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Ooguri: First I would like to congratulate Edward on
his Kyoto Prize. Every four years, the Kyoto Prize in
Basic Sciences is given in the field of mathematical
sciences, and this is the first prize in this category
awarded to a physicist.

Witten: Well, I can tell you I’m deeply honored
to have this prize.

Ooguri: It is wonderful that your work in the
area at the interface of mathematics and physics
has been recognized as some of the most important
progress in mathematics as well as in physics. For
those of us working in this area, this is also very
gratifying.

Witten: Actually, in my acceptance speech a
couple of days ago, I remarked that I regard it also
as a recognition of the field, not just of me.

Generalizing Chern-Simons
Ooguri: This conversation will appear as an article
in the Japanese magazine, Sugaku Seminar, as
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Edward Witten.

well as in the Kavli IPMU
News. You have already
given two interviews for
Sugaku Seminar. In 1990,
at the International Con-
gress of Mathematicians
in Kyoto, you received the
Fields Medal. On that oc-
casion, Tohru Eguchi had
an interview with you. You
also had a discussion with
Vaughan Jones, another
Fields Medalist at the con-
gress, and I remember
you expressed interest in
generalizing your work in
the Chern-Simons theory
with a spectral parameter,
which is very natural from
the point of view of integrable models.

Witten: Yes, I very much wanted to find an
explanation along these lines of the “integrability”
that makes it possible to get exact solutions of
two-dimensional lattice models such as the Ising
model. I was completely unsuccessful, but just in
the last couple of years, something in the spirit of
what I wanted to do was done by Kevin Costello.

Ooguri: We were just talking about Costello’s
work before you arrived here. Do you think that it
achieved what you wanted to do at that time?

Witten: Yes. Integrable models have many facets,
and there is no one way to understand everything.
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But I would say that specifically the kind of
explanation I was looking for is what Costello
found. What Costello did involves a very simple
but beautiful twist on the three-dimensional Chern-
Simons theory, in which he simply replaced one of
the three real dimensions of space by a complex
variable z.

Ooguri: It means going to four dimensions.
Witten: This is a four-dimensional world with

two real coordinates and a complex coordinate z.
Costello defined a 4-form, which was the wedge
product of the Chern-Simons 3-form with the
1-form dz. He studied this as the action of a four-
dimensional theory. There is a crucial technical
detail: for this theory to make any sense, the
differential operator that is obtained by linearizing
the equations of motion must be elliptic modulo the
gauge group. I think that this is a little surprising,
but it is true. And given that, he then has a
generalization of the Chern-Simons theory that
does not have the full three-dimensional symmetry,
but it does have a complex variable, namely z.

If you think carefully, you will see that in-
tegrability, the Yang-Baxter equation, involves
two-dimensional symmetry but not really three-
dimensional symmetry. The reason I was unable
to incorporate the spectral parameter was that I
was working in the context of three-dimensional
topological field theory. In three-dimensional topo-
logical field theory, in addition to the moves where
knots cross—that is, in addition to the Yang-Baxter
relation—you have further relations involving cre-
ation and annihilation. There are Reidemeister
moves that are valid in topological field theory but
are not relevant for integrable systems. I couldn’t
find the spectral parameter because I was trying to
use topological field theory. Costello made a very
simple twist, replacing a real variable by a complex
variable, and then everything worked beautifully.
I definitely regard that as the explanation I was
trying to find, unsuccessfully, around 1990.

Ooguri: I see. So, after twenty-three years, finally
your question was answered.

At the time of your second visit to Kyoto in 1994,
you were just finishing your work on the Seiberg-
Witten theory and also the Vafa-Witten theory. I
remember a discussion session we had at the Re-
search Institute of Mathematical Sciences, Kyoto
University, with you and Hiraku Nakajima, where
Nakajima explained his work on the action of an
affine Lie algebra on the cohomology of the moduli
space of instantons. In the second interview you had
with Tohru Eguchi for Sugaku Seminar, you men-
tioned progress in mirror symmetry and S-duality
at the time and expressed a hope of a more unified
view on duality encompassing gauge theory and
string theory. Some of this hope has been achieved
in the last twenty years, I think.

Witten: Definitely some of it has been achieved.
One thing that was achieved in the couple of years
after that second interview was simply that there
emerged a picture of nonperturbative dualities in
string theory, generalizing what happens in field
theory. However, there are other aspects that are
still mysterious and not clearly understood.

On the bright side, the fact that four-dimensional
gauge dualities and a lot of dualities in lower
dimensions come from the existence of a six-
dimensional conformal field theory is a major
insight in understanding dualities better. We
haven’t gotten to the bottom of things because
we don’t really understand the six-dimensional
theory, but just knowing that the matter should be
understood in terms of the properties of the six-
dimensional theory is an advance in understanding
duality that certainly wasn’t there at the time of
this last interview.

I Was a Skeptic about Duality
Ooguri: I should introduce our discussants today.
Yukinobu Toda is a mathematician and an associate
professor at the Kavli IPMU, and he received his
PhD in 2006. Masahito Yamazaki is a physicist and
a new assistant professor at the Kavli IPMU, and
he received his PhD in 2010. They represent the
young generation of mathematicians and physicists
working at the interface of string theory and gauge
theory.

At your Kyoto Prize Commemorative Lecture,
you reviewed your career in theoretical physics.
You entered graduate school in 1973, when the
asymptotic freedom was just theoretically being
discovered. You came to Japan the second time in
1994 and gave the interview we were just talking
about, and it was roughly twenty years after you
started in graduate school. Another twenty years
have passed since that time, so I thought we should
start by trying to catch up with the second twenty
years of your career and see what your thoughts
have been on some of the most important progress.

We have already started to talk about some of
the developments since the interview in 1994, but
maybe you can expand on that and tell us what you
think have been the highlights in this area in the
last twenty years.

Witten: Certainly one of the highlights has been
the understanding of nonperturbative dualities
in string theory, as a result of which we have
a much wider picture of what string theory
is. In 1994 we knew about mirror symmetry
and other two-dimensional dualities that arise in
string perturbation theory, and we were really
just beginning to think that there are similar
dualities in space-time: four-dimensional gauge
theory dualities that are analogous to the two-
dimensional dualities. But in 1994 it was really just
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a guess that something analogous might happen
in string theory.

By this time there were clues in the literature,
and a number of new ones had been discovered in
the early 1990s. The clue that influenced me the
most was the work of John Schwarz and Ashoke Sen,
who showed that the low-energy effective action of
the heterotic string on a six-torus had properties
consistent with the existence of a nonperturbative
SL(2, Z) duality. They didn’t have what I regarded
as really decisive evidence for that conjecture, but
their ideas were very suggestive.

It still was not clear to me how one could find
decisive evidence for nonperturbative dualities in
space-time. At least to me, the first such evidence
appeared in a short but brilliant paper by Ashoke
Sen on a two monopole bound state in N = 4 super
Yang-Mills theory. To me, that was fundamentally
new evidence for the Montonen-Olive duality
conjecture. It convinced me that the duality had to
be right and, equally important, it convinced me
that it was possible to understand it better.

Ooguri: I thought that Sen’s paper gave strong
evidence for the S-duality, but it was your paper
with Vafa that convinced us.

Witten: Thank you. Sen’s paper showed that
you could actually go well beyond the suggestive
but somewhat limited arguments about electric-
magnetic duality that had been known and learn
something fundamentally new. Until Sen’s paper, I
had felt that what we understood about electric-
magnetic duality, even the work of Sen and
Schwarz, which had definitely influenced me, was
in the framework of what Montonen and Olive
had understood twenty years before. But Sen
did a simple and elegant calculation, finding a
bound state of two monopoles whose existence
was predicted by the duality. That inspired me to
believe that one could do more.

With this inspiration, and trying to find more
evidence for the duality conjectures, Cumrun Vafa
and I started to study the Euler characteristics of
instanton moduli spaces. It was not too hard to see
that electric-magnetic duality of supersymmetric
Yang-Mills theory implied that the generating
function of those Euler characteristics should be a
modular function. Luckily for us, mathematicians
in a number of cases—and this includes the
work of Nakajima that you mentioned before—
had computed these Euler characteristics or had
obtained closely related results from which the
Euler characteristics could be understood. We
found that the expected modularity held in all
cases. (In one case—the four-manifold CP2—we
ran into a “mock modular form,” a concept that
was new to us at the time but has made many
subsequent appearances in gauge theory and string
theory.)

Also during this period, Nathan Seiberg had
been using holomorphy as a tool to analyze the
dynamics of supersymmetric gauge theories. He
wanted to understand what happened in N = 2
theories. We started talking about it, and the Sen
paper inspired us to think that duality would play
a role. That was one of the clues that actually led to
our work on what became Seiberg-Witten theory.

Ooguri: It may be hard to believe for young peo-
ple like Masahito Yamazaki or Yukinobu Toda, but
before 1994 S-duality, at least for me, was some-
thing very hard to believe. It was like a beautiful
dream. It would be nice to have, but you cannot
realistically hope that something like that could pos-
sibly happen. As I said, the first evidence was Sen’s
paper, and in some sense Edward’s work with Vafa
nailed it. After that, everybody believed it.

Masahito Yamazaki: That’s surprising, because
I thought that the paper of Claus Montonen and
David Olive is quite old. Were people skeptical about
the idea?

Witten: This might make you laugh, but I’ll tell
you my early history with the Montonen and Olive
paper. First of all, I hadn’t heard of it until I was
visiting Oxford at the end of 1977. Michael Atiyah
showed this paper to me and said I should go to
London to discuss it with Olive. So, I looked at
the paper and got in touch with David Olive and
arranged to visit him. But by the time I got to
London, I was pretty skeptical. Have you looked at
their original paper?

Masahito Yamazaki: Yes, I have.
Witten: In their original paper, they considered

a bosonic theory of a gauge field and a real
scalar (valued in the adjoint representation). They
assumed that the potential energy for the scalar
field is identically zero, and they found remarkable
formulas for particle masses that are valid precisely
in this case. Their proposal of electric-magnetic
duality was based on the fact that their mass
formula was symmetrical between electric and
magnetic charge.

However, I knew quantum field theory well
enough to know that saying that the potential
energy for the scalar field is zero is not a meaningful
statement quantum mechanically. If it were, we
would not have a gauge hierarchy problem in
particle physics. So, by the time I got to London
to see Olive, I definitely was a skeptic. But since
I was there to see him, I didn’t want to just
say that his idea was nonsense. We tried to
make sense out it. So we discussed it in the
context of supersymmetry, simply because with
supersymmetry the mass renormalization (and
even the full effective potential) of a scalar can
be zero. This was the only context in which it
seemed to me that the brilliant idea of Montonen
and Olive could make sense. By the end of the
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Ooguri and Witten.

day, we found that their formulas are valid in the
context of N = 2 supersymmetry. So we wrote a
paper on that, and it was quite a satisfying paper
to write, but I drew the wrong conclusion from
that paper. The conclusion I drew was that we
had explained their formulas without needing to
assume nonperturbative duality.

Ooguri: Right. That was the message I got by
reading your paper with Olive, too. The seemingly
miracle phenomenon was explained simply by
supersymmetry.

Witten: So at the time, and for many years after,
I felt that there was not really a lot of evidence for
nonperturbative duality in four dimensions.

Thus, to return to Masahito’s question, I was
a skeptic about electric-magnetic duality during
these years, but actually I was a skeptic on two
levels. One, I was skeptical that it was true, and two,
I was skeptical that you could really say anything
about it even if it were true.

To give a more complete picture, in the early
1990s there were various novel clues, some from
the work of people like Mike Duff, and also Curt
Callan, Jeff Harvey, and Andy Strominger, studying
solitons in string theory, and then also there
was the work of Sen and Schwarz that I already
mentioned. I remember that at the Strings 1993
meeting in Berkeley, John Schwarz was more
excited than I had ever seen him since January
1984. In January 1984, telling me about his latest
work with Michael Green, he said, “We are getting
close,” but I didn’t understand what he thought
he was getting close to. It turned out, however,
that that was a few months before they canceled
the anomalies. When John was so excited at the
Strings meeting at Berkeley, I decided that I had
better take him seriously.

If you had looked at it with the same skepticism
I had had since the Montonen and Olive paper, you
would have said that Sen and Schwarz were just

discussing low energy physics and did not have
solid evidence about strong coupling behavior. But
John’s enthusiasm put enough of a dent in my
skepticism that I started looking more closely at
the papers of Duff and other authors on solitons
in string theory. At some point, I think in the fall
of 1993, Duff sent me an assortment of his papers,
and I took them to heart. I don’t remember right
now all of the papers on solitons in string theory
that I looked at during this period, but certainly
one important one was by Callan, Harvey, and
Strominger.

There is another part of the background to
this period that I should explain. Mike Duff,
Paul Townsend, and other physicists working on
supermembranes had spent a couple of years in the
mid-1980s saying that there should be a theory of
fundamental membranes analogous to the theory
of fundamental strings. That wasn’t convincing
for a large number of reasons. For one thing, a
three-manifold doesn’t have an Euler characteristic,
so there isn’t a topological expansion as there is
in string theory. Moreover, in three dimensions
there is no conformal invariance to help us make
sense of membrane theory; membrane theory is
nonrenormalizable just like general relativity.

There are all kinds of technical objections, but at
some point around 1990 or 1991, instead of trying
to think of membranes as fundamental objects,
people working in this area started thinking of
membranes and other p-branes as nonperturbative
objects that might exist in string theory. In general
terms, this idea did make sense. In more detail, the
situation was more complicated. If you actually
looked at the papers, some of them made a lot of
sense because they had a classical soliton solution
with good properties. (Even then, the solutions
usually had unusual properties that in some cases
were clues to later discoveries.) Other papers made
a little bit less sense, because the classical solution
involved a singularity that appeared in a region
in which the classical approximation wasn’t good.
But the idea of membranes as nonperturbative
soliton-like objects in string theory made a lot
of sense even if the details in some papers were
dubious. I was still a bit of a skeptic about what
one can do with this idea, but for reasons I’ve been
explaining, I was paying a lot more attention. And
that is actually why, when the Sen paper on the
two-monopole bound state came out, I was ready
to completely change my outlook.

Sen’s paper showed that one can do something
new about strong coupling, and it was clear that if
one had been inspired the way Sen was, one could
have done what he did ten or fifteen years before. So,
it showed that we had been missing opportunities.
That definitely changed the direction in my work. It
led to the paper with Vafa that you’ve been kindly
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mentioning, and it helped put Seiberg and me on
the right track for doing what we did in 1994 and
then…

Ooguri: This is a great story that shows that
chance favors the prepared mind, as Pasteur said.
After that, you even went to string dualities.

String Duality Revolution
Witten: By the end of 1994, we had the experience
of nonperturbative dualities in field theory both
in two dimensions and in four dimensions. In the
two-dimensional case, for example, if one studies
a sigma-model with Calabi-Yau target space (such
as is important in studying the compactification of
string theory), one finds that the quantum theory
can be extended far beyond the classical geometry
of the Calabi-Yau manifold. One finds a web of
phase transitions between different geometrical
and nongeometrical descriptions of the sigma-
model, which represent different semi-classical
limits of the theory. The Montonen-Olive duality
conjecture, as refined by later authors, said that
something similar happens in N = 4 super Yang-
Mills theory in four dimensions, and Seiberg and I
in 1994 had found something somewhat similar
for N = 2.

Certainly there was a dream that something
similar might happen in string theory. Not only
was there a dream, but there were a lot of papers
in which people had pointed out pieces of such
a story. I have already mentioned some of these
papers. Another important paper was written by
Chris Hull and Paul Townsend in the spring of
1995. They wanted to say that Type IIA superstring
theory is the same as M-theory on a circle. The
only thing they really didn’t do was to try to
make it more quantitative. There’s a potential
contradiction, which is that in Type IIA superstring
theory you don’t see eleven dimensions. But it turns
out, as I realized a little later, that this question
has a very simple answer. The eleven-dimensional
limit is a region of strong coupling from the point
of view of Type IIA superstring theory, and the
eleventh dimension isn’t visible for weak coupling.

It soon became clear that the same thing was
true in other cases. For example, one might hope
that Type I superstring theory and the SO(32)
heterotic string will be the same. There is an
obvious immediate contradiction: the theories
have the same massless spectrum and low energy
interactions, but beyond the low energy limit they
look completely different. The answer is simply
that if you match up the low energy field theories,
you will find that weak coupling in one is strong
coupling in the other.

Once one starts thinking along those lines,
it turns out that everything works. What were
the implications? This way of thinking certainly

led to a more unified picture of what string
theory is. But very soon, there were further
developments showing that the traditional ways of
asking questions were probably inadequate. In the
1980s I was really convinced that in some sense
string theory should be based on a Lagrangian that
would generalize the Einstein-Hilbert Lagrangian
for gravity; it would have a symmetry group which
would generalize the diffeomorphism group. So
there would be a new classical theory of geometry—
with nonperturbative two-dimensional dualities
built in as classical symmetries. One would then
generate string theory by quantizing this classical
theory.

But by the early 1990s, there was a troublesome
detail that I personally did not pay much attention
to. In the moduli space of Calabi-Yau manifolds,
there is a variety of singularities. Some questions
involving such singularities had been important in
my own work.

Ooguri: You are referring to the work involving
linear sigma-models.

Witten: That is correct, and also my work (with
Harvey, Vafa, and Lance Dixon) on orbifolds. I had
been interested in cases in which the classical
geometry has a singularity but the quantum sigma-
model does not; these cases illustrate the difference
between ordinary geometry and its generalization
in the classical limit of string theory. What I had not
taken seriously is that in general, as one deforms
the moduli of a Calabi-Yau manifold, one can
find singularities of the classical geometry that
do also lead to singularities of the corresponding
sigma-model.

Such a singularity appears in string theory even
in the classical limit, so if you try to interpret string
theory as a classical theory that then gets quantized,
it looks like the classical theory has a singularity,
which is strange. I personally didn’t focus on
that question, but Strominger explained that such
a singularity actually reflects a nonperturbative
quantum effect. The singularity arises when a
charged black hole becomes massless, and it
shows that quantizing a classical theory can’t do
justice to string theory: there are nonperturbative
quantum effects even in what one might have
wanted to call the classical limit.

Ooguri: You say there’s no analogous result in
field theory, this is a genuinely string-theoretic phe-
nomenon.

Witten: I think so.
Ooguri: So, did you think this was evidence that

there is no Lagrangian description in string theory?
Witten: It is evidence that you can’t fully do

justice to string theory in terms of quantizing a
classical theory. I don’t want to say that there isn’t
a classical theory, because I believe that from some
point of view there is.
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Ooguri: Yes, as an approximate description, but
you’re saying that you cannot start from classical
theory and apply a quantization procedure…

Witten: We can’t fully understand string the-
ory by quantizing an underlying classical theory.
In some sense it is an intrinsically quantum
mechanical theory.

I don’t want to say you can’t derive string theory
by quantizing a classical theory, but you can’t fully
do justice to it that way, I think.

But let us remember that even in field theory,
Montonen-Olive duality means that the same theory
has different classical limits, showing that no one
classical limit is really distinguished.

Ooguri: But in that case, you have a Lagrangian
description.

Witten: Yes, in the Montonen-Olive case, one
has a classical Lagrangian, in fact many of them.
String theory is a little bit worse because even in
what you want to call the classical limit, there are
phenomena that you really can’t make much sense
of from the classical point of view.

Ultimately, Strominger’s work illuminated some-
thing I’d missed. In the talk I gave at the Strings
Conference in 1995 about nonperturbative duali-
ties in string theory, and also in the corresponding
paper [“String theory dynamics in various dimen-
sions”, arXiv:hep-th/9503124, Nuclear Physics B,
volume 443, issue 1–2, June 5, 1995, pages 85–126],
there was one detail that didn’t completely make
sense. Type IIA superstring theory on a K3 mani-
fold was supposed to be dual to the heterotic string
on a four-torus, and in that context I could see that
enhanced gauge symmetry resulted from the K3
surface developing an ADE singularity. But an ADE
singularity in classical geometry is just an orbifold
singularity, and perturbation theory remains valid
in string theory at an orbifold. The orbifold does
not generate a nonperturbative gauge symmetry.
For a few months I was puzzled. Actually, I was
making a simple mistake which was corrected by
Paul Aspinwall in a paper that he wrote in the sum-
mer of 1995. Aspinwall explained the following:
In M-theory at an ADE singularity, you have only
the hyper-Kähler moduli, but in string theory at an
ADE singularity, there also are B-field moduli. The
conformal field theory becomes singular when the
B-field moduli are zero; the orbifold describes a
nonsingular situation in which the B-field moduli
are not zero.

When the B-field moduli vanish, there is a
breakdown of the classical description that’s
just analogous to what Strominger had shown
in his paper on the Calabi-Yau singularity. It
leads to enhanced gauge symmetry that, from the
standpoint of Type IIA superstring theory, has a
nonperturbative origin.

Strominger had considered a charged black hole
that arises from a wrapped three-brane, while here
the relevant particle is a wrapped two-brane. But
the idea is similar.

Ooguri: So this was the beginning of the inter-
action between the gauge-theoretic idea and the
string-theoretic idea where non-Abelian, nonpertur-
bative dynamics of gauge theory can emerge from
limits of string theory.

Witten: Right. Another important but extremely
simple paper that helped show the implications of
string theory for nonperturbative duality in gauge
theory was written by Michael Green in 1996. By
this time, Joe Polchinski and his collaborators had
basically shown that in modern language a system
of n parallel branes has U(n) gauge symmetry. I
had written a paper at the end of 1995 showing
why that was useful, but Green wrote a very simple
paper with the following observation. Type IIB
superstring theory has a nonperturbative duality
symmetry—a fact which we were convinced of by
this time—and on the other hand N = 4 super
Yang-Mills theory in four dimensions with gauge
groupU(n) can arise from a system ofn parallel D3-
branes in Type IIB superstring theory. Combining
these two facts and taking the low energy limit,
Green was able to deduce the Montonen-Olive
duality of N = 4 super Yang-Mills theory with
gauge group U(n). It is simply inherited from
the Type IIB superstring theory specialized to the
D3-branes. That was an important early example
of deducing a gauge theory duality from a string
theory duality.

Even before all of this had happened, Mike Duff
and Ramzi Khuri in 1993 had written a paper on
what they called string/string duality. They had
said there should be a self-dual string theory in
six dimensions that, looked at in two different
ways, would give electric-magnetic duality of gauge
theory in four dimensions. It was actually a brilliant
idea. The only trouble was they didn’t have an
example in which it worked.

I realized in mid-1995 that if one took the
heterotic/Type II duality on K3 and T 4 and
compactified on another two-torus, one would get
an example rather similar to what Duff and Khuri
had suggested. They had had in mind self-duality
of a string theory, but the example that I considered
was a duality between two different string theories.
Still, the idea was similar. By the end of 1995, Duff
and I and some other authors had an example
that followed even more precisely what had been
proposed two years before. That involved the
E8 × E8 heterotic string on a K3 surface with equal
instanton numbers in the two E8’s. In all of these
cases, one could deduce Montonen-Olive duality
from a string theory duality.
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As we’re talking, I remember more and more
papers from the years 1995–96 that were very
dramatic at that time but that were also, honestly,
pretty easy to do in most cases. I was reminded of
this yesterday by the lecture by Hiraku Nakajima
at the Kyoto Prize Workshop. Hiraku started by
kindly remembering three lectures I gave at the
Newton Institute in 1996. The lectures concerned
three papers that I had written (respectively with
coauthors Lev Rozansky, Ami Hanany, and Nathan
Seiberg). The papers fit together nicely. They were
fun to write, and the lectures were also fun to give.
But what stands out in my memory is that at that
time insights like that were more or less out on
the surface. It was quite a fun time to be working
in this field. I am hoping that, during my active
career, there will be another period like that.

Difference between Knowing What Is True
and Why It Is True
Yukinobu Toda: I am an algebraic geometer. I
was originally working on some classical aspects
of algebraic geometry, but I became interested in
some relationships between algebraic geometry and
string theory inspired by your work. You have been
discussing S-duality and modular forms. This was
surprising from a mathematical point of view—I
cannot see why modularity appears. Do you have
an insight about that from a mathematical point of
view?

Witten: Vafa and I, of course, had a reason,
which was the Montonen-Olive duality conjecture.
What we did was to show that modularity of a
certain generating function of Euler characteristics
is a kind of corollary of Montonen-Olive duality.
This is somewhat analogous to saying that some
statement in number theory follows from the
Riemann hypothesis. If somebody shows that
something follows from the Riemann hypothesis,
one may or may not view this as an explanation of
the statement in question, but at least it puts the
statement in a bigger framework. Montonen-Olive
duality provided an analogous bigger framework
in my work with Vafa, and soon afterwards there
was a still bigger framework, which was that the
Montonen-Olive duality follows from the existence
of a certain six-dimensional theory. It also follows
in various other ways from string theory dualities,
and I have mentioned a few of these constructions.
But most physicists would probably say the most
complete framework that we have for Montonen-
Olive duality is its relation to the six-dimension
theory.

Ooguri: Yukinobu was asking for some mathe-
matical explanation. At that time, some hint of the
mathematical explanation was Nakajima’s work
about the symmetry of the moduli spaces of instan-
tons. From the mathematical point of view, what the

YukinobuToda and Masahito Yamazaki.

Vafa-Witten theory was computing were generating
functions of the Euler characteristics of instanton
moduli spaces.

Witten: Nakajima’s discovery of the affine Lie
algebras was a kind of proof and actually a mirac-
ulous discovery. But it still leaves one wondering
where the affine Lie algebra symmetry came from.

Yukinobu Toda: Right. After computations of
the Euler characteristics, we know that it’s a modu-
lar form, but we don’t know why it is modular, even
for the simplest example.

Witten: I completely agree. What you’re saying
is actually something I tried to say in my Com-
memorative Lecture for the Kyoto Prize. There is
a difference between knowing what is true and
knowing why it is true. In this case, you have a
mathematical proof, but you’re still asking why,
and physicists ultimately don’t know. All that we
can do is to offer bigger conjectures, of which this
is a manifestation. But we don’t really understand
the bigger conjectures.

Ooguri: In physicists’ perspective, this duality
has been geometrized as symmetry in six dimen-
sions.

Witten: But the six-dimensional theory is pretty
mysterious.

Yukinobu Toda: Is it not difficult to under-
stand the relationship between S-duality and
six-dimensional theory?

Ooguri: The relation is very clear, but then you
have to make sense of the six-dimensional theory
itself.

Witten: We actually know quite a lot about the
behavior of the six-dimensional theory, though we
do not understand much about how it should be
constructed or understood microscopically.

One of the deepest discoveries about the be-
havior of the six-dimensional theory was made by
Juan Maldacena in 1997. He showed that it could
be solved for large N in terms of supergravity
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(N refers to the rank of an SU(N) gauge group).
Unfortunately, the regime in which the theory is
solved by supergravity isn’t the same regime in
which we usually have to study it to understand
the questions you’re asking.

Ooguri: I understand that the large N limit is
not S-duality invariant.

Witten: Yes, that is correct. Maldacena’s solution
of the theory for large N works and makes
complete sense. It does not directly help us in
understanding Montonen-Olive duality, because it
involves studying the theory in a different region of
parameters that is not invariant under duality. Or,
to put it differently, if one tries to apply Maldacena’s
solution to understand Montonen-Olive duality,
one has to work in a region of parameters in which
the description that Maldacena gave is not useful.

But the existence and success of Maldacena’s
solution definitely increases the confidence of
physicists that the six-dimensional theory exists
and that all the canonical statements about it are
true, even though we don’t understand everything.
It’s a little bit like mathematicians discovering that
some new consequences of the Riemann hypothesis
are true. This gives one more confidence in the
Riemann hypothesis, but it doesn’t mean one
understands the Riemann hypothesis.

Ooguri: Yukinobu, what is your view on current
activities in physics? For example, yesterday Naka-
jima was saying that it took him eighteen years to
understand what Edward was doing in his lectures
in Cambridge, and Kenji Fukaya was saying that
sometimes he doesn’t understand even the state-
ment because you don’t understand the right-hand
side and left-hand side of equations physicists write,
for example. You have been at the Kavli IPMU for
several years, interacting with physicists, so do you
have any perspective to offer…?

Yukinobu Toda: Of course, I don’t know any-
thing about string theory, but sometimes I look at
papers and some calculations and try to translate
physics words into mathematics, say D-branes to
sheaves or BPS states to stable objects. Then I have
lots of things to learn from the physics side and
lots of problems to solve, although I don’t under-
stand their physics origin. I also found that they
are related to the classical problem in algebraic
geometry.

Ooguri: You also attend string theory seminars.
What do you gain by attending them and interacting
with physicists?

Yukinobu Toda: I think there are many kinds
of people in string theory. Some people’s works are
close to me, like Donaldson-Thomas invariants and
derived category of coherent sheaves. In their sem-
inars, I can learn something, but that is almost a
seminar of mathematics.

Ooguri: A mathematician told me that physi-
cists are like generating functions of conjectures.
Some physicists are more useful for mathematicians
than others. For example, Hiraku Nakajima was
telling me that he particularly likes Edward’s lec-
tures, because even though he doesn’t understand
the motivations and where ideas come from, some
of the statements Edward makes have sharp math-
ematical meanings to them, just like the equation
that Tachikawa was quoting yesterday at the work-
shop, and these are something that mathematicians
can work on.

Masahito Yamazaki: But then sometimes peo-
ple want to know the logic behind it. I can make a
statement that makes sense mathematically, and
mathematicians can try to prove it. But they defi-
nitely want to know what’s happening.

Witten: In any given case, I can’t guarantee that
there isn’t a simpler answer. But the view of most
physicists about many of the problems that we
have been discussing is going to be that the best
setting for these questions is in the quantum field
theories that are important in physics.

Quantum Entanglement
Ooguri: We are still discussing what was happening
in the 1990s. Now, we should move on to the new
millennium. What do you think have been highlights
in the past fourteen years?

Witten: Part of the answer is that the gauge-
gravity duality that was introduced by Maldacena
is very deep. Even today people are still discovering
interesting new facets of it. An important example
was the work of Shinsei Ryu and Tadashi Takayanagi
on entanglement entropy in gauge/gravity duality.
They discovered a really interesting generalization
of the Bekenstein-Hawking entropy of a black
hole. Although I have not personally worked on
this subject, the developments have been pretty
interesting and may contain deeper clues about
quantum gravity. If I could see the right way to
do this, then I would probably work in this area
myself, but at least so far I don’t. But it’s one of
the things I’d recommend watching most closely.

Apart from Ryu and Takayanagi, I also would
definitely recommend the papers of Horacio Casini,
in some cases coauthored with Marina Huerta. One
of these papers addressed the following question.
A black hole has a Bekenstein-Hawking entropy.
Roughly twenty years ago, Jacob Bekenstein con-
sidered the following question. Suppose an object
falls into a black hole. The object has an entropy.
When it falls into a black hole, its entropy disap-
pears into the hole. The black hole gains mass
when it absorbs the object, so its entropy goes
up. The second law of thermodynamics says the
total entropy should increase in this process, so in
other words the black hole entropy increases by
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at least the entropy that the in-falling object had
before approaching the black hole. This tells you
basically that if an object has given energy and is
small enough to fit inside a black hole of given
mass, then there’s an upper bound to its entropy.
Bekenstein proposed such a bound, and people
called it the Bekenstein bound, but for a long time
no one could formulate precisely what this bound
was supposed to say.

I am reminded here of what Fukaya said about
the relationship between physics and mathematics,
where he remarked that it can be hard to formu-
late precisely the terms that enter some of the
statements made by physicists. In the case of the
Bekenstein bound, the situation was as follows. In
a situation in which the concepts (the size, energy,
and entropy of the in-falling object) have clear
meaning, the Bekenstein bound was trivially true
and not very interesting. For example, consider a
gas consisting of many particles bouncing around
in a box. Here the size of the system and its
energy and entropy all have a clear meaning. The
Bekenstein bound was true but not very interesting
because it was satisfied by a very wide margin. You
could ask, could you find a situation where the
Bekenstein bound is close to being saturated? You
can accomplish this by considering not a whole
gas of particles but a single particle in a box. More
exactly, this gets close to saturating the Bekenstein
bound if we can ignore the mass of the box, but
that is an unrealistic assumption. To get close to
saturating the Bekenstein bound, we really should
consider a single particle that at a given time is
almost certainly contained in a certain region in
space-time even though there is no box keeping it
there. (I say “almost certainly” because relativistic
quantum mechanics does not permit us to say
that a particle is definitely present in a given
region.) Here for a single particle, we can define its
energy, and we can identify (within general limits
of relativistic quantum mechanics) the region that
it is confined in, but it is hard to make sense of the
entropy of a single particle. For a long time, there
were many papers discussing this, many dozens
and probably hundreds of papers, for the most
part with limited insight. Then, there was a simple
and quite brilliant paper by Horacio Casini, who
showed that the right concept is entanglement en-
tropy and that it can always be defined in a natural
way and does enter in a universal Bekenstein-like
bound. This paper was well ahead of the prevailing
thinking in the field, and it was a number of years,
I think, before people widely appreciated it.

Ooguri: For example, Casini’s paper solved the
species problem that I had been puzzled about for
some time and gave a convincing explanation that
it’s not an issue.

Witten: There were what people thought were
counterexamples to the Bekenstein bound, and
so some people, and I was one, thought that if
the bound was true, it was a statement about
quantum field theories that can be coupled to
gravity, not about all quantum field theories. But
Casini showed that this was completely wrong.
He gave a precise meaning to all the terms that
entered the Bekenstein bounds, and he showed
that it was a universal statement of quantum field
theory that follows from general principles. That
was extremely illuminating and like other work on
entanglement entropy, one suspects it’s probably
an important clue, but it might take a younger
person than I with fresh thinking to see what it is
an important clue to.

I do want to mention one more contribution in
that direction, which is by Casini and Maldacena
with Rafael Bousso and Zachary Fisher (BCFM).
Years ago, Bousso had formulated a covariant
version of the Bekenstein bound; it is well adapted
to problems in cosmology. Everything I have said
about the Bekenstein bound has an analog for
the Bousso bound. When you understood what it
meant, it wasn’t very interesting, and when it was
interesting, you couldn’t understand what it meant.
In the recent work of BCFM, a precise formulation
and proof of the Bousso bound are given, at least
for quantum field theory in flat space-time.

Ooguri: I see that this new joint activity between
quantum gravity and quantum information theory
has become very exciting. Clearly entanglement
must have something to say about the emergence
of space-time in this context.

Witten: I hope so. I’m afraid it’s hard to work on,
so in fact, I’ve worked with more familiar kinds of
questions. I have spent a lot of the last decade or so
working on a succession of problems that probably
were a little bit more out of the mainstream than
most of my previous work. Also, I simply worked
on these problems much longer than I usually
worked on any one problem in the past. I guess
the three problems that best fit what I have just
said have been gauge theory and the geometric
Langlands program, gauge theory and Khovanov
homology, and superstring perturbation theory.

Superstring perturbation theory is best under-
stood in terms of super Riemann surfaces. I should
say that much of my knowledge about super Rie-
mann surfaces comes from things I have learned
from Pierre Deligne, both in the 1980s and more
recently. Super Riemann surfaces are a fascinating
generalization of ordinary Riemann surfaces to
include odd or anticommuting variables. There is
a fascinating algebro-geometric theory that was
partly developed in the 1980s and not pursued so
much since then. It would be great if it gets revived.
By the way, we are having a workshop in May 2015
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Toda, Yamazaki, Ooguri, and Witten.

at the Simons Center for Geometry and Physics in
Stony Brook [Supermoduli, May 18–22, 2015], and
algebraic geometers might be interested in it.

Khovanov Homology
Masahito Yamazaki: I was attending your lecture
yesterday, and you were explaining how you came
to the idea that Khovanov homology can be written
as N = 4 super Yang-Mills integrated over an un-
usual integration cycle. One thing that impressed
me there was that your previous papers were the
crucial input, namely your work with Anton Ka-
pustin in which you formulated the Kapustin-Witten
equation, and also subsequent work you did with
Davide Gaiotto on boundary conditions in N = 4
super Yang-Mills theory. When you worked on these
papers, did you already have in mind application
to Khovanov homology?

Witten: The answer is “no”: in those years, I knew
about Khovanov homology and I was frustrated to
not understand it, but I had no idea it was related
to geometric Langlands. I was frustrated at not
understanding Khovanov homology, because I felt
that my work on the Jones polynomial ought to be
a good starting point for understanding Khovanov
homology, but I just could not see how to proceed.
(From a mathematical point of view, Khovanov
homology is a refinement or “categorification” of
the Jones polynomial of a knot.) Actually, Sergei
Gukov, Albert Schwarz, and Vafa had already
given (in 2004) a physics-based interpretation of
Khovanov homology, drawing in part on earlier
work of Ooguri and Vafa. But I found it perplexing
and a little frustrating that the relation of this to
gauge theory was so indirect and remote. I wanted
to find a more direct route, but for several years I
found this difficult.

Eventually, however, some developments in the
mathematical literature helped me understand that
Khovanov homology should be understood using

the same ingredients that are used to understand
geometric Langlands. I didn’t understand all of
these clues, but I learned from two of them.
One was the work of Dennis Gaitsgory on what
mathematicians call quantum geometric Langlands
(I am not sure this is the name a physicist would
use) showing that the q parameter of quantum
geometric Langlands is related to the q parameter
of quantum groups and the Jones polynomial.
The other was the work of Sabin Cautis and Joel
Kamnitzer constructing Khovanov homology using
a space of repeated Hecke modifications. I did not
initially know what to make of those clues, but
they were a sort of red flag hanging out there.

Hecke transformations are one of the most
important ingredients in geometric Langlands.
What they mean in terms of physics had bothered
me for a long time and eventually had been the last
major stumbling block in interpreting geometric
Langlands in terms of physics and gauge theory.
Finally, while on an airplane flying home from
Seattle, it struck me that a Hecke transformation
in the context of geometric Langlands is simply an
algebraic geometer’s way to describe the effects of
a “’t Hooft operator” of quantum gauge theory. I
had never worked with ’t Hooft operators, but they
were familiar to me, as they had been introduced in
the late 1970s as a tool in understanding quantum
gauge theory. The basics of how to work with
’t Hooft operators and what happens to them under
electric-magnetic duality were well known, so once
I could reinterpret Hecke transformations in terms
of ’t Hooft operators, many things were clearer to
me.

Cautis and Kamnitzer had interpreted Khovanov
homology in terms of the B-model of a space of
repeated Hecke transformations. Kamnitzer also
conjectured in another paper that there would be
an alternative description in terms of an A-model of
the same space. Technically, it was hard to find the
right A-model. I really wanted to understand the
A-model, because that was the approach in which
one could expect to achieve manifest three- or four-
dimensional symmetry. My main goal in studying
Khovanov homology was to find a description with
manifest symmetry and a clear relationship to the
gauge theory description of the Jones polynomial.
I eventually succeeded in doing this. One of the
trickiest elements was that the gauge fields have
to obey a subtle boundary condition that I call the
Nahm pole boundary condition. (The basic idea that
leads to the Nahm pole boundary condition was
introduced by Werner Nahm more than thirty years
ago in his work on magnetic monopoles.) Luckily
for me, I was familiar with the Nahm pole boundary
condition and its role in electric-magnetic duality
because of work that I had done with Davide
Gaiotto a few years earlier.
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I suspect that the mathematics world could
appreciate my work on Khovanov homology in the
short to medium term and that the obstacle to this
is largely a lack of familiarity with the Nahm pole
boundary condition. With this in mind, I have been
working with Rafe Mazzeo trying to give a detailed
mathematical theory of that boundary condition.
We have written one paper formulating rigorously
the Nahm pole boundary condition in the absence
of knots, and we are trying to generalize this to
include the knots. The necessary inequalities are
available, but some details are not yet in place.

Masahito Yamazaki: I see. That’s a very nice
story of the physics-mathematics interaction. You
were partly motivated by the important papers in
mathematics and interpreted them as a physicist.
Then you have your own physics story and you are
now trying to bring it back to mathematics.

Witten: As I have mentioned, the version that
Cautis and Kamnitzer were actually able to un-
derstand was the B-model. Since it doesn’t have
manifest three-dimensional symmetry, I decided
to concentrate on the A-model, but if I ever have a
couple of months to spare, I would try to explain
as a physicist the Cautis and Kamnitzer B-model.
I’m reasonably optimistic I could do that and I
think it would be illuminating. The only problem is
that there are a lot of things like that—interesting
loose ends that I think I could clarify if I spend a
few months on them.

Langlands Correspondence and Gauge
Theory Dualities
Ooguri: That the Langlands correspondence has
something to do with S-duality was there even in the
late 1970s. When was it that you actually realized
the significance of it?

Witten: I didn’t give the complete explanation of
my interaction with Michael Atiyah in 1977. He told
me about two things that were new to me. One was
the Montonen-Olive paper and the other was the
Langlands correspondence, which plays a central
role in number theory but which I had never heard
of. He had noticed that the dual group of Langlands
and the dual group that enters the Montonen-Olive
conjecture (and which had been introduced earlier
by Peter Goddard, Jean Nuyts, and Olive) were the
same. On this basis, Atiyah suspected that the
Langlands correspondence has something to do
with the Montonen-Olive conjecture.

Ooguri: So that was in the late 1970s?
Witten: It was December of 1977 or January of

1978. That was when I visited Oxford for the first
time.

Ooguri: Did you take seriously already at that
time that the Langlands correspondence had some-
thing to do with this gauge theory dynamics?

Witten: Well, I didn’t forget about it, but since, as
I already told you, I was skeptical about Montonen-
Olive duality, I didn’t seriously try to relate it to
Langlands duality and I didn’t try to learn what
Langlands duality was. I did not learn anything
more about these matters until the late 1980s. Then
I learned just superficially about the Langlands
correspondence. If one knows even a little bit about
the Langlands correspondence and a little bit about
conformal field theory on a Riemann surface, one
can see an analogy between them. I wrote a paper
that was motivated by that, but then I realized that
my understanding was too superficial to lead to
anything deep, so I abandoned the matter for a
number of years.

Ooguri: I remember when I was a postdoc at
the Institute for Advanced Study in 1988 and 1989,
Robert Langlands himself was actually quite inter-
ested in conformal field theory. I am not sure exactly
which aspect he was interested in, however.

Witten: I don’t think he was motivated by the
Langlands correspondence. But I think his work
was influential. Even though in a sense he didn’t
precisely make any major breakthrough himself,
he helped to find the questions that stimulated the
later development of Stochastic Loewner Evolution,
which has had a major impact on mathematics
and has even enlightened physicists about new
ways to think about some questions in conformal
field theory. I think Langlands was an influence
behind this work, but I do not believe his interest
in conformal field theory was motivated by the
Langlands correspondence or by gauge theory
dualities. This is my impression from interacting
with him over the years.

As I have already remarked, in the late 1980s,
after spending some time trying to develop the
analogy between conformal field theory and the
Langlands correspondence, I concluded reluctantly
that the analogy in the form I was developing
was way too superficial, so I stopped. But then
around 1990, I heard about new work of Alexander
Beilinson and Vladimir Drinfeld on the geomet-
ric Langlands correspondence. This had a few
consequences. First of all, it confirmed that my
understanding of what the duality would mean in
physics was way too superficial. What they had was
much more incisive and much more detailed than
my rather primitive analogy between the Langlands
correspondence and conformal field theory. Their
work confirmed that physics that I knew was
relevant. But I was troubled, because they were
using conformal field theory in a way that didn’t
make any sense to me. They studied conformal
field theory at negative integer levels—in physics
positive integers are more natural here—and used
it in ways that looked quite strange.

May 2015 Notices of the AMS 501



Familiar Ingredients That Seemed Not to Fit
As I explained yesterday in my lecture at the
Kyoto Prize Symposium, for a number of years, the
“volume conjecture” concerning the Jones polyno-
mial (formulated and developed starting around
2000 by Rinat Kashaev, Hitoshi Murakami, and Jun
Murakami, among others, and explained to me in
large part by Sergei Gukov) bothered me. Although
their statements bore a superficial resemblance to
physically well-motivated statements—in fact, to
statements that I myself had made in my original
paper on the Jones polynomial in 1988—there was
a crucial difference. They seemed to have com-
plex critical points that made exponentially large
contributions, and this normally is not possible
in physics. I am not sure if this point bothered
anyone else, but it bothered me. It turned out that
this was a good question to think about, since
I eventually found a nice explanation, and this
was a turning point in enabling me to understand
Khovanov homology via gauge theory.

The work of Beilinson and Drinfeld on geometric
Langlands bothered me in much the same way.
They were using familiar ingredients of physics,
but they were using them in ways that did not
seem to fit. It looked like somebody had taken a
bunch of chess pieces, or perhaps here in Japan
I should say a bunch of shogi pieces, and placed
them on the board at random. The way that the
pieces were arranged did not make any sense to
me. That bothered me, but I could not do anything
about it.

Actually, the very little bit of what Beilinson and
Drinfeld were saying that I could understand made
me wonder if the work of Nigel Hitchin would be
relevant to them, so I pointed out to them Hitchin’s
paper in which he had constructed commuting
differential operators on the moduli space of
bundles on a curve. Differently put, Hitchin had in
a certain sense quantized the classical integrable
system that he had constructed a few years before.
Although I understood scarcely anything of what
Beilinson and Drinfeld were saying, I did put them
in touch with Hitchin’s work, and actually, in
their very long, unpublished foundational paper
on geometric Langlands that you can find on the
Web, Beilinson and Drinfeld acknowledged me very
generously, far overestimating how much I had
understood. All that had really happened was that
based on a guess, I told them about Hitchin’s work,
and then I think that made all kinds of things
obvious to them. Maybe they felt I knew some
of those things, but I didn’t. But anyway, there
were ample reasons in those years to think that
geometric Langlands had something to do with
physics, but as you can see I still couldn’t make
any sense out of it.

Ooguri: So, what inspired you to return to this?

Witten: A decade later there was a workshop
at the Institute for Advanced Study on geometric
Langlands for physicists. Were you there?

Ooguri: I was invited, but there was a conflict of
schedule, so I couldn’t go. I missed it.

Witten: There were two long series of lectures
and then there were a couple of outliers. The long
series were very well done, but they did not help
me very much. Mark Goresky gave a long series
of lectures aiming to tell physicists what is the
Langlands correspondence. The only trouble for
me was that to the extent that one can explain this
topic in a couple of lectures, assuming essentially
no knowledge of algebra beyond the definition of
a field (in the algebraic sense), I was familiar with
the Langlands correspondence already. Namely, I
didn’t really know anything about it, but I knew as
much as one could explain in a few hours starting
from zero. So I couldn’t really get much out of
those lectures.

In addition, Ed Frenkel (who had been the prime
mover behind the occurrence of this workshop)
gave a series of lectures that, as far as I was
concerned, were basically about the shogi board
on which the pieces have been arranged at random.
I really couldn’t get much out of those lectures
either, because I already knew that people working
on the geometric Langlands were taking familiar
pieces from the shogi set and arranging them on
the board at random as far as I was concerned.

There were a couple of additional lectures that
weren’t part of any series. One of them was by
David Ben-Zvi. He told us about what was supposed
to be an approximation to the geometric Langlands
correspondence. I think he was talking largely about
the work of another mathematician, Dima Arinkin.
What was supposed to be the approximation to
the geometric Langlands correspondence was T-
duality on the fibers of the Hitchin fibration. This
was described by Ben-Zvi in a complex structure
in which the fibers of the Hitchin fibration are
holomorphic, so the T-duality is a holomorphic
duality. It was already known to physicists that the
T-duality on the fibers of the Hitchin fibration comes
from Montonen-Olive duality in four dimensions,
and of course ever since Atiyah’s observations of
1977–78, I had been aware of the possibility that
some version of the Langlands correspondence
might be associated to Montonen-Olive duality. But
what about the fact that Ben-Zvi was only claiming
to deduce from T-duality an approximation to
geometric Langlands duality rather than the real
thing? At a certain point, I started to suspect that
the reason for this was simply that Ben-Zvi was
describing the situation in the wrong complex
structure. The idea was that the same T-duality of
Hitchin’s moduli space, viewed differently, would
give a mirror symmetry between a B-model in a
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certain complex structure and an A-model in a
certain symplectic structure. This mirror symmetry
was supposed to be the true geometric Langlands
duality, not the approximation. Actually, the reason
I started working on geometric Langlands with
Anton Kapustin was that he had studied generalized
complex geometry in two-dimensional dualities. In
that world, a family of dualities can degenerate,
and a mirror symmetry can degenerate to a
holomorphic duality.

When one starts thinking along these lines, it
soon makes a lot of sense that the geometric
Langlands duality is really a mirror symmetry,
which can degenerate to a holomorphic duality,
and that this is the approximation Ben-Zvi taught
us about. I became convinced that that had to be
right. There were still a few hurdles to overcome.
The most difficult one I already described earlier.
One does not get to first base with the Langlands
correspondence without Hecke operators, so it
was necessary to have a physical interpretation of
Hecke operators in terms of ’t Hooft operators of
gauge theory. It was also necessary to know how
to interpret the A-model of the cotangent bundle
of a complex manifold M in terms of differential
operators on M . This actually was fairly close to
things that Kapustin had done earlier. Once these
points were understood, it was pretty clear to me
as a physicist what geometric Langlands duality is.

I Felt Like I Discovered the Meaning of Life
and Couldn’t Explain It
But it was very hard to write a paper about it.
It took about a year. For that year, I felt like
someone who had discovered the meaning of life
and couldn’t explain it to anybody else. And in a
sense, I still feel that way for the following reason.
Physicists with a background in string theory or
gauge theory dualities can understand my paper
with Kapustin on geometric Langlands, but for
most physicists this topic is too detailed to be really
exciting. On the other hand, it is an exciting topic
for mathematicians but difficult to understand
because too much of the quantum field theory
and string theory background is unfamiliar (and
difficult to formulate rigorously). That paper with
Kapustin may unfortunately remain mysterious to
mathematicians for quite some time.

Masahito Yamazaki: Maybe that means that we
have to wait an extra ten or fifteen years before…

Witten: We indeed may have to. I think it’s
actually very difficult to see what advance in the near
term could make the gauge theory interpretation of
geometric Langlands accessible for mathematicians.
That’s actually one reason why I’m excited about
Khovanov homology. My approaches to Khovanov
homology and to geometric Langlands use many
of the same ingredients, but in the case of

Ooguri and Witten.

Khovanov homology, I think it is quite feasible that
mathematicians could understand this approach in
the near future if they get excited about it. I believe
it will be more accessible. If I had to bet, I think I
have a decent chance to live to see gauge theory and
Khovanov homology recognized and appreciated
by mathematicians, and I think I’d have to be
lucky to see that in the case of gauge theory and
the geometric Langlands correspondence—just a
personal guess.

Yokinobu Toda: Do you think your idea of the
S-duality and the geometric Langlands can be some-
how applied to the honest Langlands program?

Witten: I see that as being far away. For me
personally, it’s a dream that eventually number
theory would make contact with physics sometime,
but I doubt it will be soon.

There are all kinds of areas where specific
number theory formulas appear in physics, and
these may be clues that the dream will come true
one day. But to really get me excited, somehow the
number theory would have to enter the physics
in a more structural way. I’m not that interested
in a specific formula that comes out of a physics
calculation in a more or less ad hoc fashion.
Number theory would have to be more integrated
with the physics to get me excited, and I don’t see
that happening soon.

In my work, I concentrated on the geometric
form of the Langlands correspondence because I
could see that there was hope to really understand
it in the context of the physics-based tools that
were at hand. There might be something like that
one day for the Langlands correspondence of
number theory, but probably a lot is missing, and
we do not know what has to happen first. I feel
that the reason I was able to make progress was
that my focus was much more narrow than trying
to understand the Langlands correspondence of
number theory.
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Yokinobu Toda: The relationship between S-
duality and geometric Langlands was surprising to
me, as number theory seems to be a research area
far from physics.

Witten: Nevertheless, there have been many
developments which one day may be seen as
important clues. One of the deepest was started
roughly fifteen years ago by Savdeep Sethi and
Michael Green and then continued by Green with
many collaborators. In the original work, Sethi and
Green were trying to understand certain low energy
R4 interactions in Type IIB superstring theory in
ten dimensions (here R is the Riemann tensor).
They made an amazing discovery, I would say:
the answer is given by a certain nonholomorphic
Eisenstein series of weight 3/2. Although my
knowledge of number theory is very superficial,
I think that this sort of thing is much closer to
the interests of modern number theorists than the
aspects of classical modular forms that usually
appear in two-dimensional conformal field theory.

Ooguri: Those objects which are not totally mod-
ular have also appeared in number theory.

Witten: That is correct. A lot of things that
number theorists like have appeared in physics,
and some have even appeared in my own work.
Plenty has been found to show that the physics
theories that we work on as string theorists are
interesting in number theory. These theories know
something about number theory, but personally
I don’t see an opportunity to really make contact
in a structural way with number theory in the
foreseeable future. I can’t even formulate what it
would mean to make such contact, so I can’t even
properly tell you what we can’t do but I think the
time is not right to do it.

Anyway, that’s why I personally concentrated on
geometric Langlands rather than on number theory,
and geometric Langlands was hard enough. It was a
lot of work to understand it, but I think that having
understood it, many things that mathematicians
do involving geometric aspects of representation
theory are much more accessible as part of physics.
For example, I did not understand what Hiraku
Nakajima explained yesterday at the Kyoto Prize
Workshop, but I think that an understanding might
involve some of the things that were clear after
working with geometric Langlands. I can’t promise,
but it is worth a try.

Just one obvious thing is that although Nakajima
did not have time to explain the whole picture,
at the end of his lecture he was telling us about
the affine Grassmannian. Isomorphism classes of
’t Hooft operators are associated to cycles in the
affine Grassmannian, so if a mathematician tells
you about the affine Grassmannian, you probably
want to think about at least part of what you are
hearing in terms of ’t Hooft operators. I can make

no promises, but I feel it would definitely be worth
a try to understand what Nakajima was saying
from a physicist’s viewpoint.

I am sure, at any rate, that there is much more
that can and should be done to understand much
more of geometric representation theory from a
physical viewpoint. In fact, part of the original work
of Beilinson and Drinfeld on geometric Langlands
has still not been understood to my satisfaction.
Here I have in mind the use of conformal field
theory at what they call the critical level (level
−h, where h is the dual Coxeter number) to
construct the A-model dual of certain B-branes
(the ones that are associated to opers, in the
language of Beilinson and Drinfeld). Davide Gaiotto
and I obtained a few years ago a reasonable
understanding of what electric-magnetic duality
does to the variety of opers, but I still do not really
feel I understand its relation to conformal field
theory. However, in the last few years physicists
working on supersymmetric gauge theories in four
dimensions and their cousins in six dimensions
have made several discoveries involving the role
of conformal field theory at the critical level, so
the time may well be right to resolve this point.

How to Work with Mathematicians
Yokinobu Toda: I have a general question. What
kinds of problems should mathematicians work on?

Witten: Well, there are lots of problems that
algebraic geometers study that involve dualities
studied by physicists. In many of those cases, I
will not be able to give much advice, as I am not an
expert on recent developments. In some cases, I am
still struggling to understand things that physicists
did quite some time ago that are very relevant.
Just to give one example, the Gopakumar-Vafa and
Ooguri-Vafa formulas have been very influential
for algebraic geometers, but as a physicist, I was
never satisfied that I understood them. So I actually
spent a lot of time in the last year with a student
(Mykola Dedushenko) trying to understand these
formulas better. In this work, I was doing some of
the homework that I’d have to understand before
even trying to answer your question.

Ooguri: You will talk about it next week at the
Kavli IPMU [later published as a paper, “Some de-
tails on the Gopakumar-Vafa and Ooguri-Vafa for-
mulas,” arXiv:1411.7108].

Witten: Going back to Yukinobu’s question,
although there are many areas of current interest
on which I probably cannot give useful advice,
there is one bit of advice that I actually would offer
to algebraic geometers. I do recommend super
Riemann surfaces. I’m sure there’s a deep theory
there. I can’t promise anything about how quickly
it will emerge. A deep theory will probably only
be developed in the near term if enough people
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get excited about it. Maybe the workshop we are
having next spring at the Simons Center will help
make that happen. We will see.

Ooguri: It’s certainly true that when people were
working on the finiteness and vanishing of the cos-
mological constant in perturbative string theory
twenty-five to thirty years ago, it was not totally sat-
isfactory. The complete understanding came only
after your proper description in terms of geometry
of super Riemann surfaces.

Witten: Thank you, Hirosi, and I’m glad you
think so. Not all physicists agree, because it is
possible to express everything in terms of picture-
changing operators and so on, hiding the super
Riemann surfaces. I think personally that when
one does that, one doesn’t understand properly
what the formulas mean. But not everybody agrees.

I think one reason that the theory of super
Riemann surfaces stopped developing in the 1980s
was that physicists became satisfied with their
partial understanding in which the super Riemann
surfaces were hidden. There is a tremendous
beauty to this subject that I think is simply missed
if you try to understand things that way. I care
about it enough to have spent several years by now
on spelling out details of the description in terms
of super Riemann surfaces.

It has seemed unclear that a lot of physicists
would really get excited about the sort of details
that I was trying to fill in. So one of my hopes has
been that mathematicians will get excited about
developing super Riemann surface theory. I can’t
promise, but I think they should.

Ooguri: Do you expect also new physics insight
coming out of the more precise understanding of
perturbative string theory?

Witten: The answer may depend on what you
mean by physics insight. I think that one under-
stands better what superstring perturbation theory
means if one formulates it in terms of integration
on the moduli space of super Riemann surfaces.
That is insight of a sort. However, I do not see any
evidence at the moment that incorporating super
Riemann surfaces in the way that we understand
perturbation theory will help us with nonperturba-
tive questions, for example, or with understanding
better the symmetry structure of string theory or
whatever may be the correct concept.

Masahito Yamazaki: Let me ask my last ques-
tion. You’re working partly in the area of mathe-
matical physics. You have a lot of discussion with
mathematicians and also write math papers.

Witten: Well, I write math papers in very special
cases where I think something I could actually do
would be illuminating. Recent examples have been
my work with Ron Donagi on some foundational
questions about the moduli space of super Riemann
surfaces and the work with Rafe Mazzeo that I

mentioned before on the Nahm pole boundary
condition.

Masahito Yamazaki: I see. So, my question is,
what’s the advice if a physicist wants to work with
a mathematician effectively?

Witten: It’s really difficult to give advice. Usually
producing rigorous proofs requires very detailed
methods. That makes it hard for a physicist, and so
I myself have only done that in very special cases
where I thought something was really missing that
was actually simple enough that I could help do
it if I had the right collaborator. Some physicists
would want to go into more detail and learn the
techniques for rigorous proofs in a particular area,
but most physicists I think will only be happy and
successful doing that in very special cases like the
ones I’ve picked.

Masahito Yamazaki: I see. Is it also true that in
many of your works, the conversation with some
mathematicians has been an inspiration for you?

Witten: This usually happens when something
a mathematician has done involves an aspect of
the physics that hasn’t been understood and that
doesn’t make sense to me. I mentioned earlier
one case involving the volume conjecture. For
years I could not understand the results in this
area because complex critical points were making
exponentially large contributions. I kept putting it
aside, not able to make progress.

Finally, in the summer of 2009, I attended a
conference at the Hausdorff Institute in Bonn on the
twentieth anniversary of the Chern-Simons theory.
I heard more lectures on the volume conjecture.
To me, it was just embarrassing to not understand
why exponentially large contributions were coming
in. I feel vindicated in hindsight for worrying so
much about this question, because the answer
turned out to be really useful.

Masahito Yamazaki: I see. In that case the feel-
ing that the pieces are not in the right place led you
to the question, which you eventually solved, and
also it led to new developments.

Witten: Yes. Another case was when I felt
that Beilinson and Drinfeld had the shogi pieces
jumbled on the chessboard.

Message for Young Students
Ooguri: Pieces are placed in a wrong way, but if
you look at it in different dimensions, perhaps they
are totally aligned.

I also have a final question. In the interview with
Tohru Eguchi twenty years ago in Sugaku Seminar,
he asked you about the prospects at the interface
of mathematics and physics, and you replied
saying that the area had been certainly growing
very strongly and you predicted that the progress
would continue in the foreseeable future. Certainly
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your prediction has been amply verified in the last
twenty years. Given this, my question is, again, what
is your prospect for the next twenty years? Can you
also give advice on the future of the field for young
students who will be reading this article?

Witten: First of all, in the last twenty years,
not only has this interaction of math and physics
continued to be very rich but it has developed in
such diversity that very frequently exciting things
are done which I myself am able to understand
embarrassingly little about, because the field is
expanding in so many directions.

I am sure that this is going to continue and I
believe the reason it will continue is that quantum
field theory and string theory, I believe, somehow
have rich mathematical secrets. When some of
these secrets come to the surface, they often come
as surprises to physicists because we do not really
understand string theory properly as physics—we
do not understand the core ideas behind it. At an
even more basic level, the mathematicians are still
not able to fully come to grips with quantum field
theory and therefore things coming from it are
surprises. So for both of those reasons, I think that
the physics and math ideas generated are going to
be surprising for a long time.

I think there are definitely exciting opportunities
for young people to come and help explain what it
all means. We don’t understand this properly. We
got a wider perspective in the 1990s when it became
clear that the different string theories are unified
by nonperturbative dualities and that string theory
in some sense is inherently quantum mechanical.
But we’re still studying many different aspects of
a subject whose core underlying principles are not
clear. As long as that is true, there are opportunities
for even bigger discoveries by today’s young people.
But if I could tell you exactly what direction you
had to go in, I would be there.

Ooguri: Thank you very much for taking time
to talk to us. It has been fun. Congratulations again
on your Kyoto Prize.

Witten: Thank you so much for your kind words
on the Kyoto Prize, and also thank you for the
discussion, because the discussion has helped me
remember how much we have advanced in the last
twenty years.

Ooguri: Let’s meet again twenty years from now
to assess our progress in the next twenty years.

Witten: Let’s try. For that we will all have to
exercise and keep fit.
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