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Investigating and 
Improving Undergraduate 
Proof Comprehension
Lara Alcock, Mark Hodds, Somali Roy, and Matthew Inglis

Undergraduate mathematics students see a lot of 
written proofs. But how much do they learn from 
them? Perhaps not as much as we would like; 
every professor knows that students struggle to 
make sense of the proofs presented in lectures 
and textbooks. Of course, written proofs are only 
one resource for learning; students also attend 
lectures and work independently or with support 
on problems. But because mathematics majors 
are expected to learn much of their mathemat-
ics by studying proofs, it is important that we 
understand how to support them in reading and 
understanding mathematical arguments. 

This observation was the starting point for 
the research reported in this article. Our work 
uses psychological research methods to generate 
and analyze empirical evidence on mathematical 
thinking, in this case via experimental studies of 
teaching interventions and quantitative analyses 
of eye-movement data. What follows is a chrono-
logical account of three stages in our attempts to 
better understand students’ mathematical reading 
processes and to support students in learning to 
read effectively. 

In the first stage, we designed resources we 
called e-Proofs to support students in under-
standing specific written proofs. These e-Proofs 
conformed to typical guidelines for multimedia 
learning resources, and students experienced 
them as useful. But a more rigorous test of their 
efficacy revealed that students who studied an e-
Proof did not learn more than students who had 
simply studied a printed proof and in fact retained 
their knowledge less well. This led us to suspect 
that e-Proofs made learning feel easier, but as a 
consequence resulted in shallower engagement 
and therefore poorer learning. 

At the second stage we sought insight into pos-
sible underlying reasons for this effect by using 
eye-movement data to study the mechanisms of 
mathematical reading. We asked undergraduate 
students and mathematicians to read purported 
proofs and found that experts paid more atten-
tion to the words and made significantly more 
back-and-forth eye movements of a type consistent 
with attempts to infer possible justifications for 
mathematical claims. This result is in line with the 
idea that mathematical experts make active efforts 
to identify logical relationships within a proof and 
that effective guidance might therefore be needed 
to teach students to do the same thing. 
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that could be played with a click. Students could 
navigate freely through the screens, listening to 
the audio and watching the animations as many 
or as few times as they wished (for detail see [1]).

Our e-Proofs were designed to capture the ad-
ditional explanations that a professor might give 
in a lecture and to improve upon them by ensuring 
that students’ attention was appropriately focused. 
The design features of e-Proofs meant that they 
conformed to guidelines typically offered as a con-
sequence of research on multimedia educational 
resources: they moved some essential processing 
from visual to auditory channels, they allowed 
time between successive bite-sized segments, they 
provided cues to reduce processing of extraneous 
material, they avoided presenting identical streams 
of printed and spoken words, and they presented 
narration and corresponding animation simultane-
ously to minimize the need to hold representations 
in memory (cf. [2]). The provision of e-Proofs was 
popular with students, who saw them as a useful 
supplement to lectures. Free-form feedback on 
the course as a whole evoked numerous remarks 
of the type that are encouraging for educational 
innovators:

I found hearing the lecturer explaining 
each line individually helpful in under-
standing particular parts and how they 

relate to the entire proof.

Having proofs online does make it easier 
to go at my own pace while still having 

the lecturer explain each part.
Unfortunately, it turned out that our e-Proofs 

did not have the desired effects in terms of im-
proved understanding and learning. We discovered 
this by conducting an experimental study in which 
students studied a new theorem (Cauchy’s general-

Finally, at the third stage, we produced such 
guidance by adapting self-explanation training to 
form a simple, generic guide to studying math-
ematical proofs. In a series of three studies we 
found that students who studied the training gave 
higher-quality mathematical explanations, exhib-
ited altered eye movements that were more like 
those of expert mathematicians, and performed 
significantly better in both immediate and delayed 
proof comprehension tests. In the remainder of 
this article we explain this work in detail, giving 
rationales for our empirical study designs, explain-
ing the nature of the self-explanation training, and 
expanding the arguments outlined here. 

e-Proofs 
We began by considering the challenges students 
face when learning from proofs presented in lec-
tures. One problem, as we saw it, was that live ex-
planations given in lectures are potentially ambigu-
ous and certainly ephemeral: gestures indicating 
where attention should be focused can be vague, 
and the professor’s additional explanations often 
go unrecorded so they are no longer available when 
students engage in independent study of their 
notes or a textbook. We set out to remedy this by 
taking advantage of straightforward presentation 
technology, constructing e-Proofs for several of the 
more difficult theorems in a course on real analy-
sis (the course covered typical early material on 
continuity, differentiability, and integrability, with 
epsilon-delta definitions). Each e-Proof showed 
a theorem and a complete accompanying proof  
and was split into 8–10 screens. Each screen (see 
Figure 1 for an example) focused attention on 
particular aspects of the proof by graying out 
some areas and indicating links with boxes and 
arrows; each had a short accompanying audio file 

Figure 1. A typical e-Proof 
screen. The accompanying 
audio said, “In the first line, 
we state our assumption 
that f and g are continuous 
at a, which corresponds 
to the premise of our 
theorem. We also let 
epsilon greater than zero 
be arbitrary, because 
we want to show that fg 
satisfies the definition 
of continuity at a, which 
we will achieve by the 
end of the proof. Doing 
so involves showing that 
something is true for all 
epsilon greater than zero, 
so choosing an arbitrary 
epsilon means that all our 
reasoning from now on will 
apply to any appropriate 
value.”
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Nevertheless, this result presented a salutary 
lesson on the limitations of our own understand-
ing of the process of learning from mathematical 
text: it was clear that we should not construct 
more e-Proofs or recommend their wider use until 
we knew more about students’ reading processes. 

The outcome also raised the broader concern 
that students might not be accurate reporters on 
the quality of their own learning. In this case, it 
seemed likely that students using e-Proofs felt 
good about their learning because they were able 
to understand without too much effort, but that 
this very fact meant that the understanding they 
acquired was less robust in the longer term. This 
explanation has been largely confirmed in further 
studies by the third author—for details see [5]—
and is also supported by the remainder of the work 
presented in this article.

Eye Movements during Mathematical 
Reading
Our next move was to take a step back and begin 
a more basic investigation of mathematical read-
ing, studying this process by comparing experts’ 
and novices’ eye movements. Eye movements can 
be studied using technology that allows the re-
searcher to track an individual’s focus of attention 
as that person views information presented on a 
screen. Modern remote eye-trackers monitor the 
viewer’s pupils using infrared cameras, which are 
not invasive. Before recording, the tracker must 
be calibrated by asking the viewer to follow a dot 
around the screen with their eyes, but the viewer 
feels nothing, and after calibration the screen 
looks and behaves exactly like that of an ordinary 
computer. Eye-tracking is used widely in research 
on reading (e.g. [6]), and the empirically established 
close link between fixation location and attention 
location [7] means that it provides a useful window 
into the processes involved in reading a text. 

Specifically, eye movements lend themselves to 
quantitative analyses because, although readers 
experience smooth movement as their eyes shift 
around a screen, eye movements in fact consist 
of short fixations—typically of around 150–500 
milliseconds (ms)—interspersed by very rapid 
moves known as saccades (e.g. [8]). Figure 3 shows 
a scan path tracing one participant’s reading of the 
instructions for our experiment.

To investigate mathematical reading processes 
we recruited groups of experts (mathematicians) 
and novices (first-year undergraduate mathemat-
ics students in the UK, roughly the equivalent 
of US sophomore mathematics majors in terms 
of mathematical experience). Participants were 
invited individually to visit our eye-movement lab  
and were asked to view several purported proofs. 
For each proof, they were asked to click buttons 
on a subsequent screen to indicate whether they 
believed the proof to be valid and how confident 
they were about their judgment. The first four 
purported proofs were very short arguments in 

ized mean value theorem) and an accompanying 
proof. The students were randomly assigned to 
either an experimental group who studied an  
e-Proof or a control group who studied the same 
theorem and proof on paper for the same fixed 
amount of time. All students then took a compre-
hension test designed according to the principles 
outlined in [3]: there were questions testing basic 
knowledge of algebra and differentiation, under-
standing of the logical reasoning used in the proof, 
application of ideas in the proof to examples, and 
ability to summarize the argument. This immedi-
ate post-test was followed two weeks later by an 
identical delayed post-test that was not announced 
in advance. The results appear in Figure 2.

The average scores of the experimental and 
control groups were not significantly different 
either at immediate post-test or at delayed post-
test. But there was a significant interaction effect: 
the performance of the students in the e-Proof 
group dropped more in the intervening time (for 
details see [4]). 

This was a humbling reminder that good peda-
gogical intentions do not always translate into 
effective interventions. It does not mean that 
resources like e-Proofs are never valuable—it 
could be, for example, that they are not good for 
first-time learners but are valuable resources for 
students who have already studied a proof inde-
pendently and would benefit from clarification on 
aspects that they have found confusing or difficult. 

Figure 2. Mean scores for the e-Proof group  
and the standard presentation group. Error 

bars show ±1 standard error of the mean.  
An analysis of variance (ANOVA) revealed 

a significant main effect of time, F (1, 47) = 
28.213, p < .001, and a significant  × time group 

interaction effect,  
F (1, 47) = 5.659, p = .021.
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elementary number theory that 
were presented as having been 
produced by students; the last two 
were longer and were presented as 
having been submitted to a recre-
ational mathematics journal (for 
details see [9]). 

We analyzed the eye-movement 
data in several stages. First, we 
looked at attention to different 
features of the proofs. Previous 
research based on interview stud-
ies had led to suggestions that stu-
dents made poor judgments about 
proof validity because they tended 
to focus on the “surface features” 
of proofs; that they attended ade-
quately to algebraic manipulations 
but not to the logical structure of 
an argument as a whole [10]. Our 
eye-movement data suggested that 
this might indeed be the case. 

Figure 4 (next page) shows one 
of the longer purported proofs, 
together with heat maps indicating 
the degree of attention to differ-
ent parts of this purported proof 
by the novices (bottom) and the 
experts. There is an immediately 
apparent difference in that the 
expert mathematicians were very 
interested in the fifth line of the 
argument. The validity of the proof 
depends upon the claim in this 

line, but the claim is invalid in general and there 
is no information elsewhere that would make it 
valid in this context by restricting its applicability. 
More subtly, the differences do suggest that the 
students attended more to the algebraic notation. 

Figure 3. A scan path tracing one participant’s 
eye movements while reading the instructions 
for the experiment. The discs indicate fixation 
locations and the straight lines indicate 
saccades between those locations (these 
images are produced postrecording by the 
eye-tracking software and are not visible to the 
viewer). 
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Figure 4. Heat maps showing attention to different parts of an invalid purported proof by  
mathematicians (top) and undergraduates (bottom) based on data averaged across all participants.
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line should follow logically from theorem prem-
ises, previous lines, and agreed definitions and 
theorems (a specific proof might, of course, have 
a structure more complex than this). In principle 
it could be that for each deduction there is an ex-
plicitly stated warrant, a justification for the new 
claim [11]. In practice, however, many warrants will 
be left implicit: the author of a proof will expect 
readers to be able to infer warrants considered to 
be either common knowledge (in the appropriate 
context) or otherwise sufficiently obvious from 
the written material. A reader engaged in a seri-
ous attempt to understand a proof therefore has 
to decide whether a new line requires a warrant 
and to identify whether and where information 
relevant to a possible warrant appears elsewhere 
in the theorem or proof. If individuals do this, we 
would expect to see it reflected in their eye move-
ments: saccades should take them back and forth 
between the various lines of the proof.

To obtain a simple measure of this type of 
behavior, we counted saccades of two types: 
within-line saccades that began and ended within 
the same line of a proof and between-line saccades 
that began and ended in different lines of the 
proof (there were of course saccades that began 
or ended in white space or off the screen; these 
were not included in our analysis). We found that 
experts and novices read differently: the experts 
made significantly more between-line saccades,1 

which is consistent with a search for logical  
relationships among the lines of the proofs.  
Figure 6 (next page) illustrates this by showing a 
scan path of one mathematician’s reading of one 
of the longer purported proofs. Comparing this 
with the same mathematician’s reading of our in-
structions in Figure 3 highlights an important dif-
ference: there is much more back-and-forth move-
ment than one typically sees in ordinary reading.

This result is particularly notable given the 
mathematical content of the proofs. This content 
was very straightforward for the mathemati-
cians, necessarily so because our experimental 
design required the material to be accessible to 
undergraduates. As a result, one would expect the 
mathematicians’ reading behavior to involve less 
checking back and forth than would be necessary 
for the novices. The fact that the experts instead 
exhibited more of this behavior strongly suggests 
that this is an important feature of expert math-
ematical reading and one that needs to be devel-
oped by typical undergraduates.

Eye-movement data is a rich source of informa-
tion, and, combined with our other data, it also 
allowed us to conduct further analyses. Using 
the validity judgments, we confirmed that under-
graduates did not perform well in distinguishing 
valid from invalid proofs. But we also found that 
mathematicians did not agree nearly as much 
as might be expected about the validity of even 
simple arguments; we have since followed up on 
this result with a larger study reported in [12]. 

Statistical analyses confirmed this observation. 
For all six of the purported proofs, we calculated 
the participants’ total dwell times on the formulae 
and on the remaining text (dwell time is calcu-
lated by adding the durations of all the individual  
fixations in a given area of interest; formulae were 
identified as those parts typeset with math mode 
in LATEX). As can be seen in Figure 5, the mean 
dwell times of the experts and the novices dif- 
fered: the groups spent about the same amount of 
time looking at the formulae, but the mathemati-
cians spent more time looking at the words. This 
provides a measure of empirical support for what 
many mathematicians suspect: that students at the 
transition-to-proof level are attentive to algebra 
but are comparatively unlikely to notice invalid 
logical reasoning as captured in words.

Next, we looked at another global feature  
of reading behavior: the pattern of saccades 

around the screen as the reader worked to un-
derstand the proof. This required some ana-
lytical decisions because it is not practical to   
describe and meaningfully compare single read-
ing attempts: a five-minute attempt could involve 
over 1,000 fixations, so general patterns are easily 
swamped by the detail. We proceeded, therefore, 
by considering prior theoretical analyses of argu-
ments in general and mathematical arguments in 
particular.

To a first approximation, a proof can be con-
sidered as a sequence of deductions in which each 

Figure 5. Mean total dwell times on formulae 
and nonformulae for mathematicians and 
undergraduates. Error bars show ±1 standard 
error of the mean. An ANOVA revealed a 
significant type × status interaction: F(1, 28) 
= 8.81, p = .006, η2

p= .239; the students spent 
proportionately longer fixating on the formulae 
than did the mathematicians.

178.8 between-line saccades per proof compared with 53.3 
per proof, t(28)=2.11, p=.044, d=0.80.
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and growing literature on self-explanation effects 
(e.g. [16]), and variants on self-explanation training 
have been used with lower-level mathematics stu-
dents [17]. But such training had not been adapted 
for use in undergraduate mathematics. 

We adapted a version of self-explanation train-
ing from earlier materials used in [18] and [19]. 
Our training was presented in a series of computer 
slides for studies conducted in the lab and in a 
paper booklet for studies conducted in a lect- 
ure theatre. The slides and booklet elucidated key 
principles of self-explanation training as applied 
to mathematical proofs. Specifically, they:
•instructed students to identify key ideas in each 

line of a proof and to explain each line in terms 
of other ideas in the text or in terms of their 
own existing knowledge; 

•noted that self-explanation differs from simply 
paraphrasing the text without adding new infor-
mation and from making monitoring statements 
such as “Okay, I understand that line”; 

•demonstrated the self-explanation strategy by 
exhibiting possible student self-explanations in 
relation to a very short example proof; 

• instructed students to generate self-explanations 
in response to a practice proof. 
A full version of the self-explanation training is 

available at www.setmath.lboro.ac.uk; students 
in our studies spent approximately 15–20 minutes 
working through it. 

Our first study was conducted in the lab. 
Student participants attended an individual ses-
sion and were randomly assigned to either an 
experimental or a control group. Those in the 
experimental group studied the self-explanation 
training, and to equalize the time spent in the 
lab environment, those in the control group were 

Using the eye-movement data, we discovered that 
mathematicians did not conduct initial “skim 
reads” of the purported proofs, despite routine 
self-report-based claims that this is a common 
behavior (e.g. [13]); these results are reported in 
[9] and [14]. Finally, we examined eye-movement 
sequences that we considered particularly likely 
to indicate searches for implicit warrants: shifts 
from one line of a proof to its predecessor and 
back again. We found (see [9]) that mathematicians 
were three times more likely than undergraduates 
to make such eye movements but that both math-
ematicians and students were significantly more 
likely to behave in this way when a warrant was 
required (when a line required justification rather 
than simply, say, introducing new terminology). 
For the purposes of our work on proof comprehen-
sion, this indicated a possible way forward.

Self-Explanation Training in Mathematics 
We reasoned that if students were aware that 
they should be looking for justifications but were  
not doing so very much or very effectively, their 
comprehension could perhaps be improved via 
simple training encouraging them to devote more 
effort to this aspect of mathematical reading. 
The training approach we took was based on the 
literature on reading to learn and specifically on 
a promising intervention commonly termed self-
explanation training. Self-explanation training is 
based on early observations, that when learning 
from texts on Newtonian mechanics, students who 
showed better subsequent problem-solving per-
formance made more self-explanations: they were 
more inclined to articulate interpretations that in-
volved information and relationships beyond those 
explicitly contained in the text [15]. There is a large 

Figure 6. A 
scan path 
tracing one 
mathematician’s 
eye movements 
as he/she 
reads an invalid 
purported 
proof. 
Compared with 
the scan path 
in Figure 3, this 
shows more 
back-and-forth 
movement 
during the 
reading 
attempt.

http://www.setmath.lboro.ac.uk
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 The comprehension test data required a more 
nuanced analysis, because time spent studying the 
proof was correlated with comprehension score 
and because those in the self-explanation group 
spent longer on average studying the proof. We 
were not interested simply in increasing study 
time; we wanted to know whether students in the 
self-explanation group learned more effectively. 
We thus controlled for study time and found that 
the scores of students in the self-explanation 
group were significantly higher. Moreover, the 
size of the effect was large: the students who had 
received the self-explanation training scored on 
average almost one standard deviation higher than 
those in the control group. Finally, we found that 
this effect was evident across students from all 
three of the university’s academic years, as shown 
in Figure 8.

Encouraged by this experimental re-
sult, we went on to further study its causes  
by extending our eye-movement work. In  
particular, we were interested in whether self-
explanation training led to observable changes 
in reading behavior. This required a somewhat 
complex study design because, as might be antici-
pated, there is considerable individual variation in 
eye movements. 

asked to read and answer questions on a passage 
on the history of mathematics. Participants in both 
groups were then asked to read a proof presented 
on a screen, first silently and then taking one  
line at a time and giving explanations out loud. 
The only difference in this stage was that the  
self-explanation group was explicitly asked to use 
its training as a guide when generating these ex-
planations. Finally, each participant completed a 
fourteen-item free-response proof comprehension 
test designed according to the principles outlined 
in [20]. This study design provided us with two 
sets of data: the participants’ verbal explanations 
and their proof comprehension scores. 

Analyses revealed that the self-explanation 
training had the desired effect. The participants’ 
verbal explanations were classified using a scheme 
adapted from [19], and we found that students in 
the self-explanation group gave significantly more 
high-quality explanations: they produced around 
twice as many explanations that were classified 
as inferring warrants (articulating justifications), 
noticing coherence (relating lines of a proof to 
each other), or being goal driven (relating a line 
to the overall goal of proving the theorem). The 
full range of classification types and numbers is 
captured in Figure 7.

Figure 7. Mean numbers of explanations 
 of different types given by students 
 in the self-explanation training and 
 control groups. Error bars show ±1 
 standard error of the mean. Bonferroni-
corrected Mann Whitney U tests  
revealed significant differences in  
numbers of comments classified as 
 principle-based, U = 386, p < .001, noticing 
coherence, U = 399, p = .001, or goal-driven, 
 U = 407, p = .001 (and as positive monitoring, 
 U = 400, p < .001 and negative monitoring, 
 U = 440, p = .002).

Figure 8. Mean scores on the proof 
comprehension test, separated by condition 
and year of study. Error bars show ±1 standard 
error of the mean. A 3 (year) × 2 (condition) 
analysis with covariance (ANCOVA) with 
time as a covariate revealed a main effect 
of condition, F(1, 69) = 181.459, p < .001, 
with those in the self-explanation group 
outperforming those in the control group. It 
also revealed a main effect of year, F(2, 69) = 
3.456, p = .037, with those in Year 3 (M = 17.8, 
SD = 4.2) outperforming those in Years 2 (M = 
15.8, SD = 5.2) and 1 (M = 14.9, SD = 3.9), but no 
significant year × condition interaction, p > .2. 
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The design involved four groups and is rep-
resented diagrammatically in Figure 9. In this 
within-subjects design, every participant studied 
two proofs and completed two proof comprehen-
sion tests (multiple-choice tests in this case). This 
allowed us to study changes in individual reading 
behavior. The experimental groups received the 
self-explanation training and the control groups 
read the alternative text as before, and we were 
interested in comparing the groups’ reading be-
haviors and comprehension scores for the second 
proof they read. But it is also conceivable that 
differences between two proofs would generate 
systematic differences in reading behaviors and 
scores, so both the experimental and the control 
groups were split into two and a counterbalanced 
design was employed in which half saw one proof 
first and half saw the other. 

 Analyzing the comprehension scores again 
showed that self-explanation training had a posi-
tive effect. Independently of which proof was seen 
second and controlling for comprehension scores 
on the first attempt, the self-explanation groups 
outperformed the control groups.2

Of more interest in this case, however, was the 
change in reading behaviors. We investigated these 
using two separate measures. First, we looked at 
mean fixation duration, which acts as a measure 
of intellectual effort: higher mean fixation dura-
tions reflect harder concentration (e.g. [21]). We 
compared the mean fixation durations of students 
in the experimental and control groups on which-
ever proof they read second, this time controlling 
for mean fixation durations on proof read first to  
account for preexisting individual differences on 
this measure. This analysis revealed a between-
groups difference: regardless of the order in which 
the participants experienced the proofs, those who 
received the self-explanation training subsequently 
concentrated harder.3

Second, we looked as before at between-line 
saccades (see Figure 10). We compared the num-
bers of between-line saccades for students in the 
experimental and control groups on the proofs 
they read second, this time controlling for both the 
time taken to read this proof (we were effectively 
interested in between-line saccades per minute, 
not total saccades) and the number of between-line 
saccades for the proof read first (again to account 
for individual differences in reading behavior). This 
time we found a main effect of proof: some proofs, 
it seems, do prompt different reading behaviors. 
For the self-explanation training, we again found a  
significant difference in the expected direction: 
regardless of the order in which they experienced 
the proofs, students who had received the training 
subsequently made significantly more between-
line saccades. This indicates more shifts of atten-
tion around the proof and is consistent with more 
attention to logical relationships between the lines 
of the proof. In other words, students who had re-
ceived self-explanation training exhibited reading 
behaviors more like those associated with expert 
mathematical reading. 

Figure 9. Design for the study of the effects of self-explanation training on eye movements ([22],  
p. 74).

2An ANCOVA with two between-subjects factors (condi-
tion: self-explanation, control; proof read second: Proof 1, 
Proof 2) and one covariate (proof comprehension scores 
from the first reading attempt) showed a main effect of 
condition, F(1,27) = 8.850, p = .006, η2

p =0.247, but no sig-
nificant effect of proof order and no significant condition-
by-proof-order interaction, both Fs < 1. 
3An ANCOVA with two between-subjects factors (condi-
tion: self-explanation training, control; proof read second: 
Proof 1, Proof 2) and one covariate (mean fixation dura-
tions for the proofs read first) revealed a significant main 
effect of condition, F(1,23) = 14.234, p = .001, η2 

p=.382 but 
no significant main effect of proof order and no significant 
condition-by-proof-order interaction, ps > .3. 
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Figure 10. Mean numbers of between-line 
saccades for the proof read second, split 
by condition and proof read second. Error 
bars show ±1 standard error of the mean. An 
ANCOVA with two between-subjects factors 
(condition: self-explanation training, control; 
proof read second: Proof 1, Proof 2) and two 
covariates (number of between-line saccades 
made during the first proof reading attempt 
and the overall duration of the second proof 
reading attempt) revealed a significant effect 
of condition, F(1,22) = 10.394, p = .004, η2

p = 
0.321, and a significant effect of proof order, 
F(1,22) = 8.449, p = .008, η2

p = 0.277, but no 
significant interaction between condition 
and proof order, p = .742.
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teaching interventions. And it leads to a simple 
implication: undergraduate mathematics students 
should receive self-explanation training because 
this can be expected to improve their mathematical 
reading and consequently their proof comprehen-
sion. 

However, as is always the case with empirical 
research, our work has limitations and opens up 
more questions than it answers. It would be a 
mistake, for instance, to infer that self-explanation 
training constitutes a silver bullet: the proofs 
used in our studies were all fairly short ones 
drawn from number theory, the experimental 
groups did not end up with perfect understand-
ing, and certainly there is room for more nuanced 
research to investigate interactions between self-
explanation training and factors like mathematical 
topic, students’ prior knowledge, and alternative 
pedagogical strategies. It is possible, for instance, 
that self-explanation effects would be more pro-
nounced for certain groups of students, that the 
training might be ineffectual for some groups or 
for some mathematical topics, or that the effects 

Finally, we took our work out of the lab and into 
the classroom, conducting a larger-scale study of  
the effects of self-explanation training for stu-
dents working individually in an ordinary lecture 
theater. One hundred seven first-year calculus4 

students were randomly assigned to experimental 
and control groups, where in this case the self-
explanation group read a printed version of the 
self-explanation training and the control group 
read materials on time management for mathemat-
ics students. All students then read a proof and 
took a multiple-choice comprehension test. In this 
case, we also followed up twenty days later with a 
delayed post-test in which all students were asked 
to read a second proof and take a second multiple-
choice comprehension test. The results are shown 
in Figure 11; they indicated that in both immediate 
and delayed post-tests, scores of students in the 
self-explanation group were significantly higher. 

Detail on all three of our self-explanation stud-
ies can be found in [22].

Discussion 
The research reported here has given us improved 
insight into mathematical reading and expertise, 
and into the effects of specific research-based 

4 In the UK students specialize earlier than they do in US-
style systems. Participants in this study had worked on 
single-variable calculus as part of A-Level Mathematics 
between the ages of sixteen and eighteen and were taking 
a course that reviewed this material and extended it into 
multivariable calculus.

Figure 11. Mean scores at post-test and delayed 
post-test, split by condition and time. Error 
bars show ±1 standard error of the mean. An 
ANOVA with one within-subjects factor (time: 
immediate post-test, delayed post-test) and 
one between-subjects factor (condition: self-
explanation, control) showed a main effect 
of condition, F(1,105) = 6.024, p = .016, η2

p = 
0.054, but no significant effect of time and no 
interaction between condition and time, F < 1 
in both cases. The differences corresponded 
to effect sizes of d = 0.410 at post-test and d = 
0.350 at delayed post-test.
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could be enhanced by opportunities to practice 
self-explanation strategies in the classroom or 
by combination with other learning experiences. 
One important message in this regard is that at 
this stage we do not know—empirical research is 
required to investigate these possibilities. 

We believe that this message is particularly 
important in the contemporary educational envi-
ronment in which much is made of the potential of 
technology to enhance learning and much value is 
placed upon innovation. Much less value typically 
is placed on evaluation, and we think that this is a 
mistake. The world of the contemporary student is 
full of apparently useful resources, and access to 
these is becoming ever easier. This might be good, 
and it is certainly empowering: students can take 
charge of their own learning, locating and using 
resources that provide them with what they feel 
they need. But many resources are expensive to 
produce; developing them requires a substantial 
investment of academic time and technical sup-
port. And not all resources will lead to improved 
learning. As we discovered in our work with e-
Proofs, interventions that are designed to make 
things easier might succeed in that aim and might 
be well received, but this does not guarantee that 
they provide effective support for sustainable 
learning. This, we believe, will always make it risky 
to evaluate innovations using only self-reporting 
measures: students might sincerely believe that 
new resources are of benefit, and they might 
be right in the sense that those resources make 
learning easier in the short term, but our results 
collectively suggest that it might be preferable to 
leave some resources as they are and focus instead 
on helping students to engage with them effec-
tively. Perhaps some things should be difficult. 

With these comments in mind, we believe that 
the success of self-explanation training across our 
three studies is encouraging not only because it 
appears to be effective but also for two further rea-
sons. First, self-explanation training is extremely 
light touch: it is generic, it does not rely upon 
time-intensive adaptation of existing resources, 
and students can work through it independently 
in about 15–20 minutes (as noted above, the train-
ing is available at www.setmath.lboro.ac.uk for 
readers who might wish to use it). Second, self-
explanation training does not require more work 
from the student; it encourages more effective 
independent work by simply teaching students to 
make better use of their existing knowledge and 
reasoning skills. Studies in education research 
often highlight what students cannot do, so it is 
cheering to be able to present positive results based 
on things that they can. 
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