summer Explorations and Research Collaborations for High School Girls (SEARCH), Mount Holyoke College, South Hadley, Massachusetts; and Texas State University Honors Summer Math Camp, Texas State University, San Marcos.

Ninth awards, 2008: All Girls/All Math, University of Nebraska, Lincoln; Hampshire College Summer Studies in Mathematics, Amherst, Massachusetts; MathPath, University of Vermont, Burlington; Michigan Math and Science Scholars Summer Program, University of Michigan, Ann Arbor; PROMYS, Boston University; PROTaSM (Puerto Rico Opportunities for Talented Students in Mathematics), University of Puerto Rico, Mayaguez; Ross Mathematics Program, Ohio State University, Columbus; and Texas State University Honors Summer Math Camp, Texas State University, San Marcos.

Tenth awards, 2009: Achievement in Mathematics Program (AMP), Lamar University; All Girls/All Math, University of Nebraska, Lincoln; Hampshire College Summer Studies in Mathematics (HCSSiM), Hampshire College; MathPath, Colorado College, Colorado Springs; Michigan Math and Science Scholars Summer Program, University of Michigan, Ann Arbor; PROMYS (Program in Mathematics for Young Scientists), Boston University; PROTaSM (Puerto Rico Opportunities for Talented Students in Mathematics), University of Puerto Rico, Mayaguez Campus; Research Science Institute, Massachusetts Institute of Technology; Ross Mathematics Program, Ohio State University, Columbus; Texas State University Honors Summer Math Camp, Texas State University, San Marcos.

Eleventh awards, 2010: All Girls/All Math, University of Nebraska, Lincoln; Lamar Achievement in Mathematics Program (LAMP), Lamar University; MathPath, Macalester College; PROMYS (Program in Mathematics for Young Scientists), Boston University; PROTaSM (Puerto Rico Opportunities for Talented Students in Mathematics), University of Puerto Rico, Mayaguez Campus; Research Science Institute, Massachusetts Institute of Technology; Stanford University Mathematics Camp (SUMaC), Stanford University; Stony Brook Mathematics Camp, State University of New York at Stony Brook; Texas State Honors Summer Math Camp, Texas State University; Young Scholars Program, University of Chicago.

Twelfth awards, 2011: All Girls/All Math, University of Nebraska, Lincoln; Canada/USA Mathcamp, Reed College, Portland, Oregon; Lamar Achievement in Mathematics Program (LAMP), Lamar University, Beaumont, Texas; MathPath, Colorado College, Colorado Springs; PROMYS, Boston University; PROTaSM (Puerto Rico Opportunities for Talented Students in Mathematics), University of Puerto Rico, Mayaguez Campus; Research Science Institute, Massachusetts Institute of Technology; Ross Mathematics Program, The Ohio State University; Texas State Honors Summer Math Camp, Texas State University, San Marcos; Young Scholars Program, University of Chicago.
Thirteenth awards, 2012: Canada/USA Mathcamp; Governor’s Institutes of Vermont: Mathematical Sciences; Hampshire College Summer Studies in Mathematics (HCSSiM); Lamar Achievement in Mathematics Program (LAMP; MathPath; Mathworks Honors Summer Math Camp; PROMYS; PROTaSM (Puerto Rico Opportunities for Talented Students in Mathematics); Research Science Institute; Ross Mathematics Program; Stanford University Mathematics Camp (SUMaC); Summer Program in Mathematical Problem Solving; Young Scholars Program

Fourteenth awards, 2013: Girls/All Math, University of Nebraska; Camp Euclid, online; Canada/USA Mathcamp; University of Puget Sound, Tacoma, WA; Hampshire College Summer Studies in Mathematics (HCSSiM), Hampshire College, Amherst, MA; LSU Mathcircle Summer Enrichment Program, Louisiana State University; MathPath, Macalester College, Saint Paul, MN; Mathworks Honors Summer Math Camp, Texas State University, San Marcos, TX; Michigan Math and Science Scholars Summer Program, University of Michigan, Ann Arbor; New York Math Circle High School Summer Program, NYU Courant Institute of Mathematical Sciences, New York; PROMYS, Boston University, MA; PROTaSM (Puerto Rico Opportunities for Talented Students in Mathematics), University of Puerto Rico, Mayaguez; Research Science Institute, Massachusetts Institute of Technology, Cambridge, MA; Ross Mathematics Program, The Ohio State University, Columbus, OH; Stanford University Mathematics Camp (SUMaC), Stanford University, CA; Summer Program in Mathematical Problem Solving, Bard College, NY; Young Scholars Program, University of Chicago, IL.

Award for an Exemplary Program or Achievement in a Mathematics Department

This award was established in 2004 to recognize a department which has distinguished itself by undertaking an unusual or particularly effective program of value to the mathematics community, internally or in relation to the rest of society. Examples might include a department that runs a notable minority outreach program, a department that has instituted an unusually effective industrial mathematics internship program, a department that has promoted mathematics so successfully that a large fraction of its university’s undergraduate population majors in mathematics, or a department that has made some form of innovation in its research support to faculty and/ or graduate students or which has created a special and innovative environment for some aspect of mathematics research. Departments of mathematical sciences in North America that offer at least a bachelor’s degree in mathematical sciences are eligible. The prize is awarded annually. For the first three awards (2006-2008), the prize amount was US$1,200. The prize was endowed by an anonymous donor in 2008, and, starting with the 2009 prize, the amount is US$5,000.

Nomination process: A letter of nomination may be submitted by one or more individuals. Nomination of the writer’s own institution is permitted. The letter should describe the specific program(s) for which the department in being nominated as well as the achievements which make the program(s) an outstanding success and may include any ancillary documents which support the success of the program(s). The letter should not exceed two pages, with supporting documentation not to exceed an additional three pages. Nominations should be submitted to the Office of the Secretary. Nominations received by September 15 will be considered for the award presented the following January.

First award, 2006: Harvey Mudd College.
Second award, 2007: University of California, Los Angeles (UCLA).
Eighth award, 2013: Mathematics Department at the University of Texas at Arlington. See also http://www.ams.org/notices/201305/rnoti-p608.pdf.

Mathematical Art Exhibition Award

This award “for aesthetically pleasing works that combine mathematics and art” was established in 2008 through an endowment provided by an anonymous donor who wishes to acknowledge those whose works demonstrate the beauty and elegance of mathematics expressed in a visual art form. The exhibition takes place every January at the Joint Mathematics Meetings. First (US$500), second (US$300), and third place (US$200) awards are made annually. For further information about this award, email the AMS Public Awareness Office (paoffice@ams.org).

First Awards, 2009: First place award to Goran Konjevod, for his origami work, “Wave (32), 2006”; second place award to Carlo Séquin, for his sculpture, “Figure-8 Knot, 2007”; and third place award to Robert Fathauer, for “Twice Iterated Knot No. 1, 2008”.

Second Awards, 2010: First place award to Robert Bosch for “Embrace”; second place award to Harry Benke for “The Vase”; and third place award to Richard Werner for “Meditations on f(x,y) = x²/2 + xy/2 - y⁴/8”.

Third Awards, 2011: First place award to Margaret Kepner for “Magic Square 25 Study”; second place award to Carlo H. Séquin for “Torus Knot (5,3)”; and third place award to Anne Burns for “Circles on Orthogonal Circles”.

Fourth Awards, 2012: First place award to Sylvie Donmoyer for “Still Life with Magic Square”; second place award to Thomas Hull, Robert Lang, and Ray Schamp for “Pleated Multi-sliced Cone”; and third place award to Carlo H. Séquin for “Lawson’s Minimum-Energy Klein Bottle”.

Fifth Awards, 2013: Best photograph, painting, or print: Vladimir Bulatov for “Bended Circle Limit III”.

1382
NOTICES OF THE AMS
VOLUME 60, NUMBER 10
Best textile, sculpture, or other medium: Kevin Lee for "Inlaid Wooden Boxes of Makoto Nakamura's Tessellations".
Honorable Mention: Susan Goldstine for "Tessellation Evolution".

Next Award: January 2014.

The Award for Mathematics Programs that Make a Difference
This award was established in 2005 in response to a recommendation from the AMS’s Committee on the Profession that the AMS compile and publish a series of profiles of programs that:
1) aim to bring more persons from underrepresented minority backgrounds into some portion of the pipeline beginning at the undergraduate level and leading to advanced degrees in mathematics and professional success, or retain them once in the pipeline;
2) have achieved documentable success in doing so; and
are replicable models.
Preference will be given to programs with significant participation by underrepresented minorities. Two programs are highlighted annually.

First award, 2006: Summer Institute in Mathematics for Undergraduates (SIMU), Universidad de Puerto Rico, Humacao; and Graduate Program, Department of Mathematics, University of Iowa.

Second award, 2007: Enhancing Diversity in Graduate Education (EDGE), Bryn Mawr College and Spelman College; and Mathematical Theoretical Biology Institute (MTBI), Arizona State University.

Third award, 2008: Summer Undergraduate Mathematical Science Research Institute (SUMSRI), Miami University (Ohio) and Mathematics Summer Program in Research and Learning (Math SPIRAL), University of Maryland, College Park. See citations and descriptions of programs. See Notices of the AMS article.

Fourth award, 2009: Department of Mathematics at the University of Mississippi and the Department of Statistics at North Carolina State University. See citations and description of programs.

Fifth award, 2010: Department of Computational and Applied Mathematics (CAAM) at Rice University and the Summer Program in Quantitative Sciences at the Harvard School of Public Health. See citations and descriptions of programs. See Notices of the AMS article, May 2010, p. 650.

Sixth award, 2011: Department of Mathematics at North Carolina State University and the Center for Women in Mathematics and the Center’s Post-baccalaureate Program at Smith College. See citations and descriptions of programs. See Notices of the AMS article, May 2011, p. 713.

Next award: Spring 2014. For information about the nomination process, please see www.ams.org/programs/diversity/emp-makeadiff or contact Dr. Ellen Maycock, AMS Executive Director for Meetings & Professional Services, at ejm@ams.org or phone (800-321-4267).

The Karl Menger Memorial Awards
Family members of the late Karl Menger were the major contributors to a fund established at Duke University. The majority of the income from this fund is to be used by the Society for annual awards at the International Science and Engineering Fair.

Sixth award, 1995: Davesh Maulik, Benjamin Michael Goetz, Jacob Burke, Daniel Kalman Biss, Samit Dasgupta, Yveh-Hsing Lin, Claus Mazanti Sorensen, Theodore Haw-Yun Hwa, Samuel Jacob Klein Jr., Katherine Anne Paur, Bridget Helen Penny, Scott Nicholas Sanders.

From the AMS Secretary

Next awards: June 2014.

Public Policy Award

This award was established in 2007 by the American Mathematical Society (AMS) to recognize a public figure for sustained and exceptional contributions to public policies that foster support for research, education, and innovation. The award will be given annually, starting in 2009.

The Award for Distinguished Public Service

This award was established by the AMS Council in response to a recommendation from their Committee on Science Policy. The US$4,000 award is presented every two years to a research mathematician who has made a distinguished contribution to the mathematics profession during the preceding five years.

First award, 1990: To Kenneth M. Hoffman for his outstanding leadership in establishing channels of communication between the mathematical community and makers of public policy as well as the general public.

Second award, 1992: To Harvey B. Keynes for his multifaceted efforts to revitalize mathematics education, especially for young people.

Third award, 1993: To Isadore M. Singer in recognition of his outstanding contributions to his profession, to science more broadly, and to the public good by bringing the best of mathematics and his own insights to bear on the activities of the National Academy of Sciences; on committees of the National Research Council, including the two so-called David Committees on the health of the mathematical sciences, and the Committee on Science, Engineering, and Public Policy; on the President’s Science Advisory Council; on decisions of Congress, through testimony concerning the support of mathematics and mathematical research; and on a host of critical situations over many years in which his wisdom and intervention helped gain a hearing for the problems of his community and the contributions it makes to the nation.

Fourth award, 1995: To Donald J. Lewis for his many contributions to mathematical education, mathematics policy, and mathematical research and administration during a career that has spanned several decades.

Fifth award, 1997: No award made.

Sixth award, 1998: To Kenneth C. Millett for his work devoted to underrepresented minority students in the mathematical sciences. Professor Millett founded the University of California, Santa Barbara, Achievement Program and directed the mathematics component of the Summer Academic Research Internship and the Summer Institute in Mathematics and Science at UCSB.

Seventh award, 2000: To Paul J. Sally Jr. for the quality of his research, for his service to the [American Mathematical]
Society as trustee, but more importantly for his many efforts in improvement of mathematics education for the nation’s youth and especially for members of minority and underrepresented groups and for his longitudinal mentoring of students, in particular the mathematics majors at Chicago.

Eighth award, 2002: To Margaret H. Wright for notable contributions to the federal government and the scientific community and for encouraging women and minority students.

Ninth award, 2004: To Richard A. Tapia for inspiring and teaching thousands of people (from elementary school students to senior citizens) to study and appreciate the mathematical sciences.

Tenth award, 2006: To Roger Howe for his multifaceted contributions to mathematics and to mathematics education.

Eleventh award, 2008: To Herbert Clemens for his superb research in complex algebraic geometry, his continuing efforts in education, and his seminal role in the founding and continuation of the Park City/IAS Mathematics Institute.

Twelfth award, 2010: To Carlos Castillo-Chavez for having a major impact with his efforts and activities in improving the representation in the broad mathematical sciences of the nation’s traditionally underrepresented and economically disadvantaged students.

Thirteenth award, 2012: To William McCallum for his energetic and effective efforts in promoting improvements to mathematics education.

Next award: January 2014.

Citation for Public Service
To provide encouragement and recognition for contributions to public service activities in support of mathematics, the Council of the Society established the Citation for Public Service. The award is no longer being made.

First award, 1991: Andre Z. Manlitis for the contributions he made to the mathematical community while employed in the Division of Mathematical Sciences at the National Science Foundation.

Second award, 1992: Marcia P. Sward for her contributions toward establishing and directing the Mathematical Sciences Education Board from its inception in the fall of 1985 until August 1989.

Third award, 1998: Liang-Shin Hahn and Arnold E. Ross. Liang-Shin Hahn for carrying forward and developing the New Mexico High School Mathematics Contest and for exposition and popularization of mathematics attractive to and suitable for potential candidates for the contest and others with similar intellectual interests. Arnold E. Ross for inspiring generations of young people through the summer mathematics programs he created and has continued to run for nearly 40 years.

AAS-AMS-APS Public Service Award
This award was established in 1999 by the American Mathematical Society (AMS), the American Astronomical Society (AAS), and the American Physical Society (APS) to recognize a public figure for his or her sustained and exceptional contributions to public policies that foster support for research, education, and industrial innovation in the physical sciences and mathematics. As of January 2007, the AMS no longer participates in this award, but instead offers the AMS Public Policy Award.

First award, 2000: To William Frist, Joseph L. Lieberman, and Harold Varmus.

Second award, 2001: To Vernon Ehlers and Neal Lane.

Third award, 2002: To James T. Walsh and Barbara Mikulski.

Fourth award, 2003: To Sherwood L. Boehlert, Alan B. Mollohan, and Pete V. Domenici.

2004: No award made.

2005: No award made.

2006: No award made.

Waldemar J. Trjitzinsky Memorial Awards
The Society received a bequest from the estate of Waldemar J., Barbara G., and Juliet Trjitzinsky, the income from which is used to assist students who have declared a major in mathematics at a college or university that is an institutional member of the AMS. These funds help support students who lack adequate financial resources and who may be in danger of not completing the degree program in mathematics for financial reasons. Each year the Society selects a number of geographically distributed schools who in turn make one-time awards to beginning mathematical students to assist them in pursuit of careers in mathematics. The amount of each scholarship is currently US$3,000, and the number of scholarships awarded each year varies.

First award, 1991: Duke University (Robert Lane Bassett, Linie Yunwen Chang, Kara Lee Lavender), University of Scranton (Thomas A. Shimkus), Montana State University (Melissa Cockerill, Deborah Fagan, Sherry Heis), Howard Payne University (Pamela Jo Chaney).

Second award, 1992: Allegheny College (Julianne Stile), Memphis State University (Cassandra Burns), University of California at Irvine (James Anthony Nunez), University of Puerto Rico (Juan Ramon Romero-Oliveras).

Third award, 1993: University of California at Los Angeles (Michelle L. Lanir), State University of New York at Geneseo (Jodi C. Wright), Eastern New Mexico University (Rebecca K. Moore), University of Virginia (Mikhail Krichman).

Fourth award, 1994: Boise State University (William Hudson and Margaret Norris), Illinois Institute of Technology (Guanghong Xu), Temple University (Coleen Clemeetson), University of Maryland at College Park (Mikhail G. Konikov).

Fifth award, 1995: University of Arizona (Mark Robert Moseley), Arkansas State University (Donna J. Shepherd), Mississippi State University (Clayton T. Hester), Montclair State College (James R. Jarrell III).

Sixth award, 1996: Murray State University (Christie M. Safin), Stanford University (Andreea Nicoara), Union College (Allison Pacelli), Western Illinois University (Lorna Renee Sanders).

Seventh award, 1997: Georgetown University (Martin Akguc), Loyola Marymount University (Laura Steiner, Claudia Catalan, Elizabeth Madrigal), New York University...
(Emily Press), Southern Illinois University at Carbondale (Laura Wasser).

Eighth award, 1998: Stevens Institute of Technology (Kelly Cornish), Georgia State University (Kevin A. Wilson), Iowa State University (Matthew A. Halverson), University of Nevada at Las Vegas (Dumitruc C. Tatuianu).

Ninth award, 1999: City University of New York (Hulya Cebecioglu), Reed College (Jeremy Copeland), University of Texas at San Antonio (Danielle Lyles), Western Kentucky University (Marcia Jean Mercer).

Tenth award, 2000: California State University at Long Beach (Yen Hai Le), Case Western Reserve University (Alexander Statnikov), Clarkson University (Matthew Bartholomew), University of Houston (Alyssa Burns).

Eleventh award, 2001: Columbia University (Alexander Ivanov Sotirov), Florida Atlantic University (Gregory Nevil Leuchthall Maxwell), Henderson State University (Ann Smith), John Carroll University (Andrea C. Forney), Seattle University (Sinead Pollom), University of Texas at Austin (Virginia Roberts), University of Utah (Paul T. Watkins), Worcester Polytechnic Institute (Yakov Kronrod and Megan Lally).

Twelfth award, 2002: Stephen F. Austin State University (Marcus A. Arreghin), Bates College (Challis Kinnucan), Brigham Young University (Julie Brinton), The College of William and Mary (Suzanne L. Robertson), Furman University (Kevin L. Smith), University of Hartford (Aimee J. Gourdas), University of Southern California (Peter Kirkpatrick), University of Texas at Dallas (Kevin R. Pond).

Thirteenth award, 2003: Bryn Mawr College (Thida S. Aye), Minnesota State University at Mankato (Andrew Richard Tackmann), University of Maryland at Baltimore County (Maria Christina Llewellyn), Colorado College (Rahbar Virk), California State University, Hayward (Sarah Deiwert and Angela Martinho), Lehigh University (Timothy P. Lewis), State University of New York at Potsdam (Bishal Thapa).

Fourteenth award, 2004: Beloit College (Laura Wolfram), Lafayette College (Prince Chidyagwai, Ekaterina Jager, Blerta Shtylla), Michigan State University (Antonio Veloz), University of Pennsylvania (Daniel Pomerleau), Portland State University (Kathryn Carr and Cass Bath), Santa Clara University (Olivia Gistand).

Fifteenth award, 2005: Abilene Christian University (Carissa Joy Straw), Amherst College (Jennifer A. Robarge), Arizona State University (Yukiko Kozakai), University of Missouri, Kansas City (Melanie Marie Meyer), University of North Carolina at Greensboro (Christian Sykes), University of Providence Island (Christopher Piecuch), Ohio State University (Sophia Leibman and Gabor Revesz).

Sixteenth award, 2006: California State University, San Bernardino (Lorena Pulido and Jennifer Renee Winter), University of Missouri, Rolla (Sean Michael Eagan), University of Central Missouri (Khadijah Shadeed), Boston College (Elizabeth Rini), Eckerd College (Elizabeth R. Morra), University of California, San Diego (John Roosevelt Quinn), Swarthmore College (Adam Joseph Lizzi).

Seventeenth award, 2007: Susan Christine Massey (University of Washington), Amy Streifel (Lewis and Clark College), Rosemary Holguin (SUNY at New Paltz), Emily Jean Ognacevic (Saint Louis University), Betsy Kay Barr (University of Tennessee Knoxville), Kayla Rose Boyle (University of Northern Iowa).

Eighteenth award, 2008: Aaron Peterson (Luther College), Faith L. Buell (Wright State University), Phillip David Lorren (Georgia Southern University), Daksha Shaky (Ithaca College), Joseph Zancocchio (College of Staten Island (CUNY)), Amanda J. Mueller (University of Wisconsin Milwaukee), Hans Parshall (Humboldt State University).

Nineteenth award, 2009: Alison Lynette Ashe (University of Vermont); Kendall Olivia Brown (Truman State University); Zehui Chen (Smith College); Jonathan Jordan Edwards (Kenyon College); David Hassan (University of California, Santa Barbara); Ana-Cristina Cerda Jimenez (California State University, Fresno); Mantatissi S. Walker (Jackson State University).

Twentieth award, 2010: Vaniey Carolina Leos Barajas (California State University, Bakersfield); Langston W. Joiner (University of Cincinnati); Michelle Chu (Emory University); Perla Salazar (Kansas State University); Dana C. Haymon (University of Oklahoma); James S. Wratten Jr. (Rochester Institute of Technology); Bebi Z. G. Rajendra (York College).

Twenty-first award, 2011: David Samuel Allen (Colorado State University); Xavier Eduardo Garcia (University of Minnesota Twin Cities); Jeffrey Hart (California State University San Marcos); Amina S. Mendez (Ohio Wesleyan University); Amanda Nicole Rodriguez (Texas A&M University Corpus Christi); Tyler Wippel (Central Michigan University); Maocai Wu (Brooklyn College-CUNY).

Twenty-second award, 2012: Anakaren Santana (University of California, Berkeley); Emily Mavaddat (University of Denver); Abigail Margaret Skelton (Lebanon Valley College), Benjamin Levi Heebner (Pennsylvania State University); Tyler Raven Billingsley (Purdue University Calumet); Matthew Phillip Larson (Hendrix College); Ryan T. Uding (University of Missouri Saint Louis).

Next awards: Fall 2013.
Report of the Executive Director, State of the AMS, 2013

November 2012 marked the beginning of the Society’s 125th year. The AMS will observe its milestone anniversary on November 24 this year. I am pleased to report that the AMS remains flexible, robust, financially healthy, and very active in serving the mathematics community, thanks to the efforts of members and a dedicated staff. Several notable events and transitions occurred in 2012.

• Robert Daverman completed fourteen years as secretary of the AMS at the end of January 2013. The job expanded greatly during his tenure. He pursued its demands with boundless energy and dedication, for which the Society owes genuine gratitude.

• The Joint Mathematics Meetings (JMM) in Boston in January 2012 broke records for attendance and for the number of talks and Special Sessions. More than 6,600 participants accounted for an 18 percent increase from the year before!

• The print version of Mathematical Reviews published its last issue in December 2012. This was a bittersweet transition whose time had come as the online version, MathSciNet®, continues to be enriched with new features that simply cannot be duplicated in print.

• More than 1,100 Fellows of the AMS were invited in 2012 and formally inducted in January 2013 at the Joint Mathematics Meetings in San Diego.

Current Issues

The work of the Society is often driven by exogenous issues affecting the mathematics community. In 2012 education policy was at the forefront. In February the President’s Council of Advisors on Science and Technology (PCAST) released the report Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering, and Mathematics, which has spurred a great deal of activity from the Society’s leadership and from the Committee on Education. Some elements of the PCAST report are controversial, but more to the point, it has stimulated new attention to important initiatives in undergraduate mathematics teaching and learning.

Online education was transformed in 2012 by the emerging availability of Massive Open Online Courses (MOOCs), through which a single course can reach tens of thousands of students. MOOCs offer new opportunities and new challenges for higher education. They are potentially revolutionary, and their long-term impact is yet to be determined. The AMS is exploring ways that it might facilitate discovery of and access to online educational resources for mathematics.

The Common Core State Standards for Mathematics have been adopted by forty-five states and are currently being implemented. The development and implementation of the standards has been a priority of the Conference Board of the Mathematical Sciences (CBMS) for several years. In 2012 the AMS (in cooperation with the MAA) and CBMS published The Mathematical Education of Teachers II. MET II is a professional development resource for PreK–12 teachers of mathematics. The content of the new edition has been aligned with the Common Core Standards.

The public advocacy role of the Society and of individual members became more important in dealing with distractions that gained far more attention than they ever should have received in mass media. The important outcome here is that members of the mathematics community have written eloquent rebuttals in the press to the politicizing of the Common Core State Standards, to an op-ed column questioning the importance of algebra in basic education, and to the claim by a distinguished biologist that mathematics need not be an important component of the education of a scientist. The AMS will continue efforts to facilitate contributions by the community in presenting the “public face” of mathematics.

Open access continues to be a major issue for scholarly publishing. Briefly, the debate about open access publishing is concerned with different approaches to making research articles freely available to everyone. The AMS started discussions in September 2012 about a proposal for establishing two new open access journals. The discussions culminated in April 2013, when the Council approved an experiment to launch Proceedings of the American Mathematical Society, Series B, and Transactions of the American Mathematical Society, Series B, to begin publication in 2014.1 A benefit for the entire mathematics community is that the AMS is able to publish more of the expanding research literature at no cost to libraries or readers.

Highlights of 2012 Activities

The year 2012 was a very busy one for the Society in all of its principal areas of activity. I shall highlight a number of specific accomplishments in publishing, professional programs and services, meetings, and outreach and advocacy for the mathematics community.

Serving the Community

The Society continued to provide its well-known traditional programs as well as offer new ones for members and mathematicians at all levels. The pilot program for AMS Graduate Student Chapters was introduced, which resulted in several applications to establish chapters. The program is now open to all departments and will provide direct support to help groups of students become engaged in mathematical research. The AMS is pleased to offer the chapters, together with the Graduate Student Travel Grants program and very active AMS Graduate Student Blog, to serve the interests and needs of graduate students in the mathematical sciences.

Each year approximately 300 graduate students receive travel support from the AMS to attend meetings. There were 103 Graduate Student Travel Grant recipients at JMM 2013; they were treated to a brunch where they could meet other students and members of the AMS leadership. In 2012, 187 graduate students accepted travel grants to attend AMS sectional meetings. The student travel grants are supported by one generous anonymous donor.

Meetings are thriving: 6,189 mathematicians, including many students, took part in JMM 2013 in San Diego and contributed to seventy-nine Special Sessions. In contrast, the attendance at JMM in San Diego in 2008 was 4,600. The Society also held eight Sectional Meetings in 2012 with total attendance of over 3,000.

The Mathematics Research Communities (MRC) program continues to be highly successful. The 2012 MRC summer conferences at the Snowbird Resort in Utah drew 119 early-career mathematicians. These conferences, funded by the National Science Foundation, are part of this AMS program that also includes special sessions at JMMs, ongoing support from conference organizers, and a continuation of the connections and collaborations via electronic forums and occasional face-to-face meetings. Through 2012, a total of 529 participants have taken part in the MRC program.

Overall, I enjoyed it immensely; I feel I became stronger as a mathematician, and I got a chance to meet and work with some amazing people.

Thank you!—2012 MRC participant

One of the major developments in communications was the increased AMS activity on social media. Followers from around the world can find news, comment on topics, initiate and join discussions, and view and comment on videos on AMS Facebook, Twitter, LinkedIn, and YouTube. I welcome AMS members and others to become part of the community on these social networks.

An important improvement to the AMS website in 2012 was the enhancement of the Prizes and Awards area, which now enables browsing of the archive by prize or award, recipient name and/or year; includes upcoming deadlines for nominations; and accepts online nomination submissions. I invite the mathematical community to peruse the list of impressive recipients and to nominate colleagues.

Publications

Mathematical Reviews (MR) added almost 125,000 items to the MR database in 2012, including more than 85,000 reviews. The size of the mathematics research literature continues to grow at a rate of about 3.5 percent per year, steadily increasing the workload for MR. Nevertheless, the staff of MR continues to enrich MathSciNet® with features that benefit its users. In 2012 thirty new Reference List Journals were added, Preliminary Data was implemented to accelerate the availability of information about new papers, and mobile pairing was added to facilitate access from mobile devices.

The Contemporary Mathematics series was offered as an electronic subscription product in 2012. At the same time, the backlist of about 550 Contemporary Mathematics volumes was also offered to research libraries as a collection of eBooks. The Society added the Proceedings of Symposia in Applied Mathematics (seventy-one volumes, 1949–2012) and Proceedings of Symposia in Pure Mathematics (eighty-six volumes, 1959–2012) to the eBook collections in 2012. The retrodigitization of other
principal series—Mathematical Surveys and Monographs, Graduate Studies in Mathematics, and Student Mathematical Library—was also initiated.

The AMS also continued to develop its Undergraduate Texts series by publishing several high-quality undergraduate textbooks in various areas of mathematics and making them available to students at prices that are significantly lower than textbook prices from large commercial publishers. The book program also added notable titles to all of the text and research monograph series. Among them were László Lovász, *Large Networks and Graph Limits* (Colloquium Publications); Peter Duren, *Invitation to Classical Analysis* (Pure and Applied Undergraduate Texts); John B. Walsh, *Knowing the Odds: An Introduction to Probability* (Graduate Studies in Mathematics); and David M. Clark, *Euclidean Geometry: A Guided Inquiry Approach* (Mathematical Circles Library).

The four primary research journals published 14,400 pages in 2012. The number of submitted articles continues to increase, and the overall growth of the mathematics literature is steadily increasing. To accommodate the growth, the Society is exploring ways that it can increase the total size of its journals without a commensurate increase in costs to the community. In addition, our creative software groups in Providence and Ann Arbor are improving the delivery of electronic publications. In 2012 enhanced reference lists were added to the abstract pages for the journals, mobile pairing was implemented to simplify delivery of electronic products to mobile devices, and Counter Compliant usage statistics were added to improve information resources for librarians.

Advocacy and Partnerships for Mathematics and Science

The AMS Public Awareness Office continued its support of two popular programs:

The fourth national Who Wants to Be a Mathematician contest for high school students was held at JMM 2013. The national competition is the culmination of qualifying rounds that are open to high school students throughout the U.S. Calvin Deng, a senior from the North Carolina School of Science and Mathematics, won US$5,000 and a TI-Nspire CX for himself and US$5,000 for the math department at his school. Deng was a gold medal winner at the 2012 International Mathematical Olympiad.

AMS posters and Mathematical Moments, a collection of free eye-catching posters on many topics, are the result of collaboration between the AMS Public Awareness Office and graphics arts staff. They are widely distributed and generate many orders and much appreciation from high school teachers and others.

The AMS Washington Office sponsored a congressional briefing in December 2012 to inform members of Congress and congressional staff about the impact of mathematics on important issues of broad interest. James A. Yorke, Distinguished University Professor of Mathematics and Physics at the University of Maryland, presented “Chaos and avalanches in science and socio-political systems”. He talked about the science of chaos and how it has completely changed the understanding of physical processes in the last thirty years. His presentation demonstrated how political upheavals have much in common with avalanches and earthquakes.

Long-standing collaboration with other organizations includes the AMS participation in two fellowship programs offered through the American Association for the Advancement of Science (AAAS): Congressional Fellowships and Mass Media Fellowships.

Samuel M. Rankin III, director of the AMS Washington Office, serves as chairman of the Coalition for National Science Funding, a coalition that supports the goal of increasing the national investment in the National Science Foundation’s research and education programs. The AMS is one of the participating societies in the Conference Board of the Mathematical Sciences, the International Mathematical Union, and the Joint Policy Board for Mathematics.

Though not without challenges facing all professional societies, the Society continued to fulfill its mission, maintaining excellence in mathematical sciences research, advancing the mathematics profession, supporting mathematics education at all levels, and fostering awareness and appreciation of mathematics.

—Donald McClure
Executive Director
Backlog of Mathematics Research Journals

<table>
<thead>
<tr>
<th>Journal (Print and Electronic)</th>
<th>Number of Issues per Year</th>
<th>Approximate Number of Pages per Year</th>
<th>2012 Median Time (in Months) from:</th>
<th>Editor’s Current Estimate of Waiting Time between Submission and Acceptance (in Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Submission to Final Acceptance</td>
<td>Acceptance to Print</td>
</tr>
<tr>
<td>Acta Inform.</td>
<td>8</td>
<td>640</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Acta Math.</td>
<td>4</td>
<td>800</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Adv. in Appl. Math.</td>
<td>10</td>
<td>1400</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Adv. Math.</td>
<td>18</td>
<td>9500</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>Adv. Math. Commun.</td>
<td>4</td>
<td>500</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Algebr. Geom. Topol.</td>
<td>6</td>
<td>3750</td>
<td>8.3</td>
<td>3.6</td>
</tr>
<tr>
<td>Algebra Number Theory</td>
<td>10</td>
<td>2560</td>
<td>8.1</td>
<td>13.9</td>
</tr>
<tr>
<td>Algorithmica</td>
<td>12</td>
<td>1500</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Amer. J. Math.</td>
<td>6</td>
<td>1728</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Anal. PDE</td>
<td>8</td>
<td>2048</td>
<td>8.2</td>
<td>16.7</td>
</tr>
<tr>
<td>Ann. Appl. Probab.</td>
<td>6</td>
<td>2615</td>
<td>9.75</td>
<td>12</td>
</tr>
<tr>
<td>Ann. Mat. Pura Appl. (4)</td>
<td>4</td>
<td>960</td>
<td>8.5</td>
<td>11.5</td>
</tr>
<tr>
<td>Ann. of Math. (2)</td>
<td>6</td>
<td>2400</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>Ann. Probab.</td>
<td>6</td>
<td>2700</td>
<td>7</td>
<td>16.5</td>
</tr>
<tr>
<td>Ann. Pure Appl. Logic</td>
<td>12</td>
<td>1959</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Ann. Statist.</td>
<td>6</td>
<td>3175</td>
<td>8.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Appl. Anal.</td>
<td>12</td>
<td>2304</td>
<td>3.5</td>
<td>14.88</td>
</tr>
<tr>
<td>Appl. Comput. Harmon. Anal.</td>
<td>9</td>
<td>940</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Arch. Hist. Exact. Sci.</td>
<td>6</td>
<td>696</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Arch. Math. Logic</td>
<td>8</td>
<td>1040</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Arch. Ration. Mech. Anal.</td>
<td>12</td>
<td>4200</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Ark. Mat.</td>
<td>2</td>
<td>400</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>Automatica J. IFAC</td>
<td>12</td>
<td>3193</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Balkan J. Geom. Appl.</td>
<td>2</td>
<td>200</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Beitr. Algebra Geom.</td>
<td>2</td>
<td>900</td>
<td>3.5</td>
<td>3</td>
</tr>
<tr>
<td>Bernoulli</td>
<td>4</td>
<td>1460</td>
<td>8</td>
<td>16.5</td>
</tr>
<tr>
<td>Bull. Aust. Math. Soc.</td>
<td>6</td>
<td>860</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Bull. Lond. Math. Soc.</td>
<td>6</td>
<td>1344</td>
<td>7.5</td>
<td>7.8</td>
</tr>
<tr>
<td>Bull. Sci. Math.</td>
<td>8</td>
<td>936</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Bull. Soc. Math. France</td>
<td>4</td>
<td>600</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>C. R. Math. Acad. Sci. Paris</td>
<td>24</td>
<td>850</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

The Backlog of Research Journals is reported each year in the November issue of the Notices. The report covers journals of publishers who have agreed to participate and who continue to provide backlog information. Publishers whose journals are not currently included can request that their journals be added. Such requests should be made in email to Marcia Almeida, backlogreport@ams.org. To be eligible for inclusion in the backlog report, a journal must be on the list of journals receiving cover-to-cover treatment in Mathematical Reviews http://www.ams.org/msnhtml/serials.pdf.

Once a publisher’s journals are accepted for inclusion, the publisher must designate a contact person or persons to supply data about the journals to the AMS. While the AMS makes every effort to obtain the data from the designated contacts, if data about a journal is not supplied, then that journal will not appear in the backlog report.
<table>
<thead>
<tr>
<th>Journal (Print and Electronic)</th>
<th>Number issues per Year</th>
<th>Approximate Number Pages per Year</th>
<th>2012 Median Time (in Months) from:</th>
<th>Editor’s Current Estimate of Waiting Time between Submission and Publication (in Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Submission to Final Acceptance</td>
<td>Acceptance to Print</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calc. Var. Partial Differential Equations</td>
<td>12</td>
<td>2600</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Canad. J. Math.</td>
<td>6</td>
<td>1440</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Canad. Math. Bull.</td>
<td>4</td>
<td>896</td>
<td>4</td>
<td>33</td>
</tr>
<tr>
<td>Cent. Eur. J. Math.</td>
<td>12</td>
<td>2320</td>
<td>4.4</td>
<td>3.3</td>
</tr>
<tr>
<td>Comm. Math. Phys.</td>
<td>24</td>
<td>7000</td>
<td>6</td>
<td>4.5</td>
</tr>
<tr>
<td>Commun. Pure Appl. Anal.</td>
<td>6</td>
<td>2500</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Complex Var. Elliptic Equ.</td>
<td>12</td>
<td>1392</td>
<td>4.75</td>
<td>19.32</td>
</tr>
<tr>
<td>Compos. Math.</td>
<td>12</td>
<td>2208</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Comput. Aided Geom. Design</td>
<td>9</td>
<td>805</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Comput. Math. Appl.</td>
<td>24</td>
<td>5000</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Comput. Methods Funct. Theory</td>
<td>4*</td>
<td>720</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Computing</td>
<td>12</td>
<td>960</td>
<td>8</td>
<td>NA</td>
</tr>
<tr>
<td>Constr. Approx.</td>
<td>6</td>
<td>1000</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Des. Codes Cryptogr.</td>
<td>12</td>
<td>1300</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>Differential Geom. Appl.</td>
<td>6</td>
<td>744</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Discrete Appl. Math</td>
<td>18</td>
<td>2600</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Discrete Comput. Geom.</td>
<td>8</td>
<td>2000</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Discrete Contin. Dyn. Syst.</td>
<td>12</td>
<td>5000</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Discrete Math.</td>
<td>24</td>
<td>3260</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Discrete Optim.</td>
<td>4</td>
<td>300</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Duke Math. J.</td>
<td>15</td>
<td>3000</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Dyn. Syst.</td>
<td>4</td>
<td>537</td>
<td>8.1</td>
<td>4.6</td>
</tr>
<tr>
<td>European J. Combin.</td>
<td>8</td>
<td>2257</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Expo. Math.</td>
<td>4</td>
<td>416</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Finite Fields Appl.</td>
<td>6</td>
<td>1359</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Found. Comput. Math.</td>
<td>6</td>
<td>800</td>
<td>14</td>
<td>5.5</td>
</tr>
<tr>
<td>Geom. Dedicata</td>
<td>6</td>
<td>2270</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Geom. Topol.</td>
<td>5</td>
<td>3125</td>
<td>13.3</td>
<td>5.2</td>
</tr>
<tr>
<td>Graphs Combin.</td>
<td>6</td>
<td>900</td>
<td>16.5</td>
<td>30</td>
</tr>
<tr>
<td>Historia Math.</td>
<td>4</td>
<td>365</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Homology Homotopy Appl.</td>
<td>2</td>
<td>700–800</td>
<td>5.8</td>
<td>6.7</td>
</tr>
<tr>
<td>Houston J. Math.</td>
<td>4</td>
<td>1400</td>
<td>8</td>
<td>27</td>
</tr>
<tr>
<td>Illinois J. Math.</td>
<td>4</td>
<td>1500</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>Indag. Math. (N.S.)</td>
<td>4</td>
<td>1467</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Infor. Process. Lett.</td>
<td>24</td>
<td>963</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Invent. Math.</td>
<td>12</td>
<td>3000</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Inverse Probl. Imaging</td>
<td>4</td>
<td>800</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Involv.</td>
<td>5</td>
<td>600</td>
<td>6.8</td>
<td>9.8</td>
</tr>
<tr>
<td>Israel J. Math.</td>
<td>8</td>
<td>4000</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>J. Algebra</td>
<td>24</td>
<td>7949</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>J. Algebraic Geom.</td>
<td>4</td>
<td>800</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>J. Amer. Math. Soc.</td>
<td>4</td>
<td>1200</td>
<td>9.6</td>
<td>5.6</td>
</tr>
<tr>
<td>J. Anal. Math.</td>
<td>3</td>
<td>1200</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>J. Appl. Log.</td>
<td>4</td>
<td>444</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>J. Approx. Theory</td>
<td>12</td>
<td>1700</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>J. Aust. Math. Soc.</td>
<td>6</td>
<td>860</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Journal (Print and Electronic)</td>
<td>Number issues per Year</td>
<td>Approximate Number Pages per Year</td>
<td>2012 Median Time (in Months) from:</td>
<td>Editor’s Current Estimate of Waiting Time between Submission and Publication (in Months)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Submission to Final Acceptance</td>
<td>Acceptance to Print</td>
</tr>
<tr>
<td>J. Combin. Theory Ser. A</td>
<td>8</td>
<td>2000</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>J. Combin. Theory Ser. B</td>
<td>6</td>
<td>800</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>J. Complexity</td>
<td>6</td>
<td>597</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>J. Comput. Appl. Math.</td>
<td>18</td>
<td>5253</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>J. Comput. System Sci.</td>
<td>8</td>
<td>1841</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>J. Convex Anal.</td>
<td>4</td>
<td>1200</td>
<td>7.5</td>
<td>10.1</td>
</tr>
<tr>
<td>J. Difference Equ. Appl.</td>
<td>12</td>
<td>2115</td>
<td>5.11</td>
<td>18.7</td>
</tr>
<tr>
<td>J. Differential Equations</td>
<td>24</td>
<td>9000</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>J. Differential Geom.</td>
<td>9</td>
<td>1700</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>J. Discrete Algorithms</td>
<td>6</td>
<td>1087</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>J. Eur. Math. Soc. (JEMS)</td>
<td>6</td>
<td>2038</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>J. Funct. Anal.</td>
<td>24</td>
<td>9097</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>J. Geom. Anal.</td>
<td>4</td>
<td>1235</td>
<td>7.63</td>
<td>17.1</td>
</tr>
<tr>
<td>J. Geom. Phys.</td>
<td>12</td>
<td>2250</td>
<td>5</td>
<td>3.5</td>
</tr>
<tr>
<td>J. Ind. Manag. Optim.</td>
<td>4</td>
<td>1100</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>J. Integral Equations Appl.</td>
<td>4</td>
<td>600</td>
<td>8</td>
<td>27</td>
</tr>
<tr>
<td>J. Lie Theory</td>
<td>4</td>
<td>1200</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>J. Log. Algebr. Program.</td>
<td>8</td>
<td>954</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>J. Lond. Math. Soc. (2)</td>
<td>6</td>
<td>1920</td>
<td>9</td>
<td>9.2</td>
</tr>
<tr>
<td>J. Math. Anal. Appl.</td>
<td>24</td>
<td>10000</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>J. Math. Biol.</td>
<td>14</td>
<td>3000</td>
<td>8.8</td>
<td>8.5</td>
</tr>
<tr>
<td>J. Math. Ecom.</td>
<td>6</td>
<td>457</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>J. Math. Phys.</td>
<td>12</td>
<td>9133</td>
<td>4.3</td>
<td>1.6</td>
</tr>
<tr>
<td>J. Math. Pures Appl. (9)</td>
<td>12</td>
<td>1492</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>J. Mod. Dyn.</td>
<td>4</td>
<td>600</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>J. Multivariate Anal.</td>
<td>10</td>
<td>2831</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>J. Number Theory</td>
<td>12</td>
<td>3800</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>J. Operator Theory</td>
<td>4</td>
<td>1200</td>
<td>7</td>
<td>27</td>
</tr>
<tr>
<td>J. Pure Appl. Algebra</td>
<td>12</td>
<td>3083</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>J. Statist. Plann. Inference</td>
<td>12</td>
<td>3112</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>J. Symbolic Comput.</td>
<td>12</td>
<td>2157</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>J. Symbolic Logic</td>
<td>4</td>
<td>1320</td>
<td>22</td>
<td>9</td>
</tr>
<tr>
<td>J. Topol.</td>
<td>4</td>
<td>1024</td>
<td>10.3</td>
<td>5.2</td>
</tr>
<tr>
<td>Kyoto J. Math.</td>
<td>4</td>
<td>900</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Linear Algebra Appl.</td>
<td>24</td>
<td>8233</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Linear Multilinear Algebra</td>
<td>12</td>
<td>1456</td>
<td>4.5</td>
<td>9.3</td>
</tr>
<tr>
<td>Lobachevskii J. Math.</td>
<td>4</td>
<td>450</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Manuscripta Math.</td>
<td>12</td>
<td>1900</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Math. Ann.</td>
<td>12</td>
<td>4800</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Math. Comp.</td>
<td>4</td>
<td>2400</td>
<td>9.3</td>
<td>13.7</td>
</tr>
<tr>
<td>Math. Control Signals Systems</td>
<td>4</td>
<td>500</td>
<td>10.5</td>
<td>3</td>
</tr>
<tr>
<td>Math. Oper. Res.</td>
<td>4</td>
<td>800</td>
<td>17.4</td>
<td>3.3</td>
</tr>
<tr>
<td>Math. Program.</td>
<td>4</td>
<td>400</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Math. Res. Lett.</td>
<td>6</td>
<td>1300</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Math. Social Sci.</td>
<td>6</td>
<td>615</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Math. Z.</td>
<td>12</td>
<td>3600</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Mathematica</td>
<td>2</td>
<td>512</td>
<td>4.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Mem. Amer. Math. Soc.</td>
<td>6</td>
<td>3200</td>
<td>9.5</td>
<td>16.1</td>
</tr>
<tr>
<td>Methods Appl. Anal.</td>
<td>4</td>
<td>500</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
Research Journals Backlog

<table>
<thead>
<tr>
<th>Journal (Electronic)</th>
<th>Number of Articles Posted in 2011</th>
<th>2012 Median Time (in days) from:</th>
<th>Editor’s Current Estimate of Waiting Time between Submission and Publication (in Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Submission to Final Acceptance</td>
<td>Acceptance to Posting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michigan Math. J.</td>
<td>4</td>
<td>896</td>
<td>5 14 13</td>
</tr>
<tr>
<td>Monatsh. Math.</td>
<td>16</td>
<td>1920</td>
<td>3 2 1</td>
</tr>
<tr>
<td>Multiscale Model. Simul.</td>
<td>4</td>
<td>1525</td>
<td>7.3 6 3.4</td>
</tr>
<tr>
<td>Nonlinear Anal.</td>
<td>18</td>
<td>5494</td>
<td>5 3 0.9</td>
</tr>
<tr>
<td>Nonlinear Anal. Hybrid Syst.</td>
<td>4</td>
<td>340</td>
<td>10 4 0.9</td>
</tr>
<tr>
<td>Nonlinear Anal. Real World Appl.</td>
<td>6</td>
<td>3161</td>
<td>7 3 1.1</td>
</tr>
<tr>
<td>Notre Dame J. Form. Log.</td>
<td>4</td>
<td>600</td>
<td>5 11 11</td>
</tr>
<tr>
<td>Numer. Math.</td>
<td>12</td>
<td>2400</td>
<td>15 11 1</td>
</tr>
<tr>
<td>Pacific J. Math.</td>
<td>12</td>
<td>3072</td>
<td>6.9 6.5 6</td>
</tr>
<tr>
<td>Probab. Theory Related Fields</td>
<td>12</td>
<td>2400</td>
<td>8.5 10 1.2</td>
</tr>
<tr>
<td>Proc. Amer. Math. Soc.</td>
<td>12</td>
<td>4200</td>
<td>5.1 14.7 7.3</td>
</tr>
<tr>
<td>Proc. Lond. Math. Soc. (3)</td>
<td>12</td>
<td>2880</td>
<td>9 9.3 4</td>
</tr>
<tr>
<td>Quart. Appl. Math.</td>
<td>4</td>
<td>800</td>
<td>0.7 17.6 12.6</td>
</tr>
<tr>
<td>Rocky Mountain J. Math.</td>
<td>6</td>
<td>2100</td>
<td>8 24 22</td>
</tr>
<tr>
<td>Semigroup Forum</td>
<td>6</td>
<td>1200</td>
<td>10 4 1</td>
</tr>
<tr>
<td>SIAM J. Appl. Math.</td>
<td>6</td>
<td>1950</td>
<td>8 4.8 2.8</td>
</tr>
<tr>
<td>SIAM J. Comput.</td>
<td>6</td>
<td>1800</td>
<td>15.4 4.5 2.7</td>
</tr>
<tr>
<td>SIAM J. Control Optim.</td>
<td>6</td>
<td>3375</td>
<td>13.5 4.9 3.1</td>
</tr>
<tr>
<td>SIAM J. Discrete Math.</td>
<td>4</td>
<td>1820</td>
<td>12 5 3</td>
</tr>
<tr>
<td>SIAM J. Math. Anal.</td>
<td>6</td>
<td>4380</td>
<td>8.3 4 3</td>
</tr>
<tr>
<td>SIAM J. Matrix Anal. Appl.</td>
<td>4</td>
<td>1420</td>
<td>9.6 5.4 3</td>
</tr>
<tr>
<td>SIAM J. Numer. Anal.</td>
<td>6</td>
<td>3400</td>
<td>11.1 4.1 3.1</td>
</tr>
<tr>
<td>SIAM J. Optim.</td>
<td>4</td>
<td>1685</td>
<td>11.7 5.8 2.9</td>
</tr>
<tr>
<td>SIAM J. Sci. Comput.</td>
<td>6</td>
<td>4300</td>
<td>14.7 4 3</td>
</tr>
<tr>
<td>SIAM Rev.</td>
<td>4</td>
<td>800</td>
<td>13.5 12.6 11.6</td>
</tr>
<tr>
<td>Stochastic Process. Appl.</td>
<td>12</td>
<td>3938</td>
<td>10 3 1.2</td>
</tr>
<tr>
<td>Theoret. Comput. Sci.</td>
<td>48</td>
<td>5786</td>
<td>13 4 0.9</td>
</tr>
<tr>
<td>Theory Comput. Syst.</td>
<td>8</td>
<td>1000</td>
<td>7 12 8</td>
</tr>
<tr>
<td>Topology Appl.</td>
<td>18</td>
<td>3654</td>
<td>8 4 2.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Journal (Print and Electronic)</th>
<th>Number of Issues per Year</th>
<th>Approximate Number of Pages per Year</th>
<th>2012 Median Time (in days) from:</th>
<th>Editor’s Current Estimate of Waiting Time between Submission and Publication (in Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Submission to Final Acceptance</td>
<td>Acceptance to Print</td>
</tr>
<tr>
<td>Michigan Math. J.</td>
<td>4</td>
<td>896</td>
<td>5 14 13</td>
<td>9</td>
</tr>
<tr>
<td>Monatsh. Math.</td>
<td>16</td>
<td>1920</td>
<td>3 2 1</td>
<td>5</td>
</tr>
<tr>
<td>Multiscale Model. Simul.</td>
<td>4</td>
<td>1525</td>
<td>7.3 6 3.4</td>
<td>12.7 10.7</td>
</tr>
<tr>
<td>Nonlinear Anal.</td>
<td>18</td>
<td>5494</td>
<td>5 3 0.9</td>
<td>7</td>
</tr>
<tr>
<td>Nonlinear Anal. Hybrid Syst.</td>
<td>4</td>
<td>340</td>
<td>10 4 0.9</td>
<td>10</td>
</tr>
<tr>
<td>Nonlinear Anal. Real World Appl.</td>
<td>6</td>
<td>3161</td>
<td>7 3 1.1</td>
<td>9</td>
</tr>
<tr>
<td>Notre Dame J. Form. Log.</td>
<td>4</td>
<td>600</td>
<td>5 11 11</td>
<td>11</td>
</tr>
<tr>
<td>Numer. Math.</td>
<td>12</td>
<td>2400</td>
<td>15 11 1</td>
<td>NR</td>
</tr>
<tr>
<td>Pacific J. Math.</td>
<td>12</td>
<td>3072</td>
<td>6.9 6.5 6</td>
<td>13.4 12.9</td>
</tr>
<tr>
<td>Probab. Theory Related Fields</td>
<td>12</td>
<td>2400</td>
<td>8.5 10 1.2</td>
<td>18.5 9.5</td>
</tr>
<tr>
<td>Proc. Amer. Math. Soc.</td>
<td>12</td>
<td>4200</td>
<td>5.1 14.7 7.3</td>
<td>23.5 16.7</td>
</tr>
<tr>
<td>Proc. Lond. Math. Soc. (3)</td>
<td>12</td>
<td>2880</td>
<td>9 9.3 4</td>
<td>18.2 12.3</td>
</tr>
<tr>
<td>Quart. Appl. Math.</td>
<td>4</td>
<td>800</td>
<td>0.7 17.6 12.6</td>
<td>22.2 16.2</td>
</tr>
<tr>
<td>Rocky Mountain J. Math.</td>
<td>6</td>
<td>2100</td>
<td>8 24 22</td>
<td>28</td>
</tr>
<tr>
<td>Semigroup Forum</td>
<td>6</td>
<td>1200</td>
<td>10 4 1</td>
<td>15</td>
</tr>
<tr>
<td>SIAM J. Appl. Math.</td>
<td>6</td>
<td>1950</td>
<td>8 4.8 2.8</td>
<td>12.8 10.8</td>
</tr>
<tr>
<td>SIAM J. Comput.</td>
<td>6</td>
<td>1800</td>
<td>15.4 4.5 2.7</td>
<td>20.1 18.1</td>
</tr>
<tr>
<td>SIAM J. Control Optim.</td>
<td>6</td>
<td>3375</td>
<td>13.5 4.9 3.1</td>
<td>18.6 16.6</td>
</tr>
<tr>
<td>SIAM J. Discrete Math.</td>
<td>4</td>
<td>1820</td>
<td>12 5 3</td>
<td>17</td>
</tr>
<tr>
<td>SIAM J. Math. Anal.</td>
<td>6</td>
<td>4380</td>
<td>8.3 4 3</td>
<td>12.3 11.3</td>
</tr>
<tr>
<td>SIAM J. Matrix Anal. Appl.</td>
<td>4</td>
<td>1420</td>
<td>9.6 5.4 3</td>
<td>14.6 12.6</td>
</tr>
<tr>
<td>SIAM J. Numer. Anal.</td>
<td>6</td>
<td>3400</td>
<td>11.1 4.1 3.1</td>
<td>15.2 14.2</td>
</tr>
<tr>
<td>SIAM J. Optim.</td>
<td>4</td>
<td>1685</td>
<td>11.7 5.8 2.9</td>
<td>16.6 14.6</td>
</tr>
<tr>
<td>SIAM J. Sci. Comput.</td>
<td>6</td>
<td>4300</td>
<td>14.7 4 3</td>
<td>18.7 17.7</td>
</tr>
<tr>
<td>SIAM Rev.</td>
<td>4</td>
<td>800</td>
<td>13.5 12.6 11.6</td>
<td>26.1 25.1</td>
</tr>
<tr>
<td>Stochastic Process. Appl.</td>
<td>12</td>
<td>3938</td>
<td>10 3 1.2</td>
<td>13</td>
</tr>
<tr>
<td>Theoret. Comput. Sci.</td>
<td>48</td>
<td>5786</td>
<td>13 4 0.9</td>
<td>17</td>
</tr>
<tr>
<td>Theory Comput. Syst.</td>
<td>8</td>
<td>1000</td>
<td>7 12 8</td>
<td>11</td>
</tr>
<tr>
<td>Topology Appl.</td>
<td>18</td>
<td>3654</td>
<td>8 4 2.2</td>
<td>10</td>
</tr>
</tbody>
</table>

Note: Median times and estimates are approximate and may vary. Format(s) listed include html, pdf, ePUB.
Research Journals Backlog

<table>
<thead>
<tr>
<th>Journal (Electronic)</th>
<th>Number of Articles Posted in 2011</th>
<th>2012 Median Time (in days) from:</th>
<th>Format(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.ams.org/publications/journals/journalsframework/ecgd</td>
<td></td>
<td>Acceptance to Posting</td>
<td></td>
</tr>
<tr>
<td>www.mathem.pub.ro/dgds/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.dmtcs.org</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ecp.ejpecp.org</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron. J. Combin.</td>
<td>236</td>
<td></td>
<td>pdf</td>
</tr>
<tr>
<td>www.combinatorics.org/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron. J. Differential Equations</td>
<td>240</td>
<td></td>
<td>html, pdf, tex</td>
</tr>
<tr>
<td>ejde.math.txstate.edu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.math.u-szeged.hu/ejqtde/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eramath.s3-website-us-east-1.amazonaws.com/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>etna.mcs.kent.edu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESAIM Control Optim. Calc. Var.</td>
<td>53</td>
<td></td>
<td>pdf, ps, tex</td>
</tr>
<tr>
<td>www.esaim-cocv.org</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.esaim-m2an.org</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESAIM Probab. Stat.</td>
<td>22</td>
<td></td>
<td>pdf, ps, tex</td>
</tr>
<tr>
<td>www.esaim-ps.org</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Point Theory Appl.</td>
<td>234</td>
<td></td>
<td>html, pdf</td>
</tr>
<tr>
<td>www.fixedpointtheoryandapplications.com/content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.hindawi.com/journals/ijmms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int. J. Stoch. Anal.</td>
<td>24</td>
<td></td>
<td>html, pdf, ePUB</td>
</tr>
<tr>
<td>www.hindawi.com/journals/ijsa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integers</td>
<td>99</td>
<td></td>
<td>pdf</td>
</tr>
<tr>
<td>www.integers-ejcnt.org</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.hindawi.com/journals/jam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Inequal. Appl.</td>
<td>310</td>
<td></td>
<td>html, pdf</td>
</tr>
<tr>
<td>www.journalofinequalitiesandapplications.com/content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Integer Seq.</td>
<td>72</td>
<td></td>
<td>html, pdf, ps, tex</td>
</tr>
<tr>
<td>cs.uwaterloo.ca/journals/jIS/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMS J. Comput. Math.</td>
<td>28</td>
<td></td>
<td>pdf, other ***</td>
</tr>
<tr>
<td>www.lms.ac.uk/publications/jcm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. Biosci. Eng.</td>
<td>46</td>
<td></td>
<td>pdf</td>
</tr>
<tr>
<td>www.aims.courses.org/journals/home.jsp?journalID=8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netw. Heterog. Media</td>
<td>53</td>
<td></td>
<td>pdf</td>
</tr>
<tr>
<td>www.aims.courses.org/journals/home.jsp?journalID=9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliab. Comput.</td>
<td>25</td>
<td></td>
<td>pdf</td>
</tr>
<tr>
<td>interval.louisiana.edu/reliable-computing-journal/RC.html</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Represent. Theory</td>
<td>17</td>
<td></td>
<td>pdf</td>
</tr>
<tr>
<td>www.ams.org/publications/journals/journalsframework/ert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sém. Lothar. Combin.</td>
<td>8</td>
<td></td>
<td>pdf, ps, dvi, tex</td>
</tr>
<tr>
<td>www.mat.univie.ac.at/~slc/</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Research Journals Backlog

<table>
<thead>
<tr>
<th>Journal (Electronic)</th>
<th>Number of Articles Posted in 2011</th>
<th>2012 Median Time (in days) from:</th>
<th>Format(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>epubs.siam.org/siads/</td>
<td></td>
<td>Acceptance to Posting</td>
<td></td>
</tr>
<tr>
<td>SIAM J. Financial Math.</td>
<td>28</td>
<td></td>
<td>pdf, BibTeX</td>
</tr>
<tr>
<td>epubs.siam.org/sifin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIAM J. Imaging Sci.</td>
<td>46</td>
<td></td>
<td>pdf, BibTeX</td>
</tr>
<tr>
<td>epubs.siam.org/siims</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory Appl. Categ.</td>
<td>40</td>
<td></td>
<td>pdf, ps, dvi</td>
</tr>
<tr>
<td>www.tac.mta.ca/tac/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory Comput.</td>
<td>27</td>
<td></td>
<td>html†, pdf, ps, tex</td>
</tr>
<tr>
<td>theoryofcomputing.org</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NR means no response received. NA means not available or not applicable.
*First issue processed in 2013, no data available.
**Journal publishes provisional PDF directly after acceptance.
*** “Add-ons” (appendixes, computer programs, graphics, animations, etc.) are provided as appropriate with no restriction on the format.
†Applies to abstract, bibliography, author information, but not to full article.

NEWAMS GOLDOpen Access Journals!

The AMS is pleased to offer two new gold open access research journals, *Proceedings of the AMS, Series B* and *Transactions of the AMS, Series B*. Authors may submit articles now for publication beginning in 2014.

Read more about these journals at www.ams.org/openaccess.
November 2013

* 4–5 DIMACS Workshop on Systems and Analytics of Big Data, DIMACS Center, CoRE Building, Rutgers University, Piscataway, New Jersey, 08854-8018
Description: Tremendous progress has been made in systems and analytics of big data, e.g. Hadoop/MapReduce, STORM. However, modern data analytics faces a confluence of growing challenges. First, the increasing data deluge in social networks, online retail, web pages, mobile data, etc. creates the need to scale out across hundreds of thousands of commodity machines. Second, the complexity of data analytics has also grown to include sophisticated machine learning algorithm with data dependencies. Third, many systems process streaming data and have real time requirements. We believe that this emerging field will benefit from close interaction among researchers and industry practitioners. To this end, we are planning to organize a DIMACS workshop where we bring together academics and practitioners in computer systems, databases, networking, machine learning, and algorithms to share their research accomplishments and identify core problems on big data.
Organizers: Li Erran Li, Bell Labs, erranlli@gmail.com; Kathleen R. McKeown, Columbia University, kathy@columbia.edu. Presented under the auspices of the Special Focus on Information Sharing and Dynamic Data Analysis.
Local Arrangements: Workshop Coordinator, DIMACS Center, workshop@dimacs.rutgers.edu, 732-445-5928; http://dimacs.rutgers.edu/Workshops/Analytics/index.html.

* 7–8 DIMACS Workshop on Statistical Analysis of Network Dynamics and Interactions, DIMACS Center, CoRE Building, Rutgers University, Piscataway, New Jersey, 08854-8018
Description: The analysis and modeling of large and complex real-world networks has become indispensable across the diverse set of social, technological, and natural worlds. While the field remains heterogeneous and diverse, we have seen emerging signs of convergence. There has been growing computer science and statistical literature expounding on topics of analyzing and visualizing time-varying networks, a subject popularized earlier within the physics community. Social media researchers are beginning to use problem-specific structure to infer between social influence, homophily, and external forces - areas historically of intense interest amongst statisticians and social scientists. Highly complex application domains, such as brain and financial networks, are coming into the scope of the field.
The primary goal of the workshop is to actively promote a concerted effort to address theoretical, methodological and computational issues that arise when modeling and analyzing dynamic networks, stochastic processes on networks, and collection of interactions.
To this end, we aim at bringing together researchers from applied disciplines such as sociology, economics, medicine and biology, together with researchers from more theoretical disciplines such as mathematics, statistics, physics and computer science. All these communities have a long-standing interest in modeling large scale networks, and we would like to foster cross-disciplinary collaborations and exchanges in order to identify directions that can provide theoretical and computational foundations to push forward this extremely important field.

This section contains announcements of meetings and conferences of interest to some segment of the mathematical public, including ad hoc, local, or regional meetings, and meetings and symposia devoted to specialized topics, as well as announcements of regularly scheduled meetings of national or international mathematical organizations. A complete list of meetings of the Society can be found on the last page of each issue.
An announcement will be published in the Notices if it contains a call for papers and specifies the place, date, subject (when applicable), and the speakers; a second announcement will be published only if there are changes or necessary additional information. Once an announcement has appeared, the event will be briefly noted in every third issue until it has been held and a reference will be given in parentheses to the month, year, and page of the issue in which the complete information appeared. Asterisks (*) mark those announcements containing new or revised information.
In general, announcements of meetings and conferences carry only the date, title of meeting, place of meeting, names of speakers (or sometimes a general statement on the program), deadlines for abstracts or contributed papers, and source of further information. If there is any application deadline with respect to participation in the meeting, this fact should be noted. All communications on meetings and conferences in the mathematical sciences should be sent to the Editor of the Notices in care of the American Mathematical Society in Providence or electronically to notices@ams.org or mathcal@ams.org.
In order to allow participants to arrange their travel plans, organizers of meetings are urged to submit information for these listings early enough to allow them to appear in more than one issue of the Notices prior to the meeting in question. To achieve this, listings should be received in Providence eight months prior to the scheduled date of the meeting.
The complete listing of the Mathematics Calendar will be published only in the September issue of the Notices. The March, June/July, and December issues will include, along with new announcements, references to any previously announced meetings and conferences occurring within the twelve-month period following the month of those issues. New information about meetings and conferences that will occur later than the twelve-month period will be announced once in full and will not be repeated until the date of the conference or meeting falls within the twelve-month period.
The Mathematics Calendar, as well as Meetings and Conferences of the AMS, is now available electronically through the AMS website on the World Wide Web. To access the AMS website, use the URL: http://www.ams.org.
Organizers: Edo Airoldi, Harvard University; Andrea Collevecchio, University Ca’ Foscari-Venice and Monash University; Xiaodong Lin, Rutgers University; lin@business.rutgers.edu. Presented under the auspices of the DIMACS Special Focus on Information Sharing and Dynamic Data Analysis

Local Arrangements: Workshop Coordinator, DIMACS Center, workshop@dimacs.rutgers.edu, 732-445-5928; http://dimacs.rutgers.edu/Workshops/DynamicNetwork/

* 9 Algebra, Geometry and Combinatorics Day (AlGeCom), Loyola University Chicago, Chicago, Illinois.
Description: A one-day informal meeting of mathematicians from the University of Illinois, Purdue University, IUPUI, and nearby universities, with interests in algebra, geometry and combinatorics (widely interpreted).
Invited Speakers: Ryan Kinser (Northeastern), Greg Musiker (Minnesota), Steven Sam (Berkeley), David Speyer (Michigan).
Funding: There is limited funding for graduate student attendance, made possible by NSF support.
Local organizers: Peter Tingley (email: ptingley@luc.edu), Aaron Lauve (email: alauve@luc.edu).
Information: http://sites.google.com/site/algecomday/algecom9/.

* 12-16 GeLoMI 2013—Conference on Geometry and Algebra of Linear Matrix Inequalities, Centre International de Rencontres Mathématiques (CIRM), Luminy, Marseille, France.
Description: This is a conference organized by Didier Henrion and Monique Laurent, jointly with the 3rd official meeting of the GeLoMI project funded by the French National Research Agency. The conference aims at bringing together various researchers in pure and applied mathematics (real algebraic geometry, commutative algebra, functional analysis, continuous and discrete optimization) interested in linear matrix inequalities and their application areas (operations research, system control, performance analysis of dynamical systems).
Information: http://homepages.laas.fr/henrion/geolmi13/.

* 18-22 Discrete Curvature: Theory and Applications, Centre International de Rencontres Mathématiques (CIRM), Luminy, Marseille, France.
Description: The aim of this summer school is to bring together researchers from diverse backgrounds on the common problem of discrete curvature and make an update on the many achievements of the last decade. In recent years, new concepts have emerged in different areas of mathematics and computer science, all related to the notion of discrete curvature. The notion of discrete curvature being not uniquely defined, unlike in the case of differential geometry, it is still an open subject of investigation. We believe it is crucial for all contributors in these various fields to meet one another, discuss their views and share their knowledge. The target audience includes both senior researchers who will find a new point of view on issues they know and/or put into perspective their contributions, as well as young researchers and Ph.D. students interested in this growing domain. The speakers will come from academic research, applied research and private companies.
Information: http://www.laurentnajman.org/curvature/.

December 2013

* 13-15 International Conference on Special Functions & their Applications (ICSFA 2013) and symposium on “Applications in Diverse Fields of Engineering and Technology”, Department of Mathematics, Malviya National Institute of Technology, J.L.N. Marg, Jaipur-302017, Rajasthan, India.
Description: The three days conference aims to bring together the researchers working in the area of Special Functions and their Applications for interaction and exchange of ideas. In addition, it will inspire young researchers to pursue research in this important branch of Mathematical sciences. The Academic program of the conference will consist of Plenary sessions, Invited Talks and Poster Presentations covering a wide range of topics including Special Functions, Ramanujan’s Mathematics, Fractional calculus, q-series and continued fractions, complex function theory, Applications of special functions to Statistics, Physical sciences and Engineering. The R. P. Agarwal Memorial Lecture shall be delivered on the first day of the conference by an eminent mathematician. In previous years it is been delivered by Prof. George Andrews (Pennsylvania), Prof. Bruce Berndt (Illinois), Prof. H.L. Manocha (NY).

January 2014

* 25-30 From Random Walks to Lévy Processes, Australian National University, Kioloa, Australia.
Location: The conference will be held at the Kioloa campus on the NSW coast.
Description: The aim of the conference is to provide a unique opportunity for Australian researchers, practitioners, and students to hear, meet, and mingle with some of the most prominent international and Australian researchers currently working on random walks, Lévy processes, or closely related areas. The ANU Kioloa Campus on the NSW coast provides a sequestered gathering place in a beautifully located environment with full accommodation and conference facilities permitting close networking and interaction among participants.

February 2014

* 17-21 Hot Topics: Perfectoid Spaces and their Applications, Mathematical Sciences Research Institute, Berkeley, California.
Description: Since their introduction just two years ago, perfectoid spaces have played a crucial role in a number of striking advances in arithmetic algebraic geometry: The proof of Deligne’s weight-monodromy conjecture for complete intersections in toric varieties; the development of p-adic Hodge theory for rigid analytic spaces; a p-adic analogue of Kiemann’s classification of abelian varieties over the complex numbers; and the construction of Galois representations for torsion classes in the cohomology of many locally symmetric spaces (for instance arithmetic hyperbolic 3-manifolds). We will start the week with an exposition of the foundations of the theory of perfectoid spaces, with the aim of teaching novices to work with them. Then we will discuss their current and potential applications.

March 2014

* 14-28 Representation Theory and Geometry of Reductive Groups, Kloster Heiligkreuztal, a Monastery in Germany, Altheim, Germany.
Description: A 10-day spring school followed by a 3-day conference organized by Bernhard Krötz and Eric M. Opdam. The lecturers are: Michel Brion, Dan Ciubotaru, Friedrich Knop, Mark Reeder and Henrik Schlichtkrull.
Information: http://www2.math.uni-paderborn.de/konferenzen/conferencespring-school.html.

Description: Conference web page is http://my.fit.edu/abduilla/STAMSEAS-2014. The meeting will contain plenary lectures, minisymposia, contributed, and poster sessions.
Plenary speakers: Louis Block, University of Florida; Emmanuele DiBenedetto, Vanderbilt University; Joel Smoller, University of Michigan; and Gunther Uhlmann, University of Washington and University of Helsinki. The minisymposium Proposal Submission deadline is January 10, 2014. We look forward to meeting you all in Melbourne, Florida next year. Regards, Ugar G. Abdulla (abduilla@fit.edu).

April 2014

* 3–4 13th New Mexico Analysis Seminar, University of New Mexico, Albuquerque, New Mexico.
Description: The New Mexico Analysis Seminar is organized by analysts at New Mexico State University and The University of New Mexico. The goal of the conference is to provide an opportunity for scientific exchange and cooperation among broadly defined analysts. This year the center piece of the seminar is a minicourse given by the keynote speaker Sasha Volberg from Michigan State University on “Harmonic Analysis and Spectral Theory”.
Information: http://www.math.unm.edu/conferences/13thAnalysis/.

* 4 An Afternoon in Honor to Cora Sadosky, University of New Mexico, Albuquerque, New Mexico.
Description: Cora Sadosky (1940-2010) was an expert in harmonic analysis and operator theory, a student of Alberto Calderón and Anton Zygmund. She was a strong advocate for women in mathematics as well as active in promoting the greater participation of African-Americans in mathematics. She was president of the Association for Women in Mathematics (AWM) from 1993 to 1995, among other public offices she held during her life. This afternoon will be devoted to current results in harmonic analysis, operator theory and PDEs related to the mathematics of Cora Sadosky.
Invited speakers: Svitlana Mayboroda (University of Minnesota and first recipient of the AWM-Sadosky Award), Jill Pipher (Brown University), Sergei Treil (Brown University), Sasha Volberg (Michigan State University).
Information: http://www.math.unm.edu/conferences/13thAnalysis/.

May 2014

Information: http://www2.ims.nus.edu.sg/Programs/014self/index.php.

Description: This workshop, sponsored by AIM and the NSF, will be devoted to studying recent interactions between the classical theory of projective modules and A1-homotopy theory.

* 13 Bers 100 celebration, City University of New York, Graduate Center New York, New York.
Description: This one day informal event to celebrate the mathematics and life of Lipman Bers, on the 100th anniversary of his birth, is currently in the planning stage. There will be two speakers: Dennis Sullivan and Yair Minsky and a social calendar. Contact Irwin Kra for more information.
Information: http://fsw01.bcc.cuny.edu/zhe.wang/IB.html.

June 2014

* 2–6 Computational Nonlinear Algebra, Institute for Computational and Experimental Research in Mathematics, (ICERM), Brown University, Providence, Rhode Island.
Description: Over the last two decades, algebraic and numerical techniques for nonlinear problems have begun a steady and relentless transition from mostly academic constructions, to widely used tools across the mathematical sciences, engineering and industrial applications. The workshop will bring together participants from many diverse fields including computer vision, cryptography, optimization and control, partial differential equations, robotics, and quantum computation, with the common interest in nonlinear algebraic computations. The main goal is to assess the state of the art, to stimulate further progress, and to accelerate developments by bringing together these diverse communities and have them share computational challenges and successes.

* 10–13 Geometry of Banach Spaces - A conference in honor of Stanimir Troyanski, Albacete, Spain.
Description: The conference will be held in Albacete (Spain) on June 10-13, 2014, on the occasion of the 70th birthday of Professor Troyanski. We hope the conference to be a meeting point of researchers interested in Banach space theory. Main speakers who already accepted our invitation are: S. Argyros, J. Castillo, S. Dilworth, M. Fabian, V. Fonf, G. Godefroy, P. Hajek, R. Haydon, F. Hernandez, P. Kenderov, P. Koszmider, D. Kutzarova, A. Molto, T. Schlumprecht, R. Smith, A. Suarez Granero. Participants will have the opportunity to deliver a short talk.
Information: email: geometry.banach.spaces.2014@gmail.com; http://sites.google.com/site/geometryofbanachspaces/.

Description: ESCO 2014 is the 4th event in a successful series of interdisciplinary international conferences. It promotes modern technologies and practices in scientific computing and visualization, and strengthens the interaction between researchers and practitioners in various areas of computational engineering and sciences. Thematic areas of ESCO 2014: Multiphysics coupled problems, higher-order computational methods, GPU computing and cloud computing, computing with Python and Octave, open source projects in scientific computing.
Invited keynote speakers: Oszkar Biro (Institut für Grundlagen und Theorie der Elektrotechnik, Graz, Austria), Herbert Edelsbrunner (Institute of Science and Technology, Vienna, Austria), Jean-Frédéric Gerbeau (INRIA, Paris-Rocquencourt, France), Stanley Osher (UCLA, Los Angeles, USA-pending), Ulrich Rüde (University Erlangen-Nuremberg, Erlangen, Germany).
Description: The goals of the program are: Bring together experts who study the geometry, topology and physics of Higgs bundles. Invite leading researchers to give talks on recent results and the latest developments in the field. Have experts give mini-courses explaining the background to their fields. Encourage collaborative work. Introduce graduate students and young researchers to the latest research and open problems in the field.

Information: http://www2.ims.nus.edu.sg/Programs/014geometry/index.php.

*28–August 8 Summer Graduate School: Geometry and Analysis, Mathematical Sciences Research Institute, Berkeley, California.

Description: Geometric and complex analysis is the application of tools from analysis to study questions from geometry and topology. This two week summer course will provide graduate students with the necessary background to begin studies in the area. The first week will consist of introductory courses on geometric analysis, complex analysis, and Riemann surfaces. The second week will consist of more advanced courses on the regularity theory of Einstein manifolds, Kahler-Einstein manifolds, and the analysis of Riemann surfaces.

Information: http://www.msri.org/summer_schools/712.

September 2014

*1-December 19 Trimester Program on Non-commutative Geometry and its Applications, Hausdorff Research Institute for Mathematics, Bonn, Germany.

Description: There will be four workshops during the trimester, a series of lecture courses aimed at postgraduate students and postdoctoral level researchers, and also a weekly seminar series on current research topics and a working seminar within that part of the program aimed at junior researchers.

The following new announcements will not be repeated until the criteria in the next to the last paragraph at the bottom of the first page of this section are met.

May 2015

*17–21 SIAM Conference on Applications of Dynamical Systems (DS15), Snowbird Ski and Summer Resort, Snowbird, Utah.

Description: The application of dynamical systems theory to areas outside of mathematics continues to be a vibrant, exciting and fruitful endeavor. These application areas are diverse and multi-disciplinary, ranging over all areas of applied science and engineering, including biology, chemistry, physics, finance, and industrial applied mathematics. This conference strives to achieve a blend of application-oriented material and the mathematics that informs and supports it. The goals of the meeting are a cross-fertilization of ideas from different application areas, and increased communication between the mathematicians who develop dynamical systems techniques and applied scientists who use them.

Information: http://www.siam.org/meetings/ds15/.

*7–August 29 The Geometry, Topology and Physics of Moduli Spaces of Higgs Bundles, Institute for Mathematical Sciences, National University of Singapore, Singapore.
New Publications Offered by the AMS

To subscribe to email notification of new AMS publications, please go to http://www.ams.org/bookstore-email.

Algebra and Algebraic Geometry

Tropical and Non-Archimedean Geometry

Omid Amini, École Normale Supérieure, Paris, France, Matthew Baker, Georgia Institute of Technology, Atlanta, GA, and Xander Faber, University of Hawaii at Manoa, Honolulu, HI, Editors

Over the past decade, it has become apparent that tropical geometry and non-Archimedean geometry should be studied in tandem; each subject has a great deal to say about the other.

This volume is a collection of articles dedicated to one or both of these disciplines. Some of the articles are based, at least in part, on the authors’ lectures at the 2011 Bellairs Workshop in Number Theory, held from May 6–13, 2011, at the Bellairs Research Institute, Holetown, Barbados.

Lecture topics covered in this volume include polyhedral structures on tropical varieties, the structure theory of non-Archimedean curves (algebraic, analytic, tropical, and formal), uniformization theory for non-Archimedean curves and abelian varieties, and applications to Diophantine geometry. Additional articles selected for inclusion in this volume represent other facets of current research and illuminate connections between tropical geometry, non-Archimedean geometry, toric geometry, algebraic graph theory, and algorithmic aspects of systems of polynomial equations.

This item will also be of interest to those working in number theory.

This book is co-published with the Centre de Recherches Mathématiques.

Contents: D. Maclagan, Polyhedral structures on tropical varieties; B. Osserman and J. Rabinoff, Lifting improper tropical intersections; K. Phillipson and J. M. Rojas, Fewnomial systems with many roots, and an adelic Tau conjecture; M. Nisse and F. Sottile, Non-Archimedean coamoebae; M. Baker, S. Payne, and J. Rabinoff, On the structure of non-Archimedean analytic curves; M. Papikian, Non-Archimedean uniformization and monodromy pairing; A. Chambert-Loir, Diophantine geometry and analytic spaces; F. Viviani, Tropicalizing vs. compactifying the Torelli morphism; D. Perkinson, J. Perlman, and J. Wilmes, Primer for the algebraic geometry of sandpiles.

Contemporary Mathematics, Volume 605

Torsors, Reductive Group Schemes and Extended Affine Lie Algebras

Philippe Gille, Ecole Normale Supérieure, Paris, France, and Arturo Pianzola, University of Alberta, Edmonton, Canada

Contents: Introduction; Generalities on the algebraic fundamental group, torsors, and reductive group schemes; Loop, finite and toral torsors; Semilinear considerations; Maximal tori of group schemes over the punctured line; Internal characterization of loop torsors and applications; Isotropy of loop torsors; Acyclicity; Small dimensions; The case of orthogonal groups; Groups of type G_2; Case of groups of type F_4, E_6 and simply connected E_7 in nullity 3; The case of PGL_d; Invariants attached to EALAs and multiloop algebras; Appendix 1: Pseudo-parabolic subgroup schemes; Appendix 2: Global automorphisms of G–torsors over the projective line; Bibliography.

Memoirs of the American Mathematical Society, Volume 226, Number 1063

Isolated Involutions in Finite Groups

Rebecca Waldecker, Martin-Luther-Universität Halle-Wittenberg, Germany

Contents: Introduction; Preliminaries; Isolated involutions; A minimal counter-example to Glauberman’s Z^*-theorem; Balance and signalizer functors; Preparatory results for the local analysis; Maximal subgroups containing C; The 2-rank of G; The F^*-structure theorem; More involutions; The endgame; The final contradiction and the Z^*-theorem for \mathcal{A}_2-Groups; Bibliography; Index.

Memoirs of the American Mathematical Society, Volume 226, Number 1061

On the Regularity of the Composition of Diffeomorphisms

H. Inci and T. Kappeler, University of Zurich, Switzerland, and P. Topalov, Northeastern University, Boston, MA

Contents: Introduction; Groups of diffeomorphisms on \mathbb{R}^n; Diffeomorphisms of a closed manifold; Differentiable structure of $H^s(M, N)$; Appendix A; Appendix B; Bibliography.

Memoirs of the American Mathematical Society, Volume 226, Number 1062

Analysis

The Joys of Haar Measure

Joe Diestel, Kent State University, OH, and Angela Spalsbury, Youngstown State University, OH

From the earliest days of measure theory, invariant measures have held the interests of geometers and analysts alike, with the Haar measure playing an especially delightful role. The aim of this book is to present invariant measures on topological groups, progressing from special cases to the more general. Presenting existence proofs in special cases, such as compact metrizable groups, highlights how the added assumptions give insight into just what the Haar measure is like; tools from different aspects of analysis and/or combinatorics demonstrate the diverse views afforded the subject. After presenting the compact case, applications indicate how these tools can find use. The generalization to locally compact groups is then presented and applied to show relations between metric and measure theoretic invariance. Steinlage’s approach to the general problem of homogeneous action in the locally compact setting shows how Banach’s approach and that of Cartan and Weil can be unified with good effect. Finally, the situation of a nonlocally compact Polish group is discussed briefly with the surprisingly unsettling consequences indicated.

The book is accessible to graduate and advanced undergraduate students who have been exposed to a basic course in real variables, although the authors do review the development of the Lebesgue measure. It will be a stimulating reference for students and professors who use the Haar measure in their studies and research.

Applications

Recent Advances in Real Complexity and Computation

José Luis Montaña and Luis M. Pardo, Universidad de Cantabria, Santander, Spain, Editors

This volume is composed of six contributions derived from the lectures given during the UIMP-RSME Luis Santaló Summer School on “Recent Advances in Real Complexity and Computation”, held July 16–20, 2012, in Santander, Spain.

The goal of this Summer School was to present some of the recent advances on Smale’s 17th Problem: “Can a zero of n complex polynomial equations in n unknowns be found approximately, on the average, in polynomial time with a uniform algorithm?”

These papers cover several aspects of this problem: from numerical to symbolic methods in polynomial equation solving, computational complexity aspects (both worse and average cases and both upper and lower complexity bounds) as well as aspects of the underlying problem of homogeneous action in the locally compact setting shows just what the Haar measure is like; tools from different aspects of analysis and/or combinatorics demonstrate the diverse views afforded the subject. After presenting the compact case, applications indicate how these tools can find use. The generalization to locally compact groups is then presented and applied to show relations between metric and measure theoretic invariance. Steinlage’s approach to the general problem of homogeneous action in the locally compact setting shows how Banach’s approach and that of Cartan and Weil can be unified with good effect. Finally, the situation of a nonlocally compact Polish group is discussed briefly with the surprisingly unsettling consequences indicated.

The book is accessible to graduate and advanced undergraduate students who have been exposed to a basic course in real variables, although the authors do review the development of the Lebesgue measure. It will be a stimulating reference for students and professors who use the Haar measure in their studies and research.

Applications

Recent Advances in Real Complexity and Computation

José Luis Montaña and Luis M. Pardo, Universidad de Cantabria, Santander, Spain, Editors

This volume is composed of six contributions derived from the lectures given during the UIMP-RSME Luis Santaló Summer School on “Recent Advances in Real Complexity and Computation”, held July 16–20, 2012, in Santander, Spain.

The goal of this Summer School was to present some of the recent advances on Smale’s 17th Problem: “Can a zero of n complex polynomial equations in n unknowns be found approximately, on the average, in polynomial time with a uniform algorithm?”

These papers cover several aspects of this problem: from numerical to symbolic methods in polynomial equation solving, computational complexity aspects (both worse and average cases and both upper and lower complexity bounds) as well as aspects of the underlying
geometry of the problem. Some of the contributions also deal with either real or multiple solutions solving.

Contents: M. Baartse and K. Meer, Topics in real and complex number complexity theory; B. Bank, M. Giusti, and J. Heintz, Polar, bipolar and copolar varieties: Real solving and algebraic varieties with intrinsic complexity; C. Beltrán and M. Shub, The complexity and geometry of numerically solving polynomial systems; M. Giusti and J.-C. Yakoubsohn, Multiplicity hunting and approximating multiple roots of polynomials systems; J. Heintz, B. Kuijpers, and A. R. Paredes, On the intrinsic complexity of elimination problems in effective algebraic geometry; G. Malajovich, Newton iteration, conditioning and zero counting.

Contemporary Mathematics, Volume 604

Differential Equations

On the Steady Motion of a Coupled System Solid-Liquid
Josef Bemelmans, Rheinisch-Westf Technische Hochschule-Aachen, Germany, Giovanni P. Galdi, University of Pittsburgh, PA, and Mads Kyed, Technische Universität Darmstadt, Germany

This item will also be of interest to those working in mathematical physics.

Contents: Introduction; Notation and preliminaries; Steady free motion: Definition and formulation of the problem; Main result; Approximating problem in bounded domains; Proof of main theorem; Bodies with symmetry; Appendix A. Isolated orientation; Bibliography.

Memoirs of the American Mathematical Society, Volume 226, Number 1060

General Interest

Experiencing Mathematics
What do we do, when we do mathematics?
Reuben Hersh, University of New Mexico, Albuquerque, NM

Most mathematicians, when asked about the nature and meaning of mathematics, vacillate between the two unrealistic poles of Platonism and formalism. By looking carefully at what mathematicians really do when they are doing mathematics, Reuben Hersh offers an escape from this trap. This book of selected articles and essays provides an honest, coherent, and clearly understandable account of mathematicians’ proof as it really is, and of the existence and reality of mathematical entities. It follows in the footsteps of Poincaré, Hadamard, and Polya. The pragmatism of John Dewey is a better fit for mathematical practice than the dominant “analytic philosophy”. Dialogue, satire, and fantasy enliven the philosophical and methodological analysis.

Reuben Hersh has written extensively on mathematics, often from the point of view of a philosopher of science. His book with Philip Davis, The Mathematical Experience, won the National Book Award in science. Hersh is emeritus professor of mathematics at the University of New Mexico.

Contents: Overture: The ideal mathematician; Manifesto; Self-introduction; Mathematics has a front and a back; Chronology; References; Mostly for the right hand: Introduction to part 1; True facts about imaginary objects; Mathematical intuition (Poincaré, Polya, Dewey); To establish new mathematics, we use our mental models and build on established mathematics; How mathematicians convince each other or “The kingdom of math is within you”; On the interdisciplinary study of mathematical practice, with a real live case study; Wings, not foundations; Inner vision, outer truth; Mathematical practice as a scientific problem; Proving is convincing and explaining; Fresh breezes in the philosophy of mathematics; Definition of mathematics; Introduction to "18 unconventional essays on the nature of mathematics", Mostly for the left hand: Introduction to part 2: Rhetoric and mathematics; Math lingo vs. plain English: Double entendre; Independent thinking; The "origin" of geometry; The wedding; Mathematics and ethics; Ethics for mathematicians; The mathematician’s brain by David Ruelle; Review of Perfect rigor by Marsha Gessen; Review of Letters to a young mathematician by Ian Stewart; Review of Perfect rigor by William Byers; Review of The mathematician’s brain by David Ruelle; Review of Perfect rigor by Marsha Gessen; Review of Letters to a young mathematician by Ian Stewart; Review of Number and numbers by Alain Badiou; An amusing elementary example; Annotated research bibliography; Curriculum vitae; List of articles; Acknowledgments.

February 2014, approximately 257 pages, Softcover, ISBN: 978-0-8218-9420-0, LC 2013025483, 2010 Mathematics Subject Classification: 00A30, 00A35, 00B10, AMS members US$31.20, List US$39, Order code MBK/83
Geometry and Topology

Gromov, Cauchy and Causal Boundaries for Riemannian, Finslerian and Lorentzian Manifolds

J. L. Flores and **J. Herrera**, University of Málaga, Spain, and **M. Sánchez**, University of Granada, Spain

Contents: Introduction; Preliminaries; Cauchy completion of a generalized metric space; Riemannian Gromov and Busemann completions; Finslerian completions; C-boundary of standard stationary spacetimes; Bibliography.

Memoirs of the American Mathematical Society, Volume 226, Number 1064

Number Theory

The Joy of Factoring

Samuel S. Wagstaff, Jr., Purdue University, West Lafayette, IN

This book is written for readers who want to learn more about the best methods of factoring integers, many reasons for factoring, and some history of this fascinating subject. It can be read by anyone who has taken a first course in number theory.

This item will also be of interest to those working in applications.

Contents: Why factor integers?; Number theory review; Number theory relevant to factoring; How are factors used?; Simple factoring algorithms; Continued fractions; Elliptic curves; Sieve algorithms; Factoring devices; Theoretical and practical factoring; Answers and hints for exercises; Bibliography; Index.

Student Mathematical Library, Volume 68

Classified Advertisements

Positions available, items for sale, services available, and more

ALABAMA

UNIVERSITY OF ALABAMA AT BIRMINGHAM
Department of Mathematics
Assistant Professor

The Department of Mathematics at the University of Alabama at Birmingham (UAB) is soliciting applications for a tenure-track assistant professor position beginning August 15, 2014. Applicants whose research is compatible with the department’s strengths in differential equations, dynamical systems, mathematical physics, and probability, including computational aspects of these areas, are encouraged to apply. Those with expertise in applications, e.g., in mathematical biology, mathematical finance, or mathematical modeling are of particular interest in this search. Applicants may be interested to collaborate with one of the University Wide Interdisciplinary Research Centers (UWIRC) on UAB campus, see http://www.uab.edu/institutionaleffectiveness/uwircs for additional information about the department please visit http://www.uab.edu/mathematics/.

Applicants should have demonstrated the potential to excel in one of the research areas mentioned and in teaching at all levels of instruction. They should also be committed to professional service including departmental service. Postdoc experience is preferred.

Applications should include a curriculum vita with a publication list, a statement of future research plans, a statement on teaching experience and philosophy, and minimally three letters of reference with at least one letter addressing teaching experience and ability. We prefer applications and all other materials be submitted electronically at http://www.mathjobs.org although applicants may submit an application including an AMS cover sheet to:

Math Faculty Search
Department of Mathematics
The University of Alabama at Birmingham
Birmingham, AL 35294-1170

UAB is an Equal Opportunity/Affirmative Action Employer committed to fostering a diverse, equitable and family-friendly environment in which all faculty and staff can excel and achieve work/life balance irrespective of ethnicity, gender, faith, gender identity and expression as well as sexual orientation. UAB also encourages applications from individuals with disabilities and veterans. A pre-employment background investigation is performed on candidates selected for employment.

CALIFORNIA

CALIFORNIA INSTITUTE OF TECHNOLOGY
Department of Mathematics
Olga Taussky and John Todd Instructorships in Mathematics

Description: Appointments are for three years. There are three terms in the Caltech academic year, and instructors typically are expected to teach one course in all but two terms of the total appointment. These two terms will be devoted to research. During the summer months there are no duties except research.

Eligibility: Open to persons who have recently received their doctorates in mathematics.

Deadline: January 1, 2014.

Application information: Please apply online at http://mathjobs.org. You can also find information about this position at http://www.math.caltech.edu [positions.html](http://www.math.caltech.edu/positions.html). To avoid duplication of paperwork, your application may also be considered for an Olga Taussky and John Todd Instructorship. Caltech is an Affirmative Action/Equal Opportunity Employer. Women, minorities, veterans, and disabled persons are encouraged to apply.

Suggested uses for classified advertising are positions available, books or lecture notes for sale, books being sought, exchange or rental of houses, and typing services.

The 2012 rate is $3.50 per word with a minimum two-line headline. No discounts for multiple ads or the same ad in consecutive issues. For an additional $10 charge, announcements can be placed anonymously. Correspondence will be forwarded.

Advertisements in the “Positions Available” classified section will be set with a minimum one-line headline, consisting of the institution name above body copy, unless additional headline copy is specified by the advertiser. Headlines will be centered in boldface at no extra charge. Ads will appear in the language in which they are submitted.

There are no member discounts for classified ads. Dictation over the telephone will not be accepted for classified ads.

U.S. laws prohibit discrimination in employment on the basis of color, age, sex, race, religion, or national origin. Positions Available” advertisements from institutions outside the U.S. cannot be published unless they are accompanied by a statement that the institution does not discriminate on these grounds whether or not it is subject to U.S. laws. Details and specific wording may be found on page 1373 (vol. 44).

Situations wanted advertisements from involuntarily unemployed mathematicians are accepted under certain conditions for free publication. Call toll-free 800-321-4AMS (321-4267) in the U.S. and Canada or 401-455-4084 worldwide for further information.

Submission: Promotions Department, AMS, P.O. Box 6248, Providence, Rhode Island 02940; or via fax: 401-331-3842; or send email to classads@ams.org. AMS location for express delivery packages is 201 Charles Street, Providence, Rhode Island 02904. Advertisers will be billed upon publication.
of the areas in which Caltech’s mathematics faculty is currently active.

Deadline: January 1, 2014.

Application information: Please apply online at http://mathjobs.org. You can also find information about this position at www.math.caltech.edu/positions.html. To avoid duplication of paperwork, your application may also be considered for a Harry Bateman Research Instructorship. Caltech is an Affirmative Action/Equal Opportunity Employer. Women, minorities, veterans, and disabled persons are encouraged to apply.

CALIFORNIA INSTITUTE OF TECHNOLOGY

Department of Mathematics

Scott Russell Johnson Senior Postdoctoral Scholar in Mathematics

Description: There are three terms in the Caltech academic year. The fellow is typically expected to teach one course in two terms each year, and is expected to be in residence even during terms when not teaching. The initial appointment is for three years with an additional three-year terminal extension expected.

Eligibility: Offered to a candidate within six years of having received the Ph.D. who shows strong research promise in one of the areas in which Caltech’s mathematics faculty is currently active.

Deadline: January 1, 2014.

Application information: Please apply online at http://mathjobs.org. You can also find information about this position at www.math.caltech.edu/positions.html. To avoid duplication of paperwork, your application may also be considered for an Olga Taussky and John Todd Instructorship. Caltech is an Affirmative Action/Equal Opportunity Employer. Women, minorities, veterans, and disabled persons are encouraged to apply.

CALIFORNIA STATE UNIVERSITY SAN DIEGO

Department of Mathematics and Statistics

Tenure-Track Assistant Professor Position in Mathematics

The Department of Mathematics and Statistics at San Diego State University invites applications for a position as tenure-track Assistant Professor of Mathematics, beginning in August 2014. The department seeks a harmonic analyst with a strong background in core mathematics, and a research program that includes applied or interdisciplinary work.

Candidates must have a doctorate, or equivalent degree, in mathematics or applied mathematics, and demonstrate outstanding research potential. The new faculty member will contribute to the department’s program in the Mathematics of Communications Systems, and is encouraged to participate in the SDSU Computational Science Research Center. Preference may be given to candidates who would augment or interact with existing research programs in the department or with key university programs. Candidates must demonstrate enthusiasm and ability to teach undergraduate and graduate level courses in pure and applied mathematics.

Applications should include: a cover letter, curriculum vita, a description of research program, a statement of teaching philosophy, and three letters of recommendation sent directly to the search committee. Applications should be addressed to Professor Peter Blomgren Chair, Search Committee Department of Mathematics and Statistics San Diego State University San Diego, CA 92182-7720 Review of applications will begin on October 15, 2013, and continue until the position is filled.

SDSU is an Equal Opportunity Employer and does not discriminate against persons on the basis of race, religion, national origin, sex, sexual orientation, gender identity and expression, marital status, age, disability, pregnancy, medical condition, or covered veteran status.

The person holding this position is considered a "mandated reporter" under the California Child Abuse and Neglect Reporting Act and is required to comply with the requirements set forth in CSU Executive Order 1083 as a condition of employment.

UNIVERSITY OF CALIFORNIA, LOS ANGELES

Tenured/Tenure-Track positions

The Department of Mathematics invites applications for tenure-track/faculty positions. Salary is commensurate with the level of experience. Job Tracking #1010-1415-01.

The department seeks outstanding research potential. The new faculty member will contribute to the SDSU Mathematics of Communications Systems, and is encouraged to participate in the SDSU Computational Science Research Center. The department encourages applications and supporting documentation from candidates who would augment or interact with existing research programs in the department or with key university programs. Candidates must demonstrate enthusiasm and ability to teach undergraduate and graduate level courses in pure and applied mathematics.

Applications should include: a cover letter, curriculum vita, a description of research program, a statement of teaching philosophy, and three letters of recommendation sent directly to the search committee. Applications should be addressed to Professor Peter Blomgren Chair, Search Committee Department of Mathematics and Statistics San Diego State University San Diego, CA 92182-7720 Review of applications will begin on October 15, 2013, and continue until the position is filled.

SDSU is an Equal Opportunity Employer and does not discriminate against persons on the basis of race, religion, national origin, sex, sexual orientation, gender identity and expression, marital status, age, disability, pregnancy, medical condition, or covered veteran status.

The person holding this position is considered a "mandated reporter" under the California Child Abuse and Neglect Reporting Act and is required to comply with the requirements set forth in CSU Executive Order 1083 as a condition of employment.
strong commitment to the achievement of excellence in teaching and research and diversity among its faculty and staff. The University of California asks that applicants complete the Equal Opportunity Employer survey for Letters and Science at the following URL: http://cis.ucsd.edu/facultysurvey. Please use Job Tracking numbers listed above.

UNIVERSITY OF CALIFORNIA, SAN DIEGO
Mathematics Department Faculty Positions

The Department of Mathematics, within the Division of Physical Sciences at the University of California, San Diego (http://www.math.ucsd.edu), invites applications for one tenured mid-level position and one tenure-track junior position. The tenured mid-level position is expected to be filled in topology and/or geometry and the tenure-track position is open to applicants from all areas of pure and applied mathematics.

The University is committed to an excellent and diverse faculty and student body. Successful candidates will be evaluated on research and teaching accomplishments, as well as on potential for leadership in areas contributing to diversity, equity and inclusion. Candidates must receive their Ph.D. prior to their first quarter of teaching. Salary is commensurate with qualifications and based on UC pay scales. The starting date for the positions, pending funding approval, will be July 1, 2014. To receive full consideration, applications should be submitted online through http://apptrkr.com/377267 by November 1, 2013.

In compliance with the Immigration Reform and Control Act of 1986, individuals offered employment by the University of California are required to show documentation proving identity and authorization to work in the United States. For applicants interested in spousal/partner employment, please visit the UCSD Partner Opportunities Program at: http://academicaffairs.ucsd.edu/offices/partneropp/.

MARYLAND
JOHNS HOPKINS UNIVERSITY Department of Mathematics J.J. Sylvester Assistant Professor

The Department of Mathematics invites applications for 2-year and 3-year non-tenure-track Assistant Professor positions beginning fall 2014. The J.J. Sylvester Assistant Professorship is offered to Ph.D. recipients who are beginning their research career and have outstanding research potential. Candidates in all areas of pure mathematics are encouraged to apply. The teaching load is three courses per academic year. To submit your application, go to http://www.mathjobs.org/jobs/jhu. Submit the AMS cover sheet, your curriculum vitae, list of publications, and research and teaching statements, and ensure that at least four letters of recommendation, one of which addresses teaching, are submitted by the reference writers. If you are unable to apply online, you may send application materials to: Appointments Committee, Department of Mathematics, Johns Hopkins University, 404 Krieger Hall, Baltimore, MD 21218. If you have questions concerning this position, please write to cpoole@jhu.edu. Preference will be given to applications received by October 15, 2013. The Johns Hopkins University is an Affirmative Action/Equal Opportunity Employer. Minorities and women candidates are encouraged to apply.

JOHNS HOPKINS UNIVERSITY Department of Mathematics Tenure-Track Assistant Professor

The Department of Mathematics invites applications for two positions at the tenure-track Assistant Professor level beginning July 1, 2014. A Ph.D. degree or its equivalent and demonstrated promise in research and commitment to teaching are required. Candidates in all areas of pure mathematics are encouraged to apply. To submit your application, go to http://www.mathjobs.org/jobs/jhu. Submit the AMS cover sheet, your curriculum vitae, a list of publications, and research and teaching statements, and ensure that at least four letters of recommendation, one of which addresses teaching, are submitted by the reference writers. If you are unable to apply online, you may send application materials to: Appointments Committee, Department of Mathematics, Johns Hopkins University, 404 Krieger Hall, Baltimore, MD 21218. If you have questions concerning this position, please write to cpoole@jhu.edu. Preference will be given to applications received by October 15, 2013. The Johns Hopkins University is an Affirmative Action/Equal Opportunity Employer. Minorities and women candidates are encouraged to apply.

JOHNS HOPKINS UNIVERSITY Department of Mathematics

The Department of Mathematics invites applications for two positions at the tenure-track Assistant Professor level beginning July 1, 2014. A Ph.D. degree or its equivalent and demonstrated promise in research and commitment to teaching are required. Candidates in all areas of pure mathematics are encouraged to apply. To submit your application, go to http://www.mathjobs.org/jobs/jhu. Submit the AMS cover sheet, your curriculum vitae, a list of publications, and research and teaching statements, and ensure that at least four letters of recommendation, one of which addresses teaching, are submitted by the reference writers. If you are unable to apply online, you may send application materials to: Appointments Committee, Department of Mathematics, Johns Hopkins University, 404 Krieger Hall, Baltimore, MD 21218. If you have questions concerning this position, please write to cpoole@jhu.edu. Preference will be given to applications received by October 15, 2013. The Johns Hopkins University is an Affirmative Action/Equal Opportunity Employer. Minorities and women candidates are encouraged to apply.

UNIVERSITY OF CHICAGO Department of Mathematics

The University of Chicago Department of Mathematics invites applications for the following positions:

1. L.E. Dickson Instructor: This is open to mathematicians who have recently completed or will soon complete a doctorate in mathematics or a closely related field, and whose work shows remarkable promise in mathematical research. The appointment typically is for two years, with the possibility of renewal for a third year. The teaching obligation is up to four one-quarter courses per year.

2. Assistant Professor: This is open to mathematicians who are further along in their careers, typically two or three years past the doctorate. These positions are intended for mathematicians whose work has been of outstandingly high caliber. Appointees are expected to have the potential to become leading figures in their fields. The appointment is generally for three years, with a teaching obligation of up to three one-quarter courses per year.

Applications will be considered for any of the positions above which seem appropriate. Complete applications consist of (a) a cover letter, (b) a curriculum vitae, (c) three or more letters of reference, at least one of which addresses teaching ability, and (d) a description of previous research and plans for future mathematical research. Applicants are strongly encouraged to include information related to their teaching experience, such as a teaching statement or evaluations from courses previously taught, as well as an AMS cover sheet. If you have applied for an NSF Mathematical Sciences Postdoctoral Fellowship, please include that information in your application, and let us know how you plan to use it if awarded. Applications must be submitted online through www.mathjobs.org. Questions may be directed to apptsec@math.uchicago.edu. We will begin screening applications on November 1, 2013. Screening will continue until all available positions are filled.

The University of Chicago is an Affirmative Action/Equal Opportunity Employer.
Appointees will be expected to fulfill teaching duties and to pursue their own research program. Ph.D. required by employment start date.

For more information and to apply, please visit http://www.mathjobs.org. To receive full consideration, submit applications by December 1, 2013. MIT is an Equal Opportunity, Affirmative Action Employer.

NEW HAMPSHIRE

DARTMOUTH COLLEGE
Department of Mathematics
John Wesley Young Research Instructorships

2-3 years, new or recent Ph.D. graduates whose research overlaps a department member’s. Teach 3 ten-week courses spread over 3 terms. Appointment for 26 months, with possible 12 month renewal; monthly salary of $5,100, including two-month research stipend for Instructors in residence during 2 of 3 summer months; if not in residence, salary adjusted accordingly. To initiate an application go to http://www.mathjobs.org. Position ID: JWY #4928. You can also access the application through a link at http://www.math.dartmouth.edu/activities/recruiting/. General inquiries can be directed to Tracy Moloney, Administrator, Department of Mathematics, tfmoloney@math.dartmouth.edu. Applications completed by January 5, 2014, considered first. Dartmouth College is committed to diversity and strongly encourages applications from women and minorities.

NEW JERSEY

INSTITUTE FOR ADVANCED STUDY
School of Mathematics
Princeton, NJ

During the 2014-15 academic year, the School of Mathematics at the Institute for Advanced Study has a limited number of one- and two-year memberships with financial support for research in mathematics and computer science.

The school frequently sponsors special programs. However, these programs comprise no more than one-third of the membership so that each year a wide range of mathematics is supported. During the 2014-15 academic year, Claire Voisin, Institut de Mathématiques de Jussieu, will be the school’s Distinguished Visiting Professor. Professor Voisin will lead a special program on “The Topology of Algebraic Varieties.” For more information about the special program for the year, please see the school’s homepage.

Several years ago the school established the von Neumann Fellowships. Up to eight of these fellowships will be available for each academic year. To be eligible for the von Neumann Fellowships, applicants should be at least five, but no more than fifteen, years following the receipt of their Ph.D.

The Veblen Research Instructorship is a three-year position which was established.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Mathematics

The Mathematics Department at MIT is seeking to fill positions in Pure and Applied Mathematics, and Statistics at the level of Instructor, Assistant Professor, or higher beginning September 2014. The department also seeks candidates for the Schramm Postdoctoral Fellowship. Appointments are based primarily on exceptional research qualifications.

Appointees will be expected to fulfill teaching duties and to pursue their own research program. Ph.D. required by employment start date.

For more information and to apply, please visit http://www.mathjobs.org. To receive full consideration, submit applications by December 1, 2013. MIT is an Equal Opportunity, Affirmative Action Employer.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Mathematics

The Mathematics Department at MIT is seeking to fill positions in Pure and Applied Mathematics, and Statistics at the level of Instructor, Assistant Professor, or higher beginning September 2014. Our preference is to hire in Algebraic Geometry, but candidates in Geometry, Topology, Number Theory, Representation Theory, and related fields are also encouraged to apply. In exceptional cases, a higher level appointment may be considered.

The teaching load is three semester courses per year.

Requirements include a Ph.D. or equivalent in mathematics awarded in 2012 or earlier, a record of very strong research combined with outstanding research potential, and demonstrated excellence in teaching mathematics.

A completed application should contain a cover letter, a description of research plans, a statement of teaching philosophy, a curriculum vitae, and at least four letters of recommendation. One or more of the letters of recommendation should directly comment on the candidate’s teaching credentials.

Applications completed no later than December 1, 2013, will be assured our fullest consideration. Please submit all application materials through http://MathJobs.org.

Applicants may learn more about the department, its faculty and its programs, and about Boston College at http://www.bc.edu/math. Electronic inquiries concerning this position may be directed to math-search@bc.edu. Boston College is an Affirmative Action/Equal Opportunity Employer. Minorities and women candidates are encouraged to apply.

WILLIAMS COLLEGE
Department of Mathematics and Statistics

The Williams College Department of Mathematics and Statistics invites applications for two tenure-track positions in mathematics, beginning fall 2014, at the rank of assistant professor (in an exceptional case, a more advanced appointment may be considered). We are seeking highly qualified candidates who have demonstrated excellence in teaching, who will establish an active and successful research program, and who will have a Ph.D. by the time of appointment. Williams College is a private, coeducational, residential, highly selective liberal arts college with an undergraduate enrollment of approximately 2,000 students. The teaching load is two courses per 12-week semester and a winter term course every other January.

Applicants are encouraged to apply electronically at http://math.williams.edu or send a vita and have three letters of recommendation on teaching and research sent to Susan Loepp, Chair of the Hiring Committee, Department of Mathematics and Statistics, Williams College, 18 Hoxsey Street, Williamstown, MA 01267. Teaching and research statements are also welcome. Evaluation of applications will begin on or after November 15 and will continue until the position is filled. All offers of employment are contingent upon completion of a background check. Further information is available upon request. For more information on the Department of Mathematics and Statistics, visit http://math.williams.edu.

Williams College is a coeducational liberal arts institution located in the Berkshire Hills of western Massachusetts with easy access to the culturally rich cities of Albany, Boston, and New York City. The college is committed to building and supporting a diverse population of students, and to fostering an inclusive faculty, staff, and curriculum. Williams has built its reputation on outstanding teaching and scholarship and on the academic excellence of its students. Please visit the Williams College website http://www.williams.edu. Beyond meeting fully its legal obligations for non-discrimination, Williams College is committed to building a diverse and inclusive community where members from all backgrounds can live, learn, and thrive.

BOSTON COLLEGE
Department of Mathematics
Tenure-Track Position

The Department of Mathematics at Boston College invites applications for a tenure-track position at the level of Assistant Professor beginning in September 2014. Our preference is to hire in Algebraic Geometry, but candidates in Geometry, Topology, Number Theory, Representation Theory, and related fields are also encouraged to apply. In exceptional cases, a higher level appointment may be considered. The teaching load is three semester courses per year.

Requirements include a Ph.D. or equivalent in mathematics awarded in 2012 or earlier, a record of very strong research combined with outstanding research potential, and demonstrated excellence in teaching mathematics.

A completed application should contain a cover letter, a description of research plans, a statement of teaching philosophy, a curriculum vitae, and at least four letters of recommendation. One or more of the letters of recommendation should directly comment on the candidate’s teaching credentials.

Applications completed no later than December 1, 2013, will be assured our fullest consideration. Please submit all application materials through http://MathJobs.org.

Applicants may learn more about the department, its faculty and its programs, and about Boston College at http://www.bc.edu/math. Electronic inquiries concerning this position may be directed to math-search@bc.edu. Boston College is an Affirmative Action/Equal Opportunity Employer. Minorities and women candidates are encouraged to apply.
in partnership with the Department of Mathematics at Princeton University in 1998. Three-year instructorships will be offered each year to candidates in pure and applied mathematics who have received their Ph.D. within the last three years. Usually the first and third year of the instructorship is spent at Princeton University and will carry regular teaching responsibilities. The second year is spent at the Institute and dedicated to independent research of the instructor’s choice.

Candidates must have given evidence of ability in research comparable at least with that expected for the Ph.D. degree. Application materials may be requested from Applications, School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540; applications@\break\tt math.ias.edu.

Postdoctoral computer science and discrete mathematics applicants may be eligible to apply for a joint (2-year) position with one of the following: The Department of Computer Science at Princeton University, \tt http://www.cs.princeton.edu\break DIMACS at Rutgers, The State University of New Jersey, \tt http://www.dimacs.rutgers.edu\break or the Intractability Center, \tt http://intractability.princeton.edu. For a joint appointment, applicants should apply to the School of Mathematics as well as to the above noting their interest in a joint appointment.

Applications may be found online at: \tt https://applications.ias.edu. The deadline for all applications is December 1, 2013. The Institute for Advanced Study is committed to diversity and strongly encourages applications from women and minorities.

PRINCETON UNIVERSITY

Department of Mathematics

Postdoctoral Research Associate 2013-2014

The Program in Applied and Computational Mathematics invites applications for Postdoctoral Research Associates to join in research efforts of interest to its faculty. Domains of interest include nonlinear partial differential equations, computational fluid dynamics and material science, dynamical systems, numerical analysis, stochastic problems and stochastic analysis, graph theory and applications, mathematical biology, financial mathematics and mathematical approaches to signal analysis, information theory, and structural biology and image processing. Appointments are possible for up to three years, renewable yearly, if funding is available and performance is satisfactory. For details on specific faculty members and their research interests, please go to \tt http://www.pacm.princeton.edu. Princeton University is an Equal Opportunity Employer and complies with applicable EEO and affirmative action regulations. Applicants should submit a cover letter, CV, bibliography/publications list, statement of research and three letters of recommendation. Please apply directly to Mathjobs.org. \tt http://www.mathjobs.org/jobs/4934. Applicants should have a recently completed or soon-to-be-completed doctorate.

RUTGERS UNIVERSITY-NEW BRUNSWICK

Department of Mathematics

The Mathematics Department of Rutgers University-New Brunswick invites applications for the following positions which may be available September 2014.

TENURED ASSOCIATE/FULL PROFESSORSHIP: Subject to availability of funding, the department expects an opening at the level of tenured Associate Professor or tenured Full Professor in Numerical Analysis/Scientific Computation. Candidates must have the Ph.D. and show a strong record of research accomplishments, and have a concern for teaching. The normal annual teaching load for research-active faculty is 2-1, that is, two courses for one semester, plus one course for the other semester. Review of applications begins immediately.

TENURE-TRACK ASSISTANT PROFESSORSHIP: Subject to availability of funding, the department expects an opening at the level of Tenure-Track Assistant Professor. In exceptional cases, there may be the possibility of appointment at a higher level. Candidates must have the Ph.D. and show a strong record of research accomplishments in pure or applied mathematics, and have a concern for teaching. The department has a hiring priority in Algebra (including Algebraic Geometry, Number Theory, and intersections with Geometry and Topology), but outstanding candidates in any field of pure or applied mathematics will be considered. The normal annual teaching load for research-active faculty is 2-1, that is, two courses for one semester, plus one course for the other semester. Review of applications begins immediately.

HILL ASSISTANT PROFESSORSHIPS and NON-TENURE-TRACK ASSISTANT PROFESSORSHIPS: These are both three-year nonrenewable positions. Subject to availability of funding, the department expects several open positions of these types. The Hill Assistant Professorship carries a reduced teaching load of 2-1 for research; candidates for it should have received the Ph.D., show outstanding promise of research ability in pure or applied mathematics, and have concern for teaching. The Non-Tenure-Track Assistant Professorship carries a teaching load of 2-2; candidates for it should have received the Ph.D., show evidence of superior teaching accomplishments, and promise of research ability. Review of applications begins January 1, 2014.

Applicants for the above position(s) should submit a curriculum vitae (including a publication list) and arrange for four letters of reference to be submitted, one of which evaluates teaching. Applicants should first go to the website \tt http://www.mathjobs.org/jobs and fill out the AMS Cover Sheet electronically. It is essential to fill out the cover sheet completely, including the names of the positions being applied for (TAP, TTAP, HILL, NTTP, respectively) giving the AMS Subject Classification number(s) of area(s) of specialization, and answering the question about how materials are being submitted. The strongly preferred way to submit the CV, references, and any other application materials is online at: \tt http://www.mathjobs.org/jobs. If necessary, however, application materials may instead be mailed to: Search Committee, Dept. of Math., Hill Center, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019. Review of applications will begin on the dates indicated above, and will continue until openings are filled. Updates on these positions will appear on the Rutgers Mathematics Department webpage at \tt http://www.math.rutgers.edu. Rutgers is an Affirmative Action/Equal Opportunity Employer.

NORTH CAROLINA

NORTH CAROLINA STATE UNIVERSITY

Department of Mathematics

Invites applications for tenure-track positions beginning Fall 2014, depending on the availability of funding. We are seeking exceptionally well-qualified individuals with research interests compatible with those in the department, and in particular in areas of numerical linear algebra, control; operations research; Personalized Medicine/Mathematical modeling and health system analysis. For position requirements please see listings on mathjobs.org. The Department of Mathematics has strong research programs in applied and pure mathematics. Information about the department is available at \tt http://www.math.ncsu.edu. Submit your application materials at \tt http://www.mathjobs.org/jobs/ncsu. You will then receive instructions to complete a faculty profile at \tt http://jobs.ncsu.edu using the link in the posting. AA/EOE.

NC State welcomes all persons without regard to sexual orientation. The College of Sciences welcomes the opportunity to work with candidates to identify suitable employment opportunities for spouses or partners. Priority will be given to applications received by November 15, 2013.
The School of Arts and Sciences at the University of Pennsylvania seeks to add to the faculty of our newly formed Evolution Cluster. We invite applicants for a tenure-track assistant professor appointment in evolution, broadly interpreted. We are interested in exceptional scientists who will establish a research program to empirically study the evolution of dynamical processes using field or laboratory experiments or the construction and analysis of massive data sets. Areas of interest include, but are not limited to: the evolution of neural, social, ecological or linguistic dynamics and networks; evolution of early life or exobiology; biochemical, neuronal, or cooperative interactions and exchange of information at the molecular, cellular, human, or ecosystems scales; directed evolution of organisms or processes; analyzing extant structures and networks, from molecules to populations, along with their evolutionary trajectories, including the development of new modalities to extract data from the geologic, genetic, or linguistic historical records. The successful candidate’s primary appointment will be in a single department in the natural sciences: Biology, Chemistry, Earth and Environmental Science, Linguistics, Mathematics, Physics and Astronomy, or Psychology. Secondary appointments in other departments can be arranged, as appropriate. The successful candidate will have a strong interest in building a program that generates interaction with researchers from other disciplines who are working within the overarching theme of evolution and will teach courses in his or her home department and participate in the development of curricula pertinent to the Evolution Cluster. (See http://evolutioncluster.sas.upenn.edu for more information). The University of Pennsylvania is an Affirmative Action/Equal Opportunity Employer and is strongly committed to establishing a diverse faculty: www.upenn.edu/almanac/volumes/v58/n02/diversityplan.html.

Applications should be submitted online at http://facultysearches provost.upenn.edu/postings/23 and include a curriculum vitae, a research statement that includes the candidate’s perspective on how she or he fits into one of the core departments, links to no more than three journal publications, and the contact information for three individuals who will provide letters of recommendation. Review of applications will begin November 1, 2013, and will continue until the position is filled.

The Department of Mathematics at the University of Utah invites applications for the following faculty positions:

- Full-time tenure-track or tenured appointments at the level of Assistant, Associate, or Full Professor in all areas of mathematics and statistics.
- Three-year Wylie and Burgess Assistant Professor Lecturer positions.
- Three-year RTG postdoctoral fellows in Algebraic Geometry and Topology [http://www.math.utah.edu/agtrg/postdoc_fellowship.html].
- Three-year RTG postdoctoral fellows in Mathematical Biology [http://www.math.utah.edu/research/mathbio/rtg/postdoc.html].

Applications for all positions must be completed through the website www.mathjobs.org/jobs/Utah, and will be accepted until the position(s) have been filled. All applications will be reviewed when they are complete.

In accordance with University of Utah policy, this offer of appointment is contingent upon final approval of the President and Board of Trustees of the University of Utah. Utah state law requires the university to perform a background check on new employees. This offer of employment is conditioned upon your successfully passing a pre-employment criminal background check and a verification of your education.

The University of Utah is an Equal Opportunity/Affirmative Action Employer and Educator. Minorities, women, and persons with disabilities are strongly encouraged to apply. Veteran's preference.

The Department of Mathematics at the University of Utah invites applications for a Whyburn Instructorship beginning August 25, 2014. This position carries a three-year appointment. Preference will be given to candidates who have received their Ph.D. within the last three years. Candidates must have an outstanding research record, and demonstrated teaching success. Applicants must be on track to receive a Ph.D. in the relevant field by May 2014 and must hold a Ph.D. at the time of appointment. Information about the department may be found at http://artsandsciences.virginia.edu/mathematics/index.html.

Review of applications will begin on November 15, 2013; however, the position will remain open until filled.

To apply candidates must submit a Candidate Profile through Jobs@UVa (https://jobs.virginia.edu), search on posting number 0612682 and electronically attach the following: a cover letter of interest describing research agenda and teaching experience, a curriculum vitae, and contact information for four references.

In addition, please submit the following required documents electronically through www.MathJobs.org: A cover letter, an AMS Standard Cover Sheet, a curriculum vitae, a publication list, a description of research, and a statement about teaching interests and experience. The applicant must also have at least four letters of recommendation submitted, of which one must support the applicant’s effectiveness as a teacher.

Questions regarding the application process in JOBS@UVa should be directed to Zvezdana Kish, zk4g@virginia.edu; 434-924-9437.

For additional information about the position contact: mathematics-hiring@Virginia.EDU.

The University will perform background checks on all new faculty hires prior to making a final offer of employment.

The College of A&S and the University of Virginia welcome applications from women, minorities, veterans, and persons with disabilities; we seek to build a culturally diverse, intellectual environment and are committed to a policy of equal opportunity and to the principles of affirmative action in accordance with state and federal laws.

The Department of Mathematics at the University of Virginia invites applications for a Whyburn Instructorship beginning August 25, 2014. This position carries a three-year appointment. Preference will be given to candidates who have received their Ph.D. within the last three years. Candidates must have an outstanding research record, and demonstrated teaching success. Applicants must be on track to receive a Ph.D. in the relevant field by May 2014 and must hold a Ph.D. at the time of appointment. Information about the department may be found at http://artsandsciences.virginia.edu/mathematics/index.html.

Review of applications will begin on November 15, 2013; however, the position will remain open until filled.

To apply candidates must submit a Candidate Profile through Jobs@UVa (https://jobs.virginia.edu), search on posting number 0612682 and electronically attach the following: a cover letter of interest describing research agenda and teaching experience, a curriculum vitae, and contact information for four references.

In addition, please submit the following required documents electronically through www.MathJobs.org: A cover letter, an AMS Standard Cover Sheet, a curriculum vitae, a publication list, a description of research, and a statement about teaching interests and experience. The applicant must also have at least four letters of recommendation submitted, of which one must support the applicant’s effectiveness as a teacher.

Questions regarding the application process in JOBS@UVa should be directed to Zvezdana Kish, zk4g@virginia.edu; 434-924-9437.

For additional information about the position contact: mathematics-hiring@Virginia.EDU.

The University will perform background checks on all new faculty hires prior to making a final offer of employment.

The College of A&S and the University of Virginia welcome applications from women, minorities, veterans, and persons with disabilities; we seek to build a culturally diverse, intellectual environment and are committed to a policy of equal opportunity and to the principles of affirmative action in accordance with state and federal laws.

The Department of Mathematics at the University of Virginia invites applications for a Whyburn Instructorship beginning August 25, 2014. This position carries a three-year appointment. Preference will be given to candidates who have received their Ph.D. within the last three years. Candidates must have an outstanding research record, and demonstrated teaching success. Applicants must be on track to receive a Ph.D. in the relevant field by May 2014 and must hold a Ph.D. at the time of appointment. Information about the department may be found at http://artsandsciences.virginia.edu/mathematics/index.html.

Review of applications will begin on November 15, 2013; however, the position will remain open until filled.

To apply candidates must submit a Candidate Profile through Jobs@UVa (https://jobs.virginia.edu), search on posting number 0612682 and electronically attach the following: a cover letter of interest describing research agenda and teaching experience, a curriculum vitae, and contact information for four references.

In addition, please submit the following required documents electronically through www.MathJobs.org: A cover letter, an AMS Standard Cover Sheet, a curriculum vitae, a publication list, a description of research, and a statement about teaching interests and experience. The applicant must also have at least four letters of recommendation submitted, of which one must support the applicant’s effectiveness as a teacher.

Questions regarding the application process in JOBS@UVa should be directed to Zvezdana Kish, zk4g@virginia.edu; 434-924-9437.

For additional information about the position contact: mathematics-hiring@Virginia.EDU.

The University will perform background checks on all new faculty hires prior to making a final offer of employment.

The College of A&S and the University of Virginia welcome applications from women, minorities, veterans, and persons with disabilities; we seek to build a culturally diverse, intellectual environment and are committed to a policy of equal opportunity and to the principles of affirmative action in accordance with state and federal laws.

The Department of Mathematics at the University of Virginia invites applications for a Whyburn Instructorship beginning August 25, 2014. This position carries a three-year appointment. Preference will be given to candidates who have received their Ph.D. within the last three years. Candidates must have an outstanding research record, and demonstrated teaching success. Applicants must be on track to receive a Ph.D. in the relevant field by May 2014 and must hold a Ph.D. at the time of appointment. Information about the department may be found at http://artsandsciences.virginia.edu/mathematics/index.html.

Review of applications will begin on November 15, 2013; however, the position will remain open until filled.

To apply candidates must submit a Candidate Profile through Jobs@UVa (https://jobs.virginia.edu), search on posting number 0612682 and electronically attach the following: a cover letter of interest describing research agenda and teaching experience, a curriculum vitae, and contact information for four references.

In addition, please submit the following required documents electronically through www.MathJobs.org: A cover letter, an AMS Standard Cover Sheet, a curriculum vitae, a publication list, a description of research, and a statement about teaching interests and experience. The applicant must also have at least four letters of recommendation submitted, of which one must support the applicant’s effectiveness as a teacher.

Questions regarding the application process in JOBS@UVa should be directed to Zvezdana Kish, zk4g@virginia.edu; 434-924-9437.

For additional information about the position contact: mathematics-hiring@Virginia.EDU.

The University will perform background checks on all new faculty hires prior to making a final offer of employment.

The College of A&S and the University of Virginia welcome applications from women, minorities, veterans, and persons with disabilities; we seek to build a culturally diverse, intellectual environment and are committed to a policy of equal opportunity and to the principles of affirmative action in accordance with state and federal laws.
UNIVERSITY OF TORONTO MISSISSAUGA
The Department of Mathematical and Computational Sciences

Invites applications for a tenure-stream appointment in the area of Algebra or Number Theory at the rank of Assistant Professor. The expected start date of the appointment is July 1, 2014. All qualified candidates are invited to apply by the following link (http://www.mathjobs.org/jobs/jobs/4922). To receive full consideration, applications should be received by November 15, 2013.

The University of Toronto is strongly committed to diversity within its community and especially welcomes applications from visible minority group members, women, Aboriginals, persons with disabilities, members of sexual minority groups, and others who may contribute to the further diversification of ideas. All qualified candidates are encouraged to apply; however, Canadians and permanent residents will be given priority.

The University of Toronto is an Equal Opportunity/Affirmative Action Employer. Women, minorities and persons with disabilities are encouraged to apply.

The University of Toronto is committed to diversity within its community and especially welcomes applications from visible minority group members, women, Aboriginals, persons with disabilities, members of sexual minority groups, and others who may contribute to the further diversification of ideas. All qualified candidates are encouraged to apply; however, Canadians and permanent residents will be given priority.

KOREA

INSTITUTE FOR BASIC SCIENCE (IBS)
Center for Geometry and Physics

The IBS Center for Geometry and Physics (IBS-CGP) invites applications for several tenure-track and postdoctoral research fellowship positions. IBS-CGP is working to bring the world’s leading scientists in mathematics together with young researchers to collaborate on research projects with passion and commitment. To this end, IBS recruits based on scientific excellence and creative ideas, rather than pre-determined goals or demonstrated practical outcomes. IBS provides an open and autonomous research environment. The existing members of IBS-CGP are working in symplectic geometry and topology, dynamical systems, mirror symmetry, algebraic geometry, and mathematical aspects of quantum field and string theory.

Postdoctoral research fellowship positions. Successful candidates will be new or recent Ph.D.’s with outstanding research potential. These non-tenure-track appointments are for three years, and the salary range is KRW 57,000,000–66,000,000 (approximately USD 50,800–58,800). Tenure-track positions. Successful candidates must have exceptional research qualifications. Starting salary with three years of experience beyond Ph.D. is KRW 92,880,000 (may vary by experience). Relocation expenses and housing allowance for up to 2 years may be provided for qualified overseas candidates.

IBS-CGP offers annual travel funds of KRW 8,000,000 for postdoctoral position and KRW 15,000,000 for tenure-track position in addition to basic research equipment and comprehensive benefits including medical and travel insurance and retirement funds.

A complete application packet should include a cover letter, a curriculum vitae which includes a publication list, a research statement, and at least three letters of recommendation for postdoctoral positions and four for tenure-track positions. For full consideration, application packets must be submitted electronically to cgp@ibs.re.kr by December 15, 2013. IBS encourages applications from individuals of diverse backgrounds. IBS-CGP website: http://cgp.ibs.re.kr

All applications and letters of reference should arrive by December 1, 2013. Applications will continue to be received after the deadline, but may not receive full consideration.

For more information, please visit the Faculty of Arts and Sciences’ website at http://www.aub.edu.lb/fas or the Mathematics Department’s website at http://www.aub.edu.lb/fas/matt

The American University of Beirut is an Equal Opportunity Employer.

PUERTO RICO

UNIVERSITY OF PUERTO RICO

Mayagüez Campus
Assistant Professor

The Department of Mathematical Sciences at the University of Puerto Rico in Mayagüez anticipates offering at least one tenure-track faculty position in Computer Science, Applied Mathematics, or Statistics, starting July 1, 2014. Applicants should have a strong research potential and commitment to teaching; and should demonstrate a good publication record in quality journals. Duties include undergraduate and graduate teaching and independent research. Initiative and leadership is expected.

Requirements:

Minimum Qualifications include having completed a doctoral degree in Mathematics, Statistics, Computer Science or a related area, or the expectation of its completion before the start of the appointment, July 1, 2014. A Ph.D. in Computer Sciences, with specialty in Computer Architecture, Parallel Computing or Software Engineering is preferred. Applicants should submit a plan which outlines their short and long term research goals. In addition, this research plan should outline how the applicant expects to bring in external funding.

How to Apply:

Send an application letter, research plan, current Curriculum Vitae, three (3) letters of recommendation, Graduate School transcripts, AMS cover sheet, teaching and research philosophy no later than November 14, 2013. However, applications will continue to be accepted until the position is filled.

SINGAPORE

NATIONAL UNIVERSITY OF SINGAPORE (NUS)

Department of Mathematics

The Department of Mathematics at the National University of Singapore (NUS) invites applications for tenured, tenure-track and visiting positions at all levels, beginning in August 2014.

NUS is a research intensive university that provides quality undergraduate and graduate education. The Department of Mathematics has about 65 faculty members and teaching staff whose expertise cover major areas of contemporary mathematical research.

We seek promising scholars and established mathematicians with outstanding track records in any field of pure and applied mathematics. The department, housed in a newly renovated building equipped with state-of-the-art facilities, offers internationally competitive salary with start-up research grants, as well as an environment conducive to active research, with ample opportunities for career development. The teaching load for junior faculty is kept especially light.

The department is particularly interested in, but not restricted to, considering applicants specializing in any of the following areas:

- Ergodic Theory and Dynamical Systems
- Partial Differential Equations and Applied Analysis
- Computational Science, Imaging and Data Science
- Operations Research and Financial Mathematics
- Probability and Stochastic Processes

Application materials should be sent to the Search Committee via email (as PDF files): search@math.nus.edu.sg

Please include the following supporting documentation in the application:

1. An American Mathematical Society Standard Cover Sheet;
2. A detailed CV including publications list;
3. A statement (max. of 3 pages) of research accomplishments and plan.
4. A statement (max. of 2 pages) of teaching philosophy and methodology. Please attach evaluation on teaching from faculty members or students of your current institution, where applicable.
5. At least three letters of recommendation including one which indicates the candidate's effectiveness and commitment in teaching.

Please ask your referees to send their letters directly to search@math.nus.edu.sg.

Enquiries may also be sent to this email address. Review process will begin on 15 October, and will continue until positions are filled.

For further information about the department, please visit http://www.math.nus.edu.sg

TAIWAN

NATIONAL CENTRAL UNIVERSITY
Department of Mathematics

The Department of Mathematics invites applications for the following positions: regular positions at all levels and visiting positions (for a period of up to two years) at the level of assistant professor. All application materials should be sent to department via email (as pdf files): search@math.ncu.edu.tw or mail to: Chair, Department of Mathematics National Central University No. 300, Jhongda Rd., Jhongli City, Taoyuan County 32001 Taiwan (R.O.C). Please include the following supporting documentation in the application:

1. Cover letter;
2. Curriculum Vitae;
3. Publication List;
4. Three recommendation letters (submitted directly by writers).

In order to ensure full consideration, applications should be received by December 20, 2013. For more information, visit: http://www.math.ncu.edu.tw.

POSITION AVAILABLE

CONSULTANT/COLLABORATOR WANTED

To look over unorthodox approach to 3x + 1 Problem. Must have insight, imagination and the ability to objectively evaluate new ideas. I will be glad to pay any reasonable consulting fee, and to offer shared-authorship for a significant contribution toward preparing a paper for publication. Contact Peter at peteschorer@gmail.com or 510-548-3827.
Meetings & Conferences of the AMS

St. Louis, Missouri
Washington University

October 18–20, 2013
Friday – Sunday

Meeting #1094
Central Section
Associate secretary: Georgia M. Benkart
Announcement issue of Notices: August 2013
Program first available on AMS website: September 5, 2013
Program issue of electronic Notices: October 2013
Issue of Abstracts: Volume 34, Issue 4

Deadlines
For organizers: Expired
For abstracts: Expired

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited Addresses
Ronny Hadani, University of Texas at Austin, Representation theoretic patterns in three-dimensional cryo-electron microscopy.
Efstratia Kalfagianni, Michigan State University, Geometric structures and knot invariants.
Jon Kleinberg, Cornell University, Burst, cascades, and hot spots: A glimpse of some on-line social phenomena at global scales.
Vladimir Sverak, University of Minnesota, PDE analysis of incompressible flows - old problems and recent developments.

Special Sessions
Advances in Difference, Differential, and Dynamic Equations with Applications, Elvan Akin, Missouri S&T University, Youssef Raffoul, University of Dayton, and Agacik Zafer, American University of the Middle East.
Advances in Mathematical Methods for Disease Modeling, Jimin Ding, Washington University in St. Louis, Necibe Tuncer, University of Tulsa, and Naveen K. Vaidya, University of Missouri-Kansas City.
Algebraic Cycles and Coherent Sheaves, Roaya Beheshti, Matt Kerr, and N. Mohan Kumar, Washington University in St. Louis.
Algebraic and Combinatorial Invariants of Knots, Heather Dye, McKendree University, Allison Henrich, Seattle University, Aaron Kaestner, North Park University, and Louis Kauffman, University of Illinois.
Automorphic Forms and Representation Theory, Dubravka Ban and Joe Hundley, Southern Illinois University, and Shuichiro Takeda, University of Missouri, Columbia.
Commutative Algebra, Lianna Sega, University of Missouri, Kansas City, and Hema Srinivasan, University of Missouri, Columbia.
Computability Across Mathematics, Wesley Calvert, Southern Illinois University, and Johanna Franklin, University of Connecticut.
Convex Geometry and its Applications, Susanna Dann, Alexander Koldobsky, and Peter Pivovarov, University of Missouri.
Geometric Aspects of 3-Manifold Invariants, Oliver Dasbach, Louisiana State University, and Effie Kalfagianni, Michigan State University.
Geometric Topology in Low Dimensions, William H. Kazez, University of Georgia, and Rachel Roberts, Washington University in St. Louis.
Groupoids in Analysis and Geometry, Alex Kumjian, University of Nevada at Reno, Markus Pflaum, University of Colorado, and Xiang Tang, Washington University in St. Louis.
Interactions between Geometric and Harmonic Analysis, Leonid Kovalev, Syracuse University, and Jeremy Tyson, University of Illinois, Urbana-Champaign.

IMPORTANT INFORMATION REGARDING MEETINGS PROGRAMS: AMS Sectional Meeting programs do not appear in the print version of the Notices. However, comprehensive and continually updated meeting and program information with links to the abstract for each talk can be found on the AMS website. See http://www.ams.org/meetings/. Final programs for Sectional Meetings will be archived on the AMS website accessible from the stated URL and in an electronic issue of the Notices as noted below for each meeting.
Linear and Non-linear Geometry of Banach Spaces, Daniel Freeman and Nirina Lovasoa Randrianarivony, St. Louis University.
Noncommutative Rings and Modules, Greg Marks and Ashish Srivastava, St. Louis University.
Operator Theory, John McCarthy, Washington University in St. Louis.
PDEs of Fluid Mechanics, Roman Shvydkoy, University of Illinois Chicago, and Vladimir Sverak, University of Minnesota.
Spectral, Index, and Symplectic Geometry, Álvaro Pelayo and Xiang Tang, Washington University in St. Louis.
Statistical Properties of Dynamical Systems, Timothy Chumley and Renato Feres, Washington University in St. Louis, and Hongkun Zhang, University of Massachusetts, Amherst.
Topological Combinatorics, John Shareshian, Washington University in St. Louis, and Russ Woodroofe, Mississippi State University.
Wavelets, Frames, and Related Expansions, Marcin Bownik, University of Oregon, Darrin Speegle, Saint Louis University, and Guido Weiss, Washington University in St. Louis.
p-local Group Theory, Fusion Systems, and Representation Theory, Justin Lynd, Rutgers University, and Julianne Rainbolt, Saint Louis University.

Riverside, California
University of California, Riverside

November 2–3, 2013
Saturday – Sunday

Meeting #1095
Western Section
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: August 2013
Program first available on AMS website: September 19, 2013
Program issue of electronic Notices: November 2013
Issue of Abstracts: Volume 34, Issue 4

Deadlines
For organizers: Expired
For abstracts: Expired

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited Addresses
Michael Christ, University of California, Berkeley, Title to be announced.
Mark Gross, University of California, San Diego, Title to be announced.
Matilde Marcolli, California Institute of Technology, Feynman integrals and motives.
Paul Vojta, University of California, Berkeley, Title to be announced.

Special Sessions
Algebraic Structures in Knot Theory, Allison Henrich, Seattle University, and Sam Nelson, Claremont McKenna College.
Analysis and Geometry of Metric Spaces, Asuman G. Aksoy, Claremont McKenna College, and Zair Ibragimov, California State University, Fullerton.
Categorification in Representation Theory, Aaron Lauda and David Rose, University of Southern California.
Commutative Algebra and its Interaction with Algebraic Geometry and Combinatorics, Kuei-Nuan Lin and Paolo Mantero, University of California, Riverside.
Computational Problems on Large Graphs and Applications, Kevin Costello and Laurent Thomas, University of California, Riverside.
Developments in Markov Chain Theory and Methodology, James Flegal, University of California, Riverside, and Mark Huber, Claremont McKenna College.
Diophantine Geometry and Nevanlinna Theory, Aaron Levin, Michigan State University, David McKinnon, University of Waterloo, and Paul Vojta, University of California, Berkeley.
Dynamical Systems, Nicolai Haydn, University of Southern California, and Huyi Hu, Michigan State University.
Fluids and Boundaries, James P. Kellyher, Juhi Jang, and Gung-Min Gie, University of California, Riverside.
Fractal Geometry, Dynamical Systems, and Mathematical Physics, Michel L. Lapidus, University of California, Riverside, Erin P. J. Pearse, California State Polytechnic University, San Luis Obispo, and John A. Rock, California State Polytechnic University, Pomona.
From Harmonic Analysis to Partial Differential Equations: In Memory of Victor Shapiro, Alfonso Castro, Harvey Mudd College, Michel L. Lapidus, University of California, Riverside, and Adolfo J. Rumbos, Pomona College.
Geometric Analysis, Zhiqin Lu, University of California, Irvine, Bogdan D. Suceava, California State University, Fullerton, and Fred Wilhelm, University of California, Riverside.
Geometric and Combinatorial Aspects of Representation Theory, Wee Liang Gan and Jacob Greenstein, University of California, Riverside.
Geometry of Algebraic Varieties, Karl Fredrickson, University of California, Riverside, Mark Gross, University of California, San Diego, and Ziv Ran, University of California, Riverside.
Heights, Diophantine Problems, and Lattices, Lenny Fukshansky, Claremont McKenna College, and David Krumm, University of Georgia and Claremont McKenna College.
Homotopy Theory and K-Theory, Julie Bergner, University of California, Riverside, and Christian Haesemeyer, University of California, Los Angeles.
Teaching ODEs: Best Practices from CODEE (Community of Ordinary Differential Equations Educators), Nishu Lal,
Baltimore, Maryland

Baltimore Convention Center, Hilton Baltimore, and Baltimore Marriott Inner Harbor Hotel

January 15–18, 2014
Wednesday – Saturday

Meeting #1096

Joint Mathematics Meetings, including the 120th Annual Meeting of the AMS, 97th Annual Meeting of the Mathematical Association of America (MAA), annual meetings of the Association for Women in Mathematics (AWM) and the National Association of Mathematicians (NAM), and the winter meeting of the Association for Symbolic Logic (ASL), with sessions contributed by the Society for Industrial and Applied Mathematics (SIAM).

Associate secretary: Georgia M. Benkart
Announcement issue of Notices: October 2013
Program first available on AMS website: November 1, 2013
Program issue of electronic Notices: January 2013
Issue of Abstracts: Volume 35, Issue 1

Deadlines

For organizers: Expired
For abstracts: Expired

MAA Program Updates

The SIGMAA on the History of Mathematics guest lecture will be given by V. Frederick Rickey, USMA, The Notebooks of George Washington on Arithmetic, Geometry, Trigonometry, Logarithms and Surveying, on Wednesday at 6:30 p.m.

SIAM Program Updates

Additional minisymposia include Applied and Computational Geometry, Kathryn Leonard, California State University Channel Islands, and Erin Wolf Chambers, St. Louis University.

Frontiers in Geomathematics, Willi Freeden, University of Kaiserslautern, and Zuhair Nashed, University of Central Florida.

Recent Advances in Financial Mathematics, Maxim Bichuch, Worcester Polytechnic Institute, Ronnie Sircar, Princeton University, and Stephan Sturm, Worcester Polytechnic Institute.

Recent Advances in Partial Differential Equations Modeling Physical Systems, Edriss S. Titi, University of California Irvine and the Weizmann Institute of Science.

Recent Mathematical Developments in Imaging, Weihong Guo, Case Western Reserve University, and Luminita Vese, University of California Los Angeles.

Knoxville, Tennessee

University of Tennessee, Knoxville

March 21–23, 2014
Friday – Sunday

Meeting #1097

Southeastern Section
Associate secretary: Brian D. Boe
Announcement issue of Notices: January 2014
Program first available on AMS website: February 6, 2014
Program issue of electronic Notices: March 2014
Issue of Abstracts: Volume 35, Issue 2

Deadlines

For organizers: Expired
For abstracts: January 28, 2014

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited Addresses

Maria Chudnovsky, Columbia University, Title to be announced (Erdős Memorial Lecture).
Ilse Ipsen, North Carolina State University, Title to be announced.
Daniel Krashen, University of Georgia, Title to be announced.
Suresh Venapally, Emory University, Title to be announced.

Special Sessions

Algebraic Methods in Graph Theory and Combinatorics (Code: SS 7A), Felix Lazebnik, University of Delaware, Andrew Woldar, Villanova University, and Bangteng Xu, Eastern Kentucky University.

Arithmetic of Algebraic Curves (Code: SS 9A), Lubjana Beshaj, Oakland University, Caleb Shor, Western New England University, and Andreas Malmendier, Colby College.

Commutative Ring Theory (in honor of the retirement of David E. Dobbs) (Code: SS 1A), David Anderson, University of Tennessee, Knoxville, and Jay Shapiro, George Mason University.

Completely Integrable Systems and Dispersive Nonlinear Equations (Code: SS 12A), Robert Buckingham, University of Cincinnati, and Peter Perry, University of Kentucky.

Complex Analysis, Probability, and Metric Geometry (Code: SS 11A), Matthew Badger, Stony Brook University, Jim Gill, St. Louis University, and Joan Lind, University of Tennessee, Knoxville.
Baltimore, Maryland

University of Maryland, Baltimore County

March 29–30, 2014
Saturday – Sunday

Meeting #1098
Eastern Section

Associate secretary: Steven H. Weintraub
Announcement issue of Notices: January 2014
Program first available on AMS website: February 26, 2014
Program issue of electronic Notices: March 2014
Issue of Abstracts: Volume 35, Issue 2

Deadlines
For organizers: Expired
For abstracts: January 28, 2014

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited Addresses

- Maria Gordina, University of Connecticut, Title to be announced.
- L. Mahadevan, Harvard University, Title to be announced.
- Nimit Shah, Ohio State University, Title to be announced.
- Dani Wise, McGill University, Title to be announced.

Special Sessions

- Difference Equations and Applications (Code: SS 8A), Michael Radin, Rochester Polytechnic Institute.
- Harmonic Analysis and Its Applications (Code: SS 10A), Susanna Dann, University of Missouri, Azita Mayeli, Queensborough College, City University of New York, and Gestur Olafsson, Louisiana State University.
- Invariants in Low-Dimensional Topology (Code: SS 1A), Jennifer Hom, Columbia University, and Tye Lidman, University of Texas at Austin.
- Knots and Applications (Code: SS 3A), Louis Kauffman, University of Illinois at Chicago, Samuel Lomonaco, University of Maryland, Baltimore County, and Jozef Przytycki, George Washington University.
- Mathematical Biology (Code: SS 6A), Jonathan Bell and Brad Peercy, University of Maryland Baltimore County.
- Novel Developments in Tomography and Applications (Code: SS 4A), Alexander Katsevich, Alexander Tamasan, and Alexander Tovbis, University of Central Florida.
- Open Problems in Stochastic Analysis and Related Fields (Code: SS 7A), Masha Gordina, University of Connecticut, and Tai Melcher, University of Virginia.
Theory and Applications of Differential Equations on Graphs (Code: SS 5A), Jonathan Bell, University of Maryland Baltimore County, and Sergei Avdonin, University of Alaska Fairbanks.

Albuquerque, New Mexico
University of New Mexico
April 5–6, 2014
Saturday - Sunday
Meeting #1099
Western Section
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: January 2014
Program first available on AMS website: To be announced
Program issue of electronic Notices: April 2014
Issue of Abstracts: To be announced

Invited Addresses
Anton Gorodetski, University of California, Irvine, To be announced.
Fan Chung Graham, University of California, San Diego, Some problems and results in spectral graph theory.
Adrian Ioana, University of California, San Diego, To be announced.
Karen Smith, University of Michigan, Ann Harbor, To be announced.

Special Sessions
Analysis and Topology in Special Geometries (Code: SS 14A), Charles Boyer, Daniele Grandini, and Dimitri Vassilev, University of New Mexico.
Commutative Algebra (Code: SS 7A), Daniel J. Hernandez, University of Utah, Karen E. Smith, University of Michigan, and Emily E. Witt, University of Minnesota.
Flat Dynamics (Code: SS 8A), Jayadev Athreya, University of Illinois, Urbana-Champaign, Robert Niemeyer, University of New Mexico, Albuquerque, Richard E. Schwartz, Brown University, and Sergei Tabachnikov, The Pennsylvania State University.
Harmonic Analysis and Dispersive Equations (Code: SS 11A), Matthew Blair, University of New Mexico, and Jason Metcalfe, University of North Carolina.

Interactions in Commutative Algebra (Code: SS 4A), Louiza Fouli and Bruce Olberding, New Mexico State University, and Janet Vassilev, University of New Mexico.
Partial Differential Equations in Materials Science (Code: SS 10A), Lia Bronsard, McMaster University, and Tiziana Giorgi, New Mexico State University.

Physical Knots, honoring the retirement of Jonathan K. Simon (Code: SS 13A), Greg Buck, St. Anselm College, and Eric Rawdon, University of St. Thomas.
Progress in Noncommutative Analysis (Code: SS 2A), Anna Skripka, University of New Mexico, and Tao Mei, Wayne State University.
Spectral Theory (Code: SS 12A), Milivoje Lukic, Rice University, and Maxim Zinchenko, University of New Mexico.

The Inverse Problem and Other Mathematical Methods Applied in Physics and Related Sciences (Code: SS 1A), Hanna Makaruk, Los Alamos National Laboratory, and Robert Owczarek, University of New Mexico and Enfitek, Inc.

Topics in Spectral Geometry and Global Analysis (Code: SS 3A), Ivan Avramidi, New Mexico Institute of Mining and Technology, and Klaus Kirsten, Baylor University.

Lubbock, Texas
Texas Tech University
April 11–13, 2014
Friday - Sunday
Meeting #1100
Central Section
Associate secretary: Georgia M. Benkart
Announcement issue of Notices: February 2014
Program first available on AMS website: February 27, 2014
Program issue of electronic Notices: April 2014
Issue of Abstracts: Volume 35, Issue 2

Deadlines
For organizers: Expired
For abstracts: February 10, 2014

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited Addresses
Nir Avni, Northwestern University, To be announced.
Alessio Figalli, University of Texas, To be announced.
Jean-Luc Thiffeault, University of Wisconsin-Madison, To be announced.

Rachel Ward, University of Texas at Austin, To be announced.

Special Sessions

Algebraic Geometry (Code: SS 9A), David Weinberg, Texas Tech University.

Analysis and Applications of Dynamic Equations on Time Scales (Code: SS 7A), Roger W. Barnard and Kent Pearce, Texas Tech University, Kendall Richards, Southwestern University, and Alex Solynin and Brock Williams, Texas Tech University.

Applications of Special Functions in Combinatorics and Analysis (Code: SS 12A), Atul Dixit, Tulane University, and Timothy Huber, University of Texas Pan American.

Complex Function Theory and Special Functions (Code: SS 11A), Brian Harbourne and Alexandra Seceleanu, University of Nebraska-Lincoln.

For abstracts: To be announced

For organizers: To be announced

Deadlines

For organizers: To be announced
For abstracts: To be announced

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/internmtgs.html.

Special Sessions

Mirror Symmetry and Representation Theory, David Kazhdan, Hebrew University, and Roman Bezrukavnikov, Massachusetts Institute of Technology.

Nonlinear Analysis and Optimization, Boris Mordukhovich, Wayne State University, and Simeon Reich and Alexander Zaslavski, The Technion-Israel Institute of Technology.

Qualitative and Analytic Theory of ODE’s, Yosef Yomdin, Weizmann Institute.

Eau Claire, Wisconsin

University of Wisconsin-Eau Claire

September 20-21, 2014
Saturday - Sunday

Meeting #1102

Central Section

Associate secretary: Georgia M. Benkart
Announcement issue of Notices: June 2014
Program first available on AMS website: August 7, 2014
Program issue of electronic Notices: September 2014
Issue of Abstracts: Volume 35, Issue 3

Deadlines

For organizers: March 20, 2014
For abstracts: July 29, 2014

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.
Invited Addresses

Matthew Kahle, Ohio State University, To be announced.
Markus Keel, University of Minnesota, To be announced.
Svitlana Mayboroda, University of Minnesota, To be announced.
Dylan Thurston, Indiana University, To be announced.

Markus Keel, University of Minnesota, To be announced.
Svitlana Mayboroda, University of Minnesota, To be announced.
Dylan Thurston, Indiana University, To be announced.

Invited Addresses

François Bergeron, Université du Québec à Montréal, Title to be announced.
Sourav Chatterjee, New York University, Title to be announced.
William M. Goldman, University of Maryland, Title to be announced.
Sujatha Ramdorai, University of British Columbia, Title to be announced.

Special Sessions

p-adic Methods in Arithmetic. (Code: SS 1A), Henri Darmon, McGill University, Adrian Iovita, Concordia University, and Sujatha Ramdorai, University of British Columbia.

San Francisco, California

San Francisco State University

October 25–26, 2014
Saturday – Sunday

Meeting #1104
Western Section
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: August 2014
Program first available on AMS website: September 11, 2014
Program issue of electronic Notices: October 2014
Issue of Abstracts: Volume 35, Issue 4

Deadlines
For organizers: March 25, 2014
For abstracts: September 3, 2014

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited Addresses

Kai Behrend, University of British Columbia, Vancouver, Canada, Title to be announced.
Kiran S. Kedlaya, University of California, San Diego, Title to be announced.
Julia Pevtsova, University of Washington, Seattle, Title to be announced.
Burt Totaro, University of California, Los Angeles, Title to be announced.

Special Sessions

Algebraic Geometry (Code: SS 1A), Renzo Cavalieri, Colorado State University, Noah Giansiracusa, University of California, Berkeley, and Burt Totaro, University of California, Los Angeles.
Geometry of Submanifolds (Code: SS 3A), Yun Myung Oh, Andrews University, Bogdan D. Suceava, California State University, Fullerton, and Mihaela B. Vajiac, Chapman University.
Polyhedral Number Theory (Code: SS 2A), Matthias Beck, San Francisco State University, and Martin Henk, Universität Magdeburg.
Greensboro, North Carolina

University of North Carolina, Greensboro

November 8–9, 2014
Saturday – Sunday

Meeting #1105
Southeastern Section
Associate secretary: Brian D. Boe
Announcement issue of Notices: August 2014
Program first available on AMS website: September 25, 2014
Program issue of electronic Notices: November 2014
Issue of Abstracts: Volume 35, Issue 4

Deadlines
For organizers: April 8, 2014
For abstracts: September 16, 2014

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited Addresses

Susanne Brenner, Louisiana State University, Title to be announced.
Skip Garibaldi, Emory University, Title to be announced.
Stavros Garoufalidis, Georgia Institute of Technology, Title to be announced.
James Sneyd, University of Auckland, Title to be announced (AMS-NZMS Maclaurin Lecture).

San Antonio, Texas

Henry B. Gonzalez Convention Center and Grand Hyatt San Antonio

January 10–13, 2015
Saturday – Tuesday

Meeting #1106
Joint Mathematics Meetings, including the 121st Annual Meeting of the AMS, 98th Annual Meeting of the Mathematical Association of America (MAA), annual meetings of the Association for Women in Mathematics (AWM) and the National Association of Mathematicians (NAM), and the winter meeting of the Association of Symbolic Logic (ASL), with sessions contributed by the Society for Industrial and Applied Mathematics (SIAM).
Associate secretary: Steven H. Weintraub
Announcement issue of Notices: October 2014
Program first available on AMS website: To be announced
Program issue of electronic Notices: To be announced
Issue of Abstracts: Volume 36, Issue 1

Deadlines
For organizers: September 18, 2014
For abstracts: To be announced

Washington, District of Columbia

Georgetown University

March 7–8, 2015
Saturday – Sunday

Deadlines
For organizers: August 7, 2014
For abstracts: To be announced

Huntsville, Alabama

University of Alabama in Huntsville

March 27–29, 2015
Friday – Sunday

Deadlines
For organizers: August 20, 2014
For abstracts: To be announced

Las Vegas, Nevada

University of Nevada, Las Vegas

April 18–19, 2015
Saturday – Sunday

Deadlines
For organizers: September 18, 2014
For abstracts: To be announced
Meetings & Conferences

Porto, Portugal

University of Porto

June 11–14, 2015
Thursday – Sunday
First Joint International Meeting involving the American Mathematical Society (AMS), the European Mathematical Society (EMS), and the Sociedade de Portuguesa Matematica (SPM).

Associate secretary: Georgia M. Benkart
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced
Program issue of electronic Notices: To be announced
Issue of Abstracts: Not applicable

Deadlines
For organizers: To be announced
For abstracts: To be announced

Chicago, Illinois

Loyola University Chicago

October 3–4, 2015
Saturday – Sunday
Central Section

Associate secretary: Georgia M. Benkart
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced
Program issue of electronic Notices: October 2015
Issue of Abstracts: To be announced

Deadlines
For organizers: March 10, 2015
For abstracts: To be announced

Fullerton, California

California State University, Fullerton

October 24–25, 2015
Saturday – Sunday
Western Section

Associate secretary: Michel L. Lapidus
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced
Program issue of electronic Notices: October 2015
Issue of Abstracts: To be announced

Deadlines
For organizers: March 27, 2015
For abstracts: To be announced

Mathematical Sciences Center
Tsinghua University, Beijing, China

Positions:
Distinguished Professorship; Professorship;
Associate Professorship;
Assistant Professorship (tenure-track).

The MSC invites applications for the above positions in the full spectrum of mathematical sciences: ranging from pure mathematics, applied PDE, computational mathematics to statistics. The current annual salary range is between 0.15-1.0 million RMB. Salary will be determined by applicants' qualification. Strong promise/track record in research and teaching are required. Completed applications must be electronically submitted, and must contain curriculum vitae, research statement, teaching statement, selected reprints and/or preprints, three reference letters on academic research and one reference letter on teaching, sent electronically to msc-recruitment@math.tsinghua.edu.cn

The review process starts in December 2013, and closes by April 30, 2014. Applicants are encouraged to submit their applications before February 28, 2014.

Positions: post-doctorate fellowship

Mathematical Sciences Center (MSC) will hire a substantial number of post-doctorate fellows in the full spectrum of mathematical sciences. New and recent PhDs are encouraged for this position.

A typical appointment for post-doctorate fellowship of MSC is for three-years. Salary and compensation package are determined by qualification, accomplishment, and experience. MSC offers very competitive packages.

Completed applications must contain curriculum vitae, research statement, teaching statement, selected reprints and/or preprints, three reference letters, sent electronically to msc-recruitment@math.tsinghua.edu.cn

The review process starts in December 2013, and closes by April 30, 2014. Applicants are encouraged to submit their applications before February 28, 2014.
2014 Joint Mathematics Meetings Advance Registration/Housing Form

Name ____________________________

Mailing Address ___

Telephone ________________________ Fax: __________________________

Acknowledgment of this registration and any hotel reservations will be sent to the email address(s) given here.

Email Address __

In case of emergency (for you) at the meeting, call: Day #: __________________ Evening #: __________________

Telephone

Email Address __

Affiliation for badge ___

Registration Fees

Membership please ✓ that apply. First row is eligible to register as a JMM member.

AMS ☐ MAA ☐ ASL ☐ CMS ☐ SIAM ☐

ASA ☐ AWM ☐ NAM ☐ YMN

Joint Meetings by Dec 24 at mtg Subtotal

Member AMS, MAA, ASL, CMS, SIAM
Nonmember
Graduate Student (Mem. of AMS or MAA)
Graduate Student (Nonmember)
Undergraduate Student
High School Student
Unemployed
Temporarily Employed
Developing Countries Special Rate
Emeritus Member of AMS or MAA
High School Teacher
Librarian
Press
Nonmathematician Guest

$ 240
$ 315
$ 486
$ 63
$ 93
$ 63
$ 10
$ 63
$ 224
$ 63
$ 63
$ 185
$ 75
$ 140

$ 106
$ 140
$ 53
$ 195
$ 53
$ 53
$ 53
$ 53
$ 15

$ 234
$ 244
$ 82
$ 159

$ 159
$ 169
$ 63
$ 75
$ 185
$ 75
$ 140
$ 140

$ 244
$ 374
$ 93
$ 159
$ 159
$ 244

Total Amount To Be Paid $ __________

(1/13–1/14)

AMS Short Course: Geometry and Topology in Statistical Inference

AMSShort Course: Reading, Writing and Doing the History of

Mathematics: Learning the Methods of Historical Research

(Members of AMS or MAA)

Nonmember

Student, Unemployed, Emeritus

$ 63
$ 93
$ 82

$ 224
$ 195
$ 53
$ 53
$ 53
$ 15

$ 234
$ 244
$ 82
$ 159

$ 244
$ 374
$ 93
$ 159
$ 159
$ 244

AMS Short Course:

Member of MAA (or AMS)
Nonmember

Student, Unemployed, Emeritus

$ 106
$ 140
$ 53

$ 195
$ 53
$ 53
$ 53
$ 15

$ 234
$ 244
$ 82
$ 159

$ 244
$ 374
$ 93
$ 159
$ 159
$ 244

Total Amount To Be Paid $ __________

(1/13–1/14)

AMS Short Course: Geometry and Topology in Statistical Inference

AMS Short Course: Reading, Writing and Doing the History of

Mathematics: Learning the Methods of Historical Research

(Members of AMS or MAA)

Nonmember

Student, Unemployed, Emeritus

$ 63
$ 93
$ 82

$ 224
$ 195
$ 53
$ 53
$ 53
$ 15

$ 234
$ 244
$ 82
$ 159

$ 244
$ 374
$ 93
$ 159
$ 159
$ 244

Total Amount To Be Paid $ __________

AMS Minicourses (see listing in text)

I would like to attend: ☐ One Minicourse ☐ Two Minicourses Please enter me in MAA Minicourse(s) # _______

In order of preference, my alternatives are: # _______ and/or # _______

Price: US$80 for each minicourse.

(For more than 2 minicourses, call or email the MMSB.) $ __________

Graduate School Fair

Graduate Program Table US$ 75 US$ 75 (includes table, posterboard & electricity) $ ________

MAA Workshops

Introductory Proposal Writing Workshop for Grant Applications to the NSF Div. of Undergraduate Education (1/16) (no charge)

Advanced Proposal Writing Workshop for Grant Applications to the NSF Div. of Undergraduate Education (1/17) (no charge) $ ________

Receptions & Banquets

Graduate Student/First Time Attendee Reception (1/15) (no charge)

NAM Banquet (1/17) US$ 62 #___Chicken #___Fish #___Kosher #___Vegan

AMS Dinner (1/18) US$ 62 (Additional fees may apply for Kosher meals.) $ ________

Total for Registrations and Events $ ________

Registration for the Joint Meetings is not required for the short courses but it is required for the minicourses and the Employment Center. To register for the Employment Center, go to www.ams.org/profession/employment-services/employment-center.

Payment

Registration & Event Total (total from column on left) $ __________

Hotel Deposit (only if paying by check) $ __________

Total Amount To Be Paid $ __________

(1/13–1/14)

AMS Short Course:

Member of MAA (or AMS)
Nonmember

Student, Unemployed, Emeritus

$ 106
$ 140
$ 53

$ 195
$ 53
$ 53
$ 53
$ 15

$ 234
$ 244
$ 82
$ 159

$ 244
$ 374
$ 93
$ 159
$ 159
$ 244

Total Amount To Be Paid $ __________

AMS Short Course:

Member of MAA (or AMS)
Nonmember

Student, Unemployed, Emeritus

$ 106
$ 140
$ 53

$ 195
$ 53
$ 53
$ 53
$ 15

$ 234
$ 244
$ 82
$ 159

$ 244
$ 374
$ 93
$ 159
$ 159
$ 244

Total Amount To Be Paid $ __________

AMS Minicourses (see listing in text)

I would like to attend: ☐ One Minicourse ☐ Two Minicourses Please enter me in MAA Minicourse(s) # _______

In order of preference, my alternatives are: # _______ and/or # _______

Price: US$80 for each minicourse.

(For more than 2 minicourses, call or email the MMSB.) $ __________

Graduate School Fair

Graduate Program Table US$ 75 US$ 75 (includes table, posterboard & electricity) $ ________

MAA Workshops

Introductory Proposal Writing Workshop for Grant Applications to the NSF Div. of Undergraduate Education (1/16) (no charge)

Advanced Proposal Writing Workshop for Grant Applications to the NSF Div. of Undergraduate Education (1/17) (no charge) $ ________

Receptions & Banquets

Graduate Student/First Time Attendee Reception (1/15) (no charge)

NAM Banquet (1/17) US$ 62 #___Chicken #___Fish #___Kosher #___Vegan

AMS Dinner (1/18) US$ 62 (Additional fees may apply for Kosher meals.) $ ________

Total for Registrations and Events $ ________

Registration for the Joint Meetings is not required for the short courses but it is required for the minicourses and the Employment Center. To register for the Employment Center, go to www.ams.org/profession/employment-services/employment-center.

Method of Payment

☐ Check. Make checks payable to the AMS. Checks drawn on foreign banks must be in equivalent foreign currency at current exchange rates. For all check payments, please keep a copy of this form for your records.

☐ Credit Card. All major credit cards accepted. For your security, we do not accept credit card numbers by postal mail, email or fax. If the MMSB receives your registration form by fax or postal mail, it will contact you at the phone number provided on this form. For questions, contact the MMSB at mmsb@ams.org.

Signature: __________________________

Purchase Order # ___________________ (please enclose copy)

Other Information

Mathematical Reviews field of interest #

How did you hear about this meeting? Check one:

Colleague(s) ☐ Internet ☐ Notices ☐ Focus ☐ Other

This is my first Joint Mathematics Meetings.

I am a mathematics department chair.

For planning purposes for the MAA Two-year College Reception, please check if you are a faculty member at a two-year college.

I would like to receive promotions for future JMM meetings.

Please do not include my name on any promotional mailing lists.

Please do not include my name on any list of participants distributed or displayed at any time.

Please ✓ this box if you have a disability requiring special services.

Mailing Address/Contact:

Mathematics Meetings Service Bureau (MMSB)
P. O. Box 6887
Providence, RI 02940-6887 Fax: 401-455-4004; Email: mmsb@ams.org
Telephone: 401-455-4144 or 1-800-321-4267 x4144 or x4137

Deadlines

To be eligible for the complimentary room drawing:

For receiving badges/programs in the mail: Nov. 4, 2013

For housing changes/cancellations through MMSB: Nov. 19, 2013

For advance registration for the Joint Meetings, short courses, minicourses, and tickets: Dec. 24, 2013

For 50% refund on banquets, cancel by: Jan. 7, 2014*

For 50% refund on advance registration, minicourses & short courses, cancel by: Jan. 10, 2014*

*no refunds issued after this date
2014 Joint Mathematics Meetings Hotel Reservations – Baltimore, Maryland

(Hotel) To ensure accurate assignments, please rank hotels in order of preference by writing 1, 2, 3, etc. in the column on the left and by circling the requested bed configuration. If your requested hotel and room type is no longer available, you will be assigned a room at the next available comparable rate. Please call the MMSB for details on suite configurations, sizes, availability, etc. All reservations, including suite reservations, must be made through the MMSB to receive the JMM rates. Reservations made directly with the hotels before December 13, 2013 may be changed to a higher rate. All rates are subject to a 15.5% sales/occupancy tax. Guarantee requirements: First night deposit by check (add to payment on reverse of form) or a credit card guarantee.

- Deposit enclosed (see front of form)
- Hold with my credit card. For your security, we do not accept credit card numbers by postal mail, email or fax. If the MMSB receives your registration form by postal mail or fax, we will contact you at the phone number provided on the reverse of this form.

Housing Requests:
- I have disabilities as defined by the ADA that require a sleeping room that is accessible to the physically challenged. My needs are:
- I am a member of a hotel frequent-travel club and would like to receive appropriate credit. The hotel chain and card number are:
- I am not reserving a room. I am sharing with: who is making the reservation.

Bed Configuration and Rates

<table>
<thead>
<tr>
<th>Hotel</th>
<th>Bed configuration (please circle preference)</th>
<th>Single/Double Rate</th>
<th>Additional Adult (More than 2 adults; Max: 4)</th>
<th>Rollaway Cot Fee (add to special requests)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hilton Baltimore (htqrs)</td>
<td>King bed or 2 double beds</td>
<td>US$ 159</td>
<td>US$ 20 per person</td>
<td>US$ 25.00 (one time)</td>
</tr>
<tr>
<td>Student Rate</td>
<td>King bed or 2 double beds</td>
<td>US$ 127</td>
<td>US$ 20 per person</td>
<td>US$ 25.00 (one time)</td>
</tr>
<tr>
<td>Baltimore Marriott Inner Harbor (htqrs)</td>
<td>King bed or 2 double beds</td>
<td>US$ 149</td>
<td>US$ 20 per person</td>
<td>No charge</td>
</tr>
<tr>
<td>Student Rate</td>
<td>King bed or 2 double beds</td>
<td>US$ 115</td>
<td>US$ 20 per person</td>
<td>No charge</td>
</tr>
<tr>
<td>Sheraton Inner Harbor</td>
<td>King bed or 2 double beds</td>
<td>US$ 149</td>
<td>US$ 20 per person</td>
<td>US$ 20.00 (per day)</td>
</tr>
<tr>
<td>Student Rate</td>
<td>King bed or 2 double beds</td>
<td>US$ 139</td>
<td>US$ 20 per person</td>
<td>US$ 20.00 (per day)</td>
</tr>
<tr>
<td>Hyatt Regency Baltimore</td>
<td>King, Queen or 2 double beds</td>
<td>US$ 145</td>
<td>US$ 25 per person</td>
<td>US$ 25.00 (one time)</td>
</tr>
<tr>
<td>Student Rate</td>
<td>King, Queen or 2 double beds</td>
<td>US$ 135</td>
<td>US$ 25 per person</td>
<td>US$ 25.00 (one time)</td>
</tr>
<tr>
<td>Renaissance Baltimore Harbortplace</td>
<td>King, Queen or 2 double beds</td>
<td>US$ 135</td>
<td>US$ 20 per person</td>
<td>US$ 20.00 (per day)</td>
</tr>
<tr>
<td>Student Rate</td>
<td>King, Queen or 2 double beds</td>
<td>US$ 115</td>
<td>US$ 20 per person</td>
<td>US$ 20.00 (per day)</td>
</tr>
<tr>
<td>Baltimore Marriott Waterfront</td>
<td>King bed or 2 double beds</td>
<td>US$ 135</td>
<td>US$ 20 per person</td>
<td>No charge</td>
</tr>
<tr>
<td>Student Rate</td>
<td>King bed or 2 double beds</td>
<td>US$ 115</td>
<td>US$ 20 per person</td>
<td>No charge</td>
</tr>
<tr>
<td>Royal Sonesta Harbor Court</td>
<td>King bed or 2 double beds</td>
<td>US$ 125</td>
<td>US$ 20 per person</td>
<td>US$ 25.00 (per day, king bed room only)</td>
</tr>
<tr>
<td>Student Rate</td>
<td>King bed or 2 double beds</td>
<td>US$ 99</td>
<td>US$ 20 per person</td>
<td>US$ 25.00 (per day, king bed room only)</td>
</tr>
<tr>
<td>Days Inn Baltimore Inner Harbor</td>
<td>King, Queen or 2 double beds</td>
<td>US$ 119</td>
<td>No charge</td>
<td>US$ 10.00 (per day, king bed room only)</td>
</tr>
<tr>
<td>Student Rate</td>
<td>King, Queen or 2 double beds</td>
<td>US$ 109</td>
<td>No charge</td>
<td>US$ 10.00 (per day, king bed room only)</td>
</tr>
<tr>
<td>Holiday Inn Inner Harbor</td>
<td>King, Queen or 2 double beds</td>
<td>US$ 119</td>
<td>No charge</td>
<td>US$ 15.00 (per day, king bed room only)</td>
</tr>
<tr>
<td>Student Rate</td>
<td>King, Queen or 2 double beds</td>
<td>US$ 99</td>
<td>No charge</td>
<td>US$ 15.00 (per day, king bed room only)</td>
</tr>
<tr>
<td>Hotel Monaco</td>
<td>King, 2 Queens or 2 double beds</td>
<td>US$ 119</td>
<td>US$ 20 per person</td>
<td>US$ 25.00 (per day, king bed room only)</td>
</tr>
<tr>
<td>Student Rate</td>
<td>King, 2 Queens or 2 double beds</td>
<td>US$ 109</td>
<td>US$ 20 per person</td>
<td>US$ 25.00 (per day, king bed room only)</td>
</tr>
</tbody>
</table>

People interested in suites should contact the MMSB directly at mmsb@ams.org or call 800-321-4267, ext. 4137 or 4144 (401-455-4137 or 401-455-4144)
Meetings and Conferences of the AMS

Associate Secretaries of the AMS

Central Section: Georgia Benkart, University of Wisconsin-Madison, Department of Mathematics, 480 Lincoln Drive, Madison, WI 53706-1388; e-mail: benkart@math.wisc.edu; telephone: 608-263-4283.

Eastern Section: Steven H. Weintraub, Department of Mathematics, Lehigh University, Bethlehem, PA 18105-3174; e-mail: steve.weintraub@lehigh.edu; telephone: 610-758-3717.

Southeastern Section: Brian D. Boe, Department of Mathematics, University of Georgia, 220 D W Brooks Drive, Athens, GA 30602-7403, e-mail: brian@math.uga.edu; telephone: 706-542-2547.

Western Section: Michel L. Lapidus, Department of Mathematics, University of California, Surge Bldg., Riverside, CA 92521-0135; e-mail: lapidus@math.ucr.edu; telephone: 951-827-5910.

The Meetings and Conferences section of the Notices gives information on all AMS meetings and conferences approved by press time for this issue. Please refer to the page numbers cited in the table of contents on this page for more detailed information on each event. Invited Speakers and Special Sessions are listed as soon as they are approved by the cognizant program committee; the codes listed are needed for electronic abstract submission. For some meetings the list may be incomplete. Information in this issue may be dated. Up-to-date meeting and conference information can be found at www.ams.org/meetings/.

Meetings:

2013

October 18–20 St. Louis, Missouri p. 1412
November 2–3 Riverside, California p. 1413

2014

January 15–18 Baltimore, Maryland p. 1414
Annual Meeting
March 21–23 Knoxville, Tennessee p. 1414
March 29–30 Baltimore, Maryland p. 1415
April 5–6 Albuquerque, New Mexico p. 1416
April 11–13 Lubbock, Texas p. 1416
June 16–19 Tel Aviv, Israel p. 1417
September 20–21 Eau Claire, Wisconsin p. 1417
October 18–19 Halifax, Canada p. 1418
October 25–26 San Francisco, California p. 1418
November 8–9 Greensboro, North Carolina p. 1419

2015

January 10–13 San Antonio, Texas p. 1419
Annual Meeting
March 7–8 Washington, DC p. 1419
March 20–22 Huntsville, Alabama p. 1419
April 18–19 Las Vegas, Nevada p. 1419
June 11–14 Porto, Portugal p. 1420
October 3–4 Chicago, Illinois p. 1420
October 24–25 Fullerton, California p. 1420

Important Information Regarding AMS Meetings

Potential organizers, speakers, and hosts should refer to page 274 in the February 2013 issue of the Notices for general information regarding participation in AMS meetings and conferences.

Abstracts

Speakers should submit abstracts on the easy-to-use interactive Web form. No knowledge of \LaTeX{} is necessary to submit an electronic form, although those who use \LaTeX{} may submit abstracts with such coding, and all math displays and similarly coded material (such as accent marks in text) must be typeset in \LaTeX{}. Visit http://www.ams.org/cgi-bin/abstracts/abstract.pl. Questions about abstracts may be sent to abs-info@ams.org. Close attention should be paid to specified deadlines in this issue. Unfortunately, late abstracts cannot be accommodated.

Conferences in Cooperation with the AMS: (see http://www.ams.org/meetings/ for the most up-to-date information on these conferences.)

November 1–3, 2013: Sixth International Conference on Science and Mathematics Education in Developing Countries, Mandalay, Myanmar.
NEW TITLES IN MATHEMATICS
from CAMBRIDGE UNIVERSITY PRESS!

Canonical Ramsey Theory on Polish Spaces
Vladimir Kanovei, Marcin Sabok, and Jindřich Zapletal
Cambridge Tracts in Mathematics

Lévy Processes and Infinitely Divisible Distributions
Ken-iti Sato
Cambridge Studies in Advanced Mathematics

Complexity Science
The Warwick Master’s Course
Edited by Robin Ball, Vassili Kolokoltsov, and Robert S. MacKay
London Mathematical Society Lecture Note Series
$70.00: Paperback: 978-1-107-64056-6: 450 pp.

Manifolds, Tensors, and Forms
An Introduction for Mathematicians and Physicists
Paul Renteln

Convex Bodies: The Brunn–Minkowski Theory
Rolf Schneider
Encyclopedia of Mathematics and its Applications

Effective Mathematics of the Uncountable
Edited by Noam Greenberg, Denis Hirschfeldt, Joel David Hamkins, and Russell Miller
Lecture Notes in Logic
$85.00: Hardback: 978-1-107-01451-0: 205 pp.

The Riemann Hypothesis for Function Fields
Frobenius Flow and Shift Operators
Machiel van Frankenhuijsen
London Mathematical Society Student Texts
$37.99: Paperback: 978-1-107-68531-4

Turbulence in Rotating, Stratified and Electrically Conducting Fluids
P.A. Davidson

Uniform Central Limit Theorems
R.M. Dudley
Cambridge Studies in Advanced Mathematics
$50.00: Paperback: 978-0-521-73841-5

Handbook of Financial Data and Risk Information I
Edited by Margarita S. Brose, Mark D. Flood, Dilip Krishna, and Bill Nichols
Volume 1 - Principles and Context
Volume 2 - Software and Data

www.cambridge.org/mathematics
800.872.7423
@cambUP_maths
The titles below seek to strengthen the connection between mathematics and other disciplines, giving prominence to the areas in which mathematics is most relevant. These publications help mathematicians understand how mathematical ideas may benefit other sciences, while offering researchers outside of mathematics important tools to advance their professions.

An Introduction to Stochastic Differential Equations

Lawrence C. Evans, University of California, Berkeley, CA

These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic.

—Srinivasa Varadhan, New York University

2013; approximately 155 pages; Softcover; ISBN: 978-1-4704-1054-4; List US$34, AMS members US$27.20; Order code MBK/82

The Mathematics of Encryption

Margaret Cozzens, DIMACS, Rutgers University, Piscataway, NJ, and Steven J. Miller, Williams College, Williamstown, MA

A historical and mathematical tour of cryptography, from classical ciphers to quantum cryptography, which provides an exciting introduction to liberal arts students without losing mathematical completeness.

Probability Theory in Finance

A Mathematical Guide to the Black-Scholes Formula, Second Edition

Seán Dineen, University College Dublin, Ireland

An outstanding introduction to the Black-Scholes formula for students of mathematical finance, in which the author employs a first-principles approach by developing only the minimum background necessary to justify mathematical concepts while placing mathematical developments in context.

Combinatorial Game Theory

Aaron N. Siegel, San Francisco, CA

Aaron Siegel has been the major contributor to Combinatorial Game Theory over the last decade or so. Now, in this authoritative work, he has made the latest results in the theory accessible, so that the subject will achieve the place in mathematics that it deserves.

—Richard Guy, University of Calgary

The Water Waves Problem

Mathematical Analysis and Asymptotics

David Lannes, École Normale Supérieure et CNRS, Paris, France

This is the first self-contained presentation of the water waves theory, which proposes a simple and robust framework that allows readers to address important issues raised by the water waves equations.

The Joy of Factoring

Samuel S. Wagstaff, Jr., Purdue University, West Lafayette, IN

Readers of this book will learn the best methods of factoring integers, many reasons for factoring, and some history of this fascinating subject, and will likely have fun doing so.

Student Mathematical Library, Volume 68; 2013; 293 pages; Softcover; ISBN: 978-1-4704-1048-3; List US$49; AMS members US$39.20; Order code STML/68

To view our entire collection of Applied Mathematics titles, visit www.ams.org/bookstore/appliedmath