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Paul Erdős and the Probabilistic Method
Probabilistic Beginnings

The probabilistic method is one of the most
significant contributions of Paul Erdős. Indeed,
Paul himself said, during his eightieth birthday
conference in Keszthely, Hungary, that he believes
the method will live long after him. This was the
only time I heard him making any comment about
the significance and impact of his work. He was
always more interested in discussing new problems
and results than in trying to assess their long-time
expected merits.

The method is a powerful technique with
numerous applications in combinatorics, graph
theory, additive number theory and geometry.
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The basic idea is very simple: Trying to prove
that a structure with certain desired properties
exists, one defines an appropriate probability
space of structures and then shows that the
desired properties hold in this space with positive
probability. The amazing fact is that this simple
reasoning can lead to highly nontrivial results.
The results and tools are far too numerous to
cover in a few pages, and my aim here is to give
only a glimpse of the topic by describing a few
examples of questions and results that illustrate
the method. All of these have been initiated by
Erdős, motivated by his questions and results.
The fact that there is still intensive ongoing work
illustrates the influence and long-term impact of
his work. More material on the subject can be
found in the books [6], [8], [23], [26].

Ramsey Numbers

Ramsey theory is the study of the general phe-
nomenon that every large structure, even if it
looks totally chaotic, must contain a rather large
well-organized substructure. This holds for many
types of structures (though there are exceptions)
and yields interesting applications in several math-
ematical areas. A detailed treatment of the subject
can be found in [21].

Although several Ramsey-type theorems ap-
peared earlier, the origin of Ramsey theory is
usually credited to Frank Plumpton Ramsey, who
proved in 1930 the fundamental theorem that edge
colorings of finite or infinite graphs or hypergraphs
satisfy such a theorem. The statement for finite
graphs is as follows.

LetH1,H2, . . . ,Hk be k finite, undirected, simple
graphs. Then there is a finite number r such that
in every edge coloring of the complete graph on r
vertices by k colors, there is a monochromatic copy
of Hi in color i for some 1 ≤ i ≤ k. The smallest
integer r that satisfies this property is called the
(multicolor) Ramsey number of H1, . . . ,Hk and is
denoted by r(H1,H2, . . . ,Hk).

The determination or estimation of these num-
bers is usually a very difficult problem, one which
fascinated Erdős since the ’30s. When each graph
Hi is a complete graph Kt with t > 2 vertices, the
only values that are known precisely are those
of r(K3, Km) for m ≤ 9, r(K4, K4), r(K4, K5), and
r(K3, K3, K3). The determination of the asymptotic
behavior of Ramsey numbers up to a constant
factor is also a very hard problem, and despite a
lot of effort by various researchers there are only
a few infinite families of graphs for which this
behavior is known.

In one of the first applications of the probabilistic
method in combinatorics, Erdős [12] proved that,

if
(
n
k

)
21−(k2) < 1, then R(Kk, Kk) > n; that is, there

exists a 2-coloring of the edges of the complete
graph on n vertices containing no monochromatic
clique of size k. This implies that R(Kk, Kk) > 2k/2

for all k ≥ 3. The proof is extremely short: the
probability that a random two-edge coloring of Kn
contains a monochromatic copy of Kk is at most(
n
k

)
21−(k2) < 1 , and hence there is a coloring with

the required property.
It is worth noting that, although this argument

seems trivial today, it was far from being obvious
when published in 1947. In fact, several prominent
researchers believed, before the publication of this
short paper, that R(Kk, Kk) may well be bounded
by a polynomial in k. In particular, Paul Turán
writes in [28] that he had conjectured for a while
that R(Kk, Kk) is roughly k2 and that Erdős’s result
showing that this quantity behaves very differently
than expected came to him as a big surprise.

My own first meeting with Paul Erdős took place
when I was finishing high school in the early ’70s
in Haifa, Israel. Paul had a special visiting position
at the Technion, and I met him during one of his
visits. A few months before that I had read his
probabilistic lower bound for the Ramsey numbers
R(Kk, Kk), formulated as a counting argument
without any mention of probability, and noticed
that the argument could be used to provide several
similar results. I (proudly) told Erdős about my
observations, and he encouraged me to keep
thinking about these problems and gave me a
book The Art of Counting [15], which had just
been published at that time. This book contains
selected publications of Erdős and is the first
serious mathematical book I ever read. Reading it,
and taking notes of much of its content, I quickly
realized that it contained far more sophisticated
extensions of the basic probabilistic lower bound
proof of Erdős than the ones I observed. Paul, who
surely knew well this fact, chose to suggest that
I read the book and keep thinking about these
problems, realizing that this is more stimulating
than quickly pointing out the relevant references.
Indeed, he always felt that young people interested
in mathematics should be encouraged, and I am
convinced that this approach was fruitful in many
cases as it was in mine.

Returning to the asymptotics of Ramsey num-
bers, a particularly interesting example of an
infinite family for which the behavior of the Ram-
sey number is known is the following result of Kim
and of Ajtai, Komlós and Szemerédi.

Theorem 1 ([25], [1]). There are two absolute posi-
tive constants c1, c2 such that

c1m2/ logm ≤ r(K3, Km) ≤ c2m2/ logm

for all m > 1.
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The upper bound, proved in [1], is probabilistic
and applies a certain random greedy algorithm.
There are several subsequent proofs, all based
on probabilistic arguments. The lower bound is
proved by a “semi-random” construction whose
detailed analysis is subtle, relying on several
large deviation inequalities. An alternative way of
establishing the lower bound, which provides a
better constant, appears in two recent papers, [20]
and [7], that analyze the so-called “triangle-free
process” suggested by Bollobás and Erdős. In this
process one starts with a graph on n vertices
with no edges and keeps adding uniformly chosen
random edges among those that do not create a
triangle. At the end, all these chosen edges are
colored red and the nonchosen edges are colored
blue. Clearly the resulting coloring contains no red
triangle, and a careful analysis shows that with
high probability there is no blue clique Km for an
appropriate choice of the initial size n.

It is worth noting that the question of obtaining
a superlinear lower bound for r(K3, Km) was
mentioned already in [12], and Erdős established
in [13], by an elegant probabilistic construction, anΩ(m2/ log2m) lower bound.

Even less is known about the asymptotic behav-
ior of multicolor Ramsey numbers, that is, Ramsey
numbers with at least three colors. The asymptotic
behavior of r(K3, K3, Km), for example, has been
very poorly understood for quite some time, and
Erdős and Sós conjectured in 1979 (cf., e.g., [10])
that

lim
m,∞

r(K3, K3, Km)
r(K3, Km)

= ∞.

This has been proved in [5], where it is shown that
in fact r(K3, K3, Km) is equal, up to logarithmic
factors, to m3. A more complicated, related result
proved in [5] that supplies the asymptotic behavior
of infinitely many families of Ramsey numbers up
to a constant factor is the following.

Theorem 2. For every t > 1 and s ≥ (t − 1)! + 1
there are two positive constants c1, c2 such that, for
every m > 1,

c1
mt

logtm
≤ r(Kt,s , Kt,s , Kt,s , Km) ≤ c2

mt

logtm
,

where Kt,s is the complete bipartite graph with t
vertices in one color class and s vertices in the other.

The proof of the lower bound is probabilistic:
each of the first three color classes is a randomly
shifted copy of an appropriate Kt,s -free graph
that contains a relatively small number of large
independent sets, as shown by combining spectral
techniques with character sum estimates.

Sum-Free Subsets

A set A of integers is called sum-free if there is no
solution to the equation a+ b = c with a, b, c ∈ A.
Erdős [14] showed that any set A of n positive
integers contains a sum-free subset of size at least
n/3. The proof is a short and simple, yet intriguing,
application of the probabilistic method. It proceeds
by choosing a uniform random x in (0,1) and
by observing that the set of all elements a ∈ A
satisfying ax mod 1 ∈ (1/3,2/3) is sum-free and
its expected size is n/3.

In [3] the authors showed that a similar proof
gives a lower bound of (n+ 1)/3. Bourgain [9] has
further improved this estimate to (n + 2)/3. For
quite some time it was not clear whether or not the
constant 1/3 could be replaced by a larger constant,
until Eberhard, Green, and Manners proved in [11]
that the constant 1/3 is tight. Their proof is a
sophisticated argument that contains a crucial
probabilistic ingredient. The problem of deciding
whether or not every set of n nonzero integers
contains a sum-free subset of cardinality at least
n/3+w(n), where w(n) tends to infinity with n,
remains open. It will be extremely surprising if
there is no such w(n).

List Coloring and Euclidean Ramsey Theory

The list chromatic number (or choice number)χ`(G)
of a graph G = (V , E) is the minimum integer s
such that for every assignment of a list of s colors
to each vertex v of G, there is a proper vertex
coloring of G in which the color of each vertex is in
its list. This notion was introduced independently
by Vizing in [29] and by Erdős, Rubin, and Taylor in
[19]. In both papers the authors realized that this
is a variant of usual coloring that exhibits several
new interesting properties and that in general
χ`(G), which is always at least as large as the
chromatic number of G, may be arbitrarily large
even for graphs G of chromatic number 2.

For about ten years after the initial papers
of Vizing and of Erdős, Rubin, and Taylor there
was essentially no work on list coloring. Starting
in the late ’80s, the topic, motivated to a great
extent by the many problems raised by Erdős and
his collaborators in [19], received a considerable
amount of attention. Paul Erdős himself told me in
the early ’90s that, when they wrote their paper, he
thought that the topic was not very exciting and
was pleasantly surprised to see that it eventually
stimulated so much activity. I view this as a sign
showing that Paul was essentially unable to ask
any noninteresting questions. When he asked a
question, even if at first sight it seemed artificial
or nonappealing (even to Paul himself!), almost
always it eventually turned out to be interesting.

It is natural to extend the notion of list coloring
to hypergraphs. A hypergraph H is an ordered
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pair (V , E), where V is a set of vertices and E is
a collection of subsets of V , called edges. It is
r -uniform if every edge contains exactly r vertices.
Thus graphs are 2-uniform hypergraphs. The list
chromatic number χ`(H) of a hypergraph H is the
minimum integer s such that, for every assignment
of a list of s colors to each vertex of H, there is
a vertex coloring of H assigning to each vertex a
color from its list, with no monochromatic edges.

An intriguing property of list coloring of graphs
which is not shared by ordinary vertex coloring
is the fact that the list chromatic number of any
(simple) graph with a large average degree is large.
Indeed, it is shown in [2] that the list chromatic
number of any graph with average degree d is at
least Ω(logd). For r ≥ 3, simple examples show
that there is no nontrivial lower bound on the list
chromatic number of an r -uniform hypergraph in
terms of its average degree. However, such a result
does hold for simple hypergraphs. Recall that a
hypergraph is simple if every two of its distinct
edges share at most one vertex. The following
result is proved in [4].

Theorem 3. For every fixed r ≥ 2 and s ≥ 2, there
is a d = d(r, s) such that the list chromatic number
of any simple r -uniform hypergraph with n vertices
and at least nd edges is greater than s.

A similar result for the special case of d-regular
3-uniform simple hypergraphs has been obtained
independently in [22]. A subsequent proof with a
much better upper estimate for d(r, s) appears in
a recent paper of Saxton and Thomason [27].

The proof of the theorem is probabilistic. For the
simpler case of graphs it shows that if G = (V , E)
is a graph with average degree d > 10s , then
when we assign to each vertex of G a randomly
chosen list consisting of s colors among the colors
{1,2, . . . ,2s − 1}, then with high probability there
is no proper coloring of G assigning to each
vertex a color from its list. The precise argument
requires some work, and the result suggests an
interesting algorithmic question: given a graph
G = (V , E) with minimum degree d > 10s , can
we find, deterministically and efficiently, lists of
size s for each v ∈ V so that there is no proper
coloring of G assigning to each vertex a color from
its list? This problem is open, as is the simpler
NP version of it, that is, that of exhibiting lists
and providing a certificate that there is no proper
coloring using them. Here the lists do not have to
be found efficiently, and we require only that one
will be able to check the certificate efficiently.

The last theorem has an interesting application
in Euclidean Ramsey theory, yet another subject
initiated by Erdős and his collaborators. A well-
known problem of Hadwiger and Nelson is that
of determining the minimum number of colors

required to color the points of the Euclidean plane
so that no two points at distance 1 have the same
color. Hadwiger showed in 1945 that seven colors
suffice, and Moser and Moser noted in 1961 that
three colors do not suffice. These bounds have not
been improved despite a considerable amount of
effort by various researchers; see [24, pp. 150–152]
and the references therein for more on the history
of the problem.

A more general problem is considered in [16],
[17], [18], where the main question is the investiga-
tion of finite point sets K in the Euclidean space for
which any coloring of a Euclidean space of dimen-
sion d by r colors must contain a monochromatic
isometric copy of K. There are lots of intriguing
conjectures that appear in these papers. One of
them asserts that, for any set K of three points
which do not form an equilateral triangle, the
minimum number of colors required for coloring
the plane with no monochromatic isometric copy
of K is three. The situation is very different for list
coloring. A simple corollary of the theorem above
is the following.

Theorem 4 ([4]). For any finite set X in the Eu-
clidean plane and for any positive integer s, there
is an assignment of a list of size s to every point of
the plane such that, whenever we color the points of
the plane from their lists, there is a monochromatic
isometric copy of X.

The examples described in this brief survey
include applications of the probabilistic method of
Paul Erdős in graph theory, Ramsey theory, additive
number theory, and combinatorial geometry. There
have been recent results in the study of each of
these examples, while the roots of all of them
lie in the work and questions of Paul. There
is no doubt that the study and application of
probabilistic arguments will keep playing a crucial
role in the development of many mathematical
areas in the future, providing further evidence for
the profound influence of Erdős. The comment he
made at his eightieth birthday conference proved
to be accurate: the probabilistic method does live
and will stay alive long after him.
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D. A. Goldston

Erdős’s Work on Primes
Prime numbers were an early and abiding interest
of Erdős throughout his life. The second paper
in his collected works [2] from 1932 gave a new
proof of Tschebyschef’s theorem on bounding the
number of primes up to x. Many more papers on
primes followed over more than sixty years. Of
course Erdős published on topics in a large subset
of mathematics, but from his talks later in life it
was clear that the primes held a special attraction
for him. In addition to his theorems, Erdős was
constantly asking questions about primes and
frequently offering money for solutions to his
problems. These questions have led to surprising
developments and new fields of study. Many
remain unsolved, but a surprising number have
been solved. In this short survey of some of Erdős’s
work on primes, I can mention only a selection
of his results. I will also include a few of his
lesser-known results that have interested me over
many years.

The Elementary Proof of the Prime Number
Theorem

By far the best known of Erdős’s contributions
to prime numbers is the elementary proof of the
Prime Number Theorem (PNT) in 1949. This states,
on letting π(x) denote the number of primes ≤ x
that

π(x) ∼ x
log x

, as x→∞.

The PNT was first proved independently by
Hadamard and de la Vallée-Poussin in 1896, but
this and later proofs all depended on information
on the zeros of the Riemann zeta-function ζ(s).
It was eventually shown that the PNT follows
from the fact that ζ(1+ it) ≠ 0 for all real t and
conversely that the PNT implies this result. Thus
it was argued that no elementary proof could be
obtained and if such a proof was found, then
possibly this would be a step towards proving the
Riemann Hypothesis. It was an electrifying moment
in 1949 when an elementary proof was discovered.
Much has been written about the circumstances
and controversy surrounding how Atle Selberg
and Erdős obtained their proofs, but putting aside
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the human story, both Erdős’s and Selberg’s pa-
pers, [5] and [27], describe well the mathematical
contributions that each made to the proof. Both
papers being elementary require as a prerequisite
only a beginning knowledge of number theory and
analysis and are well worth reading. In 1951 Erdős
won the Cole Prize for his work in number theory
with his paper [5] specifically mentioned, and in
1952 Selberg won the Fields Medal with his work
on the elementary proof of PNT included as one of
his major accomplishments. Some commentators
have expressed disappointment over how little the
elementary proof has influenced current work, but
one can equally well argue that it is often our rarely
used but prized possessions that save the day.

Large Gaps between Consecutive Primes

Erdős was very interested in the sequence of
differences (or gaps) between consecutive primes
and returned often to questions on this sequence.
By the PNT there are ∼ x

log x primes in the interval
[x,2x], and therefore the average distance between
primes in this interval is ∼ log x. If pn denotes
the nth prime, then the nth difference between
consecutive primes dn = pn+1 − pn is on average
logpn. Much work has been done on irregularity
in the distribution of these differences. For large
gaps the best result known is that

pn+1 − pn > c logpn
log logpn(log log log logpn)

(log log logpn)2

for infinitely many n. Erdős in 1935 [3] obtained the
above result except for the quadruple log factor,
which was first obtained by Rankin in 1938 [23].
The constant c has been improved many times over
the last fifty years; the best result currently known
is c = 2eγ , where γ is Euler’s constant, which is
due to Pintz [22] in 1997. Erdős offered US$10,000
for anyone who could prove that this result is true
for arbitrarily large c, which compared to other
Erdős offers is a surprisingly large amount for
what appears to be a very specialized result.

Erdős was always eager to examine patterns
within patterns. In 1949 [6] he proposed showing
that

Dk(n) =min(dn, dn+1, . . . , dn+k−1)

is sometimes large; i.e., there exist k consecutive
extremely large gaps between consecutive primes.
He succeeded in proving that lim supn→∞D2(n) =
∞. The general problem was finally answered
in 1981 by Helmut Maier[16], who proved the
surprisingly strong result that

Dk(n) > c(k) logpn
log logpn(log log log logpn)

(log log logpn)2

for infinitely many n. This paper of Maier intro-
duced the “Maier matrix method,” which Maier in
1985 [17] used in a startling fashion to prove that
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Paul Erdős lecturing at the Institute of
Mathematical Sciences, Madras, India, in January
1984. On the board is the inequality on large
prime gaps alluded to in the Alladi-Krantz article
and by Goldston. Also on the board is a US$500
problem of Erdős.

the number of primes in intervals [x, x+ (log x)M]
for any number M is distributed too irregularly
to have an asymptotic formula. There have been
many further applications of Maier’s method, and
recently it has been developed by Granville and
Soundararajan [12] into a general uncertainty con-
cept for sequences. This snowballing effect set off
by a seemingly off-hand question of Erdős has
occurred over and over again.

Small Gaps between Consecutive Primes

One expects that there will be infinitely many
primes differing by any given even number and in
particular that there will be infinitely many twin
primes with difference 2. Up until 2013 it was
widely believed to be an extremely hard problem to
prove that any such even number exists, i.e., that
the primes do not become isolated further and
further apart when one examines larger and larger
numbers. The year 2013 will go down in history as
a spectacular year for prime numbers, because for
the first time it was proved by Yitang Zhang that
there actually exist even numbers which are the
difference of infinitely many primes. Thus there
always exist bounded gaps between primes. Later
in 2013 James Maynard, by a different method, also
obtained this result, finding infinitely often there
are primes differing by a number less than 600
and also proving the even more spectacular result
that there are bounded gaps between k primes for
any given number k.

Progress on this problem prior to 2013 was
painfully slow, and the results obtained concern
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the sequence of normalized gaps between primes{
pn+1 − pn

logpn

}∞
n=1

.

Since the average of this sequence is 1, the first
goal is to prove that this sequence has a limit point
less than 1 and thus establish the existence of
infinitely many smaller-than-average gaps between
primes. Letting

Ξ = lim inf
n→∞

pn+1 − pn
logpn

,

our goal is to prove Ξ < 1. The first contribution
to this problem was due to Hardy and Littlewood
in an unpublished paper from around 1922. They
proved, using the circle method, that assuming the
Generalized Riemann Hypothesis (GRH) one can
prove that Ξ ≤ 2

3 ; Rankin [25] improved this, still

assuming GRH, to Ξ ≤ 3
5 . The first unconditional

result was due to Erdős [4], who proved Ξ ≤ 1−A
for an absolute positive constant A. Erdős first
observed from the Brun sieve that the number
of primes differing by k is bounded accurately,
and then by adding this bound over k in an
interval, one finds that it is not possible for all
consecutive prime differences to be exactly located
at the average spacing. This method of Erdős is
frequently available as an add-on to other methods.
For example, in the influential paper of Bombieri
and Davenport [1] in 1965, they were able to make
Hardy and Littlewood’s method unconditional and
prove Ξ ≤ 1

2 and then use Erdős’s method to
improve this to Ξ ≤ 0.46550 . . . . When Maier in
1988 found a third method for finding small gaps
between primes he combined it with both of the
earlier methods to obtain Ξ ≤ 0.2484 . . . . This
paper also answered for the first time the Erdős
question of showing for

Ek(n) =max
(
dn

logpn
,
dn+1

logpn+1
, . . . ,

dn+k−1

logpn+k−1

)
that lim infn→∞ E2(n) < 1. Because of the recent
work of Maynard we now know lim infn→∞ Ek(n) =
0 and much more. In 2005 Goldston, Pintz, and
Yıldırım (see [11]) finally proved Ξ = 0, and their
method was used as a starting point by both Zhang
and Maynard.

With the recent advances on small gaps, it is
reasonable to ask whether the earlier work should
now be consigned to the dustbin of history. The
answer is “no.” The new methods are exquisitely
adapted to examine primes and almost primes
in various configurations, but often they do not
say much about the number of primes in longer
intervals with length around the average spacing be-
tween primes. The Erdős and Bombieri-Davenport
methods are adapted and best applied to questions
in this regime rather than very short gaps between
primes.

At the end of his 1940 paper on small gaps
between primes, Erdős made the conjecture that∑

pn≤x
(pn+1 − pn)2 = O(x log x),

a result not likely to be proved anytime soon, since
the Riemann Hypothesis only implies the bound
O(x log3 x) [26]. Erdős continued:

This result if true must be very deep. I could
not even prove the following very much
more elementary conjecture : Let n be any
integer and let 0 < a1 < a2 < · · · < ax < n
be the φ(n) integers relatively prime to n;
then

x−1∑
i=1

(ai+1 − ai)2 < c
n2

φ(n)
.

Progress was slow on this problem. Consider the
generalized conjecture that

φ(n)∑
i=1

(ai+1 − ai)γ = O
(

nγ

φ(n)γ−1

)
.

Hooley [15] proved in 1963 that this is true for
1 ≤ γ < 2. The breakthrough was in 1986 when
Montgomery and Vaughan [27] proved not just
Erdős’s conjecture but that this bound holds for
all fixed γ ≥ 1. The techniques developed for
this problem have subsequently been applied
conditionally to higher moments for the primes in
short intervals by Montgomery and Soundararajan
[19].

Arithmetic Progressions of Primes

In 2004 Ben Green and Terry Tao proved a long-
standing conjecture that there are arbitrarily long
arithmetic progressions of primes [13]. Previously
it was known only that there were 3 primes in
arithmetic progression, and current computation
has found only 26 primes in arithmetic progression.
The Green-Tao theorem makes use of many diffi-
cult techniques, including Szemerédi’s Theorem of
1975, which was conjectured by Erdős and Turàn in
1936. In 1973 Erdős made the following conjecture
[8], which implies both Szemerédi’s theorem and
the Green-Tao theorem: For any set of positive
integers where the sum of the reciprocal of the
integers diverges, the set contains arbitrarily long
arithmetic progressions. Erdős offered $3,000 for
a proof, but no proof is yet in sight.

Limit Points for Normalized Prime Gaps and
Jumping Champions of Primes

I will conclude by mentioning two amusing prob-
lems for which much can be conjectured but
nothing of consequence proved. The first concerns
the normalized consecutive prime gaps mentioned
earlier. Ricci [24] and Erdős [7] independently
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proved that the set of limit points for this se-
quence has positive Lebesgue measure. Erdős’s
proof is a model of clarity and cleverness. Erdős
conjectured that the sequence is actually every-
where dense in (0,∞), although he could not find
a single number which is a limit point. At the time
only ∞ was a known limit point. Since 1955 there
have been a few new results obtained. We now
know from [11] that 0 is also a limit point, but
no other limit point is known. In 1988 Hildebrand
and Maier [14] proved, using Maier’s method, that
there are so many large limit points that the
set of limit points has infinite measure, which
answered a question of Erdős to show there is a
finite limit point larger than 1. Finally, in 2013
Pintz used Zhang’s result to show that there is an
interval [0, c] all of whose points are limit points.
However, c is ineffective. Thus neither of these
results helps answer Erdős’s question of finding
specified numbers which are limit points.

A second problem is concerned with the question
of finding the most frequent difference between
consecutive primes ≤ x. This is referred to as
the jumping champion up to x. For example, the
prime differences up to x = 12 are 3 − 2 = 1,
5 − 3 = 2, 7 − 5 = 2, and 11 − 7 = 4, so the
jumping champion up to 12 is 2. In 1980 Erdős and
Straus [9] proved, assuming the Hardy-Littlewood
conjectured asymptotic formula for the number
of prime pairs, that the jumping champions
must go to infinity. Numerically 6 is the jumping
champion for x ≥ 947 and continues to be so
as far as has been computed, which is currently
around 1015. Odlyzko, Rubinstein, and Wolf [21]
provided evidence for the conjecture that jumping
champions will eventually transition from 6 to 30
and continue to increase through the sequence
of primorials 2,6,30,210,2310, . . . , where the kth

primorial is formed from the product of the
first k primes. In agreement with this conjecture,
Ledoan and I [10] proved, assuming the same
Hardy-Littlewood conjecture used by Erdős and
Straus, that any given primorial will divide every
sufficiently large jumping champion. Assuming
stronger Hardy-Littlewood conjectures, we proved
the Primorial Conjecture for sufficiently large x.
Despite this, nothing unconditional beyond what
computation reveals is known about jumping
champions. We cannot prove or show through
computation that there is any jumping champion
larger than 6. We cannot even prove that 2 is not
the jumping champion for all large x, although we
would actually conjecture that 2 and powers of 2
are the biggest jumping losers.

Ernst Straus and Erdős first met in Princeton
in 1944 and were close friends and coauthors of
many papers together. One of Straus’s sons, Dan
Straus, is a chemistry professor and colleague of

mine at San José State University. I asked him for
one Erdős story for this article, and naturally he
had many, many Erdős stories. I include here one
he sent me which represents how I also remember
Erdős.

Paul Erdős visited UCSB sometime around
1975 when I was an undergraduate chem-
istry student, and my father arranged a
meeting. Erdős took a college friend and me
to lunch in Isla Vista and then we walked to
the lagoon on campus near Storke Tower.
Erdős was interested in chemistry and par-
ticularly in recent discoveries of complexes
of the noble gasses, and it was fun talking
with him, as always. We were standing at
the top of a grassy slope scattered with
ducks. Spontaneously, Erdős threw out his
arms like a scarecrow and careened off after
the ducks, which he chased tirelessly in
wide arcs. He was a sight in his loose fitting
pinstripe suit and sandals with dress socks,
and he was very agile for a man of about
sixty-three. It was a time of studied non-
conformity, and students were everywhere
in beads, sandals and such just watching
Erdős. It was refreshing to watch one person
we can all be sure never tried to be different
or worried what people thought.

Note Added in Proof

2014 was another spectacular year for primes.
The method introduced by Maynard, and in-
dependently obtained by Terry Tao, has been
further developed by the Polymath 8b project
http://www.resmathsci.com/content/1/1/12.
It is now known (as of January 2015) that there are
infinitely often two primes that differ by less than
or equal to 246.

The US$10,000 Erdős problem on large gaps
between primes was solved independently both by
Maynard and by Ford, Green, Konyagin, and Tao.
These five authors have now proven jointly that for
the size of the large gaps in the Erdős problem the
power of the triple logarithm in the denominator
may be reduced from 2 to 1.

On the problem of limit points of normalized
consecutive prime gaps, Banks, Freiberg, and
Maynard have adapted the Maynard–Tao method
for small gaps between primes with the method
for large gaps to prove very strong results. In
particular they have proved that at least 12.5
percent of all positive real numbers are limit points
of this sequence. However we still do not know any
specific positive real number that is a limit point.
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33–37; Erdős Collected Papers 1949-02.

[7] , Some problems on the distribution of prime
numbers, Teoria dei numeri, Math. Congr. Varenna,
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András Sárközy

Erdős and Sequences
Paul Erdős was one of the most prolific math-
ematicians in the history of mathematics. He
was a leading personality in modern combina-
torial mathematics. The large number of his
disciples (“epsilons” as he called them) and coau-
thors also contributed to his great impact on
twentieth-century mathematics.

I was nineteen years old, a second-year university
student, when I received the following letter: “Dear
Mr. Sárközy, I have heard about your nice results
…from Paul Turán. Please, come and see me
at the Mathematical Institute” (of the Hungarian
Academy of Sciences). The letter was signed by Paul
Erdős. I visited him soon after at the Mathematical
Institute. I told him my results and I sketched the
proofs. This was followed by a very fruitful and
inspiring discussion, and at the end he asked a
related question. As an answer to this question,
I soon published my first paper based on an
Erdős problem, and I was on the way to becoming
one of his disciples. This first meeting of ours
was followed by many others, and during one of
them Erdős asked a further related problem. This
I settled jointly with Endre Szemerédi, whom I
introduced to Erdős, and from that point on the
three of us worked jointly for several years. We
usually met at Erdős’s apartment, where he lived
then with his mother. If one of our meetings was
successful enough and we ended up with a nice
result, Erdős asked his mother to give us a “few
cubic centimeters of poison,” which meant a few
drops of tokaji (a rather sweet and heavy Hungarian
dessert wine of good quality). Between 1966 and
1970 we published ten triple papers, all but one of

András Sárközy is professor of mathematics at Eötvös Loránd
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them written on divisibility properties of sequences
of integers. Then Szemerédi switched to the Erdős-
Turán problem on arithmetic progressions and later
turned towards combinatorics, while I continued
to work with Erdős in number theory (mostly on
sequences of integers). I have written sixty-two
joint papers with him, which puts me on the top in
the list of his coauthors (András Hajnal is a close
second with fifty-seven joint papers with him).

In classical number theory, one studies special
sequences like primes, squares, etc. If in number
theory we say just “sequence” (without any adjec-
tive), then we mean a general sequence; typically,
we are looking for the connection between certain
arithmetic properties and the density properties
of sequences (or sets) of integers. The study of
(general) sequences was started around 1930 by
Schnirelmann’s papers, and Erdős played a dom-
inant role in the advance of this field. The first
monograph written on sequences was the excellent
book of Halberstam and Roth [19]. They write:

Anyone who turns the pages of this book,
will immediately notice the predominance
of results due to Paul Erdős. In so far as the
substance of this book may be said to define
a distinct branch of number theory—and
its wide range of topics in classical number
theory appears to justify this claim—Erdős
is certainly its founder. He was the first to
recognize its true potential and has been the
central figure in many of its developments.

In some of his papers written on additive
properties of sequences Erdős studied Sidon sets. A
setA of positive integers is said to be a Sidon set if
all the sums a+ a′ with a ∈A, a′ ∈A, a ≤ a′ are
distinct. Let F(n) denote the maximal cardinality
of a Sidon set A with A ⊂ {1,2, . . . , n}. Erdős
and Turán [16] proved that F(n) ≤ (1+ o(1))n1/2,
and later Chowla and Erdős [3] independently also
showed that F(n) ≥ (1+ o(1))n1/2. Erdős [22] also
proved that, ifA is an infinite Sidon set, then its
counting function A(n) =

∣∣{a : a ∈ A, a ≤ n}
∣∣

must satisfy

lim
n→∞

infA(n)
(

logn
n

)1/2
<∞.

As an answer to a question of Sidon (who was
a Hungarian mathematician working in harmonic
analysis), Erdős [4] proved that there is an infinite
sequenceA of positive integers such that, denoting
the number of solutions of the equation

(1) a+ a′ = n, a ∈A, a′ ∈A
by r(n), we have

c1 logn < r(n) < c2 logn

with some positive absolute constants c1, c2. He
used a probabilistic method, and in [10] Erdős and
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(From l to r, front row) Vera Sós, Andras Sárközy,
and Paul Erdős at the Institute of Mathematical
Sciences, Madras, India, in January 1984 just
before the start of Erdős’s lecture.

Rényi gave further applications of this method.
Later Erdős and Sárközy [11] generalized and
extended this result of Erdős significantly.

WriteR(x) =
∑
n≤x
r(n), where r(n) is the function

defined above. Erdős and Fuchs [6] proved that, if
A is an infinite sequence of positive integers, then

(2) R(x) = cx+ o
(

x1/4

(log x)1/2

)
cannot hold with a positive constant c. The
significance of this result is based on the fact
that it is closely related to the circle problem
(which consists of the estimate of the number of
lattice points in the circle x2 + y2 ≤ r2). A further
interesting feature of this result is that this is one
of the first occasions when analytical tools were
used to prove a theorem on general sequences.
Jurkat (unpublished) and later Montgomery and
Vaughan proved that the o(. . . ) term in (2) can be
improved to o(x1/4).

Erdős also studied multiplicative properties of
sequences. A setA of positive integers is said to
be primitive if there is no divisibility relation in it:
if a ∈A, a′ ∈A and a ≠ a′, then ai ö aj . Behrend
proved that, ifA⊂ {1,2, . . . , n} andA is primitive,
then

(3)
∑
a∈A

1
a
< c

logn
(log logn)1/2

for some absolute constant c. Erdős, Sárközy, and
Szemerédi [12], [13] determined the smallest c
with this property, and they also showed that, for
infinite setsA, the inequality (3) can be sharpened:
ifA is an infinite primitive set, then we have∑

a∈A
a≤x

1
a
= o

(
log x

(log log x)1/2

)
.
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Erdős [2] also proved another theorem on
positive sequences: he proved that, if A is a
primitive set withA ≠ {1}, then

(4)
∑
a∈A

1
a loga

≤ c

with some absolute constant c. He conjectured
that, for primitive sequencesA, the left-hand side
of (4) is maximal ifA is the set of the primes, and
Erdős and Zhang [17] proved partial results in this
direction.

Erdős also studied multiplicative Sidon sets,
i.e., sets A of positive integers such that all
the products aa′ with a ∈ A, a′ ∈ A, a ≤ a′ are
distinct. LetG(n) denote the maximal cardinality of
a multiplicative Sidon setA withA⊂ {1,2, . . . , n}.
He proved [5] that there are positive absolute
constants c1, c2 such that, for n > n0 we have

c1n3/4(logn)−3/2<G(n)−π(n)<c2n3/4(logn)−3/2,

where π(n) is the number of primes not exceed-
ing n. This result is a beautiful application of
combinatorics: the proof is based on estimates for
the number of edges in bipartite graphs containing
no cycles of length 4.

Many further results and also recent develop-
ments related to Erdős’s works are surveyed in [21]
(in the additive case) and [20] (in the multiplicative
case).

Erdős and Szemerédi [14] studied a problem
involving both sums and products. Let a1 <
a2 < · · · < an be a sequence of positive integers.
Consider the products and sums, i.e., all the
integers of the form

(5) ai + aj or aiaj (with 1 ≤ i ≤ j ≤ n).
Denote by f (n) the largest integer so that, for every
{a1, a2, . . . , an}, there are at least f (n) distinct
integers of form (4). They proved that

n1+c1 < f(n) < n2e−c2 logn/ log logn for n > n0(ε)

with some positive absolute constants c1 and c2.
This result has been sharpened and extended in
various directions. A survey of these results has
been given by Bourgain [1].

Erdős also studied “hybrid” problems in which
both general sequences and special sequences (e.g.,
the sequence of the primes) occur; in particular,
he studied the number of prime factors of sums
a+b with a ∈A, b ∈ B (whereA, B are “large” or
“dense” sets) jointly with Turán [15]. They proved
in 1934 that, ifA is a finite set of positive integers,
then

ω
( ∏
a,a′∈A

(a+ a′)
)
> c log |A|,

where ω(n) denotes the number of distinct prime
factors of n and c is a positive absolute constant.
They also conjectured that this result can be
extended to sums a+ b with a ∈A, b ∈ B, where

A, B are finite sets of positive integers with
|A| = |B|. This conjecture (in a slightly sharper
form) was proved more than fifty years later by
Győry, Stewart, and Tijdeman. Erdős, Maier, and
Sárközy [8] studied the distribution of the numbers
ω(a + b), and Erdős, Pomerance, Sárközy, and
Stewart [9] the maximum of ω(a+ b) with a ∈A,
b ∈ B for “large” subsetsA, B of {1,2, . . . , n}.

This survey would not be complete without
mentioning some of Erdős’s most famous problems.
In 1936 Erdős and Turán conjectured that, if for
any positive integers k and n we denote the
size of the largest subset of {1,2, . . . , n} which
does not contain an arithmetic progression of
length k by rk(n), then for any fixed k we have
rk(n) = o(n). First Roth in 1953 and then Szemerédi
in 1969 settled the k = 3 and k = 4 special cases,
respectively, and finally, in 1975, Szemerédi proved
the conjecture in its general form. Szemerédi’s
theorem has been extended and sharpened in
various directions (see [18] for a survey of these
results). Erdős also conjectured that the following
stronger statement is also true: ifA is an infinite
sequence of positive integers such that

∑
a∈A

1
a =

∞, then A contains arbitrarily long arithmetic
progressions. A further related conjecture of
his: if e1, e2, . . . is any infinite sequence with
ei ∈ {−1,+1} for i = 1,2, . . . , then for an arbitrarily
large real number K there exist positive integers n
and d such that |ed + e2d + · · · + end| > K. These
last two problems are still wide open.

Erdős and Turán conjectured that, if A is a
set of positive integers such that r(n) > 0 for
n > n0 (where again r(n) denotes the number of
solutions of (1)), then r(n) cannot be bounded:
lim sup
n→∞

r(n) = ∞. This conjecture is also still open.

There are many more problems in the Erdős–
Graham book [7] and in his numerous problem
papers; the majority of these problems remain
unsolved.
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[6] P. Erdős and W. H. J. Fuchs, On a problem of additive
number theory, J. London Math. Soc. 31 (1956), 67–73.
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József Szabados

Erdős and Polynomial Interpolation

It is not easy to write about Paul Erdős. The number
of stories on his way of life, on his method of
work, on his interest in politics, is all well known.

József Szabados is research professor emeritus of math-
ematics at the Alfréd Rényi Institute of Mathematics. His
email address is szabados.jozsef@renyi.mta.hu.

Nevertheless, it is important to remember him, to
tell how we admire his devotion to mathematics.

My connection with him was sporadic and
occasional. Although approximation theory was not
his main field of interest, he contributed numerous
significant results to this area of mathematics. In
the early years of his career, mainly together with
Paul Turán and Géza Grünwald, he was interested
in interpolation and properties of polynomials.
In these papers, sometimes his formulations and
proofs were vague, and later he kept returning to
his original problems by urging us to give more
precise and simpler proofs or even to correct
faulty arguments. In what follows we collect
some examples of his outstanding achievements
and loose statements which required further
discussions. We restrict ourselves to Lagrange
interpolation, although properties of polynomials
would be a related area where he made significant
progress as well.

Let −1 ≤ x1n < x2n < · · · < xnn ≤ 1 be an
arbitrary system of nodes, and let

Ln(f , x) =:
n∑
k=1

f (xkn)`kn(x)

be the uniquely determined Lagrange interpolation
polynomial of degree at most n−1 of a continuous
function f (x) in the interval [−1,1], where

`kn(x) :=
n∏
j=1
j≠k

x− xjn
xkn − xjn

, k = 1,2, . . . , n,

are the fundamental polynomials of interpolation.
The crucial quantity for the convergence of inter-
polation is the Lebesgue constant λn, which is the
maximum over [−1,1] of the Lebesgue function

λn(x) :=
n∑
k=1

|`kn(x)| .

G. Faber [11] proved that, no matter what the
system of nodes of interpolation is, the Lebesgue
constant λn is always at least c1 logn − c2, with
some constants c1, c2 > 0. Erdős [3] proved that
the best constant here is c1 = 2/π (which can be
attained for example for the roots of the Chebyshev
polynomials Tn(cos(n arccosx)).

A direct consequence of this behavior of the
Lebesgue constant is that Lagrange interpolation
can never be uniformly convergent for all contin-
uous functions. Far more is true: the celebrated
theorem of Erdős and Vértesi [10] states that,
for any system of nodes, one can always con-
struct a continuous function whose interpolating
polynomials diverge almost everywhere.

The phenomenon of divergence is in analogy
with the behavior of the trigonometric Fourier
series. However there, as is well known, the first
arithmetic means (Fejér sums) converge uniformly
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to continuous functions. In a joint paper [4]
with Géza Grünwald, Erdős claimed that this
analogy does not hold for Lagrange interpolation:
considering the arithmetic means

(6)
1
n

n∑
k=1

Lk(f , x)

of Lagrange interpolation based on the nodes of the
Chebyshev polynomial Tn(x) := cos(n arccosx),
they diverge for some continuous function f . It
turned out later that the proof was faulty: instead
of (6), the proof works only for the arithmetic
means of the absolute values of the interpolating
polynomials. This error was corrected much later
in the joint work [5] with G. Halász: in fact, they
proved that (6) is at least o(log logn) for some f0,
and this lower estimate is sharp.

Most of the time Erdős was correct in making
conjectures for difficult problems, but not always.
In [2] he conjectured that the minimum of the
integral of the sum of squares of the fundamental
polynomials of Lagrange interpolation, i.e.,∫ 1

−1

n∑
k=1

`kn(x)2 dx,

is attained when the nodes are the roots of the
integral of the Legendre polynomials. It was a
reasonable conjecture, since these are the only
nodes where the sum of the squares of the
fundamental polynomials is bounded by 1 (in
contrast to the Lebesgue constants mentioned
above). However, I succeeded in proving that these
nodes do not serve the minimum [12], and this
was the occasion when Erdős started telling me
problems. The solution of the mentioned problem
of minimum is still unsolved, and it seems as
hopeless as the exact construction of nodes of
interpolation with minimal Lebesgue constant.

Our first joint work [6] is a kind of strengthening
of the celebrated result of G. Faber mentioned
above. We proved that the integral of the Lebesgue
function over a fixed subinterval of interpolation∫ b

a
λn(x) dx, [a, b] ⊂ [−1,1]

is always at least c(a, b) logn, where c(a, b) > 0
depends only on the length of the interval in
question. This, of course, implies Faber’s result.
The proof is based on the simple observation that
the sum of a positive number and its reciprocal is
always at least 2. Then, in [9] we generalized this
result for the case when the interval in question
depends on n and proved also the sharpness of
the result. The problem was further generalized
in another direction by considering the weighted
integral (with Jacobi weights) of the sum of
even powers of the fundamental functions of
interpolation (cf. [8]).

Of course, he was extremely fast in thinking
and was rather annoyed when it turned out
that somebody could not follow his train of
thought. I have some sheets with his characteristic
handwriting, but not much. Talking was more
important for him than writing down occasionally
long formulas. A typical situation was when he
said, “Something is disturbing me,” when we were
stuck with a problem or something seemed to be
too good to hold. Not for long, since he was always
able to circumvent the difficulty.

In [1], Erdős (among others) considered the
problem of loosening the strict condition of
Lagrange interpolation when for n nodes we
look for an interpolating polynomial of degree
at most n − 1. What if we allow polynomials
of degree at most n(1 + ε), where ε is a fixed
positive number? He claimed that, under some
regularity conditions on the distribution of nodes
(asymptotic equidistant distribution of the arccos
of the nodes and a lower estimate on the distance
of adjacent nodes), the interpolation polynomials
of degree at most n(1 + ε) converge uniformly
for all continuous functions. He did not prove
this statement, but gave an indication how it can
be deduced from another theorem of the same
paper by a simple modification. We were unable
to recover this “simple modification” and started
working on the problem. Eventually, we came up
with a rather long and sophisticated proof, gave an
error estimate for the convergence, and proved the
necessity of the mentioned regularity conditions
(cf. [7]).
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[1] P. Erdős, On some convergence properties of the in-

terpolation polynomials, Ann. of Math. (2) 44 (1943),
330–337.

[2] , Problems and results on the theory of inter-
polation, II, Acta Math. Acad. Sci. Hungar. 12 (1961),
235–244.

[3] , Problems and results on the convergence
and divergence properties of the Lagrange interpo-
lation polynomials and some extremal problems,
Mathematica Cluj, 10 (1968), 65–73.
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[6] P. Erdős and J. Szabados, On the integral
of the Lebesgue function of interpolation, Acta
Math. Acad. Sci. Hungar. 32 (1978), 191–195.
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Gérald Tenenbaum

Paul Erdős and the Divisors
Paul Erdős and I collaborated from March 1977
until his death (he called this a leave) in October
1996. During these nineteen years, most of our
mathematical discussions were on the distribution
of divisors of integers.

Analytic and probabilistic number theory is
mainly concerned with understanding how the
multiplicative and the additive structure of integers
combine together or ignore each other. The twin
primes conjecture and the Goldbach conjecture
are enlightening examples: since nothing trivially
forbids two primes from having difference two, this
should happen with statistical frequency; similarly,
if 2n is an arbitrary integer, the sequence 2n− p,
where p runs through all primes up to n, should
contain a random quota of primes.

The famous abc conjecture of Masser and
Oesterlé, dating from the early 1970s, is even more
representative of this class of problems: addition
should destroy multiplicative structure. Let us
discuss this in more detail. The squarefree kernel,
say k(n), of an integer n is the product of all
primes appearing in the canonical decomposition
of n, ignoring exponents. A normal integer (in
other words an integer belonging to a set that
will almost surely show up when one picks an
integer at random) has a “large” kernel (see [31]
for recent progress on this question), whereas
small kernels occur only for integers with a very
special structure such as perfect powers or integers
divisible by a large perfect power. In qualitative
form, the abc conjecture states that when a and
b are coprime and c = a + b, the three integers
cannot be simultaneously abnormal. A thorough
quantitative discussion of this question may be
found in [30].

The distribution of divisors is a problem of
similar type to those described above: a divisor
has a very special multiplicative structure, since
its prime factors, and even their exponents, are

Gérald Tenenbaum is professor of mathematics at the Uni-
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restricted in a drastic manner. Thus it is a basic
number theoretic challenge to try to understand
how the sequence of divisors is distributed by size,
that is to say, with respect to additive structure.

Erdős was interested in all aspects of this
question: usual behavior of the sequence of divisors
of a random, or normal, integer; extremal properties
involving divisors, that is, small and large values of
arithmetic functions defined in terms of divisors;
structure of sequences defined by constraints on
the divisors of their elements; stochastic variations
of divisor functions; etc.

It is clear that the divisors are made up from
the prime factors. So the first step in the problem
is to describe the growth of the sequence of
prime factors. The step Erdős made was that of a
giant. Before anyone else, he understood that basic
results in probabilistic number theory, such as the
Turán-Kubilius inequality,1 yield a very strong and
very surprising fact: in first approximation, the size
of the jth prime factor of a normal integer n does
not depend on n but only on j ; more precisely, if
we let {pj(n)}ω(n)j=1 denote the increasing sequence
of the distinct prime factors of n, then we have

(1) log2 pj(n) ∼ j (j →∞)

for almost all integers n.2 The short proof may be
retrieved in Erdős’s paper [7]. It will not be repro-
duced here: we content ourselves with saying that
the Turán-Kubilius inequality is the arithmetical
analogue of the theorem from probability theory
stating that the variance of a sum of independent
random variables is the sum of the variances of
its terms and that Erdős merely uses a Bienaymé-
Chebyshev-type inequality to deduce his result. A
much sharper result, actually exhibiting a Gaussian
behavior of the prime factors around their means,
is obtained in [5]. The reader may consult [18]
(Chapter 1) for a detailed proof and [39] (Theorem
III.3.10) for a simpler proof of a slightly weaker
result.

From the above statement on prime factors, one
could guess that the jth divisor of a normal integer
is somewhat close to exp jc with c = 1/ log 2. It
was one of Erdős’s outstanding qualities to devise
a question that would precisely test how adequate
the model is to the arithmetic nature of things.
Since c > 1, we may deduce from the previous
heuristics that the minimal ratio E(n) between
consecutive divisors, say d′/d, with d < d′, does
not tend to 1 for almost all integers. However, as
early as 1948 and probably much before, Erdős

1See, e.g., Elliott [4] or Tenenbaum [39].
2Here and in the sequel we denote by logk the k-fold iterated
logarithm.
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Letter from Erdős to Tenenbaum stating a problem on divisor density.

conjectured the exact opposite: for almost all n,
one should have

(2) E(n) := min
dd′|n, d<d′

d′/d = 1+(logn)1−log 3+o(1).

The reason for this is precisely that the distribu-
tion of the prime factors fluctuates significantly
around the mean and hence the quantities logd′/d
should be fairly evenly distributed in the interval
[− logn, logn]. Since these quantities are at least
3ω(n) in number and, by the Turán-Kubilius in-
equality or indeed from (1), we haveω(n) ∼ log2 n
for almost all n, we naturally arrive at (2). This
conjecture was proved by Erdős-Hall [8] for the
lower bound and by Maier-Tenenbaum [24] for
the upper bound. A further refinement [29] comes
even closer to the heuristics: for almost all n, we
have

(3) E(n) = 1+ logn
3ω(n)

(log2 n)ϑn

where −5 à ϑn à 10.
One of the most challenging problems remaining

on the so-called subject of propinquity of divisors
concerns the functions

Er (n) := min
1àjàτ(n)−r

log{dj+r (n)/dj(n)} (r á 2),

where {dj(n)}τ(n)j=1 denotes the increasing sequence
of the divisors of n. The precise normal behavior
remains still unknown for all r á 2. Using tech-
niques similar to that of the proof of Theorem 3 of
[12], it can be shown that, on a sequence of natural
density 1, we have

E2(n) > (logn)−γ2+o(1)

for some γ2 < log 3 − 1. Moreover, the methods
and results of [25] yield, still normally,

Er (n) à (logn)−βr+o(1),

with

βr := (log 3− 1)m

(3 log 3− 1)m−1
, 2m−1 < r + 1 à 2m.

Thus, we have

β1 = log 3− 1 ≈ 0.09861, β2 = β3 ≈ 0.00423,
βr ≈ 0.00018 (4 à r à 7).

Also, it is proved in [25] (Thm. 1.1) that Er (n) >
τ(n)−1/r+o(1) holds for almost all integers, uni-
formly in r á 1, and thus, on a sequence of
density 1,

Er (n) = 1/(logn)o(1) (r = r(n)→∞),
a result which might look surprising at first sight.
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Maier and I conjecture the existence of a strictly
decreasing sequence {αr}∞r=1 such that we have

Er (n) = (logn)−αr+o(1)

on a sequence of density 1. It is particularly
irritating, for instance, to be unable to find a better
normal upper bound for E2(n) than for E3(n).

I refer the reader to the recent survey [40]
for a further account of Erdős’s motivations for
the conjecture (2), in particular related to the
concept of set of multiples. The link is particularly
apparent in Erdős’s letter dated November 10,
1980, reproduced herein.

On page 1, Erdős mentions divisor density. The
definition, due to R. R. Hall [15], is as follows. Let
τ(n,A) designate the number of divisors of an
integer n belonging to a sequence A, and write
τ(n) = τ(n,Z+). We say that the integer sequence
A has divisor density z, and we write DA = z if
we have τ(n,A) = {z + o(1)}τ(n) as n tends to
infinity on a sequence of natural density 1.3

Divisor density is a fruitful and surprising
notion. For instance, Hall proved in [15] that,
for any pair (z,w) ∈ [0,1]2, there is an integer
sequenceA with divisor density z and logarithmic
density w .4 A criterion for DA= z is given in [33].

With the above definition, Erdős’s question
on page 1 may be stated as follows: define
A :=

⋃
má1[4m2, (2m + 1)2[∩Z+; is it true that

DA = 1
2 ? It needed a lot of work and the appeal to

many deep results from analytic number theory,
such as estimates of Karatsuba on exponential
sums [22], to answer, positively, Erdős’s question;
see Hall-Tenenbaum [17] and Tenenbaum [38]
(Theorem 11). To be slightly more precise, we
observe that the sequenceA may alternatively be

defined by the condition
〈

1
2

√
n
〉
à 1

2 where 〈x〉
denotes the fractional part of the real number
x. The two theorems above actually imply that,
for any real number c, any z ∈ [0,1], and any
nonintegral positive number α, the sequence
{n á 1 : 〈cnα〉 à z} has divisor density z.

On page 2 of the reproduced letter, Erdős asks a
slightly different question: given a sequence mj :=⌊
j(log j)α

⌋
, and settingA :=

⋃
já1[2mj ,2mj+1[, for

which α do we have τ(n,A) á 1 on a sequence of
asymptotic density 1? Here it is clear, and Erdős
explicitly notes the fact that the problem is linked

3The natural density of an integer sequence is, when it ex-
ists, the limit, as N → ∞, of the frequency ofA among the
N first integers.
4The logarithmic density of an integer sequenceA is, when
it exists, the value of the limit

δ(A) := lim
N→∞

1
logN

∑
nàN,n∈A

1
n
·

with conjecture (2): it deals with the distribution
of divisors in dyadic intervals.

Once again, it took years of struggle to solve the
problem: as proved in [37], the answer is positive
for all α. As it turns out, one needs to take faster
growing sequences to see a threshold: if we now
define mj = jβ, then Hall-Tenenbaum proved in
1992 [19] that the answer to Erdős’s question is
affirmative if, and only if, β à 1/(1− log 2).

Aside from his interest in the normal behavior
of the set of divisors, Erdős was also intrigued by
extremal properties. Out of many of his problems,
I extract two.

To describe the first, let us put, for α > 0,

Fα(n) :=
∑

1àj<τ(n)

(dj+1(n)
dj(n)

− 1
)α
.

The conjecture asserted that, for all α > 1,

(4) lim inf
n→∞

Fα(n) <∞.

Since F1(n) á logn, it is clear that the condition
α > 1 cannot be weakened. This conjecture may
be seen as dual to another conjecture of Erdős,
related to the sequence {aj}ϕ(n)j=1 of integers in
[1, n] and coprime to n. The problem here was to
show that, for all γ > 0, we have

lim sup
n→∞

ϕ(n)γ−1

nγ
∑

1àj<ϕ(n)

(
aj+1(n)− aj(n)

)γ <∞.
Improving a result of Hooley [20] disposing of the
case γ < 2, Montgomery and Vaughan confirmed
this conjecture in 1986 [27].

These two problems are specific to Erdős’s
particular way of thinking. He manufactured
innocent-looking questions whose solution actually
requires a deep understanding of the structure of
integers defined by multiplicative constraints.

Conjecture (4) was solved by Vose in 1984. Since,
from Holder’s inequality, we have

(logn)α à Fα(n)τ(n)α−1,

candidates to bounded values of Fα(n) must have
a large number of divisors.5 This led Erdős to the
further conjecture that Fα should be bounded by
natural sequences with many divisors, such as n!,
l.c.m.{1,2, . . . , n}, or

∏
pàn p. I could establish this

in [35] as a consequence of a more general result
proved by the saddle-point method.

The second extremal problem was asked by
Erdős on numerous occasions and is referred to
as Problem 23 in the appendix of Montgomery’s
book [28]. It states that, for suitable constant C,
the inequality

(5)
∑

d|n, t|n, d<t

1
t − d à Cτ(n)

5Recall that a normal integer n has about (logn)log 2+o(1)

divisors.
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should hold for all positive integers n. Here again,
the aim is to test the lacunarity of the sequence
of the divisors of an integer: despite the fact that
d and t in the above sum may get fairly close, we
expect that this happens sufficiently rarely so that
(5) remains true. Thus we are really facing a sieve
problem of a delicate nature. I could establish (5)
in a strong form, improved by La Bretèche [1].

Erdős’s interest in divisors was so constant and
so intense that a whole book would be necessary to
describe his problems, attempts at solutions, and
original methods on this topic—and the two already
written books, [18] and [16], largely dominated
by the work of Erdős, would only be a small part
of the story. The references of this short survey
constitute an incomplete and partial list of articles
related to the subject, either by Erdős himself and
his collaborators or inspired by his appealing way
of thinking of mathematical problems.
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[9] P. Erdős and M. Kac, The Gaussian law of errors in the
theory of additive number theoretic functions, Amer.
J. Math. 62 (1940), 738–742.
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Figure 1. The first few paragraphs of Erdős’s paper [6][6][6].
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Stephan Ramon Garcia
and Amy L. Shoemaker
Wetzel’s Problem, Paul Erdős, and the Contin-
uum Hypothesis: A Mathematical Mystery

We are concerned here with the curious history
of Wetzel’s problem: If {fα} is a family of distinct
analytic functions (on some fixed domain) such that
for each z the set of values {fα(z)} is countable, is
the family itself countable?

In September 1963, Paul Erdős submitted to the
Michigan Mathematical Journal a stunning solution
to Wetzel’s problem (Figure 1). He proved that an
affirmative answer is equivalent to the negation
of the continuum hypothesis. Erdős ends in an
understated manner: “Paul Cohen’s recent proof
of the independence of the continuum hypothesis
gives this problem some added interest.” Together
these results render Wetzel’s problem undecidable
in ZFC.

Erdős had a knack for solving “innocent-looking
problems whose solutions shed light on the shape
of the mathematical landscape” [7, p. 2]. In this case,
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the landscape he revealed was one of underground
tunnels, surprising links, and glittering mysteries.
However, our interest lies not with the solution
itself but rather with the story of how Erdős
encountered Wetzel’s problem in the first place.

Our first exposure to Wetzel’s problem was in
Proofs from The Book by Aigner and Ziegler. “Paul
Erdős liked to talk about The Book,” they write,
“in which God maintains the perfect proofs for
mathematical theorems, following the dictum of
G. H. Hardy that there is no permanent place for
ugly mathematics. Erdős also said that you need
not believe in God but, as a mathematician, you
should believe in The Book” [1]. Erdős asked Aigner
and Ziegler to assemble a moderate approximation
of The Book; included in it was Erdős’s answer to
Wetzel’s problem [1, pp. 102–6].

Regarding the origin of the problem, Erdős
simply asserted that Wetzel posed the question in
the Ann Arbor Problem Book in December 1962.
Ziegler suggested several mathematicians who
might be the Wetzel in question, eventually putting
us in contact with John E. Wetzel (professor
emeritus at the University of Illinois Urbana-
Champaign), who confirmed that the problem was
indeed his.

John Wetzel, born on March 6, 1932, in Ham-
mond, Indiana, earned a B.S. in mathematics and
physics from Purdue University in 1954 and went
on to study mathematics at Stanford University (see
Figure 2). While studying spaces of harmonic func-
tions on Riemann surfaces under Halsey Royden,
he posed the following question in his dissertation:

Let V be a collection of harmonic functions
on a Riemann surface R such that for each
point p of R the set Vp = {v(p) : v ∈ V} is
countable. Must V then be countable? [9,
p. 98]
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Figure 2. John E. Wetzel shortly after he left
Stanford (L) and in recent years (R).

Regarding the origin of the question, Wetzel
explained that Royden had asked him to investigate
a specific conjecture:

I thought about it for a while and eventually
showed that what he conjectured was, in
fact, not true. I remember reporting to
him, thinking that all I had to do was
write my work up in good form and I’d
be finished with my dissertation; and I
remember clearly Royden’s reaction that
my result would make up perhaps a third
of an acceptable dissertation. The question
might have had its genesis in the subsequent
confusion. [8]

Wetzel left Stanford in 1961 to become an
instructor at UIUC, having not yet finished his
dissertation. He married Rebecca Sprunger in
September 1962 and completed the writing of his
dissertation in 1963. During this time, Paul Erdős
visited the University of Illinois with his mother,
who often accompanied him as he traveled from
campus to campus [7, p. 7].

During one of his casual contacts with Erdős,
Wetzel recounts,

I mentioned the question to him, rather
timidly, if memory serves. He thought about
it briefly and said it was interesting—and
that was the extent of my mathematical
contact with him. I don’t think he ever told
me that he had settled the matter, but every
time he visited the campus in the next few
years he always asked me if I had any new
interesting questions. [8]

Upon learning (probably not before 1966, Wetzel
said) about Erdős’s proof, Wetzel wrote to Royden
that “Erdős has showed that the answer to a
question I asked in my dissertation is closely tied
to the continuum hypothesis! So once again a
natural analysis question has grown horns” [8].
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Figure 3. Page 11 of the Boneyard Book.

The Ann Arbor Problem Book that Erdős men-
tions seemed most likely to be the Math Club book,
which has its own fiery history. In the words of
Peter Duren (professor emeritus at the University
of Michigan):

When I came to Ann Arbor in 1962, I
learned of a local tradition called “Math
Club,” an informal gathering of faculty and
graduate students which met in the evening
every month. A speaker was announced
in advance, but the main attraction (in
my view) was the series of 3-minute talks,
unannounced and often spontaneous, that
preceded the announced lecture. There
people would tell their colleagues about neat
mathematics they had come across, or raise
questions, whatever they thought would
be of interest. Afterwards each speaker
was invited to write a short summary of
his presentation in a book maintained for
that purpose. The Secretary of the Math
Club acted as guardian of the book, and
both locals and visitors were invited to
look through it. Unfortunately, the book
was lost during the Christmas break of
1962–63, on the streets of Chicago. The
man then serving as Secretary of the Math
Club had carried the book (or books) with
him when he drove to Chicago and had left
it in his car overnight. Someone broke into
the car and set it on fire, and the Math
Club book was lost (among other items,
including the car). The Math Club continued
to meet, with a new book, but attendance
gradually declined and the meetings were
discontinued around 1990, as I recall. What
Paul Erdős called the Ann Arbor Problem

244 Notices of the AMS Volume 62, Number 3



Book must have been the Math Club book.
But his reference can’t be checked, since
the original entries for December 1962 no
longer exist. [5]

However, Wetzel declared, “I have never visited
the University of Michigan; I’ve never even been to
Ann Arbor” [8]. This initially led us to conclude
that Erdős erred in his citation. Given his unique
manner of doing mathematics and his myriad
colleagues, such a slipup is understandable. Duren
wrote:

I vividly recall him asking people (including
me) at math conferences, “Where are you
located?”, which was the polite way of
asking, “Who are you? I know I’ve met you
somewhere.” This was only natural, since
he traveled so much and met so many
mathematicians. It’s easy to imagine that
he didn’t remember correctly where he had
seen the problem. [5]

After much investigation, we are now able to trace
the sequence of events from the original question
sparked by Wetzel’s dissertation to the problem
treated by Erdős in his paper.

Within the UIUC mathematics library is a volume
of particular importance for us. Wetzel explained:

The library maintains a bound volume
of blank pages called the Boneyard Book,
in which faculty and visiting faculty are
encouraged to write problems, including
whatever supporting information or com-
mentary they care to include, and faculty
looking for interesting problems can browse
in it for inspiration.[8]

Senior Library Specialist Margaret Lewis recovered
the relevant page of the Boneyard Book (see
Figure 3), despite the fact that the volume had been
collecting dust in the UIUC archives for decades.
Duren recounted that, during the early 1960s,
Erdős traveled frequently between the University
of Michigan and the University of Illinois Urbana-
Champaign, so conflating the two schools’ problem
books would have been a natural mistake.

However, the Boneyard Book led to many more
questions. There are clearly four scribes who
contributed to the page, so our next task was to
identify the mathematicians involved. While the
final entry of the page certainly boasts Erdős’s
distinctive penmanship, the remaining three entries
required further scrutiny.

Wetzel explained that the first entry, though
attributed to him, was not written by him: “I haven’t
a clue who wrote the problem in our Boneyard
Book and wrote my name next to it. I thought for a
few moments that it might have been Ranga Rao,
with whom I shared an office during my (and his)
first year at Illinois, 1961–62. But his handwriting

was recognizably ‘Indian English penmanship,’ and
I think him unlikely” [8]. We therefore decided to
investigate the second and third entries before
tackling the first.

Jane Bergman, secretary of the chair of the
UIUC math department, suggested that the Dixon
mentioned in the Boneyard Book and Erdős’s article
(Figure 1) was Robert (“Bob”) Dan Dixon:

I was able to find out that Mr. Robert Dan
Dixon received his PhD from Ohio State
University in 1962 in the same year he was
hired here as an instructor in Mathematics.
In 1964 he was recommended for promotion
to assistant professor, but there is no result
in his file of that recommendation. I would
guess that he moved on at that point, but
there is nothing in his file to support my
guess. He was born in 1936. I hope you find
this helpful. [8]

A colleague of Wetzel’s, George Robert (“Bob”)
Blakley, had more information about Dixon. Bob
Blakley and Bob Dixon both arrived at UIUC in
September 1962 as new PhD’s and both left in
1964. Blakley, in personal correspondence with the
authors and Wetzel, wrote:

Bob [Dixon] went to the nascent Wright
State University in the Dayton area as
a founding father. First he founded the
math department and headed it. Then he
founded the computer science department
and headed it…Late in the last century he
retired from WSU, covered with glory…He
still manages to fleece me regularly and
disreputably in the most varied sorts of bets.
But I think he has given up one hundred
mile bike rides. [2]

Blakley provided us with three possible ways
to contact the elusive Dixon: two email addresses
which may or may not have been current, along
with his home address. Wetzel sent a letter out
to all three addresses, and luckily one route was
successful. Dixon responded:

I was there [UIUC] from the fall of 1962
until the spring of 1964. I remember Erdős
visiting and may even have had some time
with him but I don’t remember discussing
this problem. The handwriting in the book
is puzzling. The entry describing your
problem is not familiar to me. The first
entry that mentioned me could be by Bob
[Blakley] as he generally printed. The second
entry refers to me in third person but I could
have written it…Although I can’t remember
any details there is a bit of familiarity. I
worked in complex analysis at the time and
I had a very interesting course in graduate
school that covered the relevant set theory.
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Lots of problems were thrown around in
that group of young faculty. [4]

Dixon elaborated on “that group of young
faculty” known as the SixtyTwo Illini Hall Group. In
1962 UIUC hired twenty new mathematics faculty
to add to their faculty of one hundred; Illini Hall
was located across from the mathematics building.
According to Dixon:

There was not a sense of privacy about the
problems we were investigating. My own
work was very specialized and detailed so
I had no problems to share. Many others,
like Jack Wetzel, did have problems that
they proposed, or pointed us to, that they
were curious about or needed to solve to
get on to the problem they really wanted to
work on. We fell then into three overlapping
groups: proposers, solvers, and brokers. I
was in the solvers group but not particularly
successful, Jack may have been in all three.
Bob Blakley was in all three but was effective
as a broker…There were many others who
participated in this interchange but my
memory of names is bad. That said it was
an experience that had more to do with
my career than my own doctoral research. I
suspect that was true of several of the other
SixtyTwo Illini Hall Group. [4]

Upon receiving a copy of the Boneyard Book
page, Blakley confirmed that he authored the entry
in the Boneyard Book that reads, “Dixon has a
short proof that the continuum hypothesis is true
if there exists an uncountable family.” Blakley also
remarked that he feels “rather strongly…that Dixon
is the third scribe.” Given Erdős’s parenthetical
remark in his paper that “I have been informed that
R. D. Dixon proved the first part of the theorem
last year” [6], it is likely that Robert Dan Dixon was
indeed the scribe of the third entry. Since Dixon
expressed that he never spoke to Erdős about this
problem during their overlapping time at UIUC,
the information Erdős claimed was relayed to him
almost certainly came from the Boneyard Book.

After immersion in the memories and details
surrounding the problem, Wetzel recalled:

I just remembered that I had given a faculty
seminar and a departmental colloquium on
the substance of my dissertation shortly
after arriving at Illinois (even though the
dissertation was not yet completely written),
and that widened significantly the list of
people who might have written the first
entry in the Boneyard Book. [8]

A chance meeting between the first author and
John P. D’Angelo (a professor at UIUC) finally re-
vealed the most likely candidate for the first scribe.

D’Angelo was convinced that the handwriting was
that of Lee A. Rubel:

Rubel, who died in 1995, often contributed
to the Boneyard Book. Furthermore, his
many interests included the interplay be-
tween logic and function theory…Rubel
would have been quite interested in this
problem, and the handwriting is remarkably
similar to that of notes he wrote to me
around 1979–80. [3]

Of the possible candidates, Wetzel remarks:

Lee certainly strikes me as the more likely…I
truly don’t doubt that Rubel was the author,
but I confess that I still find it a little
surprising that he never mentioned it to
me—admitting always the possibility that
he did and I have forgotten. [8]

The final piece of evidence was a sample of Rubel’s
handwriting, obtained by D’Angelo from the UIUC
archives, which appears to validate this conclusion.
In fact, D’Angelo tells us, Rubel was the creator of
the Boneyard Book.

Let us now return to Erdős’s paper [6]. It was
easy to jump to the conclusion that Erdős had
erred in his citation, since the problem appears
in the Boneyard Book at the University of Illinois,
and Erdős saw it written there. However, there is
another scenario that seems to fit the facts more
closely. In the first few lines of his paper (see
Figure 1), Erdős cites the “Ann Arbor Problem Book”
as the source of Wetzel’s problem and mentions
“an unsigned comment” and a remark by Roger
Lyndon (then a professor at Michigan). Neither of
those comments appears on the relevant page of
the Boneyard Book (Figure 3).

The only explanation is that someone had
transported the problem to Michigan and had
recorded it either in the Math Club book or in
a separate book of open problems. Peter Duren
conjectures that the problem was transferred
by Lee Rubel himself, who was making frequent
trips to Ann Arbor in those days to work with
Allen Shields [5]. Erdős first saw the problem
written there and came up with the beautiful
result presented in [6]. If Erdős saw the problem
in December 1962, it could well have been in
the Math Club book which perished in Chicago.
However, Duren reports having examined the Math
Club book for 1962–91, which now resides in the
Bentley Historical Library at UM. There he found
a record that Paul Erdős gave a lecture (entitled
“Some Unsolved Problems”) at the Math Club on
September 10, 1963, just a week before his paper
[6] was received by the Michigan Mathematical
Journal (on September 18). Thus it seems far more
likely that Erdős saw the problem in Ann Arbor
during his short visit of 1963, in which case the
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Ann Arbor Problem Book was not lost in Chicago
and may yet be found. However, Duren has no
memory of an independent problem book, nor
do his fellow retirees at Michigan. In any case, it
seems clear that, after having submitted his paper
[6], Erdős saw the problem in the Boneyard Book
and learned that Dixon had obtained part of the
result independently.

No story can ever have the entirety of its details
pinned down. As Wetzel said, “It may require
transfinite induction to bring this matter to a
close.” However, we have identified with a high
degree of certainty the trajectory of Wetzel’s
question as it made its way to Erdős. It began in
1961, when Wetzel posed the original question (for
harmonic functions on Riemann surfaces) in his
evolving dissertation. When he arrived at UIUC in
1962, he gave a talk on his graduate research. Lee
Rubel was almost certainly one of the attendees and
likely transmitted the problem to Ann Arbor. Rubel
wrote Wetzel’s question in the Boneyard Book in
1962, and Bob Blakley responded with an entry
claiming that Bob Dixon had a proof, assuming the
truth of the continuum hypothesis. Dixon crossed
out Blakley’s entry and wrote (in third person),
“He showed that if the continuum hypothesis is
false, then each family is countable.” Dixon’s short
proof was rediscovered and published by Erdős,
who went on to prove that an affirmative answer to
Wetzel’s problem is equivalent to the negation of
the Continuum Hypothesis. Erdős’s Boneyard Book
entry is likely from the fall of 1963, after he had
submitted his proof to the Michigan Mathematical
Journal .
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