Martin Raussen and Christian Skau

The Prize

Raussen and Skau: Professor Nash, we would like to congratulate you as the Abel laureate in mathematics for 2015, a prize you share with Louis Nirenberg. What was your reaction when you first learned that you had won the Abel Prize?

Professor Nash: I did not learn about it like I did with the Nobel Prize. I got a telephone call late on the day before the announcement, which was confusing. However, I wasn't entirely surprised. I had been thinking about the Abel Prize. It is an interesting example of a newer category of prizes that are quite large and yet not entirely predictable. I was given sort of a pre-notification. I was told on the telephone that the Abel Prize would be announced on the morning the next day. Just so I was prepared.

Raussen and Skau: But it came unexpected?

Professor Nash: It was unexpected, yes. I didn't even know when the Abel Prize decisions were announced. I had been reading about them in the newspapers but not following closely. I could see that there were quite respectable persons being selected.

Youth and Education

Raussen and Skau: When did you realize that you had an exceptional talent for mathematics? Were there people that encouraged you to pursue mathematics in your formative years?

Professor Nash: Well, my mother had been a school teacher, but she taught English and Latin. My father was an electrical engineer. He was also a schoolteacher immediately before World War I.

While at the grade school I was attending, I would typically do arithmetic—addition and multiplication—with multi-digit numbers instead of what was given at the school, namely multiplying two-digit numbers. So I got to work with four- and five-digit numbers. I just got pleasure in trying those out and finding the correct procedure. But
the fact that I could figure this out was a sign, of course, of mathematical talent.

Then there were other signs also. I had the book by E. T. Bell, “Men of Mathematics”, at an early age. I could read that. I guess Abel is mentioned in that book?

Raussen and Skau: Yes, he is. In 1948, when you were twenty years of age, you were admitted as a graduate student in mathematics at Princeton University, an elite institution that hand-picked their students. How did you like the atmosphere at Princeton? Was it very competitive?

Professor Nash: It was stimulating. Of course it was competitive also—a quiet competition of graduate students. They were not competing directly with each other like tennis players. They were all chasing the possibility of some special appreciation. Nobody said anything about that but it was sort of implicitly understood.

Games and Game Theory

Raussen and Skau: You were interested in game theory from an early stage. In fact, you invented an ingénious game of a topological nature that was widely played, by both faculty members and students, in the Common Room at Fine Hall, the mathematics building at Princeton. The game was called “Nash” at Princeton but today it is commonly known as “Hex”. Actually, a Danish inventor and designer Piet Hein independently discovered this game.

Why were you interested in games and game theory?

Professor Nash: Well, I studied economics at my previous institution, the Carnegie Institute of Technology in Pittsburgh (today Carnegie Mellon University). I observed people who were studying the linkage between games and mathematical programming at Princeton. I had some ideas: some related to economics, some related to games like you play as speculators at the stock market—which is really a game. I can’t pin it down exactly but it turned out that von Neumann [1903–1957] and Morgenstern [1902–1977] at Princeton had a proof of the solution to a two-person game that was a special case of a general theorem for the equilibrium of n-person games, which is what I found. I associated it with the natural idea of equilibrium and of the topological idea of the Brouwer fixed-point theorem, which is good material.

Exactly when and why I started, or when von Neumann and Morgenstern thought of that, is something I am uncertain of. Later on, I found out about the Kakutani fixed-point theorem, a generalisation of Brouwer’s theorem. I did not realise that von Neumann had inspired it and that he had influenced Kakutani [1911–2004]. Kakutani was a student at Princeton, so von Neumann wasn’t surprised with the idea that a topological argument could yield equilibrium in general. I developed a theory to study a few other aspects of games at this time.

Raussen and Skau: You are a little ahead of us now. A lot of people outside the mathematical community know that you won the Nobel Memorial Prize in Economic Sciences in 1994.

Professor Nash: That was much later.

Raussen and Skau: Yes. Due to the film “A Beautiful Mind”, in which you were played by Russell Crowe, it became known to a very wide audience that you received the Nobel Prize in economics. But not everyone is aware that the Nobel Prize idea was contained in your PhD thesis, which was submitted at Princeton in 1950, when you were twenty-one-years-old. The title of the thesis was “Noncooperative games.”

Did you have any idea how revolutionary this would turn out to be? That it was going to have impact, not only in economics but also in fields as diverse as political science and evolutionary biology?

Professor Nash: It is hard to say. It is true that it can be used wherever there is some sort of equilibrium and there are competing or interacting parties. The idea of evolutionists is naturally parallel to some of this. I am getting off on a scientific track here.

Raussen and Skau: But you realized that your thesis was good?

Professor Nash: Yes. I had a longer version of it but it was reduced by my thesis advisor. I also had material for cooperative games but that was published separately.

Raussen and Skau: Did you find the topic yourself when you wrote your thesis or did your thesis advisor help to find it?

Professor Nash: Well, I had more or less found the topic myself and then the thesis advisor was selected by the nature of my topic.

Raussen and Skau: Albert Tucker [1905–1995] was your thesis advisor, right?

Professor Nash: Yes. He had been collaborating with von Neumann and Morgenstern.

Princeton

Raussen and Skau: We would like to ask you about your study and work habits. You rarely attended lectures at Princeton. Why?

Professor Nash: It is true. Princeton was quite liberal. They had introduced, not long before I arrived, the concept of an N-grade. So, for example, a professor giving a course would give a standard grade of N, which means “no grade”. But this changed the style of working. I think that Harvard was not operating on that basis at that time. I don’t know if they have operated like that since. Princeton has continued to work with the N-grade, so that the number of people actually taking the courses (formally taking courses where grades are given) is less in Princeton than might be the case at other schools.

Raussen and Skau: Is it true that you took the attitude that learning too much second-hand would stifle creativity and originality?

Professor Nash: Well, it seems to make sense. But what is second-hand?

Raussen and Skau: Yes, what does second-hand mean?

Professor Nash: Second-hand means, for example, that you do not learn from Abel but from someone who is a student of abelian integrals.

Raussen and Skau: In fact, Abel wrote in his mathematical diary that one should study the masters and not their pupils.

Professor Nash: Yes, that’s somewhat the idea. Yes, that’s very parallel.
Raussen and Skau: While at Princeton you contacted Albert Einstein and von Neumann, on separate occasions. They were at the Institute for Advanced Study in Princeton, which is located close to the campus of Princeton University. It was very audacious for a young student to contact such famous people, was it not?

Professor Nash: Well, it could be done. It fits into the idea of intellectual functions. Concerning von Neumann, I had achieved my proof of the equilibrium theorem for game theory using the Brouwer fixed-point theorem, while von Neumann and Morgenstern used other things in their book. But when I got to von Neumann, and I was at the blackboard, he asked: “Did you use the fixed-point theorem?” “Yes,” I said. “I used Brouwer’s fixed-point theorem.”

I had already, for some time, realized that there was a proof version using Kakutani’s fixed-point theorem, which is convenient in applications in economics since the mapping is not required to be quite continuous. It has certain continuity properties, so-called generalized continuity properties, and there is a fixed-point theorem in that case as well. I did not realize that Kakutani proved that after being inspired by von Neumann, who was using a fixed-point theorem approach to an economic problem with interacting parties in an economy (however, he was not using it in game theory).

Raussen and Skau: What was von Neumann’s reaction when you talked with him?

Professor Nash: Well, as I told you, I was in his office and he just mentioned some general things. I can imagine now what he may have thought, since he knew the Kakutani fixed-point theorem and I did not mention that (which I could have done). He said some general things, like: “Of course, this works.” He did not say too much about how wonderful it was.

Raussen and Skau: When you met Einstein and talked with him, explaining some of your ideas in physics, how did Einstein react?

Professor Nash: He had one of his student assistants there with him. I was not quite expecting that. I talked about my idea, which related to photons losing energy on long travels through the Universe and as a result getting a red-shift. Other people have had this idea. I saw much later that someone in Germany wrote a paper about it but I can’t give you a direct reference. If this phenomenon existed then the popular opinion at the time of the expanding Universe would be undermined because what would appear to be an effect of the expansion of the Universe (sort of a Doppler red-shift) could not be validly interpreted in that way because there could be a red-shift of another origin. I developed a mathematical theory about this later on. I will present this here as a possible reinterpretation, in my Abel lecture tomorrow.

There is an interesting equation that could describe different types of space-times. There are some singularities that could be related to ideas about dark matter and dark energy. People who really promote it are promoting the idea that most of the mass in the Universe derives from dark energy. But maybe there is none. There could be alternative theories.

Raussen and Skau: John Milnor, who was awarded the Abel Prize in 2011, entered Princeton as a freshman the same year as you became a graduate student. He made the observation that you were very much aware of unsolved problems, often cross-examining people about these. Were you on the lookout for famous open problems while at Princeton?

Professor Nash: Well, I was. I have been in general. Milnor may have noticed at that time that I was looking at some particular problems to study.

Milnor made various spectacular discoveries himself. For example, the nonstandard differentiable structures on the seven-sphere. He also proved that any knot has a certain amount of curvature although this was not really a new theorem, since someone else had—unknown to Milnor—proved that.

A Series of Famous Results

Raussen and Skau: While you wrote your thesis on game theory at Princeton University, you were already working on problems of a very different nature, of a rather geometric flavor. And you continued this work while you were on the staff at MIT in Boston, where you worked from 1951 to 1959. You came up with a range of really stunning results. In fact, the results that you obtained in this period are the main motivation for awarding you the Abel Prize this year. Before we get closer to your results from this period, we would like to give some perspective by quoting Mikhail Gromov, who received the Abel Prize in 2009. He told us, in the interview we had with him six years ago, that your methods showed “incredible originality”. And moreover: “What Nash has done in geometry is from my point of view incomparably greater than what he has done in economics, by many orders of magnitude.” Do you agree with Gromov’s assessment?

Professor Nash: It’s simply a question of taste, I say. It was quite a struggle. There was something I did in algebraic geometry, which is related to differential geometry with some subtleties in it. I made a breakthrough there. One could actually gain control of the geometric shape of an algebraic variety.
Theorem 11. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 12. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 13. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 14. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 15. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 16. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 17. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 18. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 19. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 20. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 21. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 22. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 23. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 24. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 25. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 26. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 27. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 28. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 29. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 30. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 31. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 32. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 33. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 34. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 35. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 36. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 37. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 38. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 39. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.

Theorem 40. Let $f: M \to N$ be a smooth embedding of a manifold M into a manifold N. If f is a embedding, then f is a diffeomorphism.
Partial Differential Equations

Raussen and Skau: But nevertheless it seems that the result you proved was perceived as something that was out of the scope of the techniques that one had at the time.

Professor Nash: Yes, the techniques led to new methods to study PDEs in general.

Raussen and Skau: Let us continue with work of yours purely within the theory of PDEs. If we are not mistaken, this came about as a result of a conversation you had with Louis Nirenberg, with whom you are sharing this year’s Abel Prize, at the Courant Institute in New York in 1956. He told you about a major unsolved problem within non-linear partial differential equations.

Professor Nash: He told me about this problem, yes. There was some work that had been done previously by a professor in California, C. B. Morrey [1907–1984], in two dimensions. The continuity property of the solution of a partial differential equation was found to be intrinsic in two dimensions by Morrey. The question was what happened beyond two dimensions. That was what I got to work on, and De Giorgi [1928–1996], an Italian mathematician, got to work on it also.

Raussen and Skau: But you didn’t know of each other’s work at that time?

Professor Nash: No, I didn’t know of De Giorgi’s work on this, but he did solve it first.

Raussen and Skau: Only in the elliptic case though.

Professor Nash: Yes, well, it was really the elliptic case originally but I sort of generalized it to include parabolic equations, which turned out to be very favorable. With parabolic equations, the method of getting an argument relating to an entropy concept came up. I don’t know; I am not trying to argue about precedents but a similar entropy method was used by Professor Hamilton in New York and then by Perelman. They use an entropy which they can control in order to control various improvements that they need.

Raussen and Skau: And that was what finally led to the proof of the Poincaré Conjecture?

Professor Nash: Their use of entropy is quite essential. Hamilton used it first and then Perelman took it up from there. Of course, it’s hard to foresee success. It’s a funny thing that Perelman hasn’t accepted any prizes. He rejected the Fields Prize and also the Clay Millennium Prize, which comes with a cash award of one million dollars.

Raussen and Skau: Coming back to the time when you and De Giorgi worked more or less on the same problem. When you first found out that De Giorgi had solved the problem before you, were you very disappointed?

Professor Nash: Of course I was disappointed but one tends to find some other way to think about it. Like water building up and the lake flowing over, and then the outflow stream backing up, so it comes out another way.

Raussen and Skau: Some people have been speculating that you might have received the Fields Medal if there had not been the coincidence with the work of De Giorgi.

Professor Nash: Yes, that seems likely; that seems a natural thing. De Giorgi did not get the Fields Medal either, though he did get some other recognition. But this is not mathematics, thinking about how some sort of selecting body may function. It is better to be thought about by people who are sure they are not in the category of possible targets of selection.

Raussen and Skau: When you made your major and really stunning discoveries in the 1950s, did you have anybody that you could discuss with, who would act as some sort of sounding board for you?

Professor Nash: For the proofs? Well, for the proof in game theory there is not so much to discuss. Von Neumann knew that there could be such a proof as soon as the issue was raised.

Raussen and Skau: What about the geometric results and also your other results? Did you have anyone you could discuss the proofs with?

Professor Nash: Well, there were people who were interested in geometry in general, like Professor Ambrose. But they were not so much help with the details of the proof.

Raussen and Skau: What about Spencer [1912–2001] at Princeton? Did you discuss with him?

Professor Nash: He was at Princeton and he was on my General Exam committee. He seemed to appreciate me. He worked in complex analysis.

Raussen and Skau: Were there any particular mathematicians that you met either at Princeton or MIT that you really admired, that you held in high esteem?

Professor Nash: Well, of course, there is Professor Levinson [1912–1975] at MIT. I admired him. I talked with Norman Steenrod [1910–1971] at Princeton and I knew Solomon Lefschetz [1884–1972], who was Department Chairman at Princeton. He was a good mathematician. I did not have such a good rapport with the algebra professor at Princeton, Emil Artin [1898–1962].

The Riemann Hypothesis

Raussen and Skau: Let us move forward to a turning point in your life. You decided to attack arguably the most famous of all open problems in mathematics, the Riemann Hypothesis.
Hypothesis, which is still wide open. It is one of the Clay Millennium Prize problems that we talked about. Could you tell us how you experienced mental exhaustion as a result of your endeavor?

Professor Nash: Well, I think it is sort of a rumor or a myth that I actually made a frontal attack on the hypothesis. I was cautious. I am a little cautious about my efforts when I try to attack some problem because the problem can attack back, so to say. Concerning the Riemann Hypothesis, I don’t think of myself as an actual student but maybe some casual—whatever—where I could see some beautiful and interesting new aspect.

Professor Selberg [1917–2007], a Norwegian mathematician who was at the Institute for Advanced Study, proved back in the time of World War II that there was at least some finite measure of these zeros that were actually on the critical line. They come as different types of zeros; it’s like a double zero that appears as a single zero. Selberg proved that a very small fraction of zeros were on the critical line. That was some years before he came to the Institute. He did some good work at that time.

And then, later on, in 1974, Professor Levinson at MIT, where I had been, proved that a good fraction—around 1/3—of the zeros were actually on the critical line. At that time he was suffering from brain cancer, which he died from. Such things can happen; your brain can be under attack and yet you can do some good reasoning for a while.

A Very Special Mathematician?

Raussen and Skau: Mathematicians who know you describe your attitude toward working on mathematical problems as very different from that of most other people. Can you tell us a little about your approach? What are your sources of inspiration?

Professor Nash: Well, I can’t argue that at the present time I am working in such and such a way, which is different from a more standard way. In other words, I try to think of what I can do with my mind and my experiences and connections. What might be favourable for me to try? So I don’t think of trying anything of the latest popular nonsense.

Raussen and Skau: You have said in an interview (you may correct us) something like: “I wouldn’t have had good scientific ideas if I had thought more normally.” You had a different way of looking at things.

Professor Nash: Well, it’s easy to think that. I think that is true for me just as a mathematician. It wouldn’t be worth it to think like a good student doing a thesis. Most mathematical theses are pretty routine. It’s a lot of work but sort of set up by the thesis advisor; you work until you have enough and then the thesis is recognized.

Interests and Hobbies

Raussen and Skau: Can we finally ask you a question that we have asked all the previous Abel Prize laureates? What are your main interests or hobbies outside of mathematics?

Professor Nash: Well, there are various things. Of course, I do watch the financial markets. This is not entirely outside of the proper range of the economics Nobel Prize but there is a lot there you can do if you think about things. Concerning the great depression, the crisis that came soon after Obama was elected, you can make one decision or another decision which will have quite different consequences. The economy started on a recovery in 2009, I think.

Raussen and Skau: It is known that when you were a student at Princeton you were biking around campus whistling Bach’s “Little Fugue”. Do you like classical music?

Professor Nash: Yes, I do like Bach.

Raussen and Skau: Other favorite composers than Bach?

Professor Nash: Well, there are lot of classical composers that can be quite pleasing to listen to, for instance when you hear a good piece by Mozart. They are so much better than composers like Pachelbel and others.

Raussen and Skau: We would like to thank you very much for a very interesting interview. Apart from the two of us, this is on behalf of the Danish, Norwegian and European Mathematical Societies.

Afterword: After the end of the interview proper, there was an informal chat about John Nash’s main current interests. He mentioned again his reflections about cosmology. Concerning publications, Nash told us about a book entitled “Open Problems in Mathematics” that he was editing with the young Greek mathematician Michael Th. Rassias, who was conducting postdoctoral research at Princeton University during that academic year.