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Beginning February 1, the AMS is accepting
applications for the AMS-Simons Travel Grants
program. Each grant provides an early career
mathematician with $2,000 per year for two years
to reimburse travel expenses related to research.
Sixty new awards will be made in 2014. Indi-
viduals who are not more than four years past the
completion of the PhD are eligible. The depart-
ment of the awardee will also receive a small
amount of funding to help enhance its research

atmosphere.

The deadline for 2014 applications is
March 31, 2014.

Applicants must be located in the United States or be U.S.
citizens. For complete details of eligibility and application
instructions, visit:
www.ams.org,/programs/travel-grants/AMS-SimonsTG
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Letters to the Editor

Is There a Better Format for the
Presentation of Mathematical
Subjects?

The ongoing concern with mathemat-
ics education that was expressed by
two articles in the November 2013
issue of the Notices, makes me won-
der if part of the problem might not
be the format in which mathematics
is presented—a format that goes
back to Euclid, some 300 years b.c.e.
For years, in my own studies, I have
relied on a different format that has
proven to be far more efficient for
learning and problem solving. The
format is based on several ideas from
computer science: object-oriented
programming (task orientation), sep-
arating the What from the How, and
structured programming. In brief:
each subject is conceived as involv-
ing a set of “entities.” For example,
in high school algebra, one of these
entities is “equation.” Associated
with each entity is a template (the
same for all entities), which is a list
consisting of: definition of entity,
ways of representing entity, common
tasks performed on the entity, types
of the entity, theorems pertaining to
the entity, closely related entities.
Each item in the list is then followed
by a reference in the student’s notes
and/or in the textbook, to details on
the item.

Thus in the case of the entity
“equation,” the list of common tasks
includes: convert an equation into
polynomial form, determine the type
of an equation (linear, quadratic, etc.),
solve an equation, add a term to both
sides of an equation, multiply both
sides of an equation by a term, divide
both sides of an equation by a term.

Another characteristic of this
format is the writing down of pro-
cedures to perform the more dif-
ficult tasks. The goal here is to have
something that can be looked up and
rapidly re-used days, weeks, months,
years after the procedure was first
learned. (It is not enough to more or
less know how to do most integrals in
a calculus course: the goal is to write
down a procedure (it is known that
no algorithm exists).)
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Another characteristic is that all,
or most, proofs are written in struc-
tured proof format (analogous to
structured program format), which
makes the devising of proofs, and
the understanding of existing proofs,
much more rapid.

The format can be applied to all
subjects from primary school up to
at least all the advanced mathemat-
ics subjects that I am familiar with. It
makes all mathematical subjects look
“the same.” Primary school students
can be introduced to it by being asked
to consider all the tasks associated
with, for example, a bicycle, or an
iPad, or a TV set.

The format is not an alternative
to the traditional textbook and class-
room format, but in my experience it
is a great enhancement to it.

Peter Schorer
Occam Press
peteschorer@gmail.com

(Received October 31, 2013)

Ludwig van Beethoven and the
Metronome

I read with great interest the article
about the metronome [“Was some-
thing wrong with Beethoven’s met-
ronome?”, by Sture Forsén, Harry B.
Gray, L. K. Olof Lindgren, and Shirley
B. Gray, Notices, October 2013], which
presents an analysis of what happens
if the weights are not in proper posi-
tion and discusses the big question
mark left behind by Beethoven’s met-
ronome markings. The article is very
enjoyable and informative.

Nevertheless, there is one signifi-
cant omission that devalues the ar-
ticle.

While reading the article, I was cu-
rious to see what the final conclusion
would be. After all, Beethoven gave a
metronome number not only for the
first movement of the Hammerkla-
viersonate, but for all movements.
And all the markings—including the
one for the slow movement, that is,
the third movement—are too fast.
(At least, every musician would agree
on this. There is a benchmark re-
cording of the Beethoven sonatas by
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Friedrich Gulda; in the accompanying
text he says, concerning the Ham-
merklaviersonate, that he intended
to follow Beethoven’s markings as
much as possible; but even he plays
the first movement a bit slower than
Beethoven’s indication—which is still
incredibly fast!—and the same is true
for the other movements, except per-
haps for the second.)

The analysis in the article shows
that—depending on whether the bot-
tom weight is too low or too high—
fast tempos are made faster (respec-
tively, slower) and slow tempos are
made slower (respectively, faster). I
therefore wondered how this relates
to the above-mentioned fact, namely,
that all of Beethoven’s metronome
indications in the Hammerklavierso-
nate are too fast. The indication for
the third movement (Adagio soste-
nuto) is: eighth = 92. Is this a slow
tempo, a medium tempo? This should
have been addressed, as should have
the indications in the other move-
ments. Otherwise, the theory as pre-
sented stands on weak grounds.

Finally, I can offer the following
anecdote that my piano professor at
the Vienna University of Music and
Performing Arts (when I was a pianist
in a previous life) loved to tell: it con-
cerns Igor Stravinsky, who on some
occasion was asked by a journalist
how fast he would would want a cer-
tain piece of his to be played. Stravin-
sky thought for a moment, and then
indicated a tempo. My teacher found
it very amusing that the tempo was
completely different from the metro-
nome indication that Stravinsky had
given for the piece.

Christian Krattenthaler
Universitdt Wien Christian
Krattenthaler@univie.ac.at

(Received November 15, 2013)

Pseudo-Education Marches On

In the October 2013 Notices article
“Teaching mathematics with women
in mind,” Professors Deshler and Bur-
roughs wrote the following under the
heading “What Are We Teaching Our
Students”: “In recent years a focus
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on conceptual understanding has led
to a curriculum reform movement
in mathematics across all school
levels, a movement that is focused
on conceptual understanding rather
than procedural understanding of
mathematics.”

Unfortunately, they failed to ex-
pose that the assorted “reforms”
of the past twenty-four years,
which I have followed closely, have
simply enhanced the continuing
mathematics pseudo-education of
American students. One example of
this grim reality is the brief essay
written by one of my students in
1995, which is posted at:[http://|

[mathforum.org/kb/message.
[Jspa?messageID=1461554

Domenico Rosa
Retired Professor
Post University
Waterbury, CT
domrosa@snet.net

(Received October 4, 2013)

Adjuncts and Teaching

Catching up on old Notices, 1 read
Prof. Reys’s article [“Getting evi-
dence-based teaching practices into
mathematics departments: Blueprint
or fantasy?,” by Robert Reys, Notices,
August 2013] with some interest,
noticing that the article does not ad-
dress a major issue, and that is the
increasing burden of teaching being
born by badly paid and overworked
adjuncts, many of whom are quite
talented, but who operate outside the
main life of the department and who
often do not have the time nor access
to resources that would allow them
to seriously rethink their teaching
methodology.

Any serious efforts to change the
culture will have to include them, one
hopes with serious improvements
in their remuneration and working
conditions.

Judith Roitman
University of Kansas
jroitman@ku.edu

(Received November 26, 2013)

128

AMS in Arabic Means
“Yesterday”

In response to “[Contemporary pure]
math is far less than the sum of its
[too numerous] parts,” by Doron
Zeilberger, Notices, December 2013:

Opposing “rigorous” mathematical
proof to “field” (experimental) mathe-
matics as ethically/socially top down
vs. bottom up is a cultural practice
with little taxonomic value. Pure math
can be as usefully defined as math-
ematics having conceptual distance
or having no immediate application,
except for other mathematicians.
The proof as purity paradigm is gold
standard/virginity testing stuff. It is
a cultural practice, an old meme, not
aparadigm that exactly gives flight to
the imagination. Mathematical proof
is “pure” when it extends proof/
analysis/logic, and is “field” math-
ematics when it connects mathemati-
cal disciplines, and is “applied” when
it merely verifies. Verification proof
is mathematics accounting.

Field mathematics—the pure
mathematics casually located ad-
junct to proofy math and frequently
accompanied by and ambiguated
with applied mathematics—doesn’t
need much defense, and using QFT
[quantum field theory] to do so seems
to invite criticism. (If T had to make
an ignorant over-arching comment
on QFT based on conceptual distance
of the title, I would dismiss it as
magnitudinal incrementalism that
was probably visible twenty or thirty
years ago. Pure mathematics might
have a go at this.)

Partially outsourcing mathematics
to machines is a done deal but it is
annoying because of known limita-
tions (100 years of quantum physics
without quantum computers) and the
implied administrative/power rela-
tions overhead. If they weren’t dumb,
metered, and politicized and more of
them had names like “scratchpad”
instead of “megalyth-o-tron” they
would probably be better received.
How many filters does a person need
to pass through before qualifying
to use one? Similarly, “John Henry”
would probably not be a good name
for a highly politically, commercially,
or bureaucratically leveraged re-
search computer, which pretty much
includes all of them. A concern that
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their use is in equal measure “in-
sipid” as “intrepid” reflects a certain
amount of self-understanding. We
are sometimes so, why not somewhat
they? Fair allocation minimally re-
quires excess flop/hrs. (or quantum
equivalent). What are the benefits to
managing an unused supercomputer
(probably similar to pet ownership)?
What I liked about Doron’s letter
was that it was all over the place and
unabashedly wrong. That is called
self-expression. Thank you.

Paul Anderson

Foreign Language Department,
Chinese Program

Laney College
PAAN9042@cc.peralta.edu
paulkevinanderson@gmail.com

(Received December 7, 2013)

Outdoing the Soviets

Amusingly, and be it intentionally or
not, the December 2013 issue of the
Notices has on page 1431 an item
by Doron Zeilberger on how math-
ematics should allegedly be, while
on pages 1448-58, another item by
Christopher Hollings on the vagaries
of past Soviet ideology in mathemat-
ics. During their about seven decades
of ideological rampages, the Soviets
got to the conclusion, see (4) on
top of page 1455, that: “Neverthe-
less, the growth of practical appli-
cations should not hinder work in
abstract areas of mathematics.” As
for Zeilberger, he is—more than two
decades after the pitiful collapse
of the Soviets, who managed to go
down the drain without one single
bullet being fired—trying to delight
us with some “radical” views of how
mathematics should be, views which
are, to put it mildly, incomparably
more raw, primitive, and one-sided
than those of the so shamefully and
utterly failed and fallen Soviets. Such
a strange contrast is, of course, one
of the assumed individual privileges
in democracy. And as those familiar
with Systems Theory may know, the
more complex an entity, the more its
various instances may spread across
a wider spectrum. And we humans
are, beyond our bodies, by far the
most complex entities known to us on
Planet Earth. Well, Zeilberger either
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knows this or not, or likes it or not,
but he does manage to prove how
wide the spectrum is across which we
do indeed happen to spread.

By the way, the Soviets, among oth-
ers, fell because of considerably less
raw and primitive views than those
of a Zeilberger.

Democracies do not seem to fall
because of types like Zeilberger.

Elemer E. Rosinger
Emeritus Professor
Department of Mathematics
and Applied Mathematics
University of Pretoria,

South Africa
eerosinger@otmail.com

(Received December 9, 2013)

The Purpose of Rigor

Regarding Doron Zeilberger’s opin-
ion piece in the December 2013
issue of the Notices: The purpose
of mathematical rigor is not so that
mathematicians can feel superior to
physicists, although this may be a
fringe benefit. Rather, the purpose of
rigor is to know what is actually true.
After Cauchy “proved” in 1821 that
the limit of a sequence of continuous
functions is necessarily continuous,
Abel showed that “this theorem ad-
mits exceptions.” Many theorems
in the physics literature likewise
admit exceptions. These results are
not meaningless or worthless, but
they do challenge mathematicians to
find the version that holds without
exception. Rigorous mathematics is
not the only kind, but it does have a
valuable place.

Brian C. Hall

Professor of Mathematics
University of Notre Dame
bhall@nd.edu

(Received December 10, 2013)

Reply from Zeilberger

Nothing is absolutely certain in
this world, and a traditional rigorous
proof gives you only the illusion of
absolute certainty, since, until now,
with a few exceptions (most notably
the Four Color Theorem and Kepler’s
conjecture), such proofs were done
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entirely by humans, who are notori-
ously unreliable.

Most of the “crises” of mathemat-
ics were illusionary, assuming the
fictional infinity and the “continu-
ous” “real” numbers. They are akin
to crises in religion where good guys
suffer and God is not behaving as he
(or she or it) should, and to millions
of pages of scholastic drivel.

Traditional “rigorous proof” is yet
another religious dogma, which did
some good for a long time (as did
the belief in God). Of course, it is not
surprising that people can get deeply
offended when someone denies the
existence of their “God”.

But the God of (alleged!) rigorous
proof is dead (well, not yet, but it
should be!), and we should allow di-
versity. Rigorous proofs should still
be tolerated, but they should lose
their dominance, and the Annals of
Mathematics should mostly accept
articles with mathematics that has
only semi-rigorous or non-rigorous
proofs (of course, aided by our much
more powerful and superior silicon
brethren), because this way the ho-
rizon of mathematical knowledge
(and mathematical insight!), broadly
defined, would grow exponentially
wider.

Doron Zeilberger
Rutgers University
zeilberg@math.rutgers.edu

(Received December 11, 2013)

Further Remarks on a Quartic
Algorithm

As noted in Dan Jurca’s October 2013
Notices letter, when approximating
/S starting from some initial guess
X, the default form of the Bakhshali
algorithm (Notices August 2013, page
845) is indeed less computationally
efficient than simply performing
two steps of the (Newton-) Heron
algorithm

Xpe1=(Xp+S/X0)/ 2.

However, a little algebra shows that a
single step of the Bakhshali method
can be written as

2(x2 + §)2 — (x2 - §)2
4x, (x5 + S)

Xn+l =

’

which is still quartically conver-
gent, but now involves only one
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division. Since division is the major
bottleneck—taking between five and
twelve times longer than multiplica-
tion on modern computer processors
[1] [2]—this single-step Bakhshali
method remains computationally
competitive with two steps of Heron's
method.

Incidentally, the Bakhshali algo-
rithm can be derived by applying
the multiplicity-corrected Newton’s
method to the function

(x* - 8)°
3x2+ S

f(x) =

or moreover to 3/ (x) or to f(x)” for
integers n>0. However, just as
with Heron’s method, the algo-
rithm itself came a millennium
or so before Newton’s method
was around to provide such post-hoc
“derivations” of these inspirational
historical formulae.

[1] |http://www.1'nte'| .com/ I
l[content/www/us /en/|
[@rchitecture-and -
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Two-Person Fair
Division of Indivisible
[tems: An Efficient,
Envy-Free Algorithm

Steven J. Brams, D. Marc Kilgour, and Christian Klamler

he problem of fairly dividing a divisible

good, such as cake or land, between

two people probably goes back to the

dawn of civilization. The first mention

we know of in Western literature of
the well-known procedure, “I cut, you choose,”
occurs in the Hebrew Bible, wherein Abraham
and Lot divide the land that lies before them,
with Abraham obtaining Canaan and Lot obtaining
Jordan (Genesis 13: 5-13).

Since then, a plethora of procedures have been
suggested for dividing a cake among two or more
players [8], [14]. Although not all the desirable
properties one might hope for can be achieved with
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a finite number of cuts [3], this problem pales in
comparison to that of fairly allocating indivisible
items.

In this paper we present two algorithms for
the fair division of indivisible items between two
players. Both assume that the players can strictly
rank the items from best to worst, and both use
only these rankings to make allocations. Unlike
more demanding fair-division algorithms, which
ask players to give more detailed information
(e.g., specify their cardinal utilities for each item)
or make more difficult comparisons (evaluate
different bundles of items), our algorithms are easy
to apply and, therefore, eminently practicable.

The first algorithm asks the two players to
make simultaneous or, equivalently, independent
choices in sequence, starting with their most
preferred item and progressively descending to
less preferred items that have not already been
allocated. The second algorithm requires that the
players submit their complete preference rankings
in advance to a referee (or computer).

The first algorithm was proposed by Brams
and Taylor [8] as a “query step” for allocating
indivisible items fairly between two players, A and
B. We call it BT, and it works as follows: At any
point in the allocation process, if A and B name
different items, BT allocates them immediately;
if A and B name the same item, it goes into a
“contested pile”, whose items are not allocated.

The second algorithm, which we describe in
the section “The BT and AL Algorithms” and call
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AL, also allocates items sequentially, one to each
player, based on the players’ rankings. Like BT, it
does not necessarily allocate all the items—some
may go into a contested pile.

However, under AL the contested pile is nev-
er larger, and may be smaller, than under BT.
Furthermore, if the contested piles under AL and
BT contain the same number of items, each player
will never strictly prefer the items it receives
under BT (we henceforth use the gender-neutral
“it” rather than “he” or “she” for a player).

BT and AL share the property that, when they
assign an item to one player, they simultaneously
assign another item to the other player. Thus, A
and B are allocated equal numbers of items.

The allocations given by both BT and AL are
envy-free (EF): A’s items can be matched pairwise
to B’s items such that A prefers each of its items
to the corresponding item of B; there is a similar
pairwise matching of B’s items to A’s. But only
AL gives EF allocations that are efficient or Pareto-
optimal (PO): There is no other EF allocation that
is at least as good for A and B and better for one
or both players, based on their rankings. (If there
were such an allocation, the AL allocation would
be Pareto-dominated.)1 Also, AL allocations are
maximal: There is no EF allocation that allocates
more items to the players.

Both BT and AL are manipulable: It is possible
for a player to improve its allocation by ranking
items insincerely (i.e., not according to its prefer-
ences). Practically speaking, however, successful
manipulation of either algorithm would require
that a player have essentially complete informa-
tion about the preference ranking of its opponent,
which is highly unlikely in most real-life situations.

In many disputes, including divorce and estate
division, only an allocation in which the disputants
receive about the same number of items will be
perceived as fair. BT and AL work well for that
purpose, especially when they allocate most, if not
all, the items. While BT is a paragon of simplicity,
AL is not much harder to apply, as we show in “The
BT and AL Algorithms”, which should facilitate its
acceptance as a practicable procedure.

The paper proceeds as follows. In the next
section we define envy-freeness formally, illustrate
it with examples, provide a necessary and sufficient
condition for an allocation to be EF, and give a
condition on the players’ preferences that is
necessary for the existence of an EF allocation.

Lo BT allocation, like an AL allocation, is what we later call
locally Pareto-optimal: There is no other allocation of the
items that each algorithm allocates that is at least as good
for A and B and better for one or both players. Because an
AL allocation can allocate more or better items to one or
both players, however, it may globally Pareto-dominate a
BT allocation.

FEBRUARY 2014

In “The BT and AL Algorithms” we define and
illustrate BT and AL, showing that AL generally
allocates more or better items to the players
than BT. Then we use AL to prove that the
necessary condition of “Envy-Free Allocations” is
also sufficient for the existence of an EF allocation.

In “Other Properties of EF Allocations” we prove
that an AL allocation is PO and maximal, but it,
like a BT allocation, may be manipulable, as we
illustrate with an example.

In “The Probability of Envy-Free Allocations”,
we calculate the probability that an EF allocation of
all the items exists when all possible rankings are
equiprobable. As the number of items approaches
infinity, this probability approaches 1. In the
last section, “Summary and Conclusions”, we
summarize our results, comparing AL and BT to
other fair-division algorithms, and draw several
conclusions.

Envy-Free Allocations
Consider the task of dividing a set of indivisible
items between two players, A and B, so that each
player receives an equal number of items. For
example, if the items are numbered 1 to 6, the
allocation might be {1,3,5} to A and {2,4,6} to B.
We assume that each player can strictly rank all
the items from most to least preferred. Roughly
speaking, an allocation is EF if each player prefers
the subset of items it receives to the subset of items
received by its opponent and so is not envious.
The precise definition of envy-freeness uses only
the players’ rankings to assess whether each player
prefers its own subset of items to its opponent’s
subset. Denote the sets of items received by A
and B by S, and S, respectively. Recall that
IS4l = |Sgl. An allocation (S4, Sg) is EF iff there
exist an injection f4 : S — Sp and an injection
fs : Sg — S4 such that for each item x received
by A, A prefers x to f4(x), and for each item y
received by B, B prefers y to fg(y). Thus, a player
pairwise prefers the items it receives in an EF
allocation to the items received by its opponent.
Suppose the players’ preferences for items,
going from left to right, are as indicated below:

Example 1.

123456

1246135
The underscored allocation {1,3,5} to A and
{2,4, 6} to BisEF,as demonstrated by 1-1 mappings
from A’s items to B’s, and B’s items to A’s, such
that each player prefers each of its own items to the
item of its opponent to which it is mapped. These
mappings are: for A, fa(1) = 2,fa(3) = 4,fa(5) = 6;
and for B, fg(2) = 1, fz(4) = 3, and fz(6) = 5. To
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simplify notation, we write these mappings as
fa(1,3,5) = (2,4,6) and f5(2,4,6) = (1,3,5).

We emphasize that each player pairwise prefers
its own item to the corresponding item of its
opponent. For example, A receives item 3 and
prefers 3 to f4(3) = 4, which B receives, but A
does not prefer item 3 to item 2, another item
received by B. However, A prefers item 1, another
item it receives, to item 2. In this example, the
functions f4 and fp are inverses, but this property
is not essential and, indeed, cannot be achieved
in some examples, as we will show later.

By comparison, the allocation {1, 2,3} to A and
{4,5,6} to B is not EF. This can be proven by
checking exhaustively all possible injections from
{1,2,3} to {4,5,6} and from {4,5,6} to {1, 2,3},
showing that no pair of them has the required
property. But there is an easier proof, based on
the following characterization:*

Lemma 1. An allocation is EF iff, for each item x
received by a player (say, A), the number of items re-
ceived by B that A prefers tox is not greater than the
number of items received by A that A prefers to X.

Proof. To show that the given property is necessary
for an allocation to be EF, suppose that A receives
x in an EF allocation, and it prefers r of its own
items to x, and s of B’s items to x. We show that
¥ > s. Consider the mapping f4 defined above.
Suppose that, for some item y received by A, fa(y)
is preferred to x. Because A prefers y to fa(y), A
must also prefer y to x. It follows that each of B’s s
items that A prefers to x must be the image under
fa of an item received by A that A also prefers to x.
There are r such items, which implies that ¥ > s. A
similar argument, beginning with an item received
by B, completes the proof of necessity.

To show sufficiency, suppose that an allocation
satisfies the given property. We construct a 1-1
mapping, f4, of A’sitems to B’s items such that A al-
ways prefers the item it receives to the correspond-
ing item that B receives. To see that A must re-
ceive its most preferred item, X1, assume otherwise.
Then B receives at least one item that A prefers
to the most preferred item it receives, whereas A
receives no such items, contradicting the required
property. Therefore, x; must have been assigned to
A.Let x denote A’s kth most preferred of the items
it receives, and define f4 (xx) to be A’s kth most pre-
ferred of the items B receives. Because the number
of B’s items that A prefers to xx cannot exceed k—1,
it follows that A prefers xx to fa (xx). The mapping
fa thus defined and the mapping fp constructed
analogously show that the allocation is EF. O

2As pointed out by a referee, our characterization is related
to Hall’s marriage theorem [10]. Hall’s marriage condi-
tion is stated in terms of set cardinalities, whereas ours
incorporates preferences (relations on sets).
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An alternative way to state Lemma 1 is as
follows: If an allocation is EF, then whenever a
player receives an item x, it must also receive at
least half of all the allocated items that it strictly
prefers to x. Assuming that all items are allocated,
if a player receives an item x that it ranked kth in
its original ranking, then it must also receive at
least (k — 1)/2 items that it strictly prefers to x.

It is clear that the allocation {1,2,3} to A and
{4,5,6} to B in Example 1 is EF for A: Because A
receives its top three items, it cannot prefer any
items that B receives.

But the story is different for B, as can be shown
using Lemma 1. It receives item 5, which is 6th in
its ranking, and prefers only two of the items it
receives, 4 and 6, to item 5. The allocation cannot
be EF for B, because it prefers more items in A’s
subset (three: 1, 2, and 3) than in its own subset
(two: 4 and 6). (In general, in an EF allocation a
player must receive its most preferred item, and it
cannot receive its least preferred item.) Another
proof can be based on the fact that B receives item
4, which it ranks 2nd, but it receives no item that
it prefers to item 4 (A receives item 2, which B
ranks 1st).

We can now characterize all pairs of preference
rankings for which EF allocations exist. Specifically,
we present Condition D below, which we will show
is necessary and sufficient for the existence of
an EF allocation. The proof of necessity is given
below; the proof of sufficiency will be given after
we describe AL, which we show in the next section
always produces an EF allocation if Condition D is
satisfied.

Assume there are n items that A and B rank.
For an EF allocation to be possible, the number of
items allocated to each player must be the same,
so the total number of items allocated is even.

Before stating Condition D, we begin with a
sequence of simpler conditions. We say that A’s
and B’s rankings satisfy Condition C(k) iff

Condition C(k). The set consisting of A’s k most
preferred items is equal to the set consisting of B’s
k most preferred items.

Note that Condition C(k) refers to an equality
of sets: A’s ranking of its first k items may or may
not be the same as B’s. What is required is that the
same k items be most preferred by A and by B.

It turns out to be important whether C(k) is
true when k is odd. In Example 1, where n = 6,
C(k) is false for every odd k:

k = 1: {1} for A is different from {2} for B.

k =3:{1,2,3} for A is different from {2, 4,6} for B.

k=5:{1,2,3,4,5} for A is different from {2,4,6,1, 3}
for B.
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We can now state Condition D in terms of
Condition C(k).

Condition D. Condition C(k) fails for all odd values
ofk,1 <k <n.

In other words, Condition D states that, for all
odd k, at least one of A’s top k items is not a top k
item for B, which, as we showed above, is true in
Example 1.

Note that Condition D cannot be true if n is
odd, because C(k) must hold for k = n (as the set
of all items is the same for both players). Thus,
Condition D can be true only if the number of
items to be allocated is even.

An EF allocation is complete iff it allocates all n
items. Then our first theorem gives the following
characterization.

Theorem 1. Let n be even. A pair of strict pref-
erence rankings of n items admits a complete EF
allocation iff it satisfies Condition D.

Proof (of Necessity). To show that Condition D
must hold in order for an EF allocation of all
n items to exist, we show that if Condition D
fails, then there can be no EF allocation. Now
Condition D fails iff there is some odd value of k
such that C(k) holds. Assume such a value of k,
and let S be the subset consisting of A’s (or B’s)
top k items.

Suppose that an EF allocation exists. Because
S contains an odd number k of items, it follows
that one of A and B, say A, must receive fewer
than half of the items in S. Suppose that A receives
r < k/2 items from S. Moreover, because each
player must receive the same number of items in
an EF allocation, A must receive at least one item
that does not lie in S; that is, it is not among A’s k
most preferred items.

Let y be the item most preferred by A among
the items that A receives that are notin S. If y is
hth ranked by A in A’s original ranking, we must
have h > k + 1. Moreover, A receives exactly r
items that it prefers to y. According to Lemma 1,
we must have r > (h—1)/2 = k/2. But, as noted
above, r < k/2. This contradiction shows that no
EF allocation can exist, establishing Condition D
as necessary. O

We postpone the proof of sufficiency, which
depends on the performance of AL. We describe
this algorithm and BT next.

The BT and AL Algorithms

In this section we formally state the rules of BT
and AL. Both algorithms allocate a set of indivisible
items in a series of stages. In the case of BT,
the players can be thought of as simultaneously
or independently choosing the most preferred
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unallocated item at each stage, so the players
need not give a complete ranking of items at the
outset. By contrast, in the case of AL the players
submit their complete rankings to a referee (or
a computer), which makes choices solely on the
basis of the rankings.

BT Rules

1) Players A and B name their most preferred
item of those that have not yet been allocated.

2) If A and B name different items, each player
receives the item it names. If they name the same
item, it goes into the contested pile (CP).

3) If all items have been allocated to the players
or put in CP, stop. Otherwise, go to step 1.

AL Rules

We begin with an informal description of AL, which
also works by descending the preference rankings
of the players. If the players have not yet been
assigned any items, then if there is an item at the
top of both players’ rankings, it is put into CP, and
this step is repeated until each player most prefers
a different unallocated item. When this happens,
AL assigns each player its preferred item.

After the first assignment of items to the players
is made, new assignments are made

(i) when the players prefer different items or

(ii) when they prefer the same item, provided
a new assignment—of the preferred item
to one player and a less preferred item to
the other—does not cause envy and so is
feasible.

When there is a commonly preferred item,
the feasibility of assigning it to either player is
assessed, one player at a time. Only if there is no
such assignment is the commonly preferred item
put in CP.

Formally, we start AL at stage 0, which may be
repeated. In each stage t (t =0,1,2,...), exactly t
items have already been assigned to each player.
AL proceeds until there are no unallocated items.

Stage 0

Compare the most preferred unallocated items
of A and B. If they are identical, place the commonly
preferred item in CP and repeat stage 0. If they
are different, assign each player its most preferred
item. Then go to stage t = 1.

Stage t

1) If one unallocated item remains, place it in
CP and stop. If no unallocated items remain, stop.
Otherwise, compare A’s and B’s most preferred
unallocated items. If they are the same, go to step
2. If they are different, assign each player its most
preferred item and go to stage t + 1.
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2) Determine whether the unallocated item that
A and B both most prefer, say i, which we call
the tied item, can be assigned to either A or B
as follows: Let jai, ja2,... represent, in order of
A’s preference, the unallocated items that A finds
less preferable than i. Let jgi, jg2,... represent, in
order of B’s preference, the unallocated items that
B finds less preferable than i.

3) Consider all possible assignments of i to
B and ja; first, then ja», etc.,, to A. Such an
assignment is feasible as long as the number of
items assigned to B or unassigned, including i,
that A prefers to the compensation item it receives,
ja1 OF jao OF ..., is at most t.° Stage t + 1 must
be implemented for each feasible assignment of
i to B. If the number of items assigned to B, or
unassigned, that A prefers to ja1, including i, is
greater than t, then no assignment of i to B is
feasible.

4) Consider all possible assignments of i to A
and jp; first, then jp, etc., to B. Such an assignment
is feasible as long as the number of items assigned
to A or unassigned, including i, that B prefers to
its compensation item, jg; or jgz or ..., is at most t.
Stage t + 1 must be implemented for each feasible
assignment of i to A. If the number of items
assigned to A, or unassigned, that B prefers to jzi,
including i, is greater than t, then no assignment
of i to A is feasible.

5) If the assignment of i to A is infeasible, and
the assignment of i to B is infeasible, then put
i in CP. Then repeat stage t for the remaining
unallocated items.

Whereas BT gives only one EF allocation, AL may
give many, because for t > 1 there may be multiple
ways to implement AL, as we will illustrate later.
Although AL is more complex than BT, it is not
so for the players, who only need to submit their
rankings of items.

The chief difference between BT and AL is in
how CP is defined, as we next illustrate with two
examples. In each example we assume that the
players are sincere, ranking each item according to
their true preferences. Later we assume that the
players may not be sincere; in particular, they may
seek to manipulate BT or AL to their advantage.

Example 2.
A: 1234
B: 2341
When BT is applied to Example 2, A indicates
that its first choice is item 1, and B that its first
choice is item 2; by BT rule 2, the players receive

their preferred items because they are different.
At stage 2 both A and B indicate that item 3 is

3The “compensation” is in lieu of not receiving the tied item
i, which A prefers.
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their preferred item of those remaining, so it goes
into CP, as does item 4 at stage 3, by BT rule 2. In
summary, A receives item 1, B receives item 2, and
CP = {3,4}.

Under AL the players’ top-ranked items—1 for
A and 2 for B—are different, so item 1 goes to A
and item 2 goes to B in stage 0. Now proceed to
stage t = 1. Of the unallocated items, both players
most prefer i = 3, making it the tied item. For A,
one unallocated item, ja1 = 4, is less preferred
than 3. We consider assigning 3 to B and j4; = 4 to
A, but then B will be assigned two items, namely,
2 and 3, that A prefers to js; = 4, which exceeds
t = 1, so we cannot assign 3 to B.

For B, too, the only unallocated item less
preferred than i = 3 is jg; = 4. We consider
assigning 3 to A and jp; = 4 to B. This assignment
is feasible, because B prefers only one item to
Jjp1 = 4 that is allocated to A (item 1). Thus, AL
produces the allocation S5 = {1, 3}, Sp = {2,4},
in which CP = @. Example 2 shows that AL may
sometimes produce a complete allocation when BT
does not.

Example 2 also shows that, under AL, the 1-1
mappings f4 and fg—of A’s items into B’s and
B’s into A’s—need not be inverse functions. In
particular, the allocation given by AL is EF for A
because f4(1,3) = (2,4), and it is EF for B because
fz(2,4) = (3,1).*

Our next example shows that AL, as well as BT,
may produce only partial allocations, and these
allocations may differ.

Example 3.

A: 123456
B: 235416

When BT is applied to Example 3, A and B
initially receive their most preferred items, 1 and 2,
respectively. Next, because both players name item
3, it goes into CP. Then A and B receive the items
they name, 4 and 5, respectively. Finally, both
players name item 6, so it goes into CP. Altogether,
A receives {1,4}, B receives {2,5}, and CP = {3, 6}.
This allocation is EF, where f4(1,4) = (2,5) and
f3(2,5) = (1,4) or (4,1).

Under AL, because the players’ top-ranked items
are different, item 1 goes to A and item 2 goes to
B in stage 0. In stage 1 both players prefer i = 3.
For A the most preferred unallocated item less
preferred than i = 3 is ja1 = 4. But we cannot
assigni = 3to B and ja; = 4 to A, because B would

4The mappings fa and fp are inverses iff fp (fa(x)) = x for
all x in A’s subset. When an EF allocation exists despite a
common preference (e.g., for item 3 at stage t = 1 in Exam-
ple 2), it can be shown that the mappings fa and g cannot
be inverses. Thus, in Example 2, fo(1) = 2, so fp(fa(1)) =
3 # 1.
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be assigned more than one item (namely, items 2
and 3) that A prefers to jx; = 4.

For B the first unallocated item less preferred
than i = 3 is jg; = 5. We can assigni =3 to A
and jp; = 5 to B, because only one item assigned
to A (item 3) is preferred by B to jz; = 5. But we
cannot proceed further, because after jg; = 5, the
next unallocated item in B’s preference ranking is
Jjg2 = 4. However, assigning i = 3 to A and jg, = 4
to B is infeasible, because more than one item—in
fact, two items, namely, 3 and 5—that B prefers
to jg2 = 4 would be unallocated or assigned to
A. Therefore, there is only one way to proceed to
stage 2, namely by assigning items 1 and 3 to A
and items 2 and 5 to B.

In stage 2, A and B both prefer item 4 and the
next most preferred item 6. As already noted, in an
EF allocation neither player can be assigned item
6, the common last choice. Consequently, both 4
and 6 are put in CP. In summary, AL produces
exactly one allocation in Example 3: S4 = {1, 3},
Sg = {2,5}, and CP = {4,6}.

Example 3 illustrates another difference between
BT and AL. Neither algorithm may produce a
complete allocation. Each yields a CP that contains
two items, one of which is item 6. In the case of
BT, the other item is 3, whereas under AL it is 4.
Necessarily, the AL and BT allocations also differ,
with S4 = {1,4} under BT and S4 = {1, 3} under
AL. Note that Sz = {2,5} under both BT and AL.

Consider two allocations, (S4, Sg) and (5%, Sg),
where all four subsets are of equal cardinality
but do not necessarily contain the same items.
We say that (S4, Sg) Pareto-dominates (S, Sg) iff
there are injections ga : Sa — S, and gg : Sg — Si
such that A finds x at least as preferable as ga(x)
for all x € S4, B finds y at least as preferable as
gp(y) for all y € Sg, and for at least one of x or y
this preference is strict. In words, one allocation
Pareto-dominates another if it is at least as good
for both players and better for at least one of them,
based on pairwise comparisons.

Note that the Pareto-comparison of (S4, Sg) and
(S%4,Sp) depends only on the assumptions that the
four subsets have equal cardinality, that S, does
not overlap Sg, and that S, does not overlap S;. In
particular, the sets of items allocated, S4 U Sp and
S’y USg, need not be identical, making it possible to
Pareto-compare two allocations when unallocated
items remain or when the CPs are different.

In Example 3, A prefers its AL allocation, {1, 3},
to its BT allocation, {1,4}, because while both
allocations contain item 1, A prefers item 3 to
item 4. Here B is indifferent between its BT and AL
allocations, which are both {2,5}.

Thus the AL allocation Pareto-dominates the BT
allocation in Example 3. Note also that both players
agree that CP = {3, 6}, given by BT, is preferable
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to CP = {4, 6}, given by AL, reflecting the fact that
one player (A) prefers its AL allocation to its BT
allocation, while the other player (B) is indifferent.

Examples 2 and 3 illustrate the following
proposition:

Theorem 2. The number of items allocated to the
players under AL is never less, and may be more,
than under BT. If the number of items allocated to
the players is the same under BT and AL but some
items are different, then the AL allocation Pareto-
dominates the BT allocation.

Proof. A commonly preferred item i, which we
called a tied item, may be assigned to a player
under AL but is never assigned under BT. Thus,
one or more tied items may go into CP under BT
that would not under AL, so the number of items
allocated under AL may be greater and will never
be less than the number allocated under BT.
When a tied item is allocated under AL, the con-
sequence may be the creation of later tied items,
which would not have occurred if the tied item
had been put in CP, as it would have under BT.
Thus, the total number of items in CP may be the
same as under BT, but ties that occur later involve
less preferred items, so an AL allocation—even if
it does not reduce the cardinality of CP—Pareto-
dominates the corresponding BT allocation if they
differ. O

Theorem 3. An AL allocation is a maximal EF allo-
cation: There is no other EF allocation that allocates
more items to the players.

Proof. AL continues until all items are either as-
signed to one player or put in CP. Hence, any EF allo-
cation that contains an AL allocation must transfer
some items from CP to the players. But AL puts an
item, i, in CP only if it is tied and the assignment
of i to either player and any less preferred item to
its opponent cannot preclude the opponent from
being envious. Thus, items cannot be transferred
from the CP to the AL allocation. O

This is not to say that AL finds all maximal EF
allocations. In Example 3, we found two maximal
EF allocations—of two items to each player: one
by AL and a different one by BT—but the AL
allocation Pareto-dominates the BT allocation.
Indeed, Theorem 2 shows that such dominance
must be the case when these two allocations are
the same size but not identical.

So far we have shown that, for any pair of strict
preference rankings of n items:

1. an AL allocation may give each player more
items than the BT allocation;
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2. an AL allocation may give each player the
same number of items as the BT allocation,
but the sets may not be the same, in which
case the AL allocation Pareto-dominates
the BT allocation,;

3. the AL and BT allocations may be exactly
the same.

Possibility 3 occurs in Example 1, wherein both
algorithms give {1,3,5} to A and {2,4,6} to B.
It also occurs in two extreme cases: (i) when the
players rank all items exactly the same (in which
case all items go into CP) and (ii) when their
rankings are diametrically opposed and n is even
(in which case each player will obtain its more
preferred half of the items and CP will be empty).

It is apparent that BT always gives an EF
allocation, because it allocates items to players
only when they prefer different ones at the same
time. This implies that {4 and f are inverses. But
recall that Example 2 showed that it is possible that
the mappings of an AL allocation are not inverses.
Examples 2 and 3 also showed that AL may give
larger or more preferred EF allocations than BT.

Earlier we proved the necessity part of Theo-
rem 1: that Condition D—for every odd k,1 < k < n,
at least one of A’s top k items is not a top k item of
B—is necessary for the existence of an EF allocation
of all nitems, i.e., a complete EF allocation. We next
show that Condition D is also sufficient by adding
the proof of sufficiency to Theorem 1, which we
repeat below.

Theorem 1 (continued). Let n be even. A pair of
strict preference rankings of n items admits a com-
plete EF allocation iff it satisfies Condition D.

Proof (of Sufficiency). We show that Condition D is
sufficient for the existence of a complete EF allo-
cation by proving that AL produces a complete EF
allocation unless Condition D fails. Specifically, we
show that, if AL puts any item in CP, then for some
odd k, the subset comprising A’s k most preferred
items must equal the subset comprising B’s k most
preferred items.

Suppose that we are applying AL to find an EF
allocation. At stage 0, if A’s and B’s top-ranked
items are the same, AL will put this item in CP.
Thus, if AL puts an item in CP at stage 0, then
Condition C(k) must be satisfied for k = 1;i.e., A’s
and B’s most preferred items are identical.

Next suppose that A’s and B’s top-ranked items
are different and that AL has reached stage t > 0,
so that both players have received t items without
violating envy-freeness. For an item to be added to
CP, it must be the case that (i) both players prefer it
to all other unallocated items (i.e., it is a tied item)
and (ii) the allocation of the tied item to either
player will cause its opponent to be envious.
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Assume the tied item is i. If it is possible to as-
signito B and ji;—A’s most preferred unallocated
item after i—to A while preserving envy-freeness,
the number of items assigned to B, including i, that
A prefers to ja; must be at most t. If it is not pos-
sible to assign i to B and j4; to A, then the number
of items assigned to B that A prefers to js; must
exceed t. Because only t items were assigned to
each player prior to i, then the number of items
assigned to B, including i, that A prefers to ja;
must equal exactly t + 1. In particular, i itself plus
the items previously assigned to A or to B must be
the first 2t + 1 items in A’s preference ranking.

An analogous argument can be made for B. If it
is not possible to assign i to A and jp; to B, then
it must be the case that the subset consisting of i,
the items previously assigned to A, and the items
previously assigned to B must be the first 2t + 1
items in B’s preference ranking.

When the players have the same 2t + 1 items in
their preference rankings—no matter which player
receives tied item i—Condition C(k) holds for k =
2t +1, so Condition D fails. To conclude, AL puts an
item into CP when Condition D fails, which means
that Condition C(k) must hold for some odd k. On
the other hand, when Condition D holds, AL never
puts an item in CP, so a complete EF allocation
must exist. O

Although Condition D is both necessary and
sufficient for the existence of an EF allocation, it
does not say what the EF allocation(s) are.” For that
purpose we need AL.

As noted previously, both AL and BT always
allocate to each player the same number of items,
although AL may allocate more items in toto
(Example 2). Therefore, the number of items
allocated to CP, if it is not empty, will be even or
odd depending on whether the total number of
items to be allocated is even or odd. In particular,
if n is odd, then CP must contain at least one item.

We showed earlier (Theorem 2) that, if AL and
BT give different EF allocations to the players,
then AL’s allocation must include more, or more
preferred, items; furthermore, it gives a maximal
EF allocation (Theorem 3). We next assess how well
AL and BT do according to other properties.

Other Properties of EF Allocations
We begin with an example that illustrates how AL
may produce more than one complete EF allocation.

Example 4.
A: 12345678
B: 34567812

SWe postpone until the next section examples showing that
AL may produce multiple EF allocations.
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In stage 0, AL assigns item 1 to A and item 3
to B. In stage 1, AL assigns item 2 to A and item
4 to B. Then, in stage 2, there is a tie on item 5.
The tie cannot be resolved by assigning i = 5 to B,
because ji; = 6, and the assignment of items 3, 4,
and 5 to B would mean that of the items that A
prefers to item 6, fewer than half (i.e., only items 1
and 2) are assigned to A.

But the tie can be resolved by assigning i = 5
to A, in which case B can receive either jg; = 6 or
Jjs2 = 7. Thus stage 3 can begin with A assigned
{1,2,5} and B assigned {3, 4, 6}, or with A assigned
{1,2,5} and B assigned {3,4, 7}. In the first case,
A is assigned item 7 and B item 8 in stage 3; in
the second case, A is assigned item 6 and B item
8 in stage 3. The two resulting EF allocations are
underscored below:

iA: 12345678 (i) A:
B: 34567812 B:

In (i) a player’s minimal ranking for an item it
receives is 7th (item 7 for A), whereas in (ii) this
minimal ranking is 6th (item 6 for A and item 8 for
B). We call (ii) the maximin allocation: It maximizes
the minimum rank of the players, which may be
desirable in certain situations.

A complete allocation is called locally Pareto-
optimal (LPO) if there is no other allocation of the
same items that Pareto-dominates it; i.e., the items
cannot be redistributed between the players so
that each player is at least as well off, and some
player is better off, where comparisons are always
pairwise. For example, if there are n = 2 items and
A prefers item 1 to item 2 and B prefers item 2 to
item 1, then the allocation of 2 to A and 1 to B is
not LPO, because both players would be better off
if 1 were assigned to A and 2 to B. Recall from the
“The BT and AL Algorithms” section that we defined
the Pareto-optimality of allocations that were not
constrained by the “same items” condition.

Call an allocation sequential if it assigns each
player its most preferred item when it is that
player’s turn to choose according to some se-
quence (e.g., ABAB or AABB). Note that the players
need not alternate in a sequence, though each
player must have the same number of turns to
choose. The resulting allocation of items, called a
sincere sequence of choices, clearly depends on the
sequence.’

Theorem 4 (Brams and King, 2005). An allocation
of a fixed set of items is LPO iff it is the product of a
sincere sequence of choices.

6 Choices may be strategic, not sincere, if the players know
each other’s preferences. Backward induction can then be
used to determine subgame perfect Nash equilibria using
algorithms discussed in [12], [7], [9, chs. 2 and 3], [2, ch. 9],
and [13].
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Strictly speaking, BT and AL are not sequential
algorithms, because items are assigned to the
players simultaneously. But if at some stage the
players’ first choices are different, then the players
can be considered to receive items in either order,
AB or BA, because the items received by A and B
would be the same. Therefore, when A and B most
prefer (and receive) different items, the assignment
can be considered as part of a sincere sequence of
choices.

Now suppose that, at some stage, the players’
top choices are the same. Under BT, this item
always goes into CP and hence will not be part of
the allocation to A and B. Under AL, by comparison,
this item will go into CP iff the item cannot be
assigned to either player so as to maintain envy-
freeness. Nonetheless, the resulting allocation will
be LPO under both algorithms in the sense that
no reallocation of items can Pareto-dominate what
each algorithm yields, as we next prove.

Theorem 5. Both BT and AL produce LPO alloca-
tions.

Proof. We have already noted that the BT allocation
of items that do not end up in CP is a sincere se-
quence of choices. To show that the same is true of
an AL allocation, we need only check that it is true
at any point when both players prefer the same
item. Suppose that the tied item, i, is assigned to B,
while some compensation item, ja; or ja» or ...,
is assigned to A. Recall that jai, ja2,... represent,
in order of A’s preference, the unallocated items
that A finds less preferable than i. Clearly, an al-
location in which B receives i and A receives ja;
is the result of a sincere choice sequence, in the
order BA. If B receives i and A receives, say, jan
where h > 1, then the allocation is the result of a
sincere choice sequence, B... A, where the missing
entries are determined by the eventual allocation of
the unallocated items, including jai1, ja2,..., jan-1-
(This may be considered an “out-of-order” assign-
ment in that it does not make assignments strictly
according to the players’ preferences.)

In an AL allocation, every item that is assigned
to a player who would prefer a different item
among all unallocated items receives a deferred-
compensation item, such as jin. When all items
that precede ja, in A’s order have been allocated,
it will be possible to identify a sincere choice
sequence containing equally many A’s and B’s that
corresponds to an AL allocation. By Theorem 4,
this allocation will be LPO. O

We have shown that complete allocations under
BT and AL are both EF and LPO, but partial
allocations will satisfy both properties only for the
items that are allocated to the players (i.e., that do
not go into CP). Moreover, as Theorem 2 shows,
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when a BT allocation produces the same number of
items as an AL allocation but the items are different,
then the AL allocation will Pareto-dominate the BT
allocation.

The reason that the AL allocation in Example 3
Pareto-dominates the BT allocation is that, while
each algorithm allocates four of the six items to
A and B, AL assigns a preferred item (3) to A and
BT does not, which puts this item in CP before
assigning item 4 to A. This enables A to do better
under AL than it does under BT without changing
the allocation to B (but changing the contents of
CP).

We note that LPO allocations need not be EF. In
Example 2, for instance, the allocation of {1,2} to
A and {3,4} to B is LPO in that any other allocation
of the four items is less preferred by A. But B
might envy A (for receiving the two items that
bracket its two middle items), so we call such an
allocation envy-possible (it does not ensure envy).
In contrast, allocating {2,4} to A and {1,3} to B
is envy-ensuring [6], because it ensures that each
player envies the other.

In Example 4 both EF allocations are LPO, because
they can be produced by sincere sequences. A
sincere sequence that produces (i) is ABABABAB,
whereas a sincere sequence that produces (ii)
is ABABAABB (there are several other sincere
sequences that give each allocation).

In all examples so far in which there is a
complete EF allocation (Examples 1, 2, and 4), A
and B rank all the items differently (they also do
so in Example 3 for the four items that do not go
into CP). By contrast, if they ranked all items the
same, there would be no EF allocation, because all
items would go into CP.

It seems plausible, therefore, that different
rankings of the items by the players might be a
sufficient condition for there to be a complete EF
allocation. However, this conjecture fails for

Example 5.

A: 123456
B: 231564

Because the top k = 3 items {1, 2,3} are the same
for both A and B, Condition C(3) holds. Therefore,
Condition D fails, so by Theorem 1 there can be
no complete EF allocation.

The fact that Condition D fails in Example 5 does
not tell us what partial EF allocation is possible.
For this purpose, we need to apply AL.

In stage 0, AL assigns item 1 to A and item
2 to B. In stage 1, there is a tie on item 3. It
cannot be resolved by assigning i = 3 to either A
or B. Therefore, we must put item 3 into CP, after
which AL allocates item 4 to A and item 5 to B.
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The remaining unallocated item, 6, must then go
into CP. In summary, A = {1,4}, B = {2,5}, and
CP = {3,6}. Coincidentally, BT produces the same
EF allocation.

Our next example shows that AL can give
exponentially many EF allocations, all of which are
complete and maximin (unlike Example 4).

Example 6.
A: 1234
B: 4231

It is easy to see that AL produces two allocations:
A = {1,2} and B = {3,4}, and A = {1,3} and
B = {2,4}. Now add four more items for which the
players’ preferences copy those of Example 6.

Example 6'.
A: 12345678
B: 42318675

AL allocates the first four items in two ways, as
before, and then allocates the second four items
in two ways. Thus, there are 2 x 2 = 4 different
EF allocations in Example 6": S4 = {1,2,5,6}, Sp =
{3,4,7,8}; Sa = {1,2,5,7}, Sg = {3,4,6,8}; Sa =
{1,3,5,6}, Sgp = {2,4,7,8}; and S, = {1,3,5,7},
Sp = {2,4,6,8}.

Adding an additional four items in a similar
way produces eight different EF allocations, and
this doubling pattern continues. Examples of
this family contain n items to be allocated; AL
produces 24 distinct EF allocations, all of which
are complete and maximin. It follows that the
number of EF allocations can grow exponentially
in n, so no polynomial-time algorithm will find all
EF allocations in this family.”

But finding just one EF allocation can be done
in polynomial time by checking at every stage in
which there is a tied item at most two possible

"The rate of growth of the number of complete EF alloca-
tions in the family based on Example 6 is not maximal. For
example, it is not difficult to show that there are six dis-
tinct complete and maximin EF allocations for the following

8-item example:
A: 12345678

B: 78345612

which exceeds the four distinct EF allocations of the 8-item
example in the text. Copying preferences in the manner
discussed in the text yields an exponent of approximately
0.323n in this example, compared to 0.25n in the example
in the text. We recently discovered that Bouveret, Endriss,
and Lang [1], using a different methodology (SCI-nets), an-
alyze algorithms for finding EF and LPO allocations and
describe their computational complexity. Some of our find-
ings echo theirs (e.g., on “necessary envy-freeness”), but
others (e.g., our Condition D and our results on maximality
and manipulability) do not.
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assignments: (i) the tied item is assigned to A, with
B getting its next-best item; and (ii) the tied item is
assigned to B, with A getting its next-best item. If
both (i) and (ii) fail, the tied item goes into CP.

We need to check only the next-best item of
the player not getting the tied item because, if (i)
and (ii) fail, then no lower-ranked item will give
an EF allocation. Thus failure can be confirmed by
testing two allocations at every stage.

To conclude, ALis an exponential-time algorithm
if one wishes to generate all EF allocations. But
if one EF allocation suffices, with the algorithm
terminating at a stage as soon as one assignment
(either to one of the players or to CP) has been
found, it is polynomial time, making it applicable
to the division of large numbers of items.

Up to now we have assumed that the players rank
items sincerely.? Call an algorithm manipulable if
a player, by submitting an insincere preference
ranking, can obtain a preferred allocation.

Theorem 6. AL and BT are manipulable.

Proof. We begin with AL, for which there are two
EF allocations in Example 7:

Example 7.
(i)A: 123456 (ii)A: 123456
B: 264531 B: 264531

Allocation (i) is maximin (the lowest rank of a
player is 4th), whereas allocation (ii) is not (the
lowest rank of a player is 5th). BT gives only a
partial EF allocation—A = {1,3}, B = {2,6}, and
CP = {4, 5}—which presumably will be unsatisfac-
tory for the players compared to one of the two
complete AL allocations.

Now assume that, instead of reporting its sin-
cere preferences in Example 7, B reports its pref-
erences to be B'—interchanging items 4 and 6—
whereas A continues to be sincere. This yields the
following unique AL allocation:

Example 7’ (manipulated by B).
A: 123456
B': 246531

Thereby B obtains its top three items, whereas
without manipulation B’s allocation of these items
was only one of two possibilities—and not the max-
imin one (had this property been used to choose
between the two AL allocations without manipu-
lation). BT gives exactly the same result, so B’s
misrepresentation helps it under BT, compared
with obtaining only its top two items when it is
sincere. O

8The implications of insincere behavior are studied in [15].
Variations on the rules for making fair allocations, such as
accepting or rejecting one or more items in a round, are
analyzed in [16].
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We conclude that both AL and BT are manip-
ulable if one player (B in Example 7) knows its
adversary’s (A’s) sincere ranking and exploits its
knowledge. But such manipulation seems improb-
able, short of A’s having complete information
about B’s ranking of items, and A’s being in the
dark about the possibility of B’s misrepresentation.
Furthermore, the determination of an optimal
misrepresentation strategy, especially when the
number of items is large, is far from trivial, par-
ticularly in the case of AL because of its greater
complexity. It is further complicated if there is a
random selection from multiple EF allocations.

In the face of these difficulties, we think that
A and B, especially when using AL, are likely to
be sincere in submitting preference rankings to a
referee. This presumption is reinforced by the fact
that, if the players are sincere, they can ensure
themselves of an EF, LPO, and maximal allocation,
though it may not be complete.

The Probability of Envy-Free Allocations
There are many pairs of preference rankings for
which there is no complete EF allocation. This is
certainly true if both players rank all items the
same, but it is also true if both players agree only
on their top-ranked item, because whoever does
not obtain that item will envy the other player.
Similarly, no complete EF allocation is possible if
the two players rank only their last-choice item
the same, because whoever obtains it may envy
the other.

On the other hand, if a complete EF allocation
exists, it need not be unique, as we showed with
several examples. To calculate the probability of a
complete EF allocation, fix A’s preference ranking
as 12 3...and assume all preference rankings of
B are equiprobable. If n = 2 items and A’s ranking
is 1 2, then B’s ranking can be 1 2 or 2 1. In the
former case, there will be envy if A receives item 1
and B receives item 2, whereas in the latter there
will not be envy, so the probability that an EF
allocation exists is %

If n = 4, then B can have any of 4! = 24
preference rankings. To calculate the probability
of a complete EF allocation, we note that Condition
D requires that (i) the first choices of A and B be
different and (ii) the first three choices of A and B
be different.

Let us instead count the number of ways that
Condition D can fail. For (i) to fail, B’s first choice
must be 1, for which there are 3! = 6 orderings.
For (ii) to fail, B’s fourth choice must be 4, of
which there are 3! = 6 orderings. But Condition D
fails if either (i) fails or (ii) fails, and both may fail
simultaneously. However, we have double-counted
the cases in which both (i) and (ii) fail, which
requires that B’s first choice be 1 and B’s fourth
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Even Number of Items n

4 6 8 10 12

Probability of Complete EF Allocation

0.500

0.583 | 0.678 | 0.750 | 0.800 | 0.834

choice be 4, for which there are 2 orderings. We
conclude that Condition D can failin6+6 -2 = 10
ways. Thus, there are 24 — 10 = 14 preference
rankings for B for which Condition D holds.

We have shown that, when there are n = 4 items,
14/24 ~ 0.583 of the possible allocations admit
a complete EF allocation, which can be extended
to other values of n (see table above).” For even
values of n, the probability that an EF allocation
exists is on the order of (n — 2)/n, so it tends to
1 as n approaches infinity. To see this, note that
the probability that C(k) holds—that a randomly
chosen permutation of {1,..., n} fixes the subset
{1,...,k}—is k!(n — k)!/n!. Condition D fails iff
C(k) holds for at least one odd k. Therefore, the
probability that C(k) fails cannot exceed the sum

of these probabilities over odd k from 1 to n — 1.

The terms k = 1 and k = n — 1 are each 1/n,
and the other terms are 0(1/n3), so this sum is
2/n—-0(1/n%).1°

Summary and Conclusions

Given that two players can rank a set of indivisible
items from best to worst, the main algorithm we
have analyzed (AL) finds an allocation giving the
players the same number of items that is EF, PO,
and maximal—and complete if such an allocation
exists. A simpler algorithm (BT), which is also EF
and LPO, may allocate fewer preferred items to
the players and so may not be maximal or, if it
is maximal, will be Pareto-dominated by an AL
allocation if the BT allocation is different.

A possible advantage of BT, besides its simplicity,
is that the players can make sequential decisions:
they can decide, based on the items they have
already acquired, which of the remaining items to
try to obtain next. By contrast, AL requires that the
players rank all items in advance, so if the players’
valuations are interdependent (i.e., the acquisition
of one item affects the value of others), they cannot
take advantage of possible synergies among the
items. This suggests the importance of packaging
individual items into subsets whose elements are
complementary (e.g., matching sofas instead of
two individual sofas) so that the packages are as
independent as possible.

Because AL and BT are manipulable, players
can sometimes do better by misrepresenting their
preferences. But without complete information

Y%e thank Richard D. Potthoff for assistance with this
calculation.

1OWe thank a referee for this proof of convergence to a limit
probability of 1.
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about an opponent’s preferences, BT, and especially
AL (because of its greater complexity), would be
difficult to exploit. Indeed, trying but failing to do
so could result in an allocation that is neither EF
nor PO. Thus players would seem to have good
reason to be sincere in using these algorithms.

At least one, but not necessarily all, allocations
produced by AL will be maximin. This seems
to be an important property to ensure balanced
allocations—one player does not suffer because it
receives an especially low-ranked item.

There may be many complete maximin EF
allocations. If they are all known, one could be
selected at random. But, to avoid algorithms that
require exponential time, it might be preferable
to stop AL at the first EF allocation (if any) that
it finds to ensure that it can be implemented in
polynomial time.

If all possible preference rankings of players
are equiprobable, then the probability that a
complete EF allocation exists increases rapidly
with the number of items and approaches 1 as this
number approaches infinity. But equiprobability
is not a realistic assumption in many real-life
situations, wherein the players’ preferences are
correlated. How the degree of correlation affects
the proportion of items that are allocated to the
players—versus those that go into CP—remains to
be investigated.

In order to allocate the items in CP for which
the players have identical rankings, Brams, Kilgour,
and Klamler [5] developed an algorithm called the
undercut procedure, whereby a player proposes a
“minimal bundle” of items to keep for itself. Its
opponent can either accept the complementary
subset or undercut the minimal bundle by one item,
which becomes the division that is implemented.'!
The allocations it produces are EF. Combined with
AL, however, it can be used to allocate all the items,
including those that AL puts into CP.

Alternative two-person procedures—including
adjusted winner [8], [9], in which players assign
points to items, and a swapping procedure in
which players can make trades after an initial
allocation [4]—produce fair divisions that satisfy
other desiderata.'? However, both procedures

UThe extent to which this procedure is vulnerable to
strategic manipulation is analyzed in [15], [16].

120ne desideratum is equitability, in which players perceive
that they receive the same fraction of the total value. Proce-
dures for finding equitable as well as envy-free allocations
of indivisible items are analyzed in [11]. Unlike BT and AL,
they require that players specify preferred bundles of items,
which makes them more akin to the undercut procedure for
allocating the items in CP.
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require that the players provide more information
than a simple ranking of items and, in the case
of adjusted winner, that one item, which is not
identifiable in advance, be divisible.

The fact that only AL requires that the players
indicate their preference rankings is clearly an
advantage, but in some applications it may be
desirable to elicit and use information about the
intensity of the players’ preferences. But when
obtaining such information is difficult, AL offers a
compelling alternative—for example, in allocating
the marital property in a divorce or the items in an
estate, especially when the players have different
tastes (e.g., for memorabilia or artworks).
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hen people complain about problems

in American education, they often

speak as if those problems would be

solvedif studentsin the U.S. were able

to perform as well on international
tests of reading and mathematics as students from
countries that achieve the highest scores. Nations
like Finland and Singapore are singled out in the
media as having superior educational systems
because their students do better on tests like PISA
and TIMMS.

It’s worth looking at the results of these tests
closely, but more for what they reveal about our
beliefs about children and their potential than for
what the tests prove about education. From the
way people talk about the tests, you can see clearly
what they expect the average child to achieve at
school.

In 2006 only 10 percent of American students
scored above level 5 in mathematics on the PISA
tests (this is the level of proficiency required to take
courses involving math at university), compared
to 30 percent in top-performing countries such

as Taiwan, Hong Kong, South Korea, and Finland.

However, in each of the top performing countries,
roughly 40 percent of students scored at level 3
or below. Students at level 3 would have trouble

holding a job that required fairly basic mathematics.

Many people have suggested that American
educators should find out how math is taught in
the top-performing countries so it can be taught in
the same way in the U.S. I expect this is a good idea,
but we might also want to find out how countries
that produce such strong students still manage

to teach so little to almost half their populations.

Answering this question might do as much to help
the U.S. improve the teaching of mathematics as
any efforts to emulate the educational practices of
other countries.

Wide differences in mathematical achievement
among students appear to be natural: in every
school in every country only a minority of students

John Mighton is a mathematician, author, playwright, and
the founder of JUMP Math. He is a Fellow of the Fields
Institute for Research in the Mathematical Sciences in
Toronto. More information about JUMP Math can be found
at jumpmath.org.

DOI: http://dx.doi.org/10.1090/notil077

NOTICES OF THE AMS

JUMP Math: Multiplying Potential

John Mighton

are ever expected to excel at or love learning
mathematics. In the many schools I have visited on
several continents, I've always seen a significant
number of students who are two or three grade
levels behind by grade five. In my home province
of Ontario, where children do rather well on
international tests, only 58 percent of grade-
six students met grade-level standards on the
provincial exams last year.

Fourteen years ago I started a charity called
JUMP Math in my apartment because I wanted
to help students who struggle in math. The first
JUMP students were referred by local schools and
were matched with volunteer tutors. Most of these
students had serious learning disabilities and were
years behind in math, so I believed that the best way
to help them was to provide them with one-on-one
instruction. But JUMP soon outgrew my apartment,
and teachers in schools where it was offered began
to ask me to teach some lessons in their classrooms.
In my first lessons I was surprised to see that
the weakest students often became more engaged
in the classroom than they did in tutorials—they
loved putting up their hands and coming up to the
board when the lesson was taught in a way that
they could understand.

In designing lessons that would work for the
whole class, I had to learn to break explanations
and challenges into small steps so students who
were initially weaker could experience success, to
provide adequate review and practice for those
who needed it, and to raise the level of difficulty
incrementally so children would get more excited
and their brains would work efficiently. I soon
began to design special “bonus” questions that
didn’t introduce any new skills or vocabulary so
faster students could independently explore small
variations on the concepts they had learned while
I spent time with students who needed extra help.
As weaker students became more confident and
attentive, they began to work much more quickly
so they could get their bonus questions too. Their
excitement at succeeding in front of their peers
seemed to greatly increase their rate of learning.

It was clear that teachers didn’t have time to
develop lessons of this type, so JUMP hired a team
of mathematicians and educators to help me write
online teachers’ guides that cover the full cur-
riculum from grades one to eight in great detail.

VOLUME 61, NUMBER 2



JUMP is now used by about 100,000 students in
Canada and the U.S. as their main resource for
mathematics for grades one to eight. In the U.S.
many school boards are piloting versions of our
materials that are aligned to the Common Core
State Standards.

In a randomized controlled study presented
at the Society for Research in Child Development
in 2011, cognitive scientists Tracy Solomon and
Rosemary Tannock from the Hospital for Sick
Children and the University of Toronto found
that students from eighteen regular classrooms
using JUMP showed twice the rate of progress on
a number of standardized tests of math ability as
students receiving standard instruction in eleven
other classrooms. As randomized controlled
studies rarely show such striking differences
between students in different math programs, the
U.S. Department of Education has funded a much
larger multiyear study by the same team.

Based on my observations of thousands of
students and on data gathered in studies of JUMP
(see jumpmath.orgforasummary of these studies),
I am convinced that the vast majority of students
have far more potential to learn and enjoy learning
math than they exhibit at school. To fully appreciate
the extent of this hidden potential and of the losses
that we incur as a society when we fail to nurture
this potential, it helps to consider a case study.

In the fall of 2007 fifth-grade teacher Mary
Jane Moreau of Mabin School in Toronto gave her
students a standardized math assessment called
the Test of Mathematical Abilities (TOMA). The
class average was in the 54th percentile, with awide
range of scores, including one student who ranked
as high as the 75th percentile and another at just
the 9th percentile. A fifth of the pupils in the class
were identified as learning disabled. After testing
her students, Mary Jane abandoned her usual
teaching approach (which meant pulling together
lessons with the best materials she could find) and
followed the JUMP lesson plans with fidelity. After
a year of JUMP, the average score of her students
on the grade-six TOMA rose to the 98th percentile,
with the lowest mark in the 95th percentile. At the
end of grade six, Mary Jane’s entire class signed up
for the Pythagoras Math competition, a prestigious
contest for sixth-graders. One of the most able
students was absent on the day of the exam,
but of the seventeen who participated, fourteen
received awards of distinction (with the other three
close behind). Students who write the Pythagoras
competition are almost all in the top five percentile
in achievement, but the average score for students
in this (initially unremarkable) class was higher than
the average for students writing the Pythagoras.

The most challenged ten-year-old student in
Mary Jane’s class improved her score on the TOMA
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from the 9th percentile to the 95th percentile after
only one year of JUMP. But ten-year-old brains are
more developed and less plastic than four-year-old
brains, so grade five is not the ideal grade for an
intervention. It seems reasonable to assume that
Mary Jane’s student could have achieved much
more in grade five if she had been enrolled in
a math program as good as or better than JUMP
from an early age. Indeed, if every child were
taught according to their true potential from the
first day of school, then I would predict that by
grade five the vast majority of students (over 95
percent) could learn and love learning as much
as the top one or two percent do now.

I should point out that this is not a prediction
about JUMP, as it requires that children be taught
“according to their true potential.” JUMP has
produced some extremely strong results in pilots
and studies, but the program may not, in its present
form, produce the results I think are possible.
JUMP has partnered with many distinguished
cognitive scientists and educational researchers
to try to determine what works in our approach
and what needs to be improved. Better programs
than JUMP will certainly be developed, and JUMP
itself will continue to evolve. I hope that readers
will not allow any doubts they have about JUMP in
its present form to distract them from considering
what may be possible for children in the future.

In the randomized controlled study, teachers
used JUMP with varying degrees of fidelity but still
managed to double the average rate of progress
of their students. I expect the results of the study
would have been stronger if every teacher had
followed the program with fidelity. But even if I
am wrong about how effective JUMP can be when
it is implemented properly, my beliefs about what
children can achieve are likely to be true, as they
are well supported by independent evidence from
cognitive science. One day this evidence will be
more widely known, and educators will be inspired
to set higher expectations for students and schools,
whether or not they use particular programs such
as JUMP.

The methods on which JUMP is based are ones
that cognitive scientists are now promoting for
the development of expertise in general. In “The
expert mind”, an article that appeared in Scientific
American in July 2006, Philip Ross examines the
implications of a century of research on how
experts develop abilities in chess and other fields
and how the expert mind processes and receives
information. His conclusions lend strong support
to the notion that abilities can be nurtured in
students through rigorous instruction and practice:

The preponderance of psychological evi-
dence indicates that experts are made, not
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born. What is more, the demonstrated abil-
ity to turn a child quickly into an expert—in
chess, music and a host of other subjects—
sets a clear challenge before the schools.
Can educators find ways to encourage stu-
dents to engage in the effortful study that
will improve their reading and math skills?
Instead of perpetually pondering the ques-
tion “Why can’t Johnny read?” perhaps
educators should ask: “Is there anything in
the world he can’t learn to do?”

H. Wu has warned against drawing false
dichotomies in math education (for instance,
between concepts and deep understanding ver-
sus procedures and algorithms). One dichotomy
is particularly damaging to students: the false
opposition between “explicit” or “direct instruc-
tion” versus “discovery” or “student-centered”
instruction. Current research in cognitive science
suggests that effective lessons should combine
elements of both approaches. In 2011 A. Alfieri
et al. conducted a meta-analysis of 164 studies of
discovery-based learning and concluded that “unas-
sisted discovery does not benefit learners,” whereas
discovery combined with “feedback, worked exam-
ples, scaffolding and elicited explanations do[es].”
An effective lesson can be student-centered but
still led by the teacher.

Research in cognitive science suggests that,
while it is important to teach to the strengths of
the brain (by allowing students to explore and
discover concepts on their own), it is also important
to take account of the weaknesses of the brain. Our
brains are easily overwhelmed by too much new
information, we have limited working memories,
we need practice to consolidate skills and concepts,
and we learn bigger concepts by first mastering
smaller component concepts and skills.

Teachers are often criticized for low test scores
and failing schools, but I believe that they are not
primarily to blame for these problems. For decades
teachers have been required to use textbooks and
teaching materials that have not been evaluated
in rigorous studies. As well, they have been
encouraged to follow many practices that cognitive
scientists have now shown are counterproductive.
For example, teachers will often select textbooks
that are dense with illustrations or concrete
materials that have appealing features because they
think these materials will make math more relevant
orinteresting to students. But psychologists such as
Jennifer Kaminski have shown that the extraneous
information and details in these teaching tools can
actually impede learning.

Toimprove their practice, teachers mustbe made
aware of the growing body of research in cognitive
science that shows that higher-level abilities are
grounded in practice and the acquisition of basic
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skills and knowledge and that overly complex
lessons can overwhelm the brain. They must be
allowed to innovate and test methods that are
supported by solid research, and they must never
be compelled to adopt programs that have not
been rigorously evaluated.

The JUMP method is called “guided discovery”.
In a JUMP lesson students develop and explore
ideas on their own, but the lesson is a carefully
scaffolded series of questions and challenges
in which one idea naturally leads to the next.
Students are provided with many supports of the
kind that research has identified as effective, such
as immediate feedback and worked examples. They
are also given many opportunities to practice and
consolidate concepts and are assessed frequently
so they can get excited about their success and so
the teacher can be sure no one is falling behind.

Some lessons in JUMP allow for more open-
ended exploration, but here is an example of a
structured lesson on long division. I have found
that this approach enables kids to both discover
the steps of the algorithm and understand the
underlying concepts while learning to perform the
algorithm proficiently.

I tell students that the notation 3)72 can be
interpreted to mean: 3 friends wish to share 7
dimes and 2 pennies (72 cents) as equally as
possible. I then ask students to draw a picture to
show how they would divide the dimes among the
friends. If students use a circle for each friend and
an X for each dime, the diagram would look like

this:
xX) x

I ask students to tell me the meaning of their
diagram: Each friend gets two dimes and there is
one dime left over. I then tell students that if they
happened to see someone carrying out the first
few steps of the long division algorithm, this is
what they would see:

2
3)72
-6
1
I challenge students to figure out what the
steps in the algorithm mean by identifying where
they see each number in their diagram. Students

readily make the following connections between
their diagram and the algorithm:

2 < each friend got two dimes

3)72
-6 < 6 dimes were given away altogether
1 < there was 1 dime left over
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I ask students to complete their diagram to show
me how much money still has to be divided among
the friends. If students use a circle to represent a
penny, their diagram looks like this:

@ @ @ XO0O <= 1 dime and 2 pennies haven’t

been given out yet

I invite three students to come to the front of
the class so I can demonstrate how I would divide
the remaining coins among the three friends. I
give two students a penny each and one student
a dime. The students always protest that my way
of dividing up the coins isn’t fair: they tell me
they would exchange the dime for ten pennies
and divide the twelve pennies among the friends. I
inform students that this process of “regrouping”
the tens (dimes) as ones (pennies) is actually a step
in the long division algorithm. Most adults call this
the “bring down” step, but very few understand it:

2

3)72
-6
12 < when you “bring down”
...the number in the ones (pennies) column, you
implicitly change the number in the tens (dimes)
column into the smaller unit (pennies). Then you
combine all of your smaller units (to give twelve
pennies altogether).

I then ask students to show me in their diagrams
how they would divide the (twelve) remaining
pennies among the friends. I also ask them to
connect the numbers in their diagram with the
remaining steps of the algorithm:

(XX0000) (XX0000) (XX0000)

24 <« each friend received four pennies
(24 cents altogether)

3)72
-6
12
—12 <« twelve pennies were given out
altogether

0 < no pennies were left over

At each step in this process I give students
several practice questions so I can verify that they
understood the step.

Mary Jane loved teaching math and was recog-
nized as an excellent teacher before she started
using JUMP. But after reading the JUMP Teachers’
Guides, she said she realized that many of the
concepts she had previously taught in one step
actually involved two or three steps or required
skills or knowledge that she didn’t normally assess
or teach. She found that the more closely she
followed the guides the better her students did.

Research has shown that many elementary
teachers (unlike Mary Jane) are mathphobic or have
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very rudimentary knowledge of math. The JUMP
writers and I wrote the guides, in part, because
we saw that schools could not afford to provide
enough professional development for teachers
to make up for these deficits. In following the
online lesson plans, teachers learn the math as
they teach. Many have become excited about their
new understanding of the subject and have formed
volunteer networks to support and mentor other
teachers. Two mathphobic teachers in a Vancouver
network recently completed master’s degrees in
math education after they were inspired by their
success with the program.

The principles on which JUMP lessons are
built (adequate review and practice, rigorous
scaffolding, continuous assessment, incrementally
harder challenges, and differentiated instruction)
are not new or even controversial in education,
although we have tried to apply these principles
with a great deal of rigor. If there is anything
different about JUMP, it may lie in the belief that
extreme hierarchies of ability are caused, at least
in part, by the presumption that these hierarchies
are natural.

Children are unlikely to fulfill their potential in
math until math programs are designed to take into
account the way academic hierarchies can inhibit
learning. As early as grade one, children begin to
compare themselves to their peers and identify
themselves as “smart” or “dumb” in subjects such
as math. When children decide they aren’t talented
in math, their brains work less efficiently: they stop
paying attention, taking risks, and persevering
in the face of difficulty, and they often develop
anxieties or behavioral problems. By making all
of her students feel capable from the first day of
school, Mary Jane was able to produce a class of
students who were, to a surprising degree, equally
capable.

No method of teaching is likely to produce
a school full of students who all have exactly
the same capacity for success, but the results
of teachers like Mary Jane suggest that students
have far more potential in math than they exhibit
at school. To bring about significant change in
education, we must insist that every child has
a right to fulfill their intellectual potential, just
as they have a right to develop healthy bodies.
We don’t have to wait until we have recruited an
army of superhuman teachers or invented some
miraculous new technology to guarantee this right.
We already have the teachers we need to transform
our schools. We simply need to give them the
means to teach children using effective methods
that are backed by rigorous evidence.
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A Tale of Ellipsoids
in Potential Theory

Dmitry Khavinson and Erik Lundberg

Dirichlet’s Problem

Let us start our story with the Dirichlet problem.
This problem of finding a harmonic function in a,
say, smoothly bounded domain Q ¢ R"” matching
a given continuous function f on 0Q gained huge
attention in the second half of the nineteenth
century due to its central role in Riemann’s proof
of the existence of a conformal map of any
simply connected domain onto the disk. Later on,
Riemann’s proof was criticized by Weierstrass, and,
after considerable turmoil, it was corrected and
completed by Hilbert and Fredholm; cf. [27] for
a very nice historical account. Here we want to
focus on algebraic properties of solutions to the
Dirichlet problem when Q is an ellipsoid and the
data f possess nice algebraic properties. Thus, we
first present the following proposition.

Proposition 1. Consider the ellipsoid
noy2
inxeR”:Zé—lsO},
J

wherea; = a» > - - -
the Dirichlet problem

) {Au =0

uloa = p,

> a, > 0. The solution u to

in Q,
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where p is a polynomial of n variables, is a harmonic
polynomial. Moreover,

(2) degu < degp.

Remark 1. Proposition 1 was widely known in the
nineteenth century for n = 2,3 (perhaps due to
Lamé) and was proved with the use of ellipsoidal
harmonics. It is still widely known nowadays for
balls but often disbelieved for ellipsoids. The first
author has won a substantial number of bottles
of cheap wine betting on its truthfulness at vari-
ous math events and then producing the following
proof that was related to him by Harold S. Shapiro.
The idea of the proof goes back at least to Fischer
[11]; we do not know who thought of it first, but we
hope the reader will agree that this proof deserves
to be called, following P. Erdés, the “proof from
the book.”

Proof. Denote by P, m = Py the finite-dimensional
space of polynomials of degree less than or equal to

2
m in n variables. Let g(x) = > % —1 be the defining
J
quadratic for 0Q. Consider the linear operator T :
Py, — Py, defined by
T(r) := A(gr).

The maximum principle yields at once that ker T =
0, so T is injective. Since dim P,,, < oo, this implies
that T is surjective.

Hence, given P € P, with m > 2, we can find
a polynomial r € Py,_» such that Tr = AP. The
function

u="~P-qr
is then the solution of (1). O
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Proposition 1 was extended [20] to the case of
entire data. Namely, entire data f (i.e., an entire
function of variables x1, xo, ..., X,) yields an entire
solution to the Dirichlet problem in ellipsoids.
This result was sharpened by Armitage in [1], who
showed that the solution’s order and type are
dominated by that of the data.

One might get bold at this point and ask if
Proposition 1 extends to, say, rational or algebraic
data;i.e., does a smooth data function in (1) thatis a
rational (algebraic) function of x1, x>, ..., X, imply
rational (algebraic) solution u? The answer is a
resounding “no”, but the proofs become technically
more involved; see [3].

The Dirichlet Problem, Ellipsoids, and Bergman
Orthogonal Polynomials

It was conjectured in [20] that Proposition 1
(without the degree condition (2)) characterizes
ellipsoids. Recently, using “real Fischer spaces”,
H. Render confirmed this conjecture for many
algebraic surfaces [28]. In two dimensions, the
conjecture was confirmed under a degree-related

condition on the solution in terms of the data [21].

This utilized a surprising equivalence, established
by M. Putinar and N. Stylianopoulos [26], of the
conjecture to the existence of finite-term recurrence
relations for Bergman orthogonal polynomials. In
order to state the degree conditions and the
associated recurrence conditions, assume that Q
is a domain in R? with C?-smooth boundary. Let
{pm(2z)} be the Bergman orthogonal polynomials

(orthogonal with respect to area measure over Q).

These are analytic polynomials of the complex

variable z. Consider the following properties for Q.

(@) There exists C such that for a polynomial
data of degree m there always exists
a polynomial solution of the Dirichlet
problem posed on Q of degree less than or
equal to m + C.

(b) There exists N such that for all k, m, the
solution of the Dirichlet problem with data
zkzm is a harmonic polynomial of degree
< (N—-1)k+min z and of degree less than
orequal to (N —1)m + k in Z.

(c) There exists N such that {p,} satisfy
a (finite) (N + 1)-recurrence relation; i.e.,
there are constants dn—j,m, such that

ZPm = Am+1,mPm+1 + AmmPm
+ s+ Am-N+1,mPm-N+1-
(d) The Bergman orthogonal polynomials of
Q satisfy a finite-term recurrence relation;
i.e., for every fixed € > 0, there exists

an N(f) > 0, such that (zpm,ps) = 0O,
m = N().
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(e) For any polynomial data there exists a poly-
nomial solution of the Dirichlet problem
posed on Q.

Properties (d) and (e) are essentially equivalent
[26], and (a) = (b), (b) < (c), and (c) = (d).
In [21] the authors used ratio asymptotics of
orthogonal polynomials to show that (b) and
equivalently (c) each characterize ellipses. The
weaker statement that (a) characterizes ellipsoids
was proved in arbitrary dimensions [22]. For more
about the Khavinson-Shapiro conjecture stated in
[20], we refer the reader to [21], [17], [22], [26],
[28], and the references therein.

The Mean Value Property for Harmonic
Functions
The mean value property for harmonic functions
can be rephrased as saying that the average of
any harmonic function over concentric balls is a
constant. As we formulate precisely below, there is
amean value property for ellipsoids which says the
average of any harmonic function over confocal
ellipsoids is a constant.

Consider a heterogeneous ellipsoid

where a; > a» > --- > ay > 0, and let Q be its

interior.

Definition. A family of ellipsoids {I3},

I = xe[R{N:ZZJ—I:O},
oaj+ A
where —af\] < A < +00, is called a confocal family
(for N = 2 these are ellipses with the same foci).

Note that the shapes of confocal ellipsoids
differ; as A — oo, I} looks like a sphere, and when
A - —ag,

N-1 2
rAq{xe[RaN:xN=o, 2J2—1<0]»::E.
j=1 4j —an
E is called the focal ellipsoid.

The following classical theorem goes back to
Maclaurin, who considered prolate spheroids in
R3 (a; > a» = as). General ellipsoids were treated
later by Laplace [23, Chapter 2].

Theorem 1. Let u be an entire harmonic function.
Then

(3) u(x)dx = const.

1QAl Ja,
forall A : A > —a3.

From now on, for the sake of brevity, we shall
only consider the case N > 3.
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Figure 1. The mean value over confocal
ellipsoids is constant.

Remark 2. Maclaurin’s theorem is a corollary (via a
simple change of variables; see [5, Chapter VI, Sec-
tion 16] or [17, Chapter 13]) of the following result
of Asgeirsson: Suppose u = u(x,y), wherex € R™
y € R™2 sqtisfy the ultrahyperbolic equation

Ayu = Ayu.

Then, if ui(x,y,r), i = 1,2, denote, respectively,
the mean values of u over mj-dimensional balls of
radius v centered at (x,y), we have p,(x,y,r) =
H2 (X, ¥, 7).

Here we offer a purely algebraic approach to
Maclaurin’s theorem [17, Chapter 13]. The follow-
ing notions are due to E. Fischer [11] (see also [31,
Chapter IV]). Let Hy be the space of homogeneous
polynomials of degree k. If f € Hy, then (using the
standard multi-index notation of L. Schwartz [1],
[31])

f(z)= > faz®
|| =k
Introduce an inner product on Hy (called the Fis-
cher inner product), by letting

N 0, «o#p,
(4) (2%.2") = {(x!, x = p.
Mf = X faz',g = 3 guz then (f,g) =

Z alfag«. With respect to the Fischer inner prod-
loe|=k
uct, the operators (%) “ and multiplication by z&
are adjoint. Also, it follows from the definition (4)

-\ m
that % (z - §) is a reproducing kernel for H,,;
i.e, forall f € Hy,
1 _\m
5) ~(r (2 8)") - o).
Indeed, it is enough to check this for monomials,

and for all multi-indices «, |x| = m, we see that

(7 8)") = (o 5 )
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Let H,, C H,, denote the space of harmonic
polynomials of degree m.

Lemma 1. The linear span of harmonic polynomi-
; N
als (z - g)'” forallE €Ty = {g eCV: Y g = o}
j=1
(the isotropic cone) equals Hp,.

Proof of Lemma 1. Let us assume for the sake of
contradiction that there is a nonzero polynomial
u € H,, satisfying

<u, (z . §>m> =0, VEel.

Using the reproducing kernel condition (5), we
have u(&) = 0 for all & € Iy. By Hilbert’s Nullstel-
lensatz

N
u(g) = (Z ZJZ) a(&), for some g € Hpy_».
j=1

But then, since u is harmonic, we have

N
0 =(Au,q) = <u, (Z EJZ-) q> = (u,u),
j=1

where we have used the fact that multiplication
and differentiation are adjoint. Hence, u = 0. [

Proof of Maclaurin’s theorem. It suffices to check
(3) for harmonic homogeneous polynomials, and
in view of Lemma 1, we just have to check it for
polynomials

(Z-E)m, Eero.

1/2
Fix A. Let b; = (ai-2 + )\) be the semiaxes of Q,.
We have to show that

1 I =\ m 1 _\m
— X - dx = — X - dx,
ol Jo (°8) al Jo, (°8)
VE e Ip.
Changing variables in both integrals xx = axyx,
Xk = bryy, we see that it suffices to show the

following:
(©) .

N L m N -
JB (k; ak)’kfk) dy = JB (k; bkykgk) dy,

where B is the unit ball in RV, Since & € I}, implies
that

N N
> ((@d0? - (hd?) = -a2 > & =0,
k=1 k=1

verifying (6) reduces to checking the following
assertion.
Assertion. The polynomial

N m
P(t) := JB (Z thk) dx
k=1
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depends only on Z t¢, for t € CN.

The assertion follows from the rotation invari-
ance of P [17, Chapter 13]. O

The following application is noteworthy. Let Q be

an ellipsoid with semiaxes a; > a» > - - - > ay > 0,
and let
d
HQ(X):ZCNJ %, XERN\Q
o lx—yl

be the exterior potential of Q.

As above, E denotes the focal ellipsoid. The
following corollary of Maclaurin’s theorem de-
scribes a so-called mother body [14], i.e., a measure
supported inside the ellipsoid which generates the
same gravitational potential (outside the ellipsoid)
as the uniform density but is minimally supported
in some sense (see the discussion in [14]). In this
case the mother body is supported on E, a set of
codimension one with connected complement.

Corollary 1. Forx € RN\ Q

uo(x) = CNJ %,
where
N N-1 -1/2
du(y) =2 (ﬂaj) ( ( 3-@))
j=1 j=1
N-1 2 172
x(l—z 2)’12) dy’
o aj-ay

(dy’ is Lebesgue measure on {yy = 0}).

Sketch of proof. Since the integrand is harmonic,
we have by MacLaurin’s theorem

M

aj

ua(x) = 3 = 172 Jo, Ix —CNIN—z dy.
I1 (a§ - 2\) o Y
j=1

After simplifying this integral using Fubini’s theo-
rem, the corollary is established by applying the
Lebesgue dominated convergence theorem as A —
—a%; [17, Chapter 13]. O

We note in passing that finding relevant mother
bodies for oblate and prolate spheroids (supported
on a disk and segment, respectively) could be a
satisfying exercise.

Since the density of the distribution du is real
analytic in the interior of E (viewed as a set in
RN-1), we note the following corollary:

Corollary 2. The potential ug (x) extends as a (mul-
tivalued) harmonic function into RN \ 9E.

An extension of this fact and a “high ground”
view of the mother body, based on holomorphic
PDE in C", is discussed in the section “The Cauchy
Problem: A View from C"”.
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The Equilibrium Potential of an Ellipsoid.
Ivory’s Theorem

Considering that force is the gradient of potential,
the following theorem, due to Newton, can be
paraphrased in a rather catchy way: “there is no
gravity in the cavity”.

Theorem 2 (Newton’s theorem). Lett > 1, and
consider the ellipsoidal shell S := tQ\ Q between two
homothetic ellipsoids. The potential Us of uniform
density on S is constant inside the cavity Q.

In fact, ellipsoids are characterized by this
property; i.e., Newton’s theorem has a converse
[71, [8], [24], [17]. A modern approach to Newton’s
theorem and far-reaching generalizations due to
V. I. Arnold and A. Givental are sketched in the
epilogue.

A consequence of Newton’s theorem is that
the gravitational potential Ug of Q is a quadratic
polynomial inside Q. Namely,

N
Ua(x) =B— > Ajx3, forxeQ,

i=1

withB = Cy |, ﬁ,“/Nyz Uq (0),where Cy = W
Indeed, denoting by Q; = tQ (for t > 1) the di-
lated ellipsoid, one computes that its gravitational
potential is u; (x) = t2u(x/t). Since Newton’s the-
orem implies that (where u is the potential of
the original ellipsoid) u; — u = const inside Q, the
smaller ellipsoid, then taking partial derivatives
0%, with respect to x, || = 2, yields that 0%u;(x)=
o%u(x/t) = 0%u(x). Thus all these partial deriva-
tives are homogeneous of degree zero inside Q.
They are also obviously continuous and, hence, are
constants, thus yielding Ug to be a quadratic as
claimed.
Denoting T :=
potential

0Q, consider the single layer

where p(y) is a mass densny and dA(y) onT is
the surface area measure. Also, V(x) is called an
equilibrium potential if V(x) = 1 on I and hence
inside Q. We again focus on the case N > 3. The
quantity

= lim |x|N72V(x)

|X| =00

=Cy Lp(y)dA(y)

is called capacity.
On the way to proving Ivory’s theorem, we note
an explicit formula for the equilibrium potential.

Corollary 3. With B as above, in RN \ Q, we have

N N
@) V(x) = - (ﬂ . xa“) ,
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where 1(x) = Cn g %,y' = (V1,252 YN-1,
0), and du(y’) is the MacLaurin quadrature mea-
sure supported on the focal ellipsoid E (cf. Corollary
1).

Proof. Thus the right-hand side of (7) is harmonic
in R¥\Q (in fact, in RN\ E) since i is harmonic there
and A(x - V) = nAf = 0. On I, by Maclaurin’s
theorem and Newton’s theorem,

N
(8) fi = Ua(x) = B— > Ajxj.
i=1

Moreover, since Uq (x) has continuous first deriva-
tives throughout RN, we can differentiate (8) on T
and thus obtain

N ~
1(. 1 of
B(IJ_Z.ZXIEBXI-)

i=1

1 N 1N
— x2 4 = 2| =
=3 (B—lElAij + > i§12Aij) = 1.

Thus, the right-hand side of (7) equais V(x)onT.
Both functions are harmonic in RN \ Q and vanish
at infinity, and the statement follows. O

Corollary 4 (Ivory’s theorem). The equipotential
surfaces of the equilibrium potential V (x) are con-
focal withT.

For the proof, one simply notes that the right-
hand side of (7) changes only by a constant factor
when Q is replaced by a confocal ellipsoid

N2
Q= X:ZQZi;\Sl’AZO'

J

4 dua _ Vol(Qa)
Namely, B — By while 7+ = 75

For the classical proof of Ivory’s theorem, see
[23], [12, Lecture 30].

Ellipsoids in Fluid Dynamics

Let us pause for a moment to mention applications
of these properties of ellipsoids to two problems
in fluid dynamics. In the first problem, involving
a slowly moving interface, viscosity plays an
important role. In the second problem, viscosity
is completely neglected, while vorticity plays the
dominant role.

Moving Interfaces and Richardson’s Theorem

Imagine a blob of incompressible viscous fluid
within a porous medium surrounded by an inviscid
fluid. Suppose there is a sink at position x( in
the region Q; occupied by viscous fluid, so Q; is
shrinking with time. Darcy’s law governs the fluid
velocity v in terms of the pressure P:

9) v =-VP.
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Incompressibility implies that
V-v=-AP =0

except at the sink x(. The pressure of the inviscid
fluid is assumed constant. Neglecting surface
tension (a rather controversial assumption), the
pressure matches at the interface, which gives
a constant (say, zero) boundary condition for P,
so P is nothing more than the harmonic Green’s
function with a singularity at xo. The mathematical
problem is then to track the evolution of a domain
Q; whose boundary velocity is determined by the
gradient of its own Green’s function. See [32] for
an engaging exposition of the two-dimensional
case of this problem.

Given a harmonic function u(x), Richardson’s
theorem [29] describes the time dependence of the
integration of u over the domain occupied by the
viscous fluid. In the language of integrable systems
this represents “infinitely many conservation laws”.

Theorem 3 (S. Richardson, 1972). Let u(x) be a
function harmonic in Q; for all t. Then

d
a4 L)[ u()AV (x) = —Qu(xo),

where X is the position of the sink with pumping
rate Q > 0.

An alternative setup places the viscous fluid
in an unbounded domain with a single sink
at infinity [7]; a reformulation of Richardson’s
theorem implies that the potential inside the cavity
of the shell regions Q; \ Q- is constant. Thus it is
a consequence of Newton’s theorem (Theorem 2)
that an increasing family of homothetic ellipsoids
is an exact solution. In fact, this is the only solution
starting from a bounded inviscid fluid domain that
exists for all time and fills the entire space [7].

/

>

Figure 2. Viscous fluid occupies the exterior. The
ellipsoid grows homothetically.

Returning to the case when the viscous fluid
is bounded, suppose the initial domain Qg is an
ellipsoid and consider the problem of determining
sinks and pumping rates such that {QI}Z;O shrinks
to zero volume as t — T. As a consequence
of the mean value property, one can solve this
problem exactly, thus removing all of the fluid, that
is, provided we can stretch our imaginations to
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allow a continuum of sinks (spread over the focal
set E). Starting from the given ellipsoid Qo, the
evolution €, is a family of ellipsoids confocal to
0 shrinking down to the (zero-volume) focal set E.
The pumping rate is given by the time-derivative of
the quadrature measure appearing in Corollary 1.

The Quasigeostrophic Ellipsoidal Vortex Model

Based on the observation that motion in the atmo-
sphere is roughly stratified into horizontal layers,
the quasigeostrophic approximation provides a
simplified version of the Euler equations (governing
inviscid incompressible flow). Further assumptions
reduce the entire dynamics to a scalar field, the
potential vorticity, which in the high Reynolds
number limit forms coherent regions of uniform
density. Even with these simplifications, the prob-
lem can still be quite complicated. For instance,
approximating the regions of potential vorticity
by clouds of point-vortices, one encounters the
notoriously difficult n-body problem.

Figure 3. Top row: A vortex simulation using
“contour dynamics”. Bottom row: A faster, but
still accurate, simulation using the ellipsoidal
vortex model.

The quasigeostrophic ellipsoidal vortex model
developed by Dritschel, Reinaud, and McKiver [9]
simulates the interaction of ellipsoidal regions of
vorticity (see Figure 3, included here with the kind
permission of Dritschel, Reinaud, and McKiver).
As these regions interact, the length and align-
ment of semiaxes can change, but nonellipsoidal
deformations are filtered out. (Note that a single
ellipsoidal vortex is stable for a certain range of
axis ratios.) The effect that one ellipsoid has on
another is determined by its exterior potential,
and thus the mean value property can be used to
replace the ellipsoid by a two-dimensional set of
potential vorticity on its focal ellipse (with density
determined by Corollary 1) which can be further
approximated by point vortices.

Remark 3. It is interesting to single out the two-
dimensional case of the moving interface problem
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Figure 4. Viscous fingering in a Hele-Shaw cell.

which serves as a model for viscous fingering in
a Hele-Shaw cell.! Conformal mapping techniques
lead to explicit exact solutions that can even exhibit
the tip-splitting depicted in Figure 4. The vortex
dynamics problem also admits many sophisticated
analytic solutions in the two-dimensional case [6].
For a compelling survey discussing quadrature
domains as a common thread linking these and
several other fluid dynamics problems, see [6].

The Cauchy Problem: A View from C"

The problem mentioned in the section “The Mean
Value Property for Harmonic Functions” of analyti-
cally continuing the exterior potential Uy inside
the region Q) occupied by mass was studied by
Herglotz [15] and can be reformulated as studying
the singularities of the solution to the follow-
ing Cauchy problem posed on the initial surface
I':=0Q:

near I,

AM =1,
(11) {

M =r 0,

where the notation M =r G indicates that M along
with its gradient coincide with G and its gradient,
respectively, onT.

The fact that M carries the same singularities
in Q as the analytic continuation u of Ug is a
consequence of the fact that u itself is given by
the piecewise function

Uq, outside Q,
(12) S

Uqo — M, inside Q.
The reason is that u is harmonic on both sides of T’
and is C'-smooth across I'. (Note that, inside Q, Uq

denotes the physical gravitational potential which
solves a Poisson equation AUg = 1.) An extension

1 A Hele-Shaw cell is a lab apparatus consisting of two closely
spaced sheets of glass with a small hole in the top piece; af-
ter filling the gap with viscous fluid, one may inject a bubble
of less viscous fluid. This experiment is cheap and easy to
perform—in fact the photograph in Figure 4 was taken in
the second author’s home.
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of Morera’s theorem (attributed to S. Kovalevskaya)
implies that u is actually harmonic across T, i.e., T’
is a removable singularity set for u. Thus u is the
desired analytic continuation of Ug across I', and
the singularities of u in Q are carried by M.

Further reformulating the problem, note that
the so-called Schwarz potential of T, W = % [x|2—M,
has the same singularities as M and solves a Cauchy
problem for Laplace’s equation:

{AW =0 nearT,
W =r %|X|2.

This is a rather delicate (ill-posed according to
Hadamard) problem, and our discussion of it will
pass from R" to the complex domain C". Let us
first consider a more intuitive Cauchy problem
for a hyperbolic equation where similar behavior
can be observed while staying in the real domain.
Explicitly, consider

(14) {vxy =1 neary,
v =0,

(13)

where y is, say, a real analytic curve in R2.

For hyperbolic equations the mantra is “sin-
gularities propagate along characteristics.” If the
solution is singular at some point (xg, yo), then
one can trace the source of this singularity back to
y by following the characteristic cone with vertex
at (xo, Yo). One expects to find a singularity in the
data itself at a point where this cone intersects y,
but what if the data function has no singularities
as in (14)? It is still possible for a singularity to
propagate to the point (xq, yo) if the characteristic
cone from (xg,)o) is tangent to y. The point of
tangency is called a characteristic point of y.

Figure 5. The solution to (14) is regular except
on the tangent characteristic {y = 0}.

For example, suppose y := {y = x3}. We can
solve (14) exactly:

(x.y) x* 3

v y)=x-y- -4

The solution is singular on the characteristic

{y = 0} which is tangent to the initial curve y at
the point (0, 0); see Figure 5.

The singularities in the solution of (13) also
propagate along tangent characteristics. The im-
portant difference is that the characteristic points
(the “birth places” of singularities) reside on the

)/4/3-
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complexification of T, the complex hypersurface
given by the same defining equation.

Y2

Figure 6. The characteristic lines tangent to I at
four characteristic points intersect R? precisely
at the foci.

For ellipsoids, these ideas can be made precise.
Namely, the following result, due to G. Johnsson
[16], was proved using a globalization of Leray’s
principle, a local theory governing propagation of
singularities.

Theorem 4 (G. Johnsson, [16]). All solutions of
the Cauchy problem (13) with entire data f on

n
[:=13zeC:Yz}/a? = I)S» extend holomorphi-
1

cally along all paths in C" that avoid the character-
istic surface 3. (consisting of all characteristic lines
tangent toT').

The intersection 3> N R" = E is the focal ellipsoid
that was discussed in previous sections. This pro-
vides, according to the properties of the Schwartz
potential discussed above, a C"-explanation of a
rather physical fact that E supports a measure
solving an inverse potential problem. As Johnsson
notes, there is an unexpected coincidence between
potential-theoretic foci (points where singularities
of W are located) and algebraic foci in the clas-
sical sense of Pliicker [16]. Understanding this
correspondence and extending it to higher-degree
algebraic surfaces is part of a program advocated
by the first author and H. S. Shapiro. The case n = 2
is more transparent, but for n > 2 it is virtually
unexplored.

Epilogue

Newton’s theorem can be reformulated in terms
of a single layer potential obtained by shrinking a
constant-density ellipsoidal shell to zero thickness
(while rescaling the constant), leading to a noncon-
stant density p(x) = 1/|Vq(x)|, where g(x) is the
defining quadratic of the ellipsoid. This is some-
times called the standard single layer potential (it is
different from the equilibrium potential discussed
in the section “The Equilibrium Potential of an

VOLUME 61, NUMBER 2



Ellipsoid. Ivory’s Theorem”). The modern approach
due to V. I. Arnold and, then, A. Givental [2], [13],
views the force at x¢ induced by infinitesimal
charges at two points xi,x» on a line £ through
Xo as a sum of residues for a contour integral in
the complex extension L of £. The vanishing of
force then follows from deforming the contour to
infinity. The detailed proof can be found in [17,
Chapter 14].

=

Figure 7. The force from two points is realized
as a sum of residues in the complex line L.

The same proof can be used to extend Newton’s
theorem beyond ellipsoids to any domain of hy-
perbolicity of a smooth, irreducible real algebraic
variety I of degree k. A domain Q is called a domain
of hyperbolicity for I if for any xo € Q, each line
{ passing through x( intersects I' at precisely k
points. For example, the interior of an ellipsoid is
a domain of hyperbolicity, and if a hypersurface
of degree 2k consists of an increasing family of k
ovaloids, then the smallest one is the domain of
hyperbolicity.

Defining the standard single layer density on
I' in exactly the same way as before, except that
the sign + or — is assigned on each connected
component of I depending on whether the number
of obstructions for “viewing” this component from
the domain of hyperbolicity of T is even or odd,
the Arnold-Givental generalization of Newton’s
theorem implies, in particular, that the force due
to the standard layer density vanishes inside the
domain of hyperbolicity (cf. [2], [13] for more
general statements and proofs).

As a final remark, returning to ellipsoids, and
even taking n = 2, let us note an application
to gravitational lensing of Corollary 1. The two-
dimensional version of Maclaurin’s theorem plays
a key role in formulating analytic descriptions
for the gravitational lensing effect for certain
elliptically symmetric lensing galaxies [10], [4]
(cf. [19], [25] for terminology). Here the projected
mass density that is constant on confocal ellipses
produces at most four lensed images [10]. The
density that is constant on homothetic ellipses
produces at most six images [4]. In connection
to the converse to Newton’s theorem, whenever
the rare focusing effect in gravitational lensing
produces a continuous “halo” (a.k.a. Einstein ring;
cf. [19] for some striking NASA pictures) around the

FEBRUARY 2014

lensing galaxy (of any shape), the “halo” necessarily
turns out to be either a circle or an ellipse [10]. But
this alley leads to the beginning of another story.
Note: Due to considerations of space, the reference
list has been shortened. The more complete list of
references is available in [18].
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2012 Annual Survey of the Mathematical Sciences in the U.S.

Fall 2012 Departmental Profile
Report

Richard Cleary, James W. Maxwell, and Colleen Rose

This report presents a profile of mathematical sciences departments at four-year colleges and universities in the United
States, as of fall 2012. The information presented includes the number of faculty in various categories, undergraduate
and graduate course enrollments, number of bachelor’s and master’s degrees awarded during the preceding year, and
the number of graduate students.

Data collected earlier from these departments on recruitment and hiring and faculty salaries were presented in the
Report on 2011-2012 Academic Recrutiment and Hiring (pages 586-591 of the May 2013 issue of Notices of the AMS)
and the 2011-2012 Faculty Salaries Report (pages 426-432 of the April 2013 issue of Notices of the AMS).

Detailed information, including tables which traditionally appeared in this report, is available on the AMS website at
|www.ams.org/annual-survey/survey-reports.

All groups reported an increase in the number of faculty for fall 2012. The estimated number of full-time faculty in
all departments is 24,346 with 22,219 of these in all mathematics departments combined (Math Public, Math Private,
Applied Math, Masters & Bachelors), up 1% from 22,039 last year. Full-time faculty among the doctoral mathematics
departments combined (Math Public, Math Private & Applied Math) increased slightly to 8,634 from 8,528 last year. In
the mathematics departments combined we estimate the number of nondoctoral full-time faculty is 3,692, down 2%
from last year’s estimate of 3,750. With a standard error of 85 for our 2013 estimate, this difference may be explained
by sampling error. The total part-time faculty in all mathematics departments combined is estimated to be 6,907 (with
a standard error of 181), up 8% from 6,419 last year.

Figure F.1: All Full-time Faculty Figure F.2: Full-time Tenured Figure F.3: Full-time Untenured,
by Department Groupings Doctoral Faculty Tenure-track Doctoral Faculty

Math Pub Large, 2004 (8%)

Math Pub Large, 1199 (9%) Math Pub Large, 163 (4%)

-~ Math Pub Medium
243 (6%)

Matq 533 %gglum Math Pub Medium

1120 (9%) Math Pub Small
337 (9%)

Math Pri Large

193 (3%)

Math Private
Small, 94 (2%)

\Applied Math
55 (1%)

Statistics
211 (6%)

Biostatistics
192 (5%)

Math Pri
J Large
1149 (5%)

Math Pri Small
772 (3%)

Kpplied Math
564 (2%)

Statistics, 1186 (5%)
Biostatistics, 941 (4%)

Total: 24,346 Total: 13,173 Total: 3,791

Math Pri
Large
554 (4%)

Math Pri Small
459 (3%)
Applied Math, 324 (2%)

Statistics, 671 (5%)
Biostatistics, 319 (2%)

* All 2011 figures referenced on this page were adjusted to reflect the new departmental groupings introduced for 2012 (see page 166).

Richard Cleary is a professor in the Division of Mathematics and Sciences at Babson College. James W. Maxwell is AMS associate
executive director for special projects. Colleen A. Rose is AMS survey analyst.
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The estimated number of full-time doctoral faculty in all mathematics departments combined (Math Public, Math
Private, Applied Math, Masters & Bachelors) is 18,527 (with a standard error of 174), up slightly from last year’s number
of 18,289. For these same groups combined, total doctoral tenured faculty remained essentially unchanged at 12,183
compared to 12,196 for fall 2011. 35% (4,863) of all doctoral tenured faculty are in Bachelors departments.

Figure D.1: Gender of Full-time Doctoral Faculty Figure D.2: Non-tenure-track Doctoral
Total: 20,551 Faculty (excluding Postdocs)

" Male mFemale
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Math Pub Medium
184 (8%)

1001

Math Pri Small, 78 (3%)
Applied Math, 56 (2%)

(69%) Statistics, 153 (7%)
Doctoral Math Masters Bachelors Statistics/Biostatistics

Departmental Grouping
Total: 2,241

Postdoctoral appointments among the doctoral mathematics departments increased to 1,085 for fall 2012. This is a
6% increase from last year and 14% of the total full-time doctoral faculty in these departments. Females hold 19% of all
postdoctoral appointments. Since 2003 total postdoctoral appointments among these departments has increased 35%
and females holding postdocs increased 45% to 207 from 143.

Figure D.4: Postdoctoral Faculty in All Doctoral Mathematics

Figure D.3: Full-time Postdoctoral Faculty Departments Combined by Year, Fall 2003 to Fall 2012

B Number of Postdoctoral Appointments
Masters, 17 (1%)  Bachelors, 24 (2%) PP

Biostatistics, 112 (8%)
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2008
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Applied Math
82 (6%)

Year
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ma

79 (6%) Math Pub
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178 (13%)

Math Pri Large
295 (22%)

* All 2011 figures referenced on this page were adjusted to reflect the new departmental groupings introduced for 2012 (see page 166).
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The estimated number of nondoctoral full-time faculty in all mathematics departments combined (Math Public, Math

Private, Applied Math, Masters & Bachelors) is 3,692. This is down 2% from last year and is 17% of all full-time faculty
(22,219) in these departments. In addition, nondoctoral tenured faculty decreased 15% from 748 to 633 this year. 195
of the nondoctoral faculty in all mathematics departments are untenured, tenure-track faculty, 4% of all untenured
tenure-track faculty in these groups. Nondoctoral full-time non-tenure-track faculty increased to 2,848; this is 77% of
all nondoctoral mathematics faculty.

Figure ND.1: Full-time Nondoctoral Figure ND.2: Full-time Nondoctoral
Faculty by Departmental Grouping Tenured Faculty
Math Pub Large, 111 (3%) _ All Doctoral Math Combined Statistics & Biostatistics
Math Pub Medium, 268 (7%) 22 (3%) Combine

1 (0%)
Math Pub Small, 331 (9%)

Math Pri Large, 4 (0%)
Math Pri Small, 64 (2%)
— Applied Math, 48 (1%)
Statistics, 43 (1%)

Biostatistics, 60 (2%)

Total: 3,795 Total: 634

Figure ND.3: Gender of Full-time Nondoctoral Faculty
Total: 3,795

I Male WFemale

2500
2000 . Females account for 53% of full-time
2 nondoctoral faculty in all mathematics
3 groups combined (down from 54% last year),
9 1500 compared to females accounting for 24% of
- all doctoral full-time faculty and 29% of all
0 full-time faculty.
3 1000 . Total part-time nondoctoral faculty in
§ all doctoral mathematics departments
2 combined (Math Public, Math Private and
500 Applied Math) is 694, 59% of all part-time
55 faculty in these groups.
(53%)
0 | .
. 9@z
Doctoral Math Masters Bachelors Statistics/Biostatistics

Departmental Grouping

* All 2011 figures referenced on this page were adjusted to reflect the new departmental groupings introduced for 2012 (see page 166).
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For the combined mathematics departments (Math Public, Math Private, Applied Math, Masters and Bachelors),
women comprised 29% (6,482 with a standard error of 83) of the full-time faculty (22,219) in fall 2012. For the doctoral
mathematics departments combined (Math Public, Math Private and Applied Math), women comprised 14% of the
combined doctoral-holding tenured and tenure-track faculty and 27% of the doctoral-holding non-tenure-track (including
postdocs) faculty in fall 2012. For Masters faculty these same percentages are 28 and 39, and for Bachelors faculty
they are 29 and 33, respectively. Among the nondoctoral full-time faculty in all math departments combined, women
comprise 53%. Females account for 41% of all part-time faculty in mathematics departments combined.

Figure FF.1: Tenured Female Figure FF.2: Untenured, Tenure- Figure FF.3: Postdoctoral
Doctoral Faculty track Female Doctoral Faculty Female Faculty
Masters, 2 (1%)
Bachelors, 12 (4%)

Math Pub Large, 127 (5%) Math Pub Large,\37 (3%)
S Math Pub Medium, 126 (5%) Math Pub Medium, 68 (5%)

Math Pub Small, 189 (7%) Math Pub Small, 85 (7%)

Math Pri Large, 13 (1%)

! Math Pri Small

26 (2%)
2N
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48 (2%)
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Applied Math
\Applied Math 8 (1%)
39 (1%)

Statistics i Math Pub Medium

125 (5%) Applied Math 41 (15%)
Biostatistics, 94 (3%) Matgzp(fg;;na"

Math Pub Small
11 (4%)
Total: 2,744 Total: 1,266 Total: 282

Figure FF.4: Female Doctoral

Non-tenure-track Faculty

] « Females hold 12% of full-time tenured and 24% of full-
(excluding Postdocs)

time untenured/tenure-track positions in all doctoral

mathematics departments combined.
Math Pub Large, 70 (8%)

«  43% of all full-time female faculty (in all groups combined)
Math Pub Medium, 84 (10%) are in the Bachelors Group.

«  Masters departments reported the highest percentage of full-
time female faculty (35%), while Math Private Large reported
the lowest (14%).

« Females hold 21% of all postdoctoral appointments. 35% of

all female postdocs in doctoral mathematics departments
Math Pri Large, 51 (6%) combined are found in Math Public Large departments.
This group reported the highest percentage (26%) of female

Math Pri Small, 28 (3%) postdocs.
Applied Math, 17 (2%) . .
« 53% of all part-time female faculty among the mathematics

Statistics, 63 (7%) departments combined are found in the Bachelors Group.

Total: 861

* All 2011 figures referenced on this page were adjusted to reflect the new departmental groupings introduced for 2012 (see page 166).
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Total undergraduate enrollments for all groups combined increased by 2% (57,000) to 2,407,000 (with a standard

error of 23,000). All departments combined reported an overall increase of 14% in the number of undergraduate course

enrollments per full-time faculty member.

Figure UE.1: Undergraduate Course Enrollments Figure UE.2: Undergraduate Course Enrollment
by Department Groupings per Full-Time Faculty Members, Fall 2012
(Thousands)

Math Public Large, 212 (9%)

Math Public
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Math Private Large

46 (2%
Math Private Small, 68 (3%)
“Applied Math, 42 (2%)
Statistics, 94 (4%)
Biotatistics, 4 (<1%)

Total Undergraduate Enrollments (thousands): 2,407

Total graduate course enrollments have increased by 3% (3,000) to 106,000 (with a standard error of 3,000). All
departments combined reported an overall increase of 8% in the estimated number of graduate course enrollments
per full-time tenured/tenure-track faculty member.

Figure GE.1: Graduate Course Enrollments Figure GE.2: Graduate Course Enrollment per Full-Time
by Department Groupings Tenured and Tenure-track Faculty Member, Fall 2012
(Thousands)
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Total Graduate Enrollments (thousands): 106
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The estimated number of undergraduate degrees awarded during 2011-2012 by all mathematics departments
combined (Math Public, Math Private, Applied Math, Masters, and Bachelors) is 26,761 (with a standard error of 442),
up 7% from last year’s estimate of 25,054. The growth in degrees was similar for males and females. Females earned 41%
(10,980) of undergraduate degreeds, almost exactly the same as last year. This year’s estimated number of undergraduate
degrees awarded included 477 statistics-only and 1,987 computer-science only.

Figure UD.1: Undergraduate Degrees
Awarded by Department Groupings
. Math Doctoral departments awarded 18% more
degrees this year, up 1,539 from last year; 32% of
Math Public Large, 3283 (12%) all degrees awarded.

. _ « Bachelors departments awarded 42% of all the
Math PUbliC e ium degrees, down from 48% last year in all mathematics
departments combined.

Math Public Small « Total statistics-only degrees increased in all
1731 (6%) mathematics departments combined by 30% to 477.

Math Private Large . Statistics and Biostatistics departments combined

reported a 61% increase in degrees awarded, but

Math Private Small, 968 (3%) most of the increase comes from one department

Applied Math, 635 (2%) that has reported tremendous growth over the past
Statistics, 1344 (5%) year.

Biotatistics, 40 (<1%)

Total Degrees Awarded: 28,145

Figure UD.2: Undergraduate Degrees Awarded
All Mathematics Combined
M Total Undergraduate Degrees Awarded " Female Undergraduate Degrees Awarded Comparing undergraduate degrees awarded this
26761 year with those awarded in 2007-2008:
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The estimated number of master’s degrees awarded during 2011-2012 in all mathematics departments combined
(Math Public, Math Private, Applied Math, and Masters is 4,370, a 1% increase from last year’s estimate of 4,030 (with
a standard error of 131). This year’s estimated graduate degrees included 1,888 statistics-only and 125 computer
science-only degrees. Departments reported a slight decrease in the number of degrees awarded to females, 1,728.

Figure MD.1: Master’s Degrees Awarded

by Department Groupings « Looking at all mathematics departments combined:

Math Public Large, 496 (8%)

Math Public Medium
660 (11%) .

Math Public Small
663 (11%)

Biotatistics, 339 (6%)

Math Private Large
65 (6%)

Math Private Small, 179 (3%)
Applied Math, 402 (7%)

Masters departments awarded the highest
percentage of degrees (37%, down from 40%
last year).

Math Private Small awarded the fewest degrees
with 4%.

Females received 40% of all degrees awarded
among all the mathematics departments
combined; the same as last year.

16% of degrees awarded to females in all
mathematics departments combined were
in statistics-only or computer science-only,
compared to 12% for males.

. Statistics and Biostatistics combined awarded 1,561
degrees, an increase of 14% from last year; females

Total Degrees Awarded: 5,931

Figure MD.2: Master’s Degrees Awarded
All Mathematics Combined
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received 50% of these degrees (up from 47% last year).

4423 Comparing master’s degrees awarded this year with
those awarded in 2007-2008:

Total degrees awarded have increased 2%
overall.

Total degrees awarded to females decreased
from 41% to 40%.
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The total number of full-time graduate students in all mathematics departments combined is 15,658, up from 15,122
in fall 2012. The total number of full-time graduate students in doctoral mathematics departments combined (Math
Public, Math Private and Applied Math) is 12,684 (up from 12,464). The number of U.S. citizens among the doctoral
mathematics departments combined dropped slightly to 6,893 and the number of U.S. citizen first-year students
decreased 2% to 1,796. For Group Masters, full-time graduate students increased 8% to 2,974, the number of U.S. citizens
is 2,222 (up from 2,180), and the number of first-year students is 1,302 (up from 1,244). Statistics and Biostatistics
combined reported full-time graduate students as 5,749, up from 5,316.

«  Full-time graduate students increased in all groups except Math Public
Medium and Applied Math which decreased 2% and 3%, respectively.

Figure GS.1: Graduate Students . Biostatistics departments had the largest percentage increase in

by Department Groupings graduate students with 13% (up 199 from 1,515 to 1,714), while
Masters departments had the largest number increase—up 326 from
2,648 to 2974.

Maf_harf’“eb"c «  Females account for 36% (7,707) of the full-time graduate students; all
3185 ?l 5%) groups reported increases except Math Public Medium, Math Private
Large and Applied Math.

HELIE . First-year graduate students in Math Public Medium, Math Private

3030 (14%) Large and Biostatistics decreased by 6%, 4% and 41% respectively.
All groups increased with Applied Math and Statistics increasing by
33% and 45%, respectively.

M“zhs';‘jlb('%cz%”a” U.S. citizen graduate students decreased slightly overall; all doctoral
mathematics departments, except Math Public Small (which increased

10%) reported decreases.

Applied Math, 1372 (6%) " = Math Private Large, 1664 (8%)

Math Private Small, 840 (4%) . Total part-time graduate students increased slightly in all groups
with Math Public Small and Masters having the largest increases at
Total Graduate Students: 21,407 4% and 8%, respectively.

Table GS.2: Full-Time Graduate Students in All Doctoral Math Combined
by Gender and Citizenship, Fall 2006-2012

2006 2007 2008 2009 2010 2011 2012
Total full-time graduate students 10984 | 10937 10883 11286 | 13048 12464 12684
Female 3279 3249 3193 3248 3839 3745 3771
% Female 30% 30% 29% 29% 29% 30% 30%
% U.S. Citizen 56% 56% 55% 56% 57% 56% 54%
% Underrepresented minorities ! 9.0% 9.0% 9.0% 9.0% 9.0% 9.0% 9.0%
Total first-year graduate students 2960 2964 2924 3040 3313 3200 3394
Female 961 950 870 904 1019 1078 1036
% Female 32% 32% 30% 30% 31% 33% 31%
% U.S. Citizen 55% 56% 56% 55% 51% 50% 54%
% Underrepresented minorities 10.0% | 10.0% | 10.0% | 10.0% 9.0% 9.0% 9.0%

1 Underrepresented minorities includes any person having origins within the categories American Indian or Alaska Native,
Black or African American, Hispanic or Latino, and Native Hawaiian or Other Pacific Islander.

Looking at Table GS.2 we see that although the numbers and percentages have fluctuated somewhat among the
categories, the numbers of full-time and first-year graduate students have increased this year, while the percentage of
U.S. citizens and female first-year graduate students has dropped. While the number of full-time and full-time first-
year graduate students have both increased 15% above their level in 2006, they have dropped 3% and 2% from their
seven year highs in 2010.

* All 2011 figures referenced on this page were adjusted to reflect the new 2012 groupings for comparison.
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The questionnaire on which this report is based,
“Departmental Profile”, is sent to all doctoral and master’s
departments. It is sent to a stratified random sample of
bachelors departments, the stratifying variable being the
undergraduate enrollment at the institution.

The response rates vary substantially across the different
department groups. For most of the data collected on the
Departmental Profile form, the year-to-year changes in a
given department’s data are very small when compared
to the variations among the departments within a given
group. As a result of this, the most recent prior year’s
response is used (imputed) if deemed suitable. After the
inclusion of prior responses, standard adjustments for
the remaining nonresponse are then made to arrive at the
estimates reported for the entire groups.

Standard errors were calculated for some of the key
estimates for all Doctoral Math Groups (Math Public,
Math Private, and Applied Math) combined, for Groups
Masters and Bachelors, and for Statistics and Biostatistics
combined. Standard errors are calculated using the

variability in the data and can be used to measure how
close our estimate is to the true value for the population.
As an example, the number of full-time faculty in Group
Masters is estimated at 4,347 with a standard error of 68.
This means the actual number of full-time faculty in Group
Masters is most likely between 4,347 plus or minus two
standard errors, or between 4,211 and 4,484. This is much
more informative than simply giving the estimate of 4,347.

Estimates are also given for parameters that are totals
from all groups, such as the total number of full-time
faculty. For example, an estimate of the total number of
full-time faculty in all groups but Statistics and Biostatistics
combined is 22,219, with a standard error of 190.

The careful reader will note that a row or column total
may differ slightly from the sum of the individual entries.
All table entries are the rounded values of the individual
projections associated with each entry, and the differences
are the result of this rounding (as the sum of rounded
numbers is not always the same as the rounded sum).

Starting with reports on the 2012 AMS-ASA-IMS-MAA-
SIAM Annual Survey of the Mathematical Sciences, the
Joint Data Committee has implemented a new method
for grouping the doctorate-granting mathematics
departments. These departments are first grouped
into those at public institutions and those at private
institutions. These groups are further subdivided based
on the size of their doctoral program as reflected in the
average annual number of Ph.D.’s awarded between 2000
and 2010, based on their reports to the Annual Survey
during this period. Furthermore, doctorate-granting

departments which self-classify their Ph.D. program as
being in applied mathematics will join with the other
applied mathematics departments previously in Group
Va to form their own group. The former Group IV will
be divided into two groups, one for departments in
statistics and one for departments in biostatistics.

For further details on the change in the doctoral
department groupings see the article in the October
2012 issue of Notices of the AMS at|http://www.ams ]

org/notices/201209/rtx120901262p.pdf|.

Math. Public Large consists of departments with the highest annual rate of production of Ph.D.’s, ranging between 7.0 and 24.2 per year.
Math. Public Medium consists of departments with an annual rate of production of Ph.D.’s, ranging between 3.9 and 6.9 per year.
Math. Public Small consists of departments with an annual rate of production of Ph.D.’s of 3.8 or less per year.

Math. Private Large consists of departments with an annual rate of production of Ph.D.’s, ranging between 3.9 and 19.8 per year.
Math. Private Small consists of departments with an annual rate of production of Ph.D.’s of 3.8 or less per year.

Applied Mathematics consists of doctoral degree granting applied mathematics departments.

Statistics consists of doctoral degree granting statistics departments.

Biostatistics consists of doctoral degree granting biostatistics departments.

Group Masters contains U.S. departments granting a master’s degree as the highest graduate degree.

Group Bachelors contains U.S. departments granting a baccalaureate degree only.

Listings of the actual departments which compose these groups are available on the AMS website at

[annuaT-survey/groups.
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2012 Annual Survey of the Mathematical Sciences in the U.S.

Departmental Profile
Department Response Rates

Department Group Number Percent Imputed]
Math Public Large 22 of 26 85% 3
Math Public Medium 31 of 40 78% 9
Math Public Small 50 of 64 78% 12
Math Private Large 29 of 24 96% 1
Math Private Small 24 of 28 86% 2
Applied Math 20 of 25°  80% 3
Statistics 42 of 59 71% 14
Biostatistics 17 of 35 46% 12
Masters 92 of 180 51% 40
Bachelors 273 0f591°  46% 83

1 See paragraph two under ‘Remarks on Statistical Procedures.’

2 The population for Applied Math is slightly less than for the Doctorates
Granted Survey because four programs do not formally “house” faculty, teach

undergraduate courses, or award undergraduate degrees.

3 This is the sampled population, the total population for Bachelors is 1,007.

The Annual Survey attempts to provide an accurate
appraisal and analysis of various aspects of the
academic mathematical sciences scene for the use
and benefit of the community and for filling the in-
formation needs of the professional organizations.
Every year, college and university departments in
the United States are invited to respond. The Annual
Survey relies heavily on the conscientious efforts of
the dedicated staff members of these departments
for the quality of its information. On behalf of the
Data Committee and the Annual Survey Staff, we
thank the many secretarial and administrative staff
members in the mathematical sciences departments
for their cooperation and assistance in responding
to the survey questionnaires.

FEBRUARY 2014

The Annual Survey series, begun in 1957 by
the American Mathematical Society, is currently
under the direction of the Data Committee, a
joint committee of the American Mathematical
Society, the American Statistical Association, the
Mathematical Association of America, and the
Society of Industrial and Applied Mathematics. The
current members of this committee are Richard
Cleary (chair), Charles Epstein, Amanda Gabeck,
Sue Geller, Boris Hasselblatt, Loek Helminck, Ellen
Kirkman, Peter March, David R. Morrison, James
W. Maxwell (ex officio), illiam Velez, and Edward
Waymire. The committee is assisted by AMS survey
analyst Colleen A. Rose. In addition, the Annual
Survey is sponsored by the Institute of Mathematical
Statistics. Comments or suggestions regarding this
Survey Report may be emailed to the committee at
ams-survey@ams.org.

Visit the AMS website at|www.ams.org/annual-|

[survey/other-sources|for a listing of additional

sources of data on the Mathematical Sciences.
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WHAT [|§.

| Cyclic Sieving?

Victor Reiner, Dennis Stanton, and Dennis White

Many finite sets in combinatorics have both cyclic

symmetry and a natural generating function. Sur-

prisingly often the generating function evaluated
at roots of unity counts symmetry classes. We call
this the cyclic sieving phenomenon.

More precisely, let C be a cyclic group generated

by an element c of order n acting on a finite set X.

Given a polynomial X (g) with integer coefficients
in a variable g, we say that the triple (X, X(q), C)
exhibits the cyclic sieving phenomenon (CSP) if for
all integers d, the number of elements fixed by
@ equals the evaluation X (Z4) where € = e’n . In
particular, X (1) is the cardinality of X, so that
X(q) can be regarded as a generating function for
X.

In the protoexample, X is the collection of
all k-element subsets of {1,2,...,n}, and X(gq) is
the renowned g-binomial coefficient or Gaussian
polynomial

n| [n]ly
W XM= [k]q ~ Tklyn — Kl

where [m]ly; := [mlg[lm - 11,;---[2]4[1]; and
[mlg:=1+g+qg*+---+g™ ' Let the generator
c of C act by cycling the elements of a k-subset
modulo n. One then finds [1, Theorem 1.1(b)]
that this triple (X, X(gq), C) exhibits the CSP. For

Victor Reiner and Dennis Stanton are professors of math-
ematics and Dennis White is professor emeritus of mathe-
matics; all three are at the University of Minnesota. Their
email addresses are, respectively, reiner@math.umn.edu,
stanton@math.umn.edu, and white@math.umn.edu.

This work is partially supported by NSF grant DMS-1148634.

DOI: http://dx.doi.org/10.1090/noti1084

FEBRUARY 2014

example, taking n = 4 and k = 2, one has c acting
as shown here:

c C
(1,4} (2,3} "< >C
{2,4}

=134}

One can compute X(q) = 1+q +2¢°> + ¢*> + ¢*
from (1). Note that X(1) = 6, while X((eF)?) =
X(=1) = 2 counts the two subsets {{1,3},{2,4}}
fixed by c¢2, and X(eF) = 0=X((eT)3) since no
two-element subset is fixed by ¢ or ¢3.

The CSP was first defined in [1]. It has proven
to be remarkably ubiquitous; see, for example,
B. Sagan’s excellent survey [3]. The special case
of a CSP when C has order 2 was known as
J. Stembridge’s g = —1 phenomenon [4]. He gave
interesting examples involving enumeration of
plane partitions and Young tableaux.

Stembridge emphasized the value of a single
g-formula X (q) encompassing both the cardinality
of X as X(1) and a second enumeration X(—1) of a
symmetry class within X. A CSP triple (X, X(g), C)
generalizes his idea. The polynomial X (q) packages
as its n-'" root of unity evaluations, or equivalently
in its residue class modulo g" — 1, all of the
information about the cyclic action of C on X. In
fact, given (X, C) there is always a unique (but
generally uninteresting) choice of a polynomial
X(q) of degree at most n — 1 completing the triple,
as the CSP is equivalent [1, Proposition 2.1(ii)] to
the assertion that

n-1
X(q) = > aig'mod g" -1,
i=0
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where g; is the number of orbits of C on X in which
the stabilizer cardinality divides i. Thus a CSP
interprets combinatorially the coefficients of X (g)
when reduced mod g" — 1; e.g., ap counts the total
number of orbits on X, while a; counts the number
of free orbits. Our protoexample with n = 4 and
k=2has X(q) =2 +qg +2g° +g®*mod g* — 1, so
aop = 2 counts the two orbits in total, and a; =1
counts the free orbit.

Here is a second example from [1]. Let X be the
set of triangulations of aregular (n+2)-gon, with C
a cyclic group of order n + 2 rotating triangulations,

and let
1 2n
X@) = 1, [ n L,

a g-Catalan number considered by P. A. MacMahon.
Then (X, X(q),C) exhibits the CSP [1, Theorem
7.1]. For example, when n = 4, the four orbits of
triangulations are represented by

= s 2% YN
\./ \./ \./ \./

1 8
X(q) = m [4:|q

=1+¢*°+q*+2q*+q°
L2547 4265 + q° + q'° + g2
=4+g+3G°+2¢°+3g*+g°mod g% -1,

so that ap = 4 counts the four orbits, of which
a; = 1 of them is free (the fourth orbit), while
ap, = 3 orbits (the first, second, fourth) have
stabilizer size dividing 2, and a3 = 2 orbits (the
third, fourth) have stabilizer size dividing 3.

It was conjectured by the authors and verified by
S.-P. Eu and T.-S. Fu that this triangulation example
generalizes to a CSP triple (X, X(q),C) in which X
is the collection of clusters in a cluster algebra of
finite type W ala S. Fomin and A. Zelevinsky, where
C is generated by a deformed Coxeter element and
X(q) is a g-analogue of the Catalan number for W.

So what makes a generating function X(gq)
“natural”? To some extent, this is in the eye of the
beholder. Nevertheless, here are some conditions
on X(q) arising in many CSPs encountered so far:

(i) X(qg) is the statistic generating function
for a map s : X — {0,1,2,...}; that is,
X(q) = Sxex 4*Y.

(i) X(g) has a simple product formula.

(ili) X(g) at g = p? a prime power counts the
points of a variety X (F4) defined over the
finite field [F.

(iv) X(g%) = >; B: q' records the Betti numbers
Bi of a complex variety X (C).
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(v) X(g) = >;dimR;q' records the Hilbert
series of some interesting graded ring
R = @i Ri.

(vi) X(g?) is, up to a power of g, the formal
character of an SL,(C)-representation,
that is, the sum >’; dim V; g* where V; is the
weight space on which a diagonal matrix
with eigenvalues (g, g~1) acts via the scalar
q'.

Our protoexample has each of these natural
properties:

(a) After multiplying X (g) by q(kzl), it is the
statistic generating function for k-subsets
A by their sum s(A) = > ,c4 4.

(b) The product formula for X(g) is given in
(1).

(c) X(g) counts the points in the Grassman-
nian of k-planes in an n-dimensional vector
space over [Fg.

(d) X(g?) records the Betti numbers for this
Grassmannian over C.

(e) When the symmetric group S, permutes
polynomials in n variables, X(gq) is the
Hilbert series for the quotient ring' of the
polynomials invariant under Sk x S,,_x after
modding out the nonconstant polynomials
invariant under Sj,.

(f) g k=% x(g42) is the formal character for
the k-'" exterior power of the n-dimensional
SLy(C)-irreducible.

In our triangulations example, the g-Catalan X(q)
has an interpretation as in (a), (b), (c) and a variation
of (e). We know no interpretation like (d) or (f).
Some CSPs in the literature are proven via
a linear algebra paradigm [1, §2]. Such proofs
interpret X(gq) as in (d) or (e), giving a graded
representation V = @, V; of the cyclic group C.
One shows that X(C9) equals the size of the
c?-fixed subset of X by computing the trace of ¢4
using two bases. The first basis is indexed by X
and permuted by c, so that the trace of c? is the
size of the c?-fixed subset. The second basis shows
that ¢ scales V; by T, so that ¢4 has trace X (C9).
A pleasing situation where this paradigm works
generalizes (e) above. It arises from the invariant
theory of finite subgroups W of GL,(C) generated
by reflections, that is, elements whose fixed space
is a complex hyperplane. T. Springer developed a
theory of regular elements in such groups, which
are the elements ¢ that have an eigenvector fixed by
none of the reflections of W. Using Springer’s main
result, one obtains [1, Theorem 8.2] a CSP triple
from the coset space X := W /W’ for any subgroup
W', with C generated by a regular element left-
translating coset, and X(q) is the quotient of the

L This graded ving is isomorphic, after doubling degrees, to
the cohomology of the Grassmannian in (d).
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Hilbert series for the W’-invariant polynomials over
the Hilbert series for the W-invariant polynomials.

An intriguing CSP was conjectured by D. White
involving rectangular Young tableaux and the cyclic
action of jeu-de-taquin promotion. It has now seen
several proofs via the linear algebra paradigm, first
by B. Rhoades [2] and most recently by B. Fontaine
and J. Kamnitzer. Such insightful proofs are rarer
than we would like. Many known instances of CSPs,
such as the triangulations example, have only
been verified using a product formula for X(g) to
evaluate X (€9) and comparing with known counts
of symmetry classes.

We close with a perplexing example of this
nature. Let X be the set of n x n alternating sign
matrices. the matrices with 0, =1 entries whose
row and column sums are all +1, and nonzero
entries alternate in sign reading along any row or
column. Here they are for n = 3:

Cc
—

107701 c
1 001 100 7001 10
01 100 910 010 1—11Qc

o ) 001 100 10
01 100 g
10 001
10 01

Ke—

c

Let C be the cyclic group of order 4 whose generator
c rotates matrices through 90°. Let

3k + 11,
X =117,

This triple (X, X(g), C) exhibits the CSP, but we
have no linear algebraic proof. Furthermore, X (q)
is only known as the generating function for
descending plane partitions by weight and is not
defined by a statistic on alternating sign matrices.
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“But what do you actually do?” We have all had to
answer that question. “What does a research math-
ematician actually do? Isn’t it already known? Do
you just sit down and write things out?” And so on.

It is a difficult question to answer if one wants
to give some idea both of the effort and of the
intellectual pleasure involved. This pleasure is
quite real and keeps us all going, as arcane as
it might seem to the passer-by. To quote André
Welil, as does the book under review, “Tout mathé-
maticien digne de ce nom a ressenti, ne serait-ce
que quelquefois, I’état d’exaltation lucide dans
lequel une pensée succede a une autre comme
par miracle.... Contrairement au plaisir sexuel, ce
plaisir peut durer plusieurs heures, voire plusieurs
jours. (Any mathematician worthy of the name has
felt, if only a few times, that state of lucid exalta-
tion in which one thought follows another as if by
miracle.... Unlike sexual pleasure, this state can go
on for hours, even days.)”

Our world, also, is different. We evolve inside
a mathematical culture which is to a great degree
alien to the common culture. Our heroes are, by
and large, unknown to the public. Though we share
to a great degree the values of fellow scientists,
even within a faculty of science, we are often
strangers, and outliers, doing that strange stuff
that is immune to experiment.

Of course, we have explained ourselves in
several ways: mathematicians have written au-
tobiographies. Cleaving to the theme of French
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mathematics, ap-
propriately for this
review, two come to
mind, which, inci-
dentally, illustrate
to a certain degree
how French math-
ematical culture
has evolved over
time. One is André
Weil’s Souvenirs
d’apprentissage:
”\ B .| beautifully written,
:;%;—— y j‘ quirky, if, in the end,
(-. LR\ too preoccupied
- with the anecdotes
of a well-filled life, having carefully avoided any
intimacy. The other is Un mathématicien aux
prises avec le siécle, by Laurent Schwartz, which
follows a life of someone who, much more than
most of us, was deeply involved in the political and
intellectual struggles of his time: it is a beautiful
book, following the life of a truly exceptional man.
However, neither of these gives any real idea of
what mathematical research is actually like and
why it involves us so deeply. Nor do many other
autobiographies.

The book Théoréme vivant, by Cédric Villani,
explores a different direction and gives a won-
derfully living answer to the question. It follows,
through a few years of work, a collaboration by
Villani and his former student, Clément Boutot,
on a difficult and important result: establishing
Landau damping for the Vlasov equation, beyond
linear perturbation. The Vlasov, or Vlasov-Poisson,
equation governs the evolution of plasmas. It
displays time reversibility and does not reflect
collisions of the particles, the mechanism which
would normally govern a rapid convergence to an
equilibrium. Landau, in the 1940s, argued that nev-
ertheless the electric field converged exponentially
to an equilibrium and computed the rate from the
linearized equation: this is Landau damping. The

CEDRIC

< VILANI
* JHEQREME
VIVANT
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Boutot-Villani theorem establishes this damping
for the full equation.

The core of the book, thus, is about a theorem.
It is a very major theorem, not one tossed off in a
weekend, and its genesis exhibits all the rebounds
that we have felt in our own work. The technique
Villani uses to show this is kaleidoscopic, or, rather,
by vignette; perhaps a stained-glass window would
be a better analogy. One has the initial dialogue, a
sort of jam session, between the two collaborators,
trying to work out what they are going to do. After
a while, the desired theorem crystallizes in their
minds, and the hunt is on. One watches, mainly
through a series of email transcripts, as their proof
takes shape. We are even given the full proofs of a
few lemmas, a sampling. There are ups and downs:
gaps appear and are filled. The theorem and its
proof evolve into something that can be presented
to a specialized audience. There follows the first
seminar, and in the course of preparation, doubts
appear, as is often the case. The audience criticizes,
and the authors go back to work. Better approaches
evolve; the argument is refined; estimates treated
before in a block are attacked individually, sharp-
ened, and the theorem improves. It is submitted
to a major journal, and the editors reject it: very
good, but too long, not quite there, and so on. The
final theorem, hardened and improved by its trial
by fire, in the end is accepted. Recognition follows.

The writing is true to life: the emails have the
informal style, interspersed with borrowings from
English that actual French mathematicians actually
use; the descriptive passages are more formal, with
a very pleasant prose. The formal mathematics is,
well, formal mathematics. The dialogues of the
two collaborators as they are beginning to work
on their theorem are perhaps a bit artificial and
slick, to my mind: a transcript of my own efforts
at a blackboard with a collaborator would include
a lot more of “Huh? Could you repeat that again?”
On the other hand, there is a stylistic challenge of
summarizing a five-hour session into something
that does not numb the brain. By and large, though,
true to the word “living” in the title, the prose
reflects life. I presume that there will be an English
translation eventually, but one should read the
book in French if one can.

Interspersed with the mathematics, there is
indeed life, the rest of it, which again resonates
with us all: we are not abstract theorem-proving
machines, but people, with interests, and families,
and various duties. The chapters on the develop-
ment of the theorem interleave with paragraphs or
sections on looking after the children, on travel,
on taking a walk in the grounds of the Institute for
Advanced Study, on the wonders of tea, or on the
difficulties of finding good cheese in the United
States. There are several beautiful discourses on
music, about which Villani cares very much and
which is a constant companion in his life. He is
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particularly moved by the songs of Catherine
Ribeiro; one of them is reproduced in the book,
along with a photograph of her. One has a long
and eclectic list, almost like a well-known poem
of Prévert, of his musical likes; unlike Prévert’s
poem, though, as far as I can tell, it is resolutely
raccoon-free. From the animal kingdom, Blake’s
Tyger makes an appearance, following a reference
to “tyger” phenomena for Burger’s and Euler’s
equations.

It is quite naturally in these sections that the
author’s personality shines through. There are
of course the personal quirks, his clothes for ex-
ample. (Villani dresses like a nineteenth-century
romantic poet.) Mostly, however, through these
passages, the strongest sense one gets is of the re-
lentless and sympathetic curiosity, the omnivorous
cultural enthusiasm, and the boundless energy of
the man, which he deploys with great generosity.
The book is interspersed with personal vignettes
on other mathematicians, some of them heroes
from the past (Malliavin, for example), some of
them his colleagues, either in his area, or outside
of it, encountered in the course of the few years
covered by the book. Each is accompanied by a
beautiful line drawing by Claude Gondard of the
person in question.

Villani has already had a major impact on the
public perception of mathematics in France: he is
a born communicator, and he has things to say.
The book has been very popular in francophone
countries; it was quite visibly displayed in the
Montreal bookstore where I bought my copy. The
implicit task that Villani had set for himself, of
explaining what it is all about, is a difficult one,
mostly due to the wide variety of audiences con-
cerned: colleagues in the field, colleagues without,
a general scientific reader, and of course members
of that vast and rather undefined set—the general
public. To give each a sense of what is going on,
without pandering, so that each goes away with a
good sense of the mathematical process, or of that
mathematical process, is not easy. To my mind the
book succeeds wonderfully.
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doceamus . ..let us teach

A Missing Piece:
Early Elementary
Plane Rotations

Bob Palais

The formula for plane rotations can and perhaps
should be taught at an elementary level, for its use-
fulness in many fields including geometry, physics,
and computer animation, and because it unifies and
clarifies a wide range of mathematical subjects.

A rotation of the plane that fixes the origin is
determined by its effect on a single reference point.
If the image of (1,0) is (X, Y), the plane rotation
formula expresses the image of any point (x,y) as
the multiple x of

(xX-yY, xY+ yX)

(0.1)

(xX, xY)
(XY) (xv)

\( 10)

(0.0) x

Figure 1. The plane rotation formula
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(X,Y) plus the multiple y of (-Y, X), the image
of (0,1):

(1) x(X,Y)+y(-Y,X)=(xX-yY,yX +xY).

The addition and scaling operations call for
vector notation ( , ) instead of point no-
tation ( , ). The Pythagorean relation on
X and Y can actually be obtained as a
consequence of the formula! The derivation
suggested in Figure 1 requires only basic Euclidean
geometry. This makes a variety of exciting and
useful mathematical topics available much earlier.
Organizing the curriculum around this marriage
of geometry and algebra can also provide a natural
introduction to and excellent preparation for the
next levels.

The key to the plane rotation formula is the
observation that, when you turn your head 90°
clockwise, what used to look like (X,Y) now
looks like (-Y,X). A rotation by a right angle
is equivalent to choosing a neighboring pair of
perpendicular rays from the axes of the same
rectangular system as positive first and second
coordinate axes. Applying this twice, the image
of (-Y,X)is (—X,-Y), so a quarter-turn rotation
behaves as a square root of —1. By the same
reasoning, if a rotation takes (1,0) to (X,Y), then
it must also take (0,1) to (-Y,X). By similar
triangle constructions, or simply scaling, the image
of (x,0) is x(X,Y) = (xX,xY), and the image of
(0,y) is y(-Y,X) = (—yY,yX). By a congruent
triangle construction, or shift of origin, we arrive
at (1): the plane rotation that takes (1,0) to
(X,Y) takes (x,y) to x(X,Y) + y(-Y, X). We will
now see how this formula unifies the circular
addition formulas, the Pythagorean relation, the

VOLUME 61, NUMBER 2



geometric meanings of complex products, powers,
exponentials, the dot and cross products, and
more.

With (x, y) = (cos s, sins),(X,Y) = (cost,sint),
(1), the rotation formula (1) becomes

(cos(s +t),sin(s + t))
= (cosscost — sinssint, sinscost
+ coss sint).

This reunites the two circular addition formulas
that are usually treated separately and better
explains their related algebraic structure. In con-
trast, the kinds of derivations many students expe-
rience are like the one given in the 2010 edition
of a popular precalculus text.! Starting from a
distance formula obtained by unrelated cut and

paste methods, \/(coss —cost)? + (sins — sint)?2

= \/(cos(s —t) —1)2 + (sin(s — t) — 0)2, two pages
of algebraic manipulation lead to the cosine sub-
traction formula by itself. This approach provides
little insight into the connected and linear structure
and origins of both addition formulas. It is hardly
surprising that many students fail to understand
these formulas. Through no fault of their own, they
may feel that math is a pointless, unmotivated, and
unpleasant exercise in gymnastic memorization.

Formula (1) wants and contains the Pythagorean
formula that relates the horizontal and vertical
components of areference point to which (1, 0) can
berotated. Becauseif (1,0) isrotated to (X, Y), then
(X,-Y) returns to (1,0) = (xX — y(-Y),x(-Y) +
yX) = (X? +Y2,0). At the basic level, this is just
reflection symmetry, or Pythagoras as a special
case of the addition formula: cos(t — t) = cos(0) =
1 = cos(t) cos(—t) — sin(t) sin(—t). When scaling
is incorporated, the same analysis explains the two
scaling factors of R in X2 + Y2 = R2.

In 1799, Wessel saw that (1) could be interpreted
to define a complex multiplication isomorphic to
(Xx+yi)(X+Yi)=(xX-yY)+ (yX+xY)i.ltisno
coincidence that, in the same paper, Wessel also
first introduced the geometric interpretation of
vector addition as uniting directed segments “in
such a way that the second begins where the first
ends. The sum is from the first to the last point of
the united segments.” Interpreting complex powers
as iterated rotation and scaling permits a more
complete connection among the cornerstones of
the “College Algebra” curriculum: exponentials,
polynomials and their zeros, and systems of linear
equations. The Fibonacci-like dynamical systems
that evolve deterministically from two initial
conditions are a wonderful example that combines
all this and more, and also leads naturally to the

ISee |http://math.utah.edu/%7Epa1 ais/AMissingPi ecel
for this and other comparisons and examples.
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corresponding material at the calculus level. For
example, the solutions of F,,,» = 5F,.1 — 6F, are
12" + 23", a superposition of exponentials whose
bases are solutions of the polynomial equation
x2 = 5x — 6, and whose coefficients are found by
solving a system of linear equations to match the
initial conditions. When the difference equation is
replaced with y” = 5y’ — 6y, we just change to
rates for natural exponentials: c;e?’ + coe3!. Even
closer to Fibonacci, when the sum is replaced
by a difference, F,,» = Fny1 — F,, the rotation
formula explains the 6-step periodicity of the basic
solutions x, = 2,1,-1,-2,-1,1,2,1,... and y, =
0,1,1,0,-1,-1,0,1,.... They also may be written
€11 + cor™, where r. are solutions of x> = x — 1,
each one-sixth turn from 1 on the unit circle.
The points (x,, y») lie on an ellipse, x2 + 3y?2 = 4,
corresponding to the hyperbolas y2 —5x2 = +4 that
contain the standard Fibonacci-Lucas pairs x, =
1,1,2,3,5,...,vn =1,3,4,7,11,.... The solutions
of y =y —1are cie™! + cpe™ . See the footnote
link for how the rotation formula can also simplify
the derivation and analysis of conic sections.

Rectangular coordinates are specified using
Euclid’s perpendicular bisector construction by a
choice of origin, a second point for direction and
unit on the first axis, and an orientation for the
positive direction of the second (counterclockwise
in math, clockwise in computer graphics). Then any
two rectangular coordinate systems may be related
by a combination of shift of origin, scaling, rotation,
and reflection, corresponding to complex addition,
multiplication, and conjugation, respectively! It
seems a shame for our students to be deprived
of the one missing transformation, rotation, when
providing access to it is so elementary and permits
so much utility and insight.

At the calculus level, the quarter-turn rotation
formula (—y,x) also expresses the physics of
uniform circular motion and Hooke’s spring. When
motion is neither inward nor outward, velocity
must be perpendicular to displacement: (x,y)’ =
(—=y,x) or z' = iz. This physically motivated
and geometrically natural relationship provides
a definition of the cosine and sine functions
that parameterize our reference point (X,Y), and
explains Euler’s formula e’' = cost+isint.All other
properties follow easily from this starting point.
Applied twice, (x,y)" = (—x,—y),orz"" = —z, says
acceleration is opposite to displacement. From
the differential equations perspective, (—y, x) is
a change of variables, the linear combination
X(x,¥) + Y(—y,x) is a linear superposition of
solutions, and the Pythagorean symmetry reflects
their invariance under time reversal. Formula (1)
is also the origin of the Cauchy-Riemann equations
that characterize an analytic function of a complex
variable z as independent of Z = x — iy.

NOTICES OF THE AMS


http://math.utah.edu/%7Epalais/AMissingPiece

It is well known that the negative reciprocal
condition that two lines are perpendicular fails
when one is vertical. The condition that two
directions v = (vi,v) and w = (wp,w») are
collinear, w = cv, also fails when v = 0. The
vanishing of the plane cross product v x w =
viwy — vowy is a test for collinearity that does
not suffer from this exception. Directions are
perpendicular if a quarter-turn rotation makes
them collinear. Combining the cross product and
the quarter-turn rotation formula, the vanishing
of plane dot product v-w = viw; + VoW is a test
for orthogonality that has no exception.

The plane rotation formula provides a great
setting to introduce geometric vector algebra
and matrices, where equation (1) takes the form
[¥ ][5 ]- A direct calculation using plane rota-
tion formula (1) and its consequence X2 + Y2 = 1
confirms that, if the same rotation R is applied to
both v and w, the dot product of the images is
the same: Rv - Rw = v - w. We may simultaneously
rotate any such vectors so that the image of the first
is along the positive x;-axis, (rq,0), and that of the
second is (r» cost, > sint), where r? = v¥ + v3 and
r? = w? + w2, This standard configuration exhibits
the meaning of the dot product v - w = 11> cost,
where t is the angle between v and w. Any rotation
of space in three or higher dimensions and the stan-
dard configuration may be constructively obtained
through a sequence of coordinate plane rotations,
so the dot product v - w = 37_; v;w; immediately
inherits the same invariance and interpretation.
Therefore, the generalization of the above dot
producttov-w = Z?ﬂ vjwj immediately inher-
its the same invariance and interpretation. The
definition, invariance, and interpretation of the
three-dimensional cross product

VXW
= v1(0, —w3, w2) +Vv2 (w3, 0, —=w1) +v3{—=w2, w1, 0)

can also be easily understood in terms of coordinate
plane rotations.

Collectively, these observations give rise to a
useful and purely three-dimensional interpretation
of quaternions and their multiplication that we will
discuss elsewhere. There are many more examples
that cannot be covered here, but perhaps this brief
survey will stimulate more inquiry, discussion, and
discovery!
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Mathematical Sciences Center

Tsinghua University, Beijing, China

Positions:

Distinguished Professorship; Professorship;
Associate Professorship;

Assistant Professorship (tenure-track).

The MSC invites applications for the above positions in the
full spectrum of mathematical sciences: ranging from pure
mathematics, applied PDE, computational mathematics to
statistics. The current annual salary range is between 0.15-1.0
million RMB. Salary will be determined by applicants'
qualification. Strong promise/track record in research and
teaching are required. Completed applications must be
electronically submitted, and must contain curriculum vitae,
research statement, teaching statement, selected reprints and
/or preprints, three reference letters on academic research
and one reference letter on teaching, sent electronically to

msc-recruitment@math.tsinghua.edu.cn

The review process starts in December 2013, and closes by
April 30, 2014. Applicants are encouraged to submit their
applications before February 28, 2014.
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Positions: post-doctorate fellowship

Mathematical Sciences Center (MSC) will hire a substantial
number of post-doctorate fellows in the full spectrum of
mathematical sciences. New and recent PhDs are encouraged

for this position.

A typical appointment for post-doctorate fellowship of MSC
is for three-years.Salary and compensation package are
determined by qualification, accomplishment, and experience.
MSC offers very competitive packages.

Completed applications must contain curriculum vitae,
research statement, teaching statement, selected reprints and
/or preprints, three reference letters, sent electronically to

msc-recruitment@math.tsinghua.edu.cn

The review process starts in December 2013, and closes by
April 30,2014. Applicants are encouraged to submit their
applications before February 28, 2014.

VOLUME 61, NUMBER 2



Interview with Pierre Deligne

Martin Raussen and Christian Skau

Pierre Deligne is the recipient of the 2013 Abel Prize of the Norwegian Academy of Science and Letters. This interview
was conducted by Martin Raussen and Christian Skau in Oslo in May 2013 in conjunction with the Abel Prize celebra-
tion. This article originally appeared in the September 2013 issue of the Newsletter of the European Mathematical

Society and is reprinted here with permission of the EMS.

Raussen and Skau: Dear Professor Deligne, first of
all we would like to congratulate you as the eleventh
recipient of the Abel Prize. It is not only a great
honor to be selected as recipient of this prestigious
prize, the Abel Prize also carries a cash amount of
six million NOK, that is around US$1,000,000. We
are curious to hear what you are planning to do
with this money...

Deligne: I feel that this money is not really mine,
but it belongs to mathematics. I have a responsibil-
ity to use it wisely and not in a wasteful way. The
details are not clear yet, but I plan to give part of
the money to the two institutions that have been
most important to me: the Institut des Hautes
Etudes Scientifiques (IHES) in Paris and the Insti-
tute for Advanced Study (IAS) in Princeton.

I'would also like to give some money to support
mathematics in Russia. First to the Department of
Mathematics of the Higher School of Economics
(HSE). In my opinion, it is one of the best places
in Moscow. It is much smaller than the Faculty
of Mechanics and Mathematics at the [National
Research] University, but has better people. The
student body is small; only fifty new students are
accepted each year. But they are among the best
students. The HSE was created by economists. They
have done their best under difficult circumstances.
The department of mathematics has been created
five years ago, with the help of the Independent
University of Moscow. It is giving prestige to the
whole HSE. There I think some money could be
well used.

Another Russian institution I would like to do-
nate some money to is the Dynasty Foundation,
created by the Russian philanthropist Dmitry
Zimin. For them, money is most likely not that
important. It is rather a way for me to express my

Martin Raussen is associate professor of mathematics
at Aalborg University, Denmark. His email address is
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From left to right: Pierre Deligne, Martin
Raussen, Christian Skau.

admiration for their work. It is one of the very few
foundations in Russia that gives money to science;
moreover, they do it in a very good way. They give
money to mathematicians, to physicists, and to
biologists; especially to young people, and this is
crucial in Russia! They also publish books to popu-
larize science. I want to express my admiration for
them in a tangible way.

Raussen and Skau: The Abel Prize is certainly
not the first important prize in mathematics that
you have won. Let us just mention the Fields Medal
that you received 35 years ago, the Swedish Cra-
foord Prize, the Italian Balzan Prize and the Israeli
Wolf Prize. How important is it for you, as a math-
ematician, to win such prestigious prizes? And how
important is it for the mathematical community
that such prizes exist?

Deligne: For me personally, it is nice to be told
that mathematicians I respect find the work I have
done interesting. The Fields Medal possibly helped
me to be invited to the Institute for Advanced
Study. To win prizes gives opportunities, but they
have not changed my life.

I think prizes can be very useful when they can
serve as a pretext for speaking about mathematics
to the general public. I find it particularly nice that
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the Abel Prize is connected with other activities
such as competitions directed towards children
and the Holmboe Prize for high school teachers. In
my experience, good high school teachers are very
important for the development of mathematics. I
think all these activities are marvellous.

Youth

Raussen and Skau: You were born in 1944, at
the end of the Second World War in Brussels. We
are curious to hear about your first mathematical
experiences: In what respect were they fostered by
your own family or by school? Can you remember
some of your first mathematical experiences?

Deligne: I was lucky that my brother was seven
years older than me. When I looked at the ther-
mometer and realized that there were positive
and negative numbers, he would try to explain to
me that minus one times minus one is plus one.
That was a big surprise. Later when he was in high
school he told me about the second degree equa-
tion. When he was at the university he gave me
some notes about the third degree equation, and
there was a strange formula for solving it. I found
it very interesting.

When I was a Boy Scout, I had a stroke of ex-
traordinary good luck. I had a friend there whose
father, Monsieur Nijs, was a high school teacher.
He helped me in a number of ways; in particular, he
gave me my first real mathematical book, namely
Set Theory by Bourbaki, which is not an obvious
choice to give to a young boy. I was fourteen years
old at the time. I spent at least a year digesting
that book. I guess I had some other lectures on
the side, too.

Having the chance to learn mathematics at
one’s own rhythm has the benefit that one revives
surprises of past centuries. I had already read
elsewhere how rational numbers, then real num-
bers, could be defined starting from the integers.
But I remember wondering how integers could be
defined from set theory, looking a little ahead in
Bourbaki, and admiring how one could first define
what it means for two sets to have the “same num-
ber of elements”, and derive from this the notion
of integers. I was also given a book on complex
variables by a friend of the family. To see that the
story of complex variables was so different from
the story of real variables was a big surprise: once
differentiable, it is analytic (has a power series
expansion), and so on. All those things that you
might have found boring at school were giving me
a tremendous joy.

Then this teacher, Monsieur Nijs, put me in con-
tact with Professor Jacques Tits at the University
of Brussels. I could follow some of his courses and
seminars, though I still was in high school.

Raussen and Skau: It is quite amazing to
hear that you studied Bourbaki, which is usually
considered quite difficult, already at that age. Can
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you tell us a bit about your formal school educa-
tion? Was that interesting for you, or were you
rather bored?

Deligne: I had an excellent elementary school
teacher. I think I learned a lot more in elementary
school than I did in high school: how to read, how
to write, arithmetic, and much more. I remember
how this teacher made an experiment in mathemat-
ics that made me think about proofs, surfaces, and
lengths. The problem was to compare the surface
of a half-sphere with that of the disc with the same
radius. To do so, he covered both surfaces with a
spiralling rope. The half sphere required twice as
much rope. This made me think a lot: how could
one measure a surface with a length? How to be
sure that the surface of the half sphere was indeed
twice that of the disc?

When I was in high school, I liked problems in
geometry. Proofs in geometry make sense at that
age because surprising statements have not-too-
difficult proofs. Once we were past the axioms, I
enjoyed very much doing such exercises. I think
that geometry is the only part of mathematics
where proofs make sense at the high school level.
Moreover, writing a proof is another excellent ex-
ercise. This does not only concern mathematics,
you also have to write in correct French—in my
case—in order to argue why things are true. There
is a stronger connection between language and
mathematics in geometry than for instance in al-
gebra, where you have a set of equations. The logic
and the power of language are not so apparent.

Raussen and Skau: You went to the lectures of
Jacques Tits when you were only sixteen years old.
There is a story that one week you could not attend
because you participated in a school trip...?

Deligne: Yes. I was told this story much later.
When Tits came to give his lecture he asked: Where
is Deligne? When it was explained to him that I
was on a school trip, the lecture was postponed
to the next week.

Raussen and Skau: He must already have recog-
nized you as a brilliant student. Jacques Tits is also
a recipient of the Abel Prize. He received it together
with John Griggs Thompson five years ago for his
great discoveries in group theory. He was surely an
influential teacher for you?

Deligne: Yes; especially in the early years. In
teaching, the most important can be what you
don’t do. For instance, Tits had to explain that
the center of a group is an invariant subgroup. He
started a proof, then stopped and said in essence:
“An invariant subgroup is a subgroup stable by all
inner automorphisms. I have been able to define
the center. It is hence stable by all symmetries of
the data. So it is obvious that it is invariant.”

For me, this was a revelation: the power of the
idea of symmetry. That Tits did not need to go
through a step-by-step proof, but instead could
just say that symmetry makes the result obvious,
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has influenced me a lot. I have a very big respect for
symmetry, and in almost every one of my papers
there is a symmetry-based argument.

Raussen and Skau: Can you remember how Tits
discovered your mathematical talent?

Deligne: That I cannot tell, but I think it was
Monsieur Nijs who told him to take good care
of me. At that time, there were three really ac-
tive mathematicians in Brussels: apart from Tits
himself, Professors Franz Bingen and Lucien Wael-
broeck. They organized a seminar with a different
subject each year. I attended these seminars, and
I learned about different topics such as Banach
algebras, which were Waelbroeck’s speciality, and
algebraic geometry.

Then, I guess, the three of them decided it was
time for me to go to Paris. Tits introduced me to
Grothendieck and told me to attend his lectures
as well as Serre’s. That was an excellent advice.

Raussen and Skau: This can be a little surpris-
ing to an outsider. Tits being interested in you as a
mathematician, one might think that he would try
to capture you for his own interests. But he didn’t?

Deligne: No. He saw what was best for me and
acted accordingly.

Algebraic Geometry

Raussen and Skau: Before we proceed to your
career in Paris, perhaps we should try to explain
to the audience what your subject, algebraic ge-
ometry, is about.

When Fields medalist Tim Gowers had to explain
your research subjects to the audience during the
Abel Prize announcement earlier this year, he
began by confessing that this was a difficult job
for him. It is difficult to show pictures that illustrate
the subject, and it is also difficult to explain some
simple applications. Could you, nevertheless, try to
give us an idea what algebraic geometry is about?
Perhaps you can mention some specific problems
that connect algebra and geometry with each other.

Deligne: In mathematics, it is always very nice
when two different frames of mind come together.
Descartes wrote: “La géométrie est I'art de raison-
ner juste sur des figures fausses (Geometry is the
art of correct reasoning on false figures).” “Figures”
is plural: it is very important to have various per-
spectives and to know in which way each is wrong.

In algebraic geometry, you can use intuitions
coming both from algebra—where you can ma-
nipulate equations—and from geometry, where
you can draw pictures. If you picture a circle and
consider the equation x* + y2 = 1, different images
are evoked in your mind, and you can try to play
one against the other. For instance, a wheel is a
circle and a wheel turns; it is interesting to see what
the analogue is in algebra: an algebraic transforma-
tion of x and y maps any solution of x? + y2 =1
to another. This equation describing a circle is of
the second degree. This implies that a circle will
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have no more than two intersection points with a
line. This is a property you also see geometrically,
but the algebra gives more. For instance, if the line
has a rational equation and one of the intersec-
tion points with the circle x2 + y2 = 1 has rational
coordinates, then the other intersection point will
also have rational coordinates.

Algebraic geometry can have arithmetical appli-
cations. When you consider polynomial equations,
you can use the same expressions in different
number systems. For instance, on finite sets on
which addition and multiplication are defined,
these equations lead to combinatorial questions:
you try to count the number of solutions. But you
can continue to draw the same pictures, keeping
in mind a new way in which the picture is false,
and in this way you can use geometrical intuition
while looking at combinatorial problems.

I have never really been working at the center of
algebraic geometry. I have mostly been interested
in all sorts of questions that only touch the area.
But algebraic geometry touches many subjects!
As soon as a polynomial appears, one can try to
think about it geometrically; for example in physics
with Feynman integrals, or when you consider an
integral of a radical of a polynomial expression.
Algebraic geometry can also contribute to the
understanding of integer solutions of polynomial
equations. You have the old story of elliptic func-
tions: to understand how elliptic integrals behave,
the geometrical interpretation is crucial.

Raussen and Skau: Algebraic geometry is one
of the main areas in mathematics. Would you say
that to learn algebraic geometry requires much
more effort than other areas in mathematics, at
least for a beginner?

Deligne: I think it’s hard to enter the subject
because one has to master a number of different
tools. To begin with, cohomology is now indispens-
able. Another reason is that algebraic geometry
developed in a succession of stages, each with
its own language. First, the Italian school which
was a little hazy, as shown by the infamous say-
ing: “In algebraic geometry, a counterexample to
a theorem is a useful addition to it.” Then Zariski
and Weil put things on a better footing. Later Serre
and Grothendieck gave it a new language, which
is very powerful. In this language of schemes one
can express a lot; it covers both arithmetical ap-
plications and more geometrical aspects. But it
requires time to understand the power of this
language. Of course, one needs to know a number
of basic theorems, but I don’t think that this is
the main stumbling block. The most difficult is
to understand the power of the language created
by Grothendieck and how it relates to our usual
geometrical intuition.

NOTICES OF THE AMS



Apprentice in Paris

Raussen and Skau: When you came to Paris you
came in contact with Alexander Grothendieck and
Jean-Pierre Serre. Could you tell us about your first
impression of these two mathematicians?

Deligne: I was introduced to Grothendieck by
Tits during the Bourbaki seminar of November
1964. 1 was really taken aback. He was a little
strange, with his shaved head, a very tall man. We
shook hands but did nothing more until I went to
Paris a few months later to attend his seminar.

That was really an extraordinary experience. In
his way, he was very open and kind. I remember the
first lecture I attended. In it, he used the expres-
sion “cohomology object” many times. I knew what
cohomology was for abelian groups, but I did not
know the meaning of “cohomology object”. After
the lecture I asked him what he meant by this ex-
pression. I think that many other mathematicians
would have thought that if you didn’t know the
answer, there wouldn’t be any point to speak to
you. This was not his reaction at all. Very patiently
he told me that if you have a long exact sequence
in an abelian category and you look at the kernel of
one map, you divide by the image of the previous
one and so on... [ recognized quickly that I knew
about this in a less general context. He was very
open to people who were ignorant. I think that you
should not ask him the same stupid question three
times, but twice was all right.

I was not afraid to ask completely stupid ques-
tions, and I have kept this habit until now. When
attending a lecture, I usually sit in front of the
audience, and if there is something I don’t under-
stand, I ask questions even if I would be supposed
to know what the answer was.

I was very lucky that Grothendieck asked me
to write up talks he had given the previous year.
He gave me his notes. I learned many things, both
the content of the notes, and also a way of writing
mathematics.... This was both in a prosaic way,
namely that one should write only on one side of
the paper and leave some blank space so he could
make comments, but he also insisted that one was
not allowed to make any false statement. This is
extremely hard. Usually one takes shortcuts; for
instance, not keeping track of signs. This would
not pass muster with him. Things had to be cor-
rect and precise. He told me that my first version
of the redaction was much too short, not enough
details.... It had to be completely redone. That was
very good for me.

Serre had a completely different personality.
Grothendieck liked to have things in their natural
generality; to have an understanding of the whole
story. Serre appreciates this, but he prefers beauti-
ful special cases. He was giving a course at Collége
de France on elliptic curves. Here, many different
strands come together, including automorphic
forms. Serre had a much wider mathematical
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culture than Grothendieck. In case of need,
Grothendieck redid everything for himself, while
Serre could tell people to look at this or that in the
literature. Grothendieck read extremely little; his
contact with classical Italian geometry came basi-
cally through Serre and Dieudonné. I think Serre
must have explained to him what the Weil conjec-
tures were about and why they were interesting.
Serre respected the big constructions Grothendieck
worked with, but they were not in his taste. Serre
preferred smaller objects with beautiful properties
such as modular forms, to understand concrete
questions, for instance congruences between co-
efficients.

Their personalities were very different, but I
think that the collaboration between Serre and
Grothendieck was very important and it enabled
Grothendieck to do some of his work.

Raussen and Skau: You told us that you needed
to go to Serre’s lectures in order to keep your feet
on the ground?

Deligne: Yes, because there was a danger in
being swept away in generalities with Grothen-
dieck. In my opinion, he never invented generalities
that were fruitless, but Serre told me to look at
different topics that all proved to be very impor-
tant for me.

The Weil Conjectures

Raussen and Skau: Your most famous result is the
proof of the third—and the hardest—of the so-called
Weil conjectures. But before talking about your
achievement, can you try to explain why the Weil
conjectures are so important?

Deligne: There were some previous theorems
of Weil about curves in the one-dimensional situ-
ation. There are many analogies between algebraic
curves over finite fields and the rational numbers.
Over the rational numbers, the central question
is the Riemann hypothesis. Weil had proved the
analogue of the Riemann hypothesis for curves
over finite fields, and he had looked at some
higher-dimensional situations as well. This was
at the time where one started to understand the
cohomology of simple algebraic varieties, like the
Grassmannians. He saw that some point-counting
for objects over finite fields reflected what hap-
pened over the complex numbers and the shape
of the related space over the complex numbers.

As Weil looked at it, there are two stories hidden
in the Weil conjectures. First, why should there be
arelation between apparently combinatorial ques-
tions and geometric questions over the complex
numbers? Second, what is the analogue of the
Riemann hypothesis? Two kinds of applications
came out of these analogies. The first started
with Weil himself: estimates for some arithmetical
functions. For me, they are not the most impor-
tant. Grothendieck’s construction of a formalism
explaining why there should be a relation between
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the story over the complex numbers, where one
can use topology, and the combinatorial story, is
more important.

Secondly, algebraic varieties over finite fields
admit a canonical endomorphism, the Frobenius.
It can be viewed as a symmetry, and this symmetry
makes the whole situation very rigid. Then one can
transpose this information back into the geometric
world over the complex numbers; it yields con-
straints on what will happen in classical algebraic
geometry, and this is used in applications to rep-
resentation theory and the theory of automorphic
forms. It was not obvious at first that there would
be such applications, but for me they are the rea-
son why the Weil conjecture is important.

Raussen and Skau: Grothendieck had a pro-
gram on how to prove the last Weil conjecture, but
it didn’t work out. Your proof is different. Can you
comment on this program? Did it have an influence
on the way you proved it?

Deligne: No. I think that the program of
Grothendieck was, in a sense, an obstruction to
finding the proof, because it made people think in
just a certain direction. It would have been more
satisfying if one had been able to do the proof
following the program, because it would have
explained a number of other interesting things
as well. But the whole program relied on finding
enough algebraic cycles on algebraic varieties,
and on this question one has made essentially no
progress since the 1970s.

Iused a completely different idea. It is inspired
by the work of Rankin and his work on automor-
phic forms. It still has a number of applications,
but it did not realize the dream of Grothendieck.

Raussen and Skau: We heard that Grothendieck
was glad that the Weil conjecture was proved, of
course, but still he was a little disappointed?

Deligne: Yes. And with very good reason. It
would have been much nicer if his program had
been realized. He did not think that there would be
another way to do it. When he heard I had proved
it, he felt I must have done this and that, which
I hadn’t. I think that’s the reason for the disap-
pointment.

Raussen and Skau: You have to tell us about the
reaction of Serre when he heard about the proof.

Deligne: I wrote him a letter when I did not have
a complete proof yet, but a test case was clear.
I think he got it just before he had to go to the
hospital for an operation of a torn tendon. He told
me later that he went into the operation theatre
in a euphoric state because he knew now that the
proof was roughly done.

Raussen and Skau: Several famous mathemati-
cians have called your proof of the last Weil conjec-
ture a marvel. Can you describe how you got the
ideas that led to the proof?

Deligne: T was lucky that I had all the tools
needed at my disposal at the same time and that
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I understood that those tools would do it. Parts
of the proof have since been simplified by Gérard
Laumon, and a number of these tools are no longer
needed.

At the time, Grothendieck had ideas for putting
into a purely algebraic framework the work of
Solomon Lefschetz from the 1920s about families
of hyperplane sections of an algebraic variety. Of
particular interest was a statement of Lefschetz,
later proved by William Hodge, the so-called hard
Lefschetz theorem. Lefschetz’s approach was to-
pological. In contrast to what one might think, if
arguments are topological there is a better chance
to translate them into abstract algebraic geometry
than if they are analytic, such as the proof given by
Hodge. Grothendieck asked me to look at the 1924
book L’analysis situs et la géométrie algébrique by
Lefschetz. It is a beautiful and very intuitive book,
and it contained some of the tools I needed.

I was also interested in automorphic forms. I
think it is Serre who told me about an estimate
due to Robert Rankin. I looked carefully at it.
Rankin was getting some nontrivial estimates
for coefficients of modular forms by proving for
some related L-functions what was needed to
apply results of Landau, in which the location of
the poles of an L-function gave information on the
poles of the local factors. I saw that the same tool,
in a much less sophisticated way, just using that
a sum of squares is positive, could be used here
because of the control the work of Grothendieck
gave on poles. This was enough. The poles were
much easier to understand than the zeros and it
was possible to apply Rankin’s idea.

I had all these tools at my disposal, but I cannot
tell how I put them together.

Raussen and Skau: What is a motive?

Deligne: A surprising fact about algebraic
varieties is that they give rise not to one, but to
many cohomology theories, among them the l-adic
theories, one for each prime I different from the
characteristic, and in characteristic zero, the alge-
braic de Rham cohomology. These theories seem
to tell the same story, over and over again, each
in a different language. The philosophy of motives
is that there should exist a universal cohomology
theory, with values in a category of motives to
be defined, from which all these theories could
be derived. For the first cohomology group of a
projective nonsingular variety, the Picard variety
plays the role of a motivic H': the Picard variety is
an abelian variety, and from it the H' in all avail-
able cohomology theories can be derived. In this
way, abelian varieties (taken up to isogeny) are a
prototype for motives.

A key idea of Grothendieck is that one should
not try to define what a motive is. Rather, one
should try to define the category of motives. It
should be an abelian category with finite dimen-
sional rational vector spaces as Hom groups.
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Crucially, it should admit a tensor product, needed
to state a Kiinneth theorem for the universal co-
homology theory, with values in the category of
motives.

If only the cohomology of projective nonsin-
gular varieties is considered, one speaks of pure
motives. Grothendieck proposed a definition of
a category of pure motives and showed that, if
the category defined had a number of properties,
modeled on those of Hodge structures, the Weil
conjectures would follow.

For the proposed definition to be viable, one
needs the existence of “enough” algebraic cycles.
On this question almost no progress has been
made.

A Little Bit about Subsequent Work

Raussen and Skau: What about your other re-
sults? Which of those that you worked on after the
proof of the Weil conjecture are you particularly
fond of ?

Deligne: I like my construction of a so-called
mixed Hodge structure on the cohomology of
complex algebraic varieties. In its genesis, the
philosophy of motives has played a crucial role,
even if motives don’t appear in the end result. The
philosophy suggests that, whenever something can
be done in one cohomology theory, it is worthwhile
to look for a counterpart in other theories. For
projective nonsingular varieties, the role played by
the action of Galois is similar to the role played by
the Hodge decomposition in the complex case. For
instance, the Hodge conjecture, expressed using
the Hodge decomposition, has as counterpart
the Tate conjecture, expressed using the action
of Galois. In the [-adic case, cohomology and the
action of Galois remain defined for singular or
noncompact varieties.

This forces us to ask: what is the analogue in the
complex case? One clue is given by the existence,
in l-adic cohomology, of an increasing filtration,
the weight filtration W, for which the i-th quotient
W;/Wi_7 is a subquotient of the cohomology of a
projective nonsingular variety. We hence expect in
the complex case a filtration W such that the i-th
quotient has a Hodge decomposition of weight i.
Another clue, coming from works of Griffiths and
Grothendieck, is that the Hodge filtration is more
important than the Hodge decomposition. Both
clues force the definition of mixed Hodge struc-
tures, suggest that they form an abelian category,
and suggest also how to construct them.

Raussen and Skau: What about the Langlands
program? Have you been involved in it?

Deligne: I have been very interested in it, but I
have contributed very little. I have only done some
work on GI(2), the linear group in two variables.
I tried to understand things. A somewhat remote
application of the Weil conjecture has been used
in Ngo’s recent proof of what is called the funda-
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mental lemma. I didn’t do a lot of work myself,
though I had a lot of interest in the Langlands
program.

French, American, and Russian Mathematics

Raussen and Skau: You have already told us about
the two institutions you mainly have worked for,
namely the IHES in Paris and then, since 1984, the
IAS in Princeton. It would be interesting for us to
hear what your motives were for leaving IHES and
moving to Princeton. Moreover, we would like to
hear what unites the two institutions and how they
differ, in your opinion.

Deligne: One of the reasons I left was that I
don’t think it’s good to spend all of one’s life in the
same place. Some variation is important. I was hop-
ing to have some contact with Harish-Chandra, who
had done some beautiful work in representation
theory and automorphic forms. That was a part of
the Langlands program that I am very interested
in, but unfortunately Harish-Chandra died shortly
before I arrived at Princeton.

Another reason was that I had imposed on my-
self to give seminars, each year on a new subject,
at the THES in Bures. That became a little too much.
I was not really able to both give the seminars and
to write them down, so I did not impose the same
obligation on myself after I came to Princeton.
These are the main reasons why I left the IHES for
IAS in Princeton.

Concerning the difference between the two
institutions, I would say that the Institute for
Advanced Study is older, bigger, and more stable.
Both are very similar in the way that there are many
young visitors who come there. So they are not
places where you can fall asleep since you will al-
ways be in contact with young people who will tell
you that you are not as good as you think you are.

In both places there are physicists, but I think
the contact with them was more fruitful for me in
Princeton than it was in Bures. In Princeton, there
have been common seminars. One year was very
intense, with both mathematicians and physicists
participating. This was due mainly to the presence
of Edward Witten. He has received the Fields Medal
even though he is a physicist. When Witten asks
me questions, it’s always very interesting to try
to answer them, but it can be frustrating as well.

Princeton is also bigger in the sense that it has
not only math and physics, but also the School of
Historical Studies and the School of Social Sciences.
There is no real scientific interaction with these
schools, but it is pleasant to be able to go and hear
a lecture about, for instance, ancient China. One
good feature about Bures which you do not have in
Princeton is the following: In Bures, the cafeteria is
too small. So you sit where you can and you don’t
get to choose the people you are sitting with. I
was often sitting next to an analyst or a physicist,
and such random informal interactions are very
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useful. In Princeton, there is one table for the
mathematicians, another for the astronomers, the
ordinary physicists, and so on. You will not be told
to go away if you sit down at the wrong table, but
still there is segregation.

The Institute for Advanced Study has a big en-
dowment, while the IHES had none, at least when
I was there. This didn’t affect the scientific life.
Sometimes it created instability, but the admin-
istration was usually able to hide the difficulties
from us.

Raussen and Skau: Apart from your connections
with French and U.S. mathematics, you have also
had a very close contact with Russian mathematics
for a long time, even from long before the fall of
the Iron Curtain. In fact, your wife is the daughter
of a Russian mathematician. How did your contact
with Russian mathematics develop?

Deligne: Grothendieck or Serre told Manin, who
was in Moscow at the time, that I had done some
interesting work. The Academy [Russian Academy
of Sciences] invited me to a conference for I. M.
Vinogradov, a terribly anti-Semitic person, by the
way. I came to Russia, and I found a beautiful cul-
ture for mathematics. At that time mathematics
was one of the few subjects where the Communist
Party could not meddle, as it did not understand it
at all, and this turned it into a space of freedom.

We would go to somebody’s home and sit by the
kitchen table to discuss mathematics over a cup
of tea. I fell in love with the atmosphere and this
enthusiasm for mathematics. Moreover, Russian
mathematics was one of the best in the world at
that time. Today there are still good mathemati-
cians in Russia, but there has been a catastrophic
emigration. Furthermore, among those wanting to
stay, many need to spend at least half of the time
abroad, just to make a living.

Raussen and Skau: You mentioned Vinogradov
and his anti-Semitism. You talked to somebody and
asked whether he was invited?

Deligne: It was Piatetskii-Shapiro. I was com-
pletely ignorant. I had a long discussion with
him. For me it was obvious that someone like him
should be invited by Vinogradov, but I was told
that that was not the case.

After this introduction to Russian mathematics,
I still have some nostalgia for the beautiful memo-
ries of being in Moscow and speaking with Yuri
Manin and Sergey Bernstein or being at the Gelfand
seminar. There was a tradition, which still exists,
of a strong connection between the university and
the secondary education. People like Andrey Kol-
mogorov had a big interest in secondary education
(perhaps not always for the best).

They have also the tradition of Olympiads, and
they are very good at detecting promising people
in mathematics early on in order to help them.
The culture of seminars is in danger because it’s
important that the head of the seminars is working
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full-time in Moscow, and that is not always the
case. There is a whole culture which I think is
important to preserve. That is the reason why I
used half of the Balzan Prize to try to help young
Russian mathematicians.

Raussen and Skau: That was by a contest that
you arranged.

Deligne: Yes. The system is falling apart at the
top because there is no money to keep people, but
the infrastructure was so good that the system
continues to produce very good young mathemati-
cians. One has to try to help them and make it pos-
sible for them to stay somewhat longer in Russia
so that the tradition can continue.

Competition and Collaborationin
Mathematics

Raussen and Skau: Some scientists and mathema-
ticians are very much driven by the aim to be the
first to make major discoveries. That seems not to
be your main driving force?

Deligne: No. I don’t care at all.

Raussen and Skau: Do you have some comments
on this culture in general?

Deligne: For Grothendieck it was very clear: he
once told me that mathematics is not a competitive
sport. Mathematicians are different, and some will
want to be the first, especially if they are working
on very specific and difficult questions. For me it’s
more important to create tools and to understand
the general picture. I think mathematics is much
more a collective enterprise of long duration. In
contrast to what happens in physics and biology,
mathematical articles have long and useful lives.
For instance, the automatic evaluation of people
using bibliographic criteria is particularly perverse
in mathematics, because those evaluation methods
take account only of papers published during the
last three or five years. This does not make sense
in mathematics. In a typical paper of mine, I think
at least half of the papers cited can be twenty to
thirty years old. Some will even be two hundred
years old.

Raussen and Skau: You like to write letters to
other mathematicians?

Deligne: Yes. Writing a paper takes a lot of
time. Writing it is very useful, to have everything
put together in a correct way, and one learns a
lot doing so, but it’s also somewhat painful. So
in the beginning of forming ideas, I find it very
convenient to write a letter. I send it, but often it
is really a letter to myself. Because I don’t have to
dwell on things the recipient knows about, some
short-cuts will be all right. Sometimes the letter, or
a copy of it, will stay in a drawer for some years,
but it preserves ideas, and when I eventually write
a paper, it serves as a blueprint.

Raussen and Skau: When you write a letter to
someone and that person comes up with additional
ideas, will that result in a joint paper?
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Deligne: That can happen. Quite a lot of my pa-
pers are by me alone, and some are joint work with
people having the same ideas. It is better to make
a joint paper than having to wonder who did what.
There are a few cases of genuine collaborations
where different people have brought different
intuitions. This was the case with George Lusztig.
Lusztig had the whole picture of how to use l-adic
cohomology for group representations, but he
did not know the techniques. I knew the technical
aspect of l-adic cohomology, and I could give him
the tools he needed. That was real collaboration.

A joint paper with Morgan, Griffiths, and Sul-
livan was also a genuine collaboration. Also with
Bernstein, Beilinson, and Gabber: we put together
our different understandings

Work Style, Pictures, and Even Dreams

Raussen and Skau: Your CV shows that you haven'’t
taught big classes of students a lot. So, in a sense,
you are one of the few full-time researchers in
mathematics.

Deligne: Yes. And I find myself very lucky to
have been in this position. I never had to teach. I
like very much to speak with people. In the two in-
stitutions where I have worked young people come
to speak with me. Sometimes I answer their ques-
tions, but more often I ask them counter-questions
that sometimes are interesting, too. So this aspect
of teaching with one-to-one contact, trying to give
useful information and learning in the process, is
important to me.

I suspect it must be very painful to teach people
who are not interested, but are forced to learn
math because they need the grade to do something
else. I would find that repulsive.

Raussen and Skau: What about your math-
ematical work style? Are you most often guided by
examples, specific problems and computations, or
are you rather surveying the landscape and looking
for connections?

Deligne: First I need to get some general picture
of what should be true, what should be accessible,
and what tools can be used. When I read papers I
will not usually remember the details of the proofs,
but I will remember which tools were used. It is
important to be able to guess what is true and what
is false in order not to do completely useless work.
I don’t remember statements that are proved, but
rather I try to keep a collection of pictures in my
mind—more than one picture, all false but in dif-
ferent ways, and knowing in which way they are
false. For a number of subjects, if a picture tells me
that something should be true, I take it for granted
and will come back to the question later on.

Raussen and Skau: What kind of pictures do you
have of these very abstract objects?

Deligne: Sometimes very simple things! For
instance, suppose I have an algebraic variety, and
hyperplane sections, and I want to understand how
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they are related, by looking at a pencil of hyper-
plane sections. The picture is very simple. I draw it
in my mind something like a circle in the plane and
amoving line that sweeps it. Then I know how this
picture is false: the variety is not one-dimensional,
but higher-dimensional, and when the hyperplane
section degenerates, it is not just two intersection
points coming together. The local picture is more
complicated, like a conic that becomes a quadratic
cone. These are simple pictures put together.

When I have a map from some space to another
I can study properties it has. Pictures can then
convince me that it is a smooth map. Besides hav-
ing a collection of pictures, I also have a collection
of simple counter-examples, and statements that
I hope to be true have to be checked against both
the pictures and the counter-examples.

Raussen and Skau: So you think more in geo-
metric pictures than algebraically?

Deligne: Yes.

Raussen and Skau: Some mathematicians say
that good conjectures, or even good dreams, are
at least as important as good theorems. Would you
agree?

Deligne: Absolutely. The Weil conjectures, for
instance, have created a lot of work. Part of the con-
jecture was the existence of a cohomology theory
for algebraic systems with some properties. This
was a vague question, but that is all right. It took
over twenty years of work, even a little more, in
order to really get a handle on it. Another example
of a dream is the Langlands program, which has
involved many people over fifty years, and we
have now only a slightly better grasp of what is
happening.

Another example is the philosophy of motives
of Grothendieck, about which very little is proved.
There are a number of variants taking care of some
of the ingredients. Sometimes, such a variant can
be used to make actual proofs, but more often the
philosophy is used to guess what happens, and
then one tries to prove it in another way. These are
examples of dreams or conjectures that are much
more important than specific theorems.

Raussen and Skau: Have you had a “Poincaré
moment” at some time in your career where you,
in a flash, saw the solution of a problem you had
worked on for a long time?

Deligne: The closest I have been to such a mo-
ment must have been while working on the Weil
conjecture when I understood that perhaps there
was a path using Rankin against Grothendieck. It
took a few weeks after that before it really worked,
so it was a rather slow development. Perhaps also
for the definition of mixed Hodge structures, but
also in this case, it was a progressive process. So
it was not a complete solution in a flash.

Raussen and Skau: When you look back on fifty
years of doing mathematics, how have your work
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and your work style changed over the years? Do you
work as persistently as you did in your early years?

Deligne: I am not as strong as I was earlier,
in the sense that I cannot work as long or as
intensively as I did. I think I have lost some of my
imagination, but I have much more technique that
can act as a substitute to some extent. Also the
fact that I have contact with many people gives
me access to some of the imagination I am lacking
myself. So when I bring my technique to bear, the
work can be useful, but I'm not the same as when
I was thirty.

Raussen and Skau: You have retired from your
professorship at IAS rather early...

Deligne: Yes, but that’s purely formal. It means
I receive retirement money instead of a salary,
and no school meetings for choosing next year’s
members. So that’s all for the best. It gives me more
time for doing mathematics.

Hopes for the Future

Raussen and Skau: When you look at the develop-
ment of algebraic geometry, number theory, and
the fields that are close to your heart, are there
any problems or areas where you would like to see
progress soon? What would be particularly signifi-
cant, in your opinion?

Deligne: Whether or not it’s within reach in ten
years, I have absolutely no idea; as it should be...
But I would very much like to see progress in our
understanding of motives. Which path to take and
what are the correct questions, is very much in the
air. Grothendieck’s program relied on proving the
existence of algebraic cycles with some properties.
To me this looks hopeless, but I may be wrong.

The other kind of question for which I would re-
ally like to see some progress is connected with the
Langlands program, but that is a very long story...

In yet another direction, physicists regularly
come up with unexpected conjectures, most often
using completely illegal tools. But, so far, when-
ever they have made a prediction, for instance a
numerical prediction on the number of curves with
certain properties on some surface—and these
are big numbers, in the millions perhaps—they
were right! Sometimes previous computations by
mathematicians were not in accordance with what
the physicists were predicting, but the physicists
were right. They have put their fingers on some-
thing really interesting, but we are, so far, unable
to capture their intuition. Sometimes they make a
prediction, and we work out a very clumsy proof
without real understanding. That is not how it
should be. In one of the seminar programs that
we had with the physicists at IAS, my wish was
not to have to rely on Ed Witten but instead to be
able to make conjectures myself. I failed! I did not
understand enough of their picture to be able to
do that, so I still have to rely on Witten to tell me
what should be interesting.
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Raussen and Skau: What about the Hodge
conjecture?

Deligne: For me, this is a part of the story of
motives, and it is not crucial whether it is true or
false. If it is true, that’s very good, and it solves a
large part of the problem of constructing motives
in a reasonable way. If one can find another purely
algebraic notion of cycles for which the analogue
of the Hodge conjecture holds, and there are a
number of candidates, this will serve the same
purpose, and I would be as happy as if the Hodge
conjecture were proved. For me it is motives, not
Hodge, that is crucial.

Private Interests—and an Old Story

Raussen and Skau: We have the habit of ending
these interviews by asking questions that are out-
side of mathematics. Could you tell us a little bit
about your private interests outside your profes-
sion? We know about your interest in nature and
in gardening, for example.

Deligne: These are my main interests. I find the
earth and nature so beautiful. I don’t like just to
go and have a look at a scenery. If you really want
to enjoy the view from a mountain, you have to
climb it on foot. Similarly, to see nature, you have
to walk. As in mathematics, in order to take plea-
sure in nature—and nature is a beautiful source of
pleasure—one has to do some work.

Ilike to bicycle because that’s also a way to look
around. When distances are a little bigger than
what is convenient on foot, this is another way of
enjoying nature.

Raussen and Skau: We heard that you also
build igloos?

Deligne: Yes. Unfortunately, there’s not enough
snow every year and even when there is, snow can
be tricky. If it’s too powdery, it’s impossible to do
anything; likewise if it’s too crusty and icy. So there
is maybe just one day, or a few hours each year
when building an igloo is possible, and one has to
be willing to do the work of packing the ice and
putting the construction together.

Raussen and Skau: And then you sleep in it?

Deligne: And then I sleep in the igloo, of course.

Raussen and Skau: You have to tell us what
happened when you were a little child.

Deligne: Yes. I was in Belgium at the seaside for
Christmas, and there was much snow. My brother
and sister, who are much older than me, had the
nice idea to build an igloo. I was a little bit in the
way. But then they decided I might be useful for
one thing: if they grabbed me by my hands and
feet, I could be used to pack the snow.

Raussen and Skau: Thank you very much for
granting us this interview. These thanks come also
on behalf of the Norwegian, the Danish, and the
European mathematical societies that we represent.
Thank you very much!

Deligne: Thank you.
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An American Mathematician

In Moscow, or How 1
Destroyed the Soviet Union

Melvyn B. Nathanson

Dedicated to I. M. Gel’'fand on the 100th anniversary of his birth

The great Soviet mathematician Israel Moiseevich
Gel’fand was born on September 2, 1913, in Okny
(later Krasni Okny, or Red Okny) near Odessa in
Ukraine and died on October 5, 2009, in New
Brunswick, New Jersey. The Russian Revolutions of
1917 led to the approval of the Treaty of Creation of
the USSR on December 29, 1922. The Soviet Union
ceased to exist on December 26, 1991. Gel’fand
was born before the Soviet Union and outlived it.

I was indirectly introduced to Gel'fand in 1970.

I was a visiting research student in the Department
of Pure Mathematics and Mathematical Statistics
of the University of Cambridge during the Lent and
Easter terms. One of my friends was Béla Bollobas,
a Hungarian who had received his Ph.D. at Oxford
and had decided to remain in England and not
return to Hungary. In the terminology of the cold
war, Béla had defected to the capitalists. Before
being allowed to study in the West, the Hungarians
had required him to study in the East, that is, in
the USSR, and Béla had spent a year at Moscow

State University, where he worked with Gel’fand.

Professor Gel’fand had impressed him deeply as a
man and as a mathematician, and Béla often told
me how extraordinary he was.

In the summer of 1970, at the end of my study in

Cambridge, I made a short trip to the Soviet Union.

Another American, a biologist from MIT, had just
completed a postdoctoral year at Cambridge and
had posted a note on a bulletin board that he
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was looking for someone to accompany him on
a driving tour through the USSR. The plan was
to enter the Soviet Union by train from Helsinki
to Leningrad, rent a car, and drive south through
Moscow to the Caucasus. The biologist had been
invited to lecture in Moscow as a guest of the
Soviet Academy of Sciences. His official host was a
distinguished Soviet biochemist, David Gold’farb.
I also met Gold’farb and told him that I would
like to visit Gel’fand. Gold’farb contacted Gel’fand,
who was too busy or (more likely) too prudent
to rendezvous with an unknown American. When
Gold’farb told Gel’fand that I was interested in
number theory, Gel’fand gave him to give to me
a copy of his book Representation Theory and
Automorphic Functions, written with M. 1. Graev
and L. I. Pyatetskii-Shapiro, the sixth volume of the
series of monographs Generalized Functions.

Gold’farb had lost a leg fighting in World War IL
He had wanted to be a historian, but history is
a dangerous profession in totalitarian regimes.
In Stalin’s Russia, history was particularly life-
threatening, so Gold’farb went to medical school
and did research in molecular genetics. “A stomach
is always a stomach,” he told me.

My biologist traveling companion was very
leftwing politically. Like most academics, I was
against the war in Vietnam, but he was so far to my
left that by comparison I seemed to be on the right.
That immediately endeared me to Soviet scientists,
many of whom acted in public as if they were loyal
followers of the Communist Party line, but inwardly
were strongly antitotalitarian and, indeed, unlike
most American scientists, supported American
intervention in Vietnam. They believed in killing
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Commies. This was one of the first lessons in irony
that I learned in Moscow.

Many senior Communist Party officials pulled
strings to get their children into scientific careers.
They had done what they needed to do to survive,
they understood the dangers of politics, and they
wanted safer lives for their own children. Many
graduate students and researchers in the Soviet
Academy of Sciences and in Soviet universities were
relatives of high-ranking party functionaries. Of
course, being a scientist with ties to the Communist
Party brought its own benefits. Many distinguished
non-party Soviet researchers collaborated with
colleagues who were much weaker scientists, but
politically powerful, in order to shelter themselves
and their students. “Collaboration” often meant
nothing more than adding the names of mediocre
party members to their papers as coauthors. Of
course, this kind of scientific politics also occurs
in nontotalitarian regimes.

It was because of Béla Bollobas that I got the idea
of trying to spend a year studying mathematics
with Gel’fand. This would not be easy to arrange.
During the cold war it was almost impossible for
an American to study or do research in Moscow. To
study in Cambridge or Paris was trivial. Just geton a
plane and fly to England or France. But the only way
an ordinary American could enter the Soviet Union
was on a brief and expensive tourist visit. There
were, however, two formal academic exchanges.
One was between the National Academy of Sciences
in Washington and the Soviet Academy of Science,
but this usually provided only short-term visits for
senior scientists, not young scholars.

The other program was part of a broad cultural
affairs treaty between the US and the USSR. We
would send the New York Philharmonic to Moscow,
and they would send the Bolshoi Ballet to New York.
One small part of this treaty was a university-level
exchange for graduate students and postdocs.
Each year the Americans selected forty American
scholars, and the Soviets selected forty Soviet
scholars. Each country’s choices had to be approved
by the other. The US program was administered
by IREX, the International Research and Exchanges
Board, an organization based in New York and
associated with the American Council of Learned
Societies.

Typically, the Russians sent forty engineers and
computer scientists to MIT, and the Americans
sent forty students to Moscow to study Dostoevsky
and Rasputin. IREX had sent very few scientists
to the USSR. The logic on the American side was
reasonable: Because there were so few opportu-
nities to do research in the USSR, an American
exchange student should have a research project
that could not be carried out anywhere else in the
world. Science is everywhere, so it would be hard to
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argue that a scientific research problem could only
be solved in the USSR. On the other hand, if your
scholarly work were in Russian or Soviet literature
or history and if the archives you needed were in
the Soviet Union, then you clearly had a research
proposal that would justify a trip to Moscow.

In 1972-73 1 became the first American math-
ematician to participate in the IREX exchange
program. In my application to IREX, I wrote that the
Soviet Union had many of the greatest mathemati-
cians in the world, that they were concentrated
in Moscow and not allowed to travel outside the
country, and that it would be extremely valuable to
be able to meet and work with them. The argument
had merit and was accepted by IREX. My research
proposal was to work with Gel'fand. He had to
agree to supervise me, and he did. I got my visa
and went.

The Americans on the IREX exchange were
supposed to rendezvous in Paris in August and
fly together to Moscow. I got to Paris a few days
early with a suitcase full of math books and an
Olivetti portable typewriter, stayed in a cheap
hotel on Rue des Ecoles, and worked desperately
hard to finish what would become my first joint
paper with Paul Erdés. I did not have time to mail
the manuscript from France, but IREX exchange
students had certain privileges at the American
Embassy in Moscow, and one of the most valuable
was the use of the diplomatic pouch for sending
letters out of the USSR. The Soviet postal system
was, to put it politely, “unreliable” for manuscripts
being sent to the United States, but I was able to
submit my paper to the Proceedings of the AMS in
a mailsack hand-carried by a US Marine to Vienna.

My first meeting with Gel’fand was in the lobby
of Moscow State University. I remember two things
that he told me. The first was his famous mantra:
“Thereis only one mathematics.” Then, after reciting
a short list of the best young mathematicians in
the Soviet Union, he said, “They know much
more mathematics than I, but my intuition is
better.” Gel'fand suggested that I attend courses
by Pyatetskii-Shapiro and Manin, but the most
important part of my mathematical education in
Moscow was participation in Gel’fand’s famous
Monday night seminar. I don’t recall the official
starting time of the seminar. People would show up
early and talk mathematics in the hall, the seminar
would eventually begin, and there would be a series
of speakers, lasting long after the seminar was
supposed to end, until finally we were evicted by a
cleaning lady who had to do her job.

It was common in the seminar for Gel’fand to
interrupt a talk and ask someone in the audience
to explain what was going on. The first time I went
to the seminar, in the middle of a lecture, he asked,
“Melvyn, do you understand?”
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“No,” I replied.

“Why not?”

“Because they’re speaking Russian.”

He then assigned Dima Fuks the task of sitting
next to me and translating the lecture from Russian
into English. In a short time my Russian improved
enough that I could understand the talks, and the
language excuse was lost.

Gel’fand would decide that someone needed to
learn something and present it in the seminar. For
example, he asked Arnol’d to give a series of talks
on p-adic numbers. Arnol’d seemed to find this
difficult. A master of the real and complex domains,
he had trouble understanding non-Archimedean
absolute values. Of course, this is something every
young number theorist knows. To see a great
mathematician like Arnol’d struggling with p-adic
analysis teaches that you are not an idiot if you
don’t understand some piece of mathematics that
“everyone” finds trivial.

Walking is a Russian tradition. The winters are
cold, but there is little wind and the effective
temperature is certainly bearable. After the sem-
inars, a group of people would often leave with
Gel'fand and walk and talk late into the night while
writing mathematics in the snowdrifts along the
sidewalks. Outside you could talk more freely than
in rooms where the walls had ears. In the course
of the year, many mathematicians would ask me
to go for a walk, and in the privacy of the streets
would ask, “What is it like in America?” “How much
anti-Semitism is in America?” “How hard is it to get
a job in an American university?” In a few years,
as soon as emigration became possible, they all
emigrated.

Gel'fand immigrated to the United States in
1989. He was a visiting professor at Harvard and
MIT and then distinguished professor at Rutgers
University. The biochemist David Gold’farb also
left Russia for New York.

American students on the IREX exchange lived
in the dormitory of Moscow State University. We
were told that Americans were always assigned
the same rooms, not on the same floor, but on
different floors, one room directly above the other,
because it was easier to bug them by dropping
wires vertically through the building. A standard
joke was “If you need something in your room
fixed, speak into the lightbulb.” I had many friends
who were active in the university Komsomol, the
youth division of the Communist Party. They were,
presumably, assigned to befriend Americans. One
of them told me, “They can’t identify all the voices
on the tapes from your room.”

The Komsomol mirrored life outside the univer-
sity, where Communist Party leaders had perks
and privileges not available to the hoi poloi. For
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example, there were private parties in the univer-
sity for the Komsomol elite only. I attended a party
with music provided by a rock band brought in
from Estonia. When “ordinary students” tried to
crash the party, the Komsomol called the police.

I flew back to Philadelphia during the Christmas
break to visit my mother, who was sick. When I
returned, Gel'fand asked, “How did it feel to be in
the Soviet Union, then back in the US, then back in
Moscow?” I replied, “OK, but for the first week at
home I was afraid to use the phone.”

Gel’'fand urged me to read Russian literature,
especially Pushkin. He gave me a recording of
Pushkin’s poem, Mozart and Salieri, and novels by
IIf and Petrov. He also gave me various mathematics
books, including his book with Minlos and Shapiro,
Representations of the Rotation Group and Lorentz
Group, and the English edition of Weil’s Basic
Number Theory. Gel’fand had an enormous capacity
to create friendships. André Weil visited him in
Moscow, and they became close. After I returned
to the US, Weil invited me to spend a year as his
assistant at the Institute for Advanced Study. I do
not know, but always assumed, that Gel'’fand had
recommended me, and his friend Weil obliged.

You learned in Moscow to keep your Soviet
friends in disjoint circles. Knowing an American
was dangerous, informants were ubiquitous, and
some of your acquaintances were undoubtedly
reporting on you to the “competent organs”, which
wanted to know everyone with whom an American
was in contact. There was no reason for me to
be paranoid, only careful. I always felt completely
safe because I held an American passport. The
Russians would not want to create an international
incident. I might be arrested and threatened, but if
I kept cool I would only be deported, which was
no big deal. But Soviet citizens could really be
endangered, expelled from universities, fired from
jobs, their lives seriously impacted. Even though
the United States was intensely waging the Vietnam
war and we were bombing Hanoi, Kissinger’s policy
of a multitrack foreign policy with the stick in
Southeast Asia and the carrot in USSR, namely, the
allure of American trade concessions and exports
to Russia, convinced me that an American in
Moscow on an official academic exchange program
whose only crime was “acting like an American”,
not espionage, was perfectly safe.

In Moscow State University, as in all Soviet
universities, there was the “First Department” (in
Russian, the Pervii Otdel), which was the KGB
office within the university. After Gel’fand had
emigrated and was a professor at Rutgers, he
recounted the following story. “I could not tell
you this when you were in Moscow,” he said, “but
during your stay here I was visited by someone
from the Pervii Otdel. The KGB officer told me,
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‘You have an American student, Nathanson. I know
Americans are independent, but Nathanson is too
independent even for an American, and we have
to expel him from the country.”

Gel'fand, who possessed great political savvy,
replied, “Of course, you should expel him if you
have to, but I know that Nathanson has many
important friends in America, and, if you expel
him, there will be an international furor. It might
be better to let him finish the year and then not let
him return.” That’s what happened.

Gel'fand thought it would be good for my
mathematical education to spend another year
with him in Moscow, but it would clearly be
impossible for me to return to Moscow State
University. The other US-USSR scientific exchange
program was with the Soviet Academy of Sciences.
Gel’fand told me to apply to the Academy exchange,
but not to request placement in the Stekhlov
Institute, which was the notoriously anti-Semitic
mathematics institute in the Soviet Academy.
Instead, Gel'’fand recommended that I apply to
the Institute for Problems in the Transmission of
Information, where several first-rate Soviet Jewish
mathematicians found safe haven. In 1977 I applied
and was accepted, but at the last minute the Soviet
Foreign Ministry refused to issue me a visa and I
could not go. This action did, in fact, become an
international incident, with coverage in the New
York Times and news media around the world, as a
Soviet violation of the human rights for scientists
provisions of the Helsinki Accords.

Under Communism, whether in the Soviet Union
or in Eastern Bloc countries, there was a strange
and tense separation of one’s inner life and outer
life, between what one had to say and do in front
of strangers and how one thought and acted with
friends you really trusted. It was, as Russians liked
to say, “sloznii”, that is, “complicated”. Academic
jobs in Moscow typically went to those who were
well connected and acceptable to the Communist
Party. There was no great monetary reward for
studying mathematics or, more precisely, for living
mathematics. It was done for free, for love, for
intellectual and emotional enrichment, and not, as
often in the West, for professional advancement.
With the collapse of the USSR, Russian mathematics
lost some of its purity and became more, in the
American and European sense, “professional”. On
the other hand, now you can buy meat in Irkutsk, so
we in the West, who never experienced Soviet-scale
deprivation, should not be disparaging about this.
To an American in Moscow during the cold war, the
intellectual quality of life in mathematical circles
was awesome.

Kazhdan once said that when he got to know
me, he had never met anyone with my attitude,
a kind of unfrightened, relaxed approach to life.
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In Russia everyone was constantly on guard,
alert to danger, afraid of saying something that
could unintentionally, or malignantly intentionally,
be misinterpreted, reported to the “competent
authorities”, and cause expulsion from school,
exile, imprisonment, or death. One had to be
always vigilant. One had to make decisions: Who
do I trust? How much can I trust this person? How
open can I be? Is this guy reporting on me to the
KGB? Will this person lie about me for no obvious
reason? Americans don’t understand this pressure.
We have grown up unpersecuted and without fear
of persecution. Our country is rich, even if we
are not, and there is a sense of fairness. Even an
older generation, in the bad but brief period of
communist witch hunts and McCarthyism, never
had to fear what Soviet citizens feared.

It would be hard to overestimate the brittleness
of the former USSR. An American could endanger
its political system by going to Moscow and being
American. Not being terrified. Not being cowed.
Not being blackmailed by the threat of exclusion
from libraries and archives. Soviets could sense
the huge psychological difference between living
in a free country and living in a totalitarian one.
Soviet authorities were correct to want to keep
Americans away from ordinary Russians. We were
a threat to the state. We were dangerous.
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The NSA Back Door to NIST

Thomas C. Hales

Use once. Die once.

—Activist saying about insecure communication

We give a brief mathematical description of the
NIST standard for cryptographically secure pseudo-
random number generation by elliptic curves, the
back door algorithm discovered by Ferguson
and Shumow, and finally the design of the back
door based on the Diffie-Hellman key exchange
algorithm.

NIST (the National Institute for Standards and
Technology) of the U.S. Department of Commerce
derives its mandate from the U.S. Constitution
through the congressional power to “fix the stan-
dard of weights and measures.” In brief, NIST
establishes the basic standards of science and
commerce. Whatever NIST says about cryptog-
raphy becomes implemented in cryptographic
applications throughout U.S. government agencies.
Its influence leads to the widespread use of its
standards in industry and the broad adoption of
its standards internationally.

Through the Snowden disclosures, the NIST
standard for pseudo-random number generation
has fallen into disrepute. Here I describe the
back door to the NIST standard for pseudo-
random number generation in elementary and
mathematically precise terms. The NIST standard
offers three methods for pseudo-random number
generation [1]. My remarks are limited to the third
of the three methods, which is based on elliptic
curves.

Random number generators can either be truly
random (obtaining their values from randomness in
the physical world, such as a quantum mechanical
process) or pseudo-random (obtaining their values
from a deterministic algorithm, yet displaying a
semblance of randomness). The significance of
random number generation within the theory of
algorithms can be gauged by Knuth’s multivolume
book The Art of Computer Programming. It devotes
a massive 193 pages (half of volume two) to the
subject! A subclass of pseudo-random number
generators are cryptographically secure, intended
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for use in cryptographic applications such as
key generation, one-way hash functions, signature
schemes, private key cryptosystems, and zero
knowledge interactive proofs [3].

Elliptic Curves as Pseudo-Random Number
Generators

The NIST standard gives a list of explicit math-
ematical data (E,p,n,f,P,Q) to be used for
pseudo-random number generation [1]. Here E
is an elliptic curve defined over a finite field F, of
prime order p. The group E(F,) has order n, which
is prime for all of the curves that occur in the NIST
standard. The elements of the group E(F,) consist
of the set of points on an affine curve, together
with a point at infinity which serves as the identity
element of the group. The affine curve is defined
by an equation y? = f(x) for some explicit cubic
polynomial f in F,[x]. Finally, P and Q are given
points on the affine curve.

NIST gives a few sets of data, and in each
case the prime number p is large. (The smallest
is greater than 1077.) No explanation is given of
the particular choices (E, p,n,f,P,Q). We are told
to use these data and not to question why. The
standard stipulates that “one of the following
NIST approved curves with associated points
shall be used in applications requiring certification
under FIPS-140 [U.S. government computer security
accreditation].”

When A is any point other than the identity in
E(F,), we may evaluate the coordinate function x
at A to obtain x(A) € [Fp. By further lifting [, to a
set of representatives in 7, we obtain a function by
composition

X1:E(Fp) \ {0} — F, — Z

Write (n,A) — n % A for the Z-module action of
Z on E. (We write powers of the group element
A using multiplicative rather than exponential
notation.)

The pseudo-random bit generator is initialized
with a random integer seed s obtained by some
different process such as a separate random
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number generator. What is important for us is that
the number s represents the hidden internal state
of the algorithm. The hidden state must be kept
secret for the pseudo-randomness to be effective.
(Once the state is disclosed, a pseudo-random
sequence becomes predictable and useless for
many cryptographic purposes.)

The essence of the pseudo-random bit generator
can be written in the Objective Caml language as
follows. In the syntax of this language, each phrase
(Tet x = a in...) defines the value of x to be a.
The last line of the block of code gives the output
of the function.

let pseudo_random s =
let r = x1 (s * P) 1in
lJet s’ = x1 (r * P) 1in

Jet t = x1 (r * Q 1in
let b = extract_bits t in
(s’,b);

That is, we successively apply the integer s
or r to the point P or the point Q and take
the x1 coordinate of the resulting point, then
extract some bits from the number t. The integer
s" becomes the new secret internal state to be
fed into the next iteration of the function. The
output b is passed to the consumer of pseudo-
random bits. This output may become publicly
known. The function extract_bits operates by
converting t to a list of bits, discarding the 16 most
significant bits (for reasons that do not matter to
this discussion), and giving the remaining bits as
output. According to NIST standards, by iterating
this function, updating the internal state at each
iteration, a cryptographically secure stream b...of
pseudo-random bits is obtained.

The Back Door

This algorithm is fatally flawed, as Ferguson and
Shumow have pointed out [5]. Since P and Q
are nonidentity elements of a cyclic group of
prime order, each is a multiple of the other. Write
P = ex Q for some integer e. We show that, once we
have e in hand, it is a simple matter to determine
the secret internal state s of the pseudo-random
bit generator by observing the output b and thus
to compromise the entire system.

The function extract_bits discards 16 bits.
Given the output b, we take the 216 (a small number
of) possible preimages t of b under extract_bits.
For each t, the coordinate x is known, and solving
a quadratic, there are at most two possibilities for
the coordinate y of a point A on the elliptic curve
such that t = x1(A). One such A is ¥ * Q. For each
A, we compute e x A. One of the small number of
possibilities for e x A is

(1) ex (r«Q)=r*x(exQ)=rxP.
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Finally s" = x1(r * P). In short, the internal state
s’ can be narrowed down to a small number of
possibilities by an examination of the pseudo-
random output bitstream. Shumow and Ferguson
state that in experiments, “32 bytes of output was
sufficient to uniquely identify the internal state of
the PRNG [pseudo-random number generator].”

The back door to the algorithm is the number
e such that P = e * Q. To use the back door, one
must know the value of e. The NIST standard
does not disclose e (of course!), and extensive
cryptographic experience suggests that it is hard
to compute e from the coordinates of P and Q
(unless you happen to own a quantum computer).
This is the problem of discrete logarithms. But,
starting with e, there is no difficulty in creating a
pair P and Q. The back door is universal: a single
number e gives back door access to the internal
state of the algorithm of all users worldwide.

It is a matter of public fact that the NSA was
tightly involved in the writing of the standard.
Indeed, NIST is required by law to consult with
the NSA in creating its standard. According to the
New York Times, “classified NSA memos appear
to confirm that the fatal weakness, discovered
by two Microsoft cryptographers in 2007, was
engineered by the agency” [4]. The news article
goes on to say that “eventually, NSA became the
sole editor” and then pushed aggressively to make
this the standard for the 163 member countries of
the International Organization for Standardization.
Further historical and social context appears in [6].
The NSA had facile access to the crown jewel e and
motive to seize it. Draw your own conclusions.

Observations

1. The back door to this algorithm is extremely
elementary from a mathematical perspective. We
wrote the essential algorithm in six lines of
computer code, even if more supporting code
is needed to make it industrial strength. The
algorithm could be explained to undergraduate
math majors or sufficiently advanced high school
students. The story also has the spy agency intrigue
to make a good math club talk or a special lecture
in an elementary abstract algebra course. We
essentially just need to understand that an elliptic
curve is an abelian group whose elements (other
than the identity element) are determined by two
numbers x and y, that y is the root of a quadratic
when x is given, and that every nonidentity element
of a cyclic group of prime order is a generator.
Easy stuff.

2. Without prior knowledge of the back door,
how difficult would it be to rediscover the possible
existence of a back door? An analysis of the
argument shows the required level of creativity is
that of an undergraduate homework problem. We
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must think to write the element P as a multiple
of the generator Q in a cyclic group of prime
order. This a student learns in the first weeks of
undergraduate algebra.

The rest of the process of inverting the pseudo-
random number generator is determined by the
definition of the function itself: simply take each
step defining the function and reverse the steps,
asking for the preimage of the function at each
step of its definition, working from the output
back to the secret state s’. Once the question of
inverting the function is asked, it is easy to do the
group theory, even if it is computationally difficult
to write e explicitly.

One-way functions are a standard tool in the
cryptographer’s bag. Every professional who has
been trained to analyze cryptographic algorithms
knows to ask the question of invertibility. It is
unsettling that NIST and others do not seem to
have asked this basic question.

Diffie-Hellman Key Exchange

In what follows, let us assume that someone, whom
we will call the Spy, has access to the back door
e. How is it possible for the Spy and the end
user (the User) of the NIST algorithm to come into
possession of the same shared secret (the internal
state of the pseudo-random number generator)
when all communication between them is public?
Information flows from the Spy to the User through
the published NIST standard, and from the User
back to the Spy through the public output of the
pseudo-random generator. The back door must
have a remarkable cryptographic design to permit
a secret to pass across these public channels yet
prevent the secret from becoming known to a third
party.

As we now explain, the design of the back
door to NIST is based on a well-known algorithm
in cryptography called the Diffie-Hellman key
exchange [2]. This is an algorithm to share a secret
between two parties when there is a possibility that
the channel of communication is being monitored.
In the current context, the Spy has full knowledge
of the Diffie-Hellman key exchange for what it is.
However, the User participates in the exchange
innocently and unwittingly by blindly following
the rules of the NIST protocol.

The Diffie-Hellman key exchange requires a
group, which we will take to be a cyclic group E
of order n (to preserve notation). The group E,
its order n, and a generator Q are made public.
To share a secret, the first party (the Spy) picks
a random number e, which is kept secret, and
publishes P = e x Q to the world. The second
party (the User) picks a random number r, which
is kept secret, and publishes r % Q. Then, by
equation (1), the Spy, who knows e and r * Q, and

NOTICES OF THE AMS

the User, who knows r and e * Q, can both compute
(re) x Q = r * P, which is the shared secret. (In our
context, the shared secret determines the internal
state s’ of the pseudo-random number generator.)
If E is a group in which the public knowledge of
E,n,Q,P =e*xQ,r *x Q does not allow the easy
computation of (re) x Q, then the shared secret is
protected from public disclosure by the difficulty
of the computation. In this way, the only two
who learn the internal state of the pseudo-random
number generator are the Spy and the User.

What we have described here is not an imaginary
scenario: NIST documents do in fact publish the
data E, n, Q, and P needed to initiate the Diffie-
Hellman exchange. A user, when making public the
output from the pseudo-random number generator,
does in fact complete the exchange. Diffie-Hellman
is Diffie-Hellman, whether it has been advertised
as such or not.

To say that the Diffie-Hellman key exchange
algorithm is well known is a vast understatement.
This algorithm is a significant lesson in virtually
every first course in cryptography everywhere in
the world. Building on Merkle, the Diffie-Hellman
paper, by starting the entire field of public key
cryptography, is one of the most important papers
in cryptography ever written.

What is the significance of all this? It is no secret
that the NSA employs some of the world’s keenest
cryptographic minds. They all know Diffie-Hellman.
In my opinion, an algorithm that has been designed
by NSA with a clear mathematical structure giving
them exclusive back door access is no accident,
particularly in light of the Snowden documents.
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Musings on MOOCs

Jim Fowler and Tara Smith

MOOCs (massive open online courses) are causing
a revolution in higher education today. What will
be the impact of this revolution on mathematics
teaching in colleges and universities? The Notices
is hosting a discussion of MOOCSs, which began
in the November 2013 issue with the Opinion
column “MOOCSs and the future of mathematics”
by Robert Ghrist of the University of Pennsylvania.
The first installment of the discussion appeared
in the January 2014 issue and continues in the
present issue. The Notices invites readers to submit
short pieces (800 words or less) on the subject of
MOOCs in mathematics. Please send contributions
to notices-mooc@ams.org.

James Fowler

With a team at Ohio State, I've created two MOOCs,
namely Calculus One (which first ran in the spring
of 2013) and Calculus Two (which first ran in the
fall of 2013). More are on the way. Both MOOCs
debuted on Coursera, but much of the content is
also available on iTunes U and YouTube and has
been used to “flip the classroom” at Ohio State.
MOOC content can be deployed for a variety of
purposes.

I agree with what Robert Ghrist wrote in “MOOCs
and the future of mathematics” [Notices, Novem-
ber 2013]. Ghrist emphasizes that MOOCs make
possible experimentation with the exposition of
mathematics; I'll emphasize that MOOCs are also
experiments with assessment. The basic question
is this: how do we get more people to do more
homework? For our MOOC, we built an adaptive
learning platform called MOOCulus—a play on
“cow-culus”. MOOCulus provides randomly gen-
erated interactive calculus exercises with hints.
Correct and incorrect responses and requests for
hints are used to estimate the student’s present
level of mastery so that, as the student masters
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a particular topic, the student progresses to a
new challenge. The hope then is that each student
is actively working on problems that are at the
appropriate level to help that student grow.

All these students doing all these problems
means we have a lot of data on student learning.
Armed with this data, Bart Snapp, David Lindberg,
and I are examining how a student’s experience with
MOOCulus relates to that student’s performance
on traditional in-class assessments.

That we are collaborating on MOOCulus is
significant. MOOCSs are usually said to be “open”
in the sense of open enrollment, but “open” might
also mean “open source”. The source code and
other materials for our MOOCSs are available in a
public repository, so anyone can look behind the
scenes to see how we’ve built what we’ve built.
Improvements to our code have come not just
from faculty elsewhere, but also from our students.
In short, MOOCs make teaching collaborative and
public—just like research.

Collaboration is the whole game. MOOCs are
only about technology insofar as technology fa-
cilitates the development of communities. Those
communities are not just communities of learners.
They also include communities—like this one facil-
itated by the Notices—of teachers and researchers.
In the past, Ghrist’s innovations might have been
known only to the people at his home institution,
the University of Pennsylvania, but Ghrist has, in a
sense, published his teaching, and that publication
makes possible a discussion about his innovations.

Tara Smith

My daily professional routine is not markedly
different from that of my advisor, or indeed of his
advisor. I teach classes, mentor graduate students,
and immerse myself in my research and writing,
collaborating with others or on my own. Classroom
instruction, supported by recitation sections often
led by a TA for large classes, has continued to be the
norm for most of us. We’ve embraced pedagogical
changes (or tried and rejected them in some
instances): inquiry-based learning, cooperative
learning, graphing calculators, computer algebra

NOTICES OF THE AMS



194

systems, tablets, clickers, etc. Still, collegiate math
instruction has continued primarily to consist
of an instructor on site delivering content to
his or her students, running problem sessions,
assessing mastery via completion of homework and
performance on exams, and interacting directly
with the students three to five times per week.

Lately, however, as I converse with current and
prospective doctoral students in mathematics, I
have begun to wonder what the rapidly expanding
menu of mechanisms for delivering mathematics
content—most notably MOOCs—portend for the
future of our profession, our students, and our
community. How substantially will the careers
of this next generation of mathematicians differ
from those of us who have been in the field for
twenty, thirty, or forty years? What will the daily
professional life of the academic mathematician
look like in another five, ten, or twenty years?

All we know for sure is that it is likely to be
different in substantive ways. The differences will
be driven by the rapid expansion of alternative
ways to deliver content as well as the harsh eco-
nomic realities facing higher education. We might
find ourselves confronting the critical question
Robert Ghrist posed in his piece about MOOCs
in the November 2013 Notices, “Why do mathe-
maticians exist?”; surely we will at least face the
question, “Why should mathematicians be hired by
a university?” We need to answer compellingly if
academic mathematicians are to continue to exist
in significant numbers across many institutions.

What of value do we offer? At many colleges,
the justification for sizable math departments
is the need for faculty to teach service courses
that deliver basic, fairly low-level mathematics
content and skill instruction to students in other
disciplines who need to have some facility with
mathematics as a tool. What is it that our physical
presence on campus and in the classroom provides
that cannot be provided, perhaps substantially
better, by having a student watch a YouTube video
starring a skilled lecturer and subsequently be
evaluated by a computer-generated assessment?
If you believe, as I do, that something magical
happens in the personal interaction between
instructor and student, something that takes
learning and understanding to a deeper level, then
how do we demonstrate that? How do we ensure
that it happens consistently in our work with
students, and how do we persuade those who pay
the bills that the added value is worth the greater
cost? What formats make sense for faculty-student
instruction in light of the ability to get content
delivered inexpensively or for free via online
sources? Do we move away from lectures and
toward a system of tutorials? Flipped classrooms?
Can we teach students more efficiently and cheaply
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by taking advantage of new resources for mass
instruction and content? If so, how? And if so,
how do we continue to justify the same number of
faculty, or will we inevitably be downsized? What
would downsizing do to the research climate and
opportunities for graduate students?

With the potential for excellent delivery of
mathematical content for very low cost, the oppor-
tunities for those who previously had no access to
such instruction have grown dramatically, which
is exciting from any perspective. However, if there
is value in more personal delivery, will some who
previously had access to that now lose access
because the cost of providing it is so much greater
than the inexpensive options? We might be moving
toward two distinct systems of instruction in
higher education. In the first would be students
who are prepared for and can afford access to the
elite institutions whose faculty are well-funded
research mathematicians with some degree of
teaching expectation; they would be instructed via
MOOCs and other online options, supplemented
by classroom and tutorial instruction provided by
active researchers and their graduate students. In
the second system, students would have their math
instruction provided solely by online sources and
math tutoring offices staffed by adjunct faculty,
perhaps overseen by one or two regular faculty
charged with maintaining standards and quality.

I have no answers, but there is no shortage of
questions. We do indeed live in interesting times.
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Ye Tian Awarded 2013 ICTP/
IMU Ramanujan Prize

YE TIAN of the Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, has been named
the recipient of the 2013 Ramanujan Prize for Young
Mathematicians from Developing Countries, awarded by
the International Centre for Theoretical Physics (ICTP) and
the International Mathematical Union (IMU). According to
the prize citation, he was honored for “his outstanding
contributions to number theory. These include the com-
pletion of the proof of a multiplicity one conjecture for
local theta correspondences and important work related
to Heegner points and to the Birch and Swinnerton-Dyer
conjecture: the nonexistence of points on twisted Fermat
curves, and recently remarkable progress on the congruent
number problem, showing the existence of infinitely many
congruent numbers with arbitrarily many prime factors.”

The Ramanujan Prize is awarded annually to a re-
searcher from a developing country who is younger than
forty-five years of age on December 31 of the year of the
award and who has conducted outstanding research in a
developing country. Researchers working in any branch of
the mathematical sciences are eligible. The prize carries
a cash award of US$15,000, and the winner is invited to
deliver a lecture at ICTP.

Tian received his Ph.D. in mathematics from Columbia
University in 2003. He has been affiliated with the Institute
for Advanced Study and McGill University. Earlier in 2013
he was awarded the Morningside Medal of Mathematics
at the Sixth International Congress of Chinese Mathemati-
cians.

—From an ICTP announcement

Avila Awarded TWAS Prize

ARTUR AVILA of the Instituto de Matematica Pura e
Aplicada (IMPA), Rio de Janeiro, Brazil, has been awarded
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the 2013 TWAS Prize in Mathematics of the Academy of
Sciences for the Developing World (TWAS). He was recog-
nized “for his fundamental contributions to the theory of
renormalization in low-dimension dynamical systems, to
the theory of one-dimensional Schrodinger operators and
related co-cycles, to the theory of Teichmiiller flow, inter-
val exchange transformations and translation flows.” The
TWAS Prizes honor individual scientists who have been
working and living in a developing country for at least
ten years. The prize carries a cash award of US$15,000.

Avila received his Ph.D. from IMPA in 2001. He has also
been affiliated with the Collége de France and the Centre
National de la Recherche Scientifique (CNRS) and has been
a research fellow of the Clay Mathematics Institute. He
was awarded the Salem Prize in 2006. Among his other
honors are the European Mathematical Society (EMS) Prize
(2008), the Grand Prix Jacques Herbrand of the French
Academy of Sciences (2009), the Wolff Memorial Lectures
(2008), and the International Association of Mathemati-
cal Physics (IAMP) Early Career Award (2012). He gave a
plenary address at the 2010 International Congress of
Mathematicians. Avila will present a lecture at the TWAS
general meeting in 2014.

—From a TWAS announcement

2013 Hopf Prizes Awarded

YAKOV ELIASHBERG of Stanford University and HELMUT
HOFER of the Institute for Advanced Study have been
selected recipients of the 2013 Heinz Hopf Prize by ETH
Zurich. Eliashberg received his Ph.D. in 1972 from Lenin-
grad University and has been at Stanford since 1989. He
received a Guggenheim Fellowship in 1995 and the Oswald
Veblen Prize in Geometry in 2001. He is a fellow of the
AMS. Hofer received his Ph.D. from the University of Zurich
in 1981. He is a founder of the field of symplectic topology,
and his work has led to a new area of mathematics known
as Hofer geometry. He has been an Alfred P. Sloan Fellow
(1987-1989) and is a member of the National Academy
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of Sciences and is a fellow of the AMS. He received the
Ostrowski Prize in 1999.

The Hopf Prize is awarded every two years for outstand-
ing scientific work in the field of pure mathematics. It car-
ries a cash award of 30,000 Swiss francs (approximately
US$33,000). Eliashberg and Hofer presented the Heinz
Hopf lectures in December 2013 entitled “From Dynamical
Systems to Geometry and Back”.

—Elaine Kehoe

2013 CMS G. de B. Robinson
Award Announced

KENNETH DAVIDSON of the University of Waterloo and
ALEX WRIGHT of the University of Chicago have been
awarded the 2013 G. de B. Robinson Award of the Ca-
nadian Mathematical Society (CMS) for their paper titled
“Operator algebras with unique preduals”, published in
the Canadian Mathematical Bulletin 54 (2011), 411-421;
[http://cms.math.ca/10.4153/CMB-2011-036-0. The
award is given in recognition of outstanding contributions
to the Canadian Journal of Mathematics or the Canadian
Mathematical Bulletin.

—From a CMS announcement

Ghate Awarded 2013
Bhatnagar Prize

EKNATH PRABHAKAR GHATE of the Tata Institute of Fun-
damental Research has been awarded the 2013 Shanti
Swarup Bhatnagar Prize for Science and Technology in
the mathematical sciences. The prize is awarded by the
Council of Scientific Research and Industrial Develop-
ment to recognize outstanding Indian work in science and
technology. Shanti Swarup Bhatnagar was the founding
director of the Council. It is the highest award for science
in India. The prize carries a cash award of 500,000 rupees
(approximately US$8,000).

—Council of Scientific Research and
Industrial Development, India

2013 Infosys Prize Awarded

RAHUL PANDHARIPANDE of ETH Zurich has been awarded
the 2013 Infosys Prize in mathematical sciences by the
Infosys Science Foundation. He was recognized “for his
profound work in algebraic geometry, in particular, for
his work on Gromov-Witten theory for Riemann surfaces,
for predicting the connection between Gromov-Witten
and Donaldson-Thomas theories, and for his recent work
with Aaron Pixton that establishes this connection for
Calabi-Yau 3-folds.” The prizewinners are chosen based
on significant progress showcased in their chosen spheres,
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as well as for the impact their research will have on the
specific field. The prize carries a cash award of Rs. 55
lakhs (approximately US$87,000). In addition to the prize
purse, each category award includes a gold medallion and
a citation certificate.

—From an Infosys Science Foundation announcement

2013 Prix de Recherches
Awarded

BENJAMIN JOURDAIN of Université Paris-Est and ENPC,
SYLVIE MELEARD of Ecole Polytechnique, and WOJBOR
WovyczyNskl of Case Western Reserve University have
been chosen the recipients of the 2013 Prix de Recherches
Award for their joint article “Lévy flights in evolution-
ary ecology”, published in the Journal of Mathematical
Biology. Given by the French magazine La Recherche, the
award highlights research at the crossroads of science
and technology.

—From a La Recherche announcement

CAREER Awards Presented

The Division of Mathematical Sciences (DMS) of the Na-
tional Science Foundation (NSF) has honored a number
of young mathematicians in fiscal year 2013 with Faculty
Early Career Development (CAREER) awards. The NSF
established the awards to support promising scientists,
mathematicians, and engineers who are committed to the
integration of research and education. The grants provide
funding of at least US$400,000 over a five-year period.
The 2013 CAREER grant awardees and the titles of their
grant projects follow.

ETHAN ANDERES, University of California Davis, De-
formations in Statistics, Cosmology and Image Analysis;
ARAVIND ASOK, University of Southern California, Vector
Bundles, Rational Points, and Homotopy Theory; LYDIA
BIERI, University of Michigan, Ann Arbor, Geometric-Ana-
lytic Investigations of Spacetimes and their Nonlinear Phe-
nomena; ANDREA BONITO, Texas A&M University, Explicit
Adaptive Methods for Coupled Problems; CHING-SHAN
CHOU, Ohio State University, Spatial Modeling and Com-
putation of Cell Signaling in Cell-to-Cell Communication;
MARK CULP, West Virginia University, Statistical Methodol-
ogy in Multi-View Learning with Large Data; LAURENT DEM-
ANET, Massachusetts Institute of Technology, Super-Reso-
lution and Subwavelength Imaging; MOON DUCHIN, Tufts
University, Finer Coarse Geometry; AMANDA FOLSOM, Yale
University, Maass Forms, Modular Forms, and Applications
in Number Theory; MARK HOEFER, North Carolina State
University, Solitary Waves and Wavetrains in Dispersive
Media; ADRIAN IOANA, University of California San Diego,
Classification and Rigidity for von Neumann Algebras;
SAMUEL ISAACSON, Boston University, Numerical Methods
for Stochastic Reaction Diffusion Equations; GAUTAM IYER,
Carnegie Mellon University, Anomalous Diffusion,
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Homogenization, and Averaging; TODD KEMP, University
of California San Diego, Free Probability and Connections
to Random Matrices, Stochastic Analysis, and PDEs; KAY
KIRKPATRICK, University of Illinois, Urbana-Champaign,
Mechanics of Superconductors and Other Macroscopic Phe-
nomena; ALEX KONTOROVICH, Yale University, Local-Global
Phenomena and Sieves in Thin Orbits; AARON LAUDA,
University of Southern California, Interactions between
Knot Homology and Representation Theory; RADU LAZA,
State University of New York, Stony Brook, Advances in
Hodge Theory and Moduli; TAT MELCHER, University of
Virginia, Heat Kernel Measures in Infinite Dimensions;
KARIN MELNICK, University of Maryland, Frontiers of
Rigidity in Pseudo-Riemannian, Conformal, and Parabolic
Geometries; DEBASHIS MONDAL, University of Chicago,
New Directions in Spatial Statistics; Y1 N1, California
Institute of Technology, Heegaard Floer Homology and
Low-Dimensional Topology; JESSICA PURCELL, Brigham
Young University, Hyperbolic Geometry and Knots and
Links; ANDREW PUTMAN, Rice University, The Topology
of Infinite Groups; Brian Rider, Temple University, Ran-
dom Matrices, Random Schroedinger, and Communica-
tion; RALF SCHIFFLER, University of Connecticut, Cluster
Algebras, Combinatorics and Representation Theory;
KARL SCHWEDE, Pennsylvania State University, Test
Ideals and the Geometry of Projective Varieties in Positive
Characteristic; JAMES SCOTT, University of Texas at Aus-
tin, Bringing Richly Structured Bayesian Models into the
Discrete-Data Realm via New Data-Augmentation Theory
and Algorithms; LUis SILVESTRE, University of Chicago,
Regularity Estimates for Elliptic and Parabolic Equations;
WENGUANG SUN, University of Southern California, Simul-
taneous and Sequential Inference of High-Dimensional
Data with Sparse Structure; RACHEL WARD, University of
Texas at Austin, Sparsity-Aware Sampling Theorems and
Applications; DANIELA WITTEN, University of Washington,
Flexible Network Estimation from High-Dimensional Data;
JIANLIN X1A, Purdue University, Structured Matrix Compu-
tations: Foundations, Methods, and Applications; LEXING
YING, Stanford University, Fast Algorithms for Oscillatory
Integrals; MING YUAN, Morgridge Institute for Research,
Sparse Modeling and Estimation with High-Dimensional
Data; HAO ZHANG, University of Arizona, Nonparametric
Models Building, Estimation, and Selection with Applica-
tions to High-Dimensional Data Mining.

—Elaine Kehoe

2013 Professors of the Year
Chosen

Three college professors whose work involves the math-
ematical sciences are among the 2013 Professors of the
Year, selected by the Carnegie Foundation for the Advance-
ment of Teaching and the Council for Advancement for
Support of Education (CASE). ROBERT CHANEY, a professor
of mathematics at Sinclair Community College in Dayton,
Ohio, was named Outstanding Community Colleges Pro-
fessor of the Year. He uses hands-on learning projects with
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his students, such as teaching them to program a robot
using algebraic functions. GINTARAS DUDA, an associate
professor of physics at Creighton University, was chosen
Outstanding Master’s Universities and Colleges Professor
of the Year. He teaches courses that have no lecture com-
ponent but are problem-based, and he often coauthors ar-
ticles with his undergraduate students. STEVEN POLLOCK,
a professor of physics at the University of Colorado at
Boulder, was named Outstanding Doctoral and Research
Universities Professor of the Year. He considers himself
more of a coach than a teacher, letting his students make
sense of ideas by themselves. In his research he studies
how students’ mathematical skills help them with phys-
ics concepts.

—From a Carnegie Foundation announcement
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Call for Applications for the
Second Heidelberg Laureate
Forum

The Second Heidelberg Laureate Forum (HLF) will be held
September 21-26, 2014. It will bring together winners of
the Abel Prize and the Fields Medal, both in mathematics,
as well as the Turing Award and the Nevanlinna Prize,
both in computer science, in Heidelberg, Germany. The
Heidelberg Laureate Forum Foundation (HLFF) is looking
for outstanding young mathematicians and computer
scientists from all over the world who would like to get
the chance to personally meet distinguished experts from
both disciplines and find out how to become leading sci-
entists in their fields. Applications will be accepted until
February 28, 2014. Applications must be submitted on-
line at|/http://application.heidelberg-Taureate-
fforum.orgl The forum is being organized by the Heidel-
berg Laureate Forum Foundation in cooperation with the
forum’s founders, as well as the Association for Com-
puting Machinery (ACM), the International Mathematical
Union (IMU), and the Norwegian Academy of Science and
Letters. For more information, see www.heidelberg-
Tlaureate-forum.org.

—From an HLF announcement

Call for Nominations for
Second Stephen Smale Prize

The second Stephen Smale Prize will be awarded at the
Foundations of Computational Mathematics (FoCM) meet-
ing in Montevideo, Uruguay, December 11-20, 2014. The
goal of the Smale Prize is to recognize major achieve-
ments in furthering the understanding of the connections
between mathematics and computation, including the
interfaces between pure and applied mathematics, numeri-
cal analysis, and computer science. To be eligible for the
prize a candidate must be in his or her early to mid-career,
meaning, typically, removed by at most ten years from
his or her (first) doctoral degree by the first day of the
FoCM meeting (December 11, 2014). Eligible candidates
should be nominated by email to the secretary of FoCM,
Antonella.Zanna@math.uib.no, no later than March
10, 2014. Each nomination should be accompanied by a
brief case for support. The recipient of the prize will be
expected to give a lecture at the meeting. A written version
of this lecture (tagged as the Smale Prize Lecture) will be
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included in the volume of plenary talks. For more informa-
tion, seelhttp://focm-society.org/smale_prize.php|

—From a FoCM announcement

Summer Program for Women
Undergraduates

The 2014 George Washington University Summer Program
for Women in Mathematics (SPWM) is open for applica-
tions. The program will take place in Washington, D.C.,
during the summer of 2014 on dates to be determined.
This is a five-week intensive program for mathematically
talented undergraduate women who are completing their
junior years and may be contemplating graduate study in
mathematical sciences. The goals of this program are to
communicate an enthusiasm for mathematics, to develop
research skills, to cultivate mathematical self-confidence
and independence, and to promote success in graduate
school. A number of seminars will be offered, led by
active research mathematicians with the assistance of
graduate students. The seminars will be organized to
enable the students to obtain a deep understanding of
basic concepts in several areas of mathematics, to learn
how to do independent work, and to gain experience in
expressing mathematical ideas orally and in writing. There
will be panel discussions on graduate schools, career op-
portunities, and the job market. Weekly field trips will be
organized to facilities of mathematical interest around
the Washington area.

Applicants must be U.S. citizens or permanent residents
studying at a U.S. university or college who are completing
their junior years or the equivalent and have mathemati-
cal experience beyond the typical first courses in calculus
and linear algebra. Sixteen women will be selected. Each
will receive a travel allowance, campus room and board,
and a stipend of US$1,750. The deadline for applications
is February 28, 2014. Early applications are encour-
aged. Applications are accepted only by mail. For further
information and the exact dates of the program, please
contact the director, Murli M. Gupta, email: mmg@gwu . edu;
telephone: 202-994-4857; or visit the program’s website
athttp://www.gwu.edu/~spwm/. Application material is
available on the website.

—From an SPWM announcement
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Call for Nominations for 2014
IBC Prize

This annual prize is for outstanding achievement in infor-
mation-based complexity. The prize consists of US$3,000
and a plaque. The achievement can be based on work done
in a single year, a number of years, or over a lifetime; it
can be published in any journal, number of journals, or
monographs. Nominations may be sent to Joseph Traub
at traub@cs.columbia.edu. However, a person does not
have to be nominated to win the award. The deadline for
nomination is March 31, 2014.

—Joseph Traub
Columbia University

CRM-PISA Junior Visiting
Program

The “Centro di Ricerca Matematica Ennio De Giorgi” (CRM)
invites applications for three two-year Junior Visiting posi-
tions for the Academic Year 2014/15.

Successful candidates will be new or recent PhD’s in
mathematics with an exceptional research potential. Ph.D.

students can also apply, provided they obtain their Ph.D.
no later than October 2014. The annual gross compensa-
tion is 32,000 Euros, corresponding to a monthly salary
of approximately 2,000 Euros (after tax), plus a research
allowance of 1,000 Euros that can be used for exchange
visits. Junior Visitors are expected to start their research
activity at CRM no later than October 2014.

Deadline for application is January 10, 2014. The full
announcement is available at http://www.sns.it/en/|
|servizi/job/assegnidiricerca/assegno545/.

Hosting over 4,000 visitors since its foundation in 2001,
CRM has been devoted to promoting excellence in a vast
spectrum of research fields, from pure mathematics to
mathematics applied to the natural and social sciences. As
a consequence, CRM provides a thriving international and
interdisciplinary research environment. Junior Visitors can
take part in a great variety of scientific activities includ-
ing intensive research periods, workshops, and seminars.
Moreover, Junior Visitors have a unique opportunity to
interact with top-class scientists who visit the CRM as part
of our Senior Visiting Programme.

Please view our website for detailed information about
our scientific activitylhttp://www.crm.sns. it (See also
http://www.crm.sns.it/news/102/})

—From CRM-PISA announcement

AMS Email Support for
Frequently Asked Questions

A number of email addresses have been established for
contacting the AMS staff regarding frequently asked ques-
tions. The following is a list of those addresses together
with a description of the types of inquiries that should be
made through each address.

abs-coord@ams.org for questions regarding a particu-
lar abstract or abstracts questions in general.

acquisitions@ams.org to contact the AMS Acquisitions
Department.

ams@ams.org to contact the Society’s headquarters in
Providence, Rhode Island.

amsdc@ams.org to contact the Society’s office in
Washington, D.C.

amsfellows@ams.org to inquire about the Fellows of
the AMS.

amsmem®@ams.org to request information about mem-
bership in the AMS and about dues payments or to ask
any general membership questions; may also be used to
submit address changes.

ams-simons@ams.org for information about the AMS
Simons Travel Grants Program.

ams-survey@ams.org for information or questions
about the Annual Survey of the Mathematical Sciences or
to request reprints of survey reports.
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bookstore@ams.org for inquiries related to the online
AMS Bookstore.

classads@ams.org to submit classified advertising for
the Notices.

cust-serv@ams.org for general information about AMS
products (including electronic products), to send address
changes, place credit card orders for AMS products, to
correspond regarding a balance due shown on a monthly
statement, or conduct any general correspondence with
the Society’s Sales and Member Services Department.

development@ams.org for information about chari-
table giving to the AMS.

eims-info@ams.org to request information about
Employment Information in the Mathematical Sciences
(EIMS). For ad rates and to submit ads go to http://
[eins. ams..org.

emp-info@ams.org for information regarding AMS
employment and career services.

eprod-support@ams.org for technical questions re-
garding AMS electronic products and services.

gradprg-ad@ams.org to inquire about a listing or ad in
the Find Graduate Programs online service.

mathcal@ams.org to send information to be included
in the “Mathematics Calendar” section of the Notices.

mathjobs@ams.org for questions about the online job
application service Mathjobs.org.

mathprograms@ams.org for questions about the
online program application service Mathprograms.org.

199


http://www.sns.it/en/servizi/job/assegnidiricerca/assegno545/
http://www.sns.it/en/servizi/job/assegnidiricerca/assegno545/
http://www.crm.sns.it
http://www.crm.sns.it/news/102/
http://eims.ams.org
http://eims.ams.org

GLOBAL ACADEMIC
FELLOWSHIP IN MATHEMATICS

NYU SHANGHAI

NYU Shanghai is pleased to announce a search for Global
Academic Fellows specializing in Mathematics. Global
Academic Fellows in Mathematics play a central role in the
mathematics teaching mission of the University, while enjoying
the benefit of interaction with its Mathematics Research
Institute, which is run jointly with the Courant Institute of
Mathematical Sciences in partnership with East China
Normal University. The research interests of the Mathematics
Department and the Research Institute include, but are by
no means limited to, applied analysis and probability theory,
statistics, data sciences, scientific computing, differential
equations, biophysics, fluid dynamics, and mathematical physics.

The Global Academic Fellowship provides an unprecedented
opportunity to engage students from over 30 nations in the
classroom. NYU Shanghai joins NYU in New York and NYU
Abu Dhabi as the third degree granting campus in NYU’s
global network, and holds distinction as the first joint Sino-U.S.
venture in higher education to offer degrees accredited in both
the U.S. and China. Global Academic Fellows are expected to
share the spirit of cooperation essential to global partnership.

Formal duties for this Fellowship will include teaching
assistance, tutoring, and leading of student workshops.
Fellows are encouraged and given significant opportunity
to develop innovative pedagogies within and beyond these
basic responsibilities. Fellows are invited to attend Research
Institute seminars and participate in research activities when
possible, including a research project which may serve as the
basis for further graduate study or career development after
the conclusion of the Fellowship. Each Fellow also partners
with a division of the University to complete an Institutional
Enrichment Project, which exposes Fellows to the essential
functions of the University while developing leadership and
management skills.

Fellowship details: The term of appointment is 10 months
from August 1, 2014 to May 31, 2015. The Global Academic
Fellowship includes a $25,000 stipend, round-trip
transportation to Shanghai, relocation allowance, as well as
health and housing benefits.

Expected qualifications: To receive consideration, a
candidate must possess at minimum a bachelor’s degree
and is expected to have received high academic distinction
as an undergraduate or during his/her early professional
career, including an outstanding academic record; strong
evidence of personal initiative and commitment to scholarship
beyond academic coursework are particularly valued. Teaching
experience, although helpful, is not strictly required. Successful
candidates will demonstrate initiative, judgment, and skill with
working in diverse cultural environments.

Application process: To apply, please upload the following docu-
ments (in .pdf format):

» Cover letter

* Curriculum vitae

* Undergraduate transcript(s) (and graduate transcript(s), if appli-
cable)

» Contact information for three references, including two faculty or
research advisors

Applications will be reviewed on a rolling basis. Candidates with
fewer than two years of continuous formal work experience may
be required to participate in an unpaid two-week compulsory
work certification training in China prior to the beginning of the
Fellowship. Please visit our website at[http://shanghai.nyu.edu/|
|about/open-positions-faculty] for instructions and other infor-
mation on how to apply. If you have any questions, please e-mail
nyush.gaf@nyu.edu.

NYU SHANGHAI

NYU Shanghai is an Equal Opportunity/Affirmative Action Employer.
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mathrev@ams.org to submit reviews to Mathematical
Reviews and to send correspondence related to reviews or
other editorial questions.

meet@ams.org to request general information about
Society meetings and conferences.

mmsb@ams.org for information or questions about
registration and housing for the Joint Mathematics Meet-
ings (Mathematics Meetings Service Bureau).

msn-support@ams.org for technical questions regard-
ing MathSciNet.

notices@ams.org to send correspondence to the man-
aging editor of the Notices, including items for the news
columns. The editor (notices@math.wustl.edu) is the
person to whom to send articles and letters. Requests for
permission to reprint from the Notices should be sent to
reprint-permission@ams.org (see below).

notices-ads@ams.org to submit electronically paid
display ads for the Notices.

notices-booklist@ams.org to submit suggestions for
books to be included in the “Book List” in the Notices.

notices-letters@ams.org to submit letters and opinion
pieces to the Notices.

notices-whatis@ams.org to comment on or send sug-
gestions for topics for the “WHAT 1IS...?” column in the
Notices.

nsagrants@ams.org for information about the NSA-
AMS Mathematical Sciences Program.

paoffice@ams.org to contact the AMS Public Aware-
ness Office.

president@ams.org to contact the president of the
American Mathematical Society.

prof-serv@ams.org to send correspondence about AMS
professional programs and services.

publications@ams.org to send correspondence to the
AMS Publication Division.

pub-submit@ams.org to submit accepted electronic
manuscripts to AMS publications (other than Abstracts).
Seelhttp://www.ams.org/submit-book-journal|to
electronically submit accepted manuscripts to the AMS
book and journal programs.

reprint-permission@ams.org to request permission to
reprint material from Society publications.

sales@ams.org to inquire about reselling or distributing
AMS publications or to send correspondence to the AMS
Sales and Member Services Department.

secretary@ams.org to contact the secretary of the
Society.

student-serv@ams.org for questions about AMS pro-
grams and services for students.

tech-support@ams.org to contact the Society’s typeset-
ting Technical Support Group.

textbooks@ams.org to request examination copies
or inquire about using AMS publications as course texts.

webmaster@ams.org for general information or for
assistance in accessing and using the AMS website.
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Reference and Book List

The Reference section of the Notices
is intended to provide the reader
with frequently sought information in
an easily accessible manner. New
information is printed as it becomes
available and is referenced after the
first printing. As soon as information
is updated or otherwise changed, it
will be noted in this section.

Contacting the Notices

The preferred method for contacting
the Notices is electronic mail. The
editor is the person to whom to send
articles and letters for consideration.
Articles include feature articles, me-
morial articles, communications,
opinion pieces, and book reviews. The
editor is also the person to whom to
send news of unusual interest about
other people’s mathematics research.

The managing editor is the person
to whom to send items for “Math-
ematics People”, “Mathematics Op-
portunities”, “For Your Information”,
“Reference and Book List”, and “Math-
ematics Calendar”. Requests for
permissions, as well as all other
inquiries, go to the managing editor.

The electronic-mail addresses are
notices@math.wustl.edu in the
case of the editor and smf@ams.org
in the case of the managing editor.
The fax numbers are 314-935-6839
for the editor and 401-331-3842 for
the managing editor. Postal addresses
may be found in the masthead.

Upcoming Deadlines

January 15, 2014: Applications
for AMS-AAAS Mass Media Sum-
mer Fellowships. See the website
http://www.aaas.org/programs/
education/MassMedia; or con-
tact Dione Rossiter, Manager, Mass
Media Program, AAAS Mass Media
Science and Engineering Fellows

FEBRUARY 2014

Program, 1200 New York Avenue,
NW, Washington, DC 20005; tele-
phone 202-326-6645; fax 202-371-
9849; email drossite@aaas.org.
Further information is also available
athttp://www.ams.org/programs/
ams-fellowships/media-fellow/
massmediafellow and through the
AMS Washington Office, 1527 Eigh-
teenth Street, NW, Washington, DC
20036; telephone 202-588-1100; fax
202-588-1853; email amsdc@ams.
org.

January 23, 2014: Full proposals
for NSF Major Research Instrumen-
tation Program. See http://www.

nsf.gov/pubs/2013/nsf13517/
nsf1l3517.htm.

January 31, 2014: Nominations
for CAIMS/PIMS Early Career Award.
See http://www.pims.math.ca/
pims-glance/prizes-awards.

January 31, 2014: Entries for AWM
Essay Contest. Contact the contest or-
ganizer, Heather Lewis, at hlewis5@
naz.edu, or see https://sites.
google.com/site/awmmath/home.

February 1, May 1, August 1,
November 1, 2014: Applications
for February, May, August, Novem-
ber reviews for National Academies
Research Associateship Programs.
See the website http://sites.

p. 629

p. 1067

2013, p. 350

2014, p. 202

ber 2013, p. 1352

Where to Find It
A brief index to information that appears in this and previous issues of the Notices.
AMS Bylaws—November 2013, p. 1358
AMS Email Addresses—February 2014, p. 199
AMS Ethical Guidelines—june/July 2006, p. 701
AMS Officers 2012 and 2013 Updates—May 2013, p. 646
AMS Officers and Committee Members—October 2012, p. 1290
Contact Information for Mathematical Institutes—August 2013,

Conference Board of the Mathematical Sciences—September 2013,

IMU Executive Committee—December 2011, p. 1606

Information for Notices Authors—June/July 2013, p. 776

National Science Board—january 2014, p. 82

NRC Board on Mathematical Sciences and Their Applications—March

NSF Mathematical and Physical Sciences Advisory Committee—February
Program Officers for Federal Funding Agencies—October 2013,

p. 1188 (DoD, DoE); December 2012, p. 1585 (NSF Mathematics Education)
Program Officers for NSF Division of Mathematical Sciences—Novem-
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nationalacademies.org/PGA/RAP/
PGA_050491 or contact Research
Associateship Programs, National
Research Council, Keck 568, 500 Fifth
Street, NW, Washington, DC 20001;
telephone 202-334-2760; fax 202-
334-2759; email rap@nas.edu.

February1,2014: Applications for
AWM Travel Grants, Mathematics Edu-
cation Research Travel Grants, Math-
ematics Mentoring Travel Grants, and
Mathematics Education Research Men-
toring Travel Grants. See https://
sites.google.com/site/awm-
math/programs/travel-grants;
telephone: 703-934-0163; or email:
awm@awm-math.org; or contact As-
sociation for Women in Mathematics,
11240 Waples Mill Road, Suite 200,
Fairfax, VA 22030.

February 9, 2014: Applications
for Los Angeles, New York, Utah, and
Washington, D.C., fellowships for
Math for America (MfA). See http://
www.mathforamerica.org/.

February 12, 2014: Applications
for Research in Industrial Projects
for Students (RIPS) of the Institute
for Pure and Applied Mathematics
(IPAM). See www.ipam.ucla.edu.

February 15, 2014: Applica-
tions for AMS Congressional Fellow-
ship. See http://www.ams.org/
programs/ams-fellowships/ams-
aaas/ams-aaas-congressional-
fellowship or contact the AMS
Washington Office at 202-588-1100,
email: amsdc@ams.org.

February 15, 2014: Nominations
for AWM-Joan & Joseph Birman Prize
in Topology and Geometry. See the
website http://www.awm-math.org.

February 28, 2014: Applications
for Second Heidelberg Laureate
Forum. See “Mathematics Opportu-
nities” in this issue.

February 28, 2014: Applications
for George Washington University
Summer Program for Women in Math-
ematics (SPWM). See “Mathematics
Opportunities” in this issue.

March 3, 2014: Applications for
the EDGE for Women Summer Pro-
gram. See the website http://www.
edgeforwomen.org/.

March 10, 2014: Nominations for
the second Stephen Smale Prize. See
“Mathematics Opportunities” in this
issue.
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March 15, 2014: Nominations for
PIMS Education Prize. See the website
http://www.pims.math.ca/pims-
glance/prizes-awards.

March 31, 2014: Nominations for
Achievement in Information-Based
Complexity Prize. See “Mathematics
Opportunities” in this issue.

March 31, 2014: Applications
for AMS-Simons Travel Grants. See
www.ams.org/programs/travel-
grants/AMS-SimonsTG or contact
Steven Ferrucci, email: ams-simons@
ams.org, telephone: 800-321-4267,
ext. 4113.

April 15, 2014: Applications for
fall 2014 semester of Math in Mos-
cow. See http://www.mccme.ru/
mathinmoscow, or contact: Math in
Moscow, P.O. Box 524, Wynnewood,
PA 19096; fax: +7095-291-65-01;
email: mim@mccme. ru. Information
and application forms for the AMS
scholarships are available on the
AMS website at http://www.ams.
org/programs/travel-grants/
mimoscow, or contact: Math in Mos-
cow Program, Membership and Pro-
grams Department, American Math-
ematical Society, 201 Charles Street,
Providence RI 02904-2294; email
student-serv@ams.org.

May 1, 2014: Applications for
May review for National Academies
Research Associateship Programs.
See the website http://sites.na-
tionalacademies.org/PGA/RAP/
PGA_050491 or contact Research
Associateship Programs, National
Research Council, Keck 568, 500 Fifth
Street, NW, Washington, DC 20001;
telephone 202-334-2760; fax 202-
334-2759; email rap@nas.edu.

May 1, 2014: Applications for
AWM Travel Grants and Mathematics
Education Research Travel Grants.
See https://sites.google.com/
site/awmmath/programs/travel-
grants; telephone: 703-934-0163; or
email: awm@awm-math.org; or contact
Association for Women in Mathemat-
ics, 11240 Waples Mill Road, Suite
200, Fairfax, VA 22030.

August 1, 2014: Applications for
August review for National Acad-
emies Research Associateship Pro-
grams. See the website http://
sites.nationalacademies.org/
PGA/RAP/PGA_050491 or contact
Research Associateship Programs,
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National Research Council, Keck 568,
500 Fifth Street, NW, Washington, DC
20001; telephone 202-334-2760; fax
202-334-2759; email rap@nas.edu.

October 1, 2014: Applications for
AWM Travel Grants and Mathematics
Education Research Travel Grants.
See https://sites.google.com/
site/awmmath/programs/travel-
grants; telephone: 703-934-0163; or
email: awm@awm-math.org; or contact
Association for Women in Mathemat-
ics, 11240 Waples Mill Road, Suite
200, Fairfax, VA 22030.

November 1, 2014: Applications
for November review for National
Academies Research Associateship
Programs. See the website http://
sites.nationalacademies.org/
PGA/RAP/PGA_050491 or contact
Research Associateship Programs,
National Research Council, Keck 568,
500 Fifth Street, NW, Washington, DC
20001; telephone 202-334-2760; fax
202-334-2759; email rap@nas.edu.

MPS Advisory Committee

Following are the names and affilia-
tions of the members of the Advisory
Committee for Mathematical and
Physical Sciences (MPS) of the Na-
tional Science Foundation. The date
of the expiration of each member’s
term is given after his or her name.
The website for the MPS director-
ate may be found at www.nsf.gov/
home/mps/. The postal address is
Directorate for the Mathematical and
Physical Sciences, National Science
Foundation, 4201 Wilson Boulevard,
Arlington, VA 22230.

James Berger (chair) (09/14)
Department of Statistical Science
Duke University

Daniela Bortoletto (09/14)
Department of Physics
Purdue University

Emery N. Brown (09/14)

Massachusetts Institute of Tech-
nology

Phil Bucksbaum (09/15)

Stanford University

Emily A. Carter (09/15)

Department of Mechanical and Aero-
space Engineering

Princeton University
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George W. Crabtree (09/15)
Materials Science Division
Argonne National Laboratory

Juan J. de Pablo (09/15)
Institute of Molecular Engineering
University of Chicago

Francis J. DiSalvo Jr. (09/14)
Department of Chemistry
Cornell University

Bruce Elmegreen (09/14)
IBM Watson Research Center

Barbara J. Finlayson-Pitts (09/14)
Department of Chemistry
University of California, Irvine

Irene Fonseca (09/14)
Department of Mathematical Sciences
Carnegie Mellon University

Elizabeth Lada (09/14)
Department of Astronomy
University of Florida

Juan C. Meza (09/15)
University of California Merced

Catherine Pilachowski (09/15)
Astronomy Department
Indiana University

Elsa Reichmanis (09/14)

School of Chemical and Biomolecular
Engineering

Georgia Institute of Technology

Geoffrey West (09/14)
Santa Fe Institute

Book List

The Book List highlights recent books
that have mathematical themes and
are aimed at a broad audience po-
tentially including mathematicians,
students, and the general public. Sug-
gestions for books to include on the list
may be sent to notices-booklist@
ams.org.

*Added to “Book List” since the
list’s last appearance.

Algorithms Unlocked, by Thomas H.
Cormen. MIT Press, March 2013.
ISBN-13:978-02625-188-02.

An Accidental Statistician: The Life
and Memories of George E. P. Box, by
George E. P. Box. Wiley, April 2013.
ISBN-13: 978-1-118-40088-3.

FEBRUARY 2014

Assessing the Reliability of Com-
plex Models: Mathematical and Sta-
tistical Foundations of Verification,
Validation, and Uncertainty Quan-
tification, by the National Research
Council. National Academies Press,
2012. ISBN-13: 978-0-309-25634-6.

*A Cabinet of Mathematical Cu-
riosities at Teachers College: David
Eugene Smith’s Collection, by Diane
R. Murray. Docent Press, November
2013. ISBN-13: 978-0-9887449-1-2.

A Calculus of Ideas: A Mathemati-
cal Study of Human Thought, by Ulf
Grenander. World Scientific, Septem-
ber 2012.1SBN-13: 978-98143-831-89.
(Reviewed January 2014.)

Charles S. Peirce on the Logic of
Number, by Paul Shields. Docent
Press, October 2012. ISBN-13: 978-0-
9837004-7-0.

Classic Problems of Probability,
by Prakash Gorroochurn. Wiley, May
2012. ISBN-13: 978-1-1180-6325-5.
(Reviewed November 2013.)

*Computability: Turing, Gaddel,
Church, and Beyond, edited by
B. Jack Copeland, Carl J. Posy, and
Oron Shagrir. MIT Press, June 2013.
ISBN-13: 978-02620-189-99.

Conflict in History, Measuring Sym-
metry, Thermodynamic Modeling and
Other Work, by Dennis Glenn Collins.
Author House, November 2011. ISBN-
13: 978-1-4670-7641-8.

The Continuity Debate: Dedekind,
Cantor, du Bois-Reymond, and Peirce
on Continuity and Infinitesimals, by
Benjamin Lee Buckley. Docent Press,
December 2012. ISBN-13: 978-0-
9837004-8-7.

The Crest of the Peacock: Non-
European Roots of Mathematics, by
George Gheverghese Joseph. Third
edition. Princeton University Press,
October 2010. ISBN-13: 978-0-691-
13526-7. (Reviewed December 2013.)

Decoding the Heavens: A
2,000-Year-Old Computer—and the
Century-Long Search to Discover Its
Secrets, by Jo Marchant. Da Capo
Press, February 2009. ISBN-13: 978-
03068-174-27. (Reviewed June/July
2013).

Do I Count?: Stories from Mathe-
matics, by Giinter Ziegler (translation
of Darf ich Zahlen?: Geschichte aus
der Mathematik, Piper Verlag, 2010).
CRC Press/A K Peters, July 2013.
ISBN-13: 978-1466564916
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Figures of Thought: A Literary
Appreciation of Maxwell’s Treatise
on Electricity and Magnetism, by
Thomas K. Simpson. Green Lion
Press, February 2006. ISBN-13: 978-
18880-093-16. (Reviewed October
2013.)

The Fractalist: Memoir of a Scien-
tific Maverick, by Benoit Mandelbrot.
Pantheon, October 2012. ISBN-13:
978-03073-773-57.

Fueling Innovation and Discovery:
The Mathematical Sciences in the 21st
Century, by the National Research
Council. National Academies Press,
2012.ISBN-13: 978-0-309-25473-1.

Girls Get Curves: Geometry Takes
Shape, by Danica McKellar. Plume,
July 2013. ISBN-13: 978-04522-987-
43.

*The Godelian Puzzle Book: Puzzles,
Paradoxes and Proofs, by Raymond M.
Smullyan. Dover Publications, August
2013. ISBN-13: 978-04864-970-51.

The Golden Ticket: P, NP, and the
Search for the Impossible, by Lance
Fortnow. Princeton University Press,
March 2013. ISBN-13: 978-06911-
564-91.

Good Math: A Geek’s Guide to the
Beauty of Numbers, Logic, and Com-
putation, by Mark C. Chu-Carroll.
Pragmatic Bookshelf, July 2013. ISBN-
13:978-19377-853-38.

Google’s PageRank and Beyond:
The Science of Search Engine Rank-
ings, by Amy Langville and Carl
Meyer. Princeton University Press,
February 2012. ISBN-13: 978-06911-
526-60.

Gosta Mittag-Leffler: A Man of Con-
viction, by Arild Stubhaug (translated
by Tiina Nunnally). Springer, Novem-
ber 2010.1SBN-13: 978-36421-167-11.
(Reviewed September 2013.)

Heavenly Mathematics: The Forgot-
ten Art of Spherical Trigonometry,
by Glen Van Brummelen. Princeton
University Press, December 2012.
ISBN-13: 978-06911-489-22.

How to Study As a Mathematics
Major, by Lara Alcock. Oxford Uni-
versity Press, March 2013. ISBN-13:
978-0199661312.

I Died for Beauty: Dorvothy Wrinch
and the Cultures of Science, by
Marjorie Senechal. Oxford University
Press, December 2012. ISBN-13:978-
01997-325-93.
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Ibn al-Haytham’s Theory of Con-
ics, Geometrical Constructions and
Practical Geometry, by Roshdi
Rashed. Routledge, February 2013.
ISBN-13: 978-0-415-58215-5.

If A, Then B: How the World Dis-
covered Logic, by Michael Shenefelt
and Heidi White. Columbia University
Press, June 2013.ISBN-13:978-02311-
610-53.

Imagined Civilizations: China, the
West, and Their First Encounter, by
Roger Hart. Johns Hopkins University
Press, July 2013. ISBN-13:978-14214-
060-60.

Invisible in the Storm: The Role
of Mathematics in Understanding
Weather, by Ian Roulstone and John
Norbury. Princeton University Press,
February 2013. ISBN-13: 978-06911-
527-21. (Reviewed September 2013.)

Levels of Infinity: Selected Writings
on Mathematics and Philosophy, by
Hermann Weyl. Edited by Peter Pesic.
Dover Publications, February 2013.
ISBN-13:978-0486489032.

The Logician and the Engineer:
How George Boole and Claude Shan-
non Created the Information Age, by
Paul J. Nahin, Princeton University
Press, October 2012. ISBN-13: 978-
06911-510-07. (Reviewed October
2013.)

*Magnificent Mistakes in Mathemat-
ics, by Alfred S. Posamentier and Ing-
mar Lehmann. Prometheus Books, Au-
gust2013.ISBN-13:978-16161-474-71.

Manifold Mirrors: The Crossing Paths
of the Arts and Mathematics, by Felipe
Cucker. Cambridge University Press,
June2013.ISBN-13:978-05217-287-68.

The Math Book: From Pythagoras
to the 57th Dimension, 250 Milestones
in the History of Mathematics, by
Clifford A. Pickover. Sterling. Febru-
ary 7, 2012. ISBN-13: 978-14027-
882-91.

Math is Murder, by Robert C.
Brigham. iUniverse, March 28, 2012.
ISBN-13 978-14697-972-81.

Math on Trial: How Numbers Get
Used and Abused in the Courtroom,
by Leila Schneps and Coralie Colmez.
Basic Books, March 2013. ISBN-13:
978-04650-329-21. (Reviewed August
2013.)

A Mathematician Comes of Age,
by Steven G. Krantz. Mathematical
Association of America, December
2011. ISBN-13: 978-08838-557-82.
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A Mathematician’s Lament: How
School Cheats Us Out of Our Most Fas-
cinating and Imaginative Art Form, by
Paul Lockhart. Bellevue Literary Press,
April 2009. ISBN-13: 978-1-934137-
17-8. (Reviewed April 2013.)

Mathematics in Nineteenth-
Century America: The Bowditch Gen-
eration, by Todd Timmons. Docent
Press, July 2013. ISBN-13: 978-0-
9887449-3-6.

Mathematics in Victorian Britain,
by Raymond Flood, Adrian Rice, and
Robin Wilson. Oxford University
Press, October 2011. ISBN-13: 978-
019-960139-4.

Mathematics under the Microscope:
Notes on Cognitive Aspects of Math-
ematical Practice, by Alexandre V.
Borovik. AMS, January 2010. ISBN-13:
978-0-8218-4761-9.

Maverick Genius: The Pioneer-
ing Odyssey of Freeman Dyson, by
Phillip F. Schewe. Thomas Dunne
Books, February 2013. ISBN-13:978-
03126-423-58.

Meaning in Mathematics, edited by
John Polkinghorne. Oxford University
Press, July 2011. ISBN-13: 978-01996-
050-57. (Reviewed May 2013.)
