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A real hypersurface 𝑀 of ℂ𝑛 ≅ ℝ2𝑛 has the following
property: at every point 𝑝 ∈ 𝑀, the tangent space 𝑇𝑝𝑀
has a (2𝑛− 2)-dimensional complex subspace. Whenever
a submanifold 𝑀 of ℂ𝑛 has the property that its tangent
space 𝑇𝑝𝑀 admits a complex subspace whose dimension
is independent of 𝑝, 𝑀 is called a CR submanifold. Not all
smooth submanifolds of ℂ𝑛 have this property. Consider
the equator of the 2D sphere

𝑆 = {(𝑧,𝑤) ∈ ℂ2 ∶ |(𝑧,𝑤)| = 1 and Im𝑧 = 0}.
At (±1, 0), the tangent space {0} × ℂ is complex, but
at (0, 𝑒𝑖𝜃), the tangent space can be identified with the
real span of (1, 0) and (0, 𝑖𝑒𝑖𝜃), and this does not have
a complex structure. In particular, it is not closed under
multiplication by 𝑖. Hence, the real dimension of the
largest complex subspace varies from 2 to 0. To motivate
our definitions, we will first consider the boundary values
of holomorphic functions of several complex variables.

Given a domain Ω ⊂ ℂ𝑛, a continuously differentiable,
or 𝐶1, function 𝑓 ∶ Ω → ℂ is said to be holomorphic if
it satisfies the Cauchy–Riemann equations 𝜕𝑓

𝜕 ̄𝑧𝑗 = 0 for all
1 ≤ 𝑗 ≤ 𝑛, where 𝜕

𝜕 ̄𝑧𝑗 =
1
2

𝜕
𝜕𝑥𝑗

+ 𝑖
2

𝜕
𝜕𝑦𝑗

. Holomorphic functions
are the fundamental objects of study in complex analysis
of one and several variables. For example, a function
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𝑓 is equal to a convergent power series in 𝑧𝑗 for all
1 ≤ 𝑗 ≤ 𝑛 in a neighborhood of a point if and only if
it is also holomorphic in a neighborhood of that point.
Consequently, a standard technique in the analysis of
real power series is to complexify them and study the
corresponding holomorphic function.

We begin our discussion with the following classical
boundary value problem. Suppose we are given a 𝐶1

function 𝑔 ∶ 𝑏Ω → ℂ. Does there exist a function 𝑓 in
𝐶1(Ω) such that 𝑓 is holomorphic in Ω and 𝑓 = 𝑔 on 𝑏Ω?
The answer to this question highlights the differences
between complex analysis in one and several variables.

When 𝑛 = 1, we know that if such an 𝑓 exists, then on
Ω it must be given by the Cauchy Integral Formula

𝑓(𝑧) = 1
2𝜋𝑖 ∫𝑏Ω

𝑔(𝜁)
𝜁− 𝑧𝑑𝜁.

Such an 𝑓 will always be holomorphic, but it may not have
𝑔 as a boundary value. For example, ifΩ is the unit disc and
𝑔(𝑒𝑖𝜃) = 𝑒−𝑖𝜃, then the Cauchy Integral Formula gives us
𝑓(𝑧) = 0 on Ω. Nevertheless, the case 𝑛 = 1 is completely
understood. The Plemelj jump formula for the Cauchy
Integral Formula implies that 𝑔 is the boundary value of a
holomorphic function 𝑓 if and only if ∫𝑏Ω 𝑔(𝜁)𝜁𝑚𝑑𝜁 = 0
for all nonnegative integers 𝑚.

The cases 𝑛 ≥ 2 require further analysis. We focus on
the 𝑛 = 2 case for expositional clarity. Suppose 𝜌 is a 𝐶1

defining function for Ω (i.e., 𝜌 < 0 on Ω, 𝜌 > 0 outside Ω,
and ∇𝜌 ≠ 0 on 𝑏Ω). Then the vector field

𝐿̄ = 𝜕𝜌
𝜕 ̄𝑧2

𝜕
𝜕 ̄𝑧1

− 𝜕𝜌
𝜕 ̄𝑧1

𝜕
𝜕 ̄𝑧2

is a tangent vector to 𝑏Ω (since 𝐿̄𝜌 = 0 on 𝑏Ω), so 𝐿̄𝑔
is well-defined. If 𝑓 is holomorphic in a neighborhood
of 𝑏Ω, then the Cauchy–Riemann equations would tell
us that 𝐿̄𝑓 = 0 on 𝑏Ω, so 𝑔 can be the boundary value
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of a holomorphic function only if 𝐿̄𝑔 = 0 on 𝑏Ω. Such
functions are called CR functions. Once again, if 𝑔 is the
boundaryvalueof aholomorphic function𝑓, then𝑓 is given
by an integral formula, in this case the Bochner–Martinelli
Formula 𝑓(𝑧) = ∫𝑏Ω 𝑔(𝜁)𝐵(𝜁, 𝑧) where

𝐵(𝜁, 𝑧)

=
((𝜁̄2 − ̄𝑧2)𝑑𝜁̄1 − (𝜁̄1 − ̄𝑧1)𝑑𝜁̄2) ∧ 𝑑𝜁1 ∧𝑑𝜁2

(2𝜋𝑖)2 |𝜁 − 𝑧|4
.

In contrast to the Cauchy Integral Formula, the function 𝑓
given by the Bochner–Martinelli Formula is not necessarily
holomorphic (note that 𝐵(𝜁, 𝑧) is not holomorphic in 𝑧).
Fortunately, if 𝑔 is a CR function and Ω is a bounded
domain with 𝐶1 boundary, then 𝑓 is holomorphic and 𝑔 is
the boundary value of 𝑓. In contrast to the𝑛 = 1 case, there
is nomoment condition for 𝑔 to satisfy. Instead, boundary
values of holomorphic functions are characterized by the
CR equation 𝐿̄𝑔 = 0, just as holomorphic functions are
characterized by the Cauchy–Riemann equations.

The CR
structure
reflects the
ambient
complex
structure.

The complex structure
on ℂ𝑛 can be identified
with the decomposition
of the complexified tan-
gent space ℂ𝑇(ℂ𝑛) into
Cauchy–Riemann deriva-
tives of the form
𝐿̄ = ∑𝑛

𝑗=1𝑎𝑗 𝜕
𝜕 ̄𝑧𝑗 , denoted

𝑇0,1(ℂ𝑛), and their con-
jugates, denoted 𝑇1,0(ℂ𝑛).
Consequently, the complex-
ified tangent space has an
orthogonal decomposition

ℂ𝑇(ℂ𝑛) = 𝑇1,0(ℂ𝑛) ⊕ 𝑇0,1(ℂ𝑛).
The CR structure on a real submanifold 𝑀 of ℂ𝑛 is the
subspace𝑇0,1(𝑀) ⊂ 𝑇0,1(ℂ𝑛) given by all tangential vector
fields. If 𝑇1,0(𝑀) is the conjugate of 𝑇0,1(𝑀), then the
complex tangent space of𝑀 is given by𝑇1,0(𝑀)⊕𝑇0,1(𝑀).
A CR submanifold then is simply a real submanifold 𝑀
of ℂ𝑛 on which the dimension of 𝑇0,1(𝑀) is constant.
If dimℝ 𝑀 = 2dimℂ 𝑇0,1(𝑀) + 1, then we say that 𝑀
is of hypersurface type. The boundary of a domain
with 𝐶1 boundary will always be a CR submanifold of
hypersurface type. A CR function on 𝑀 is any function
𝑓 ∈ 𝐶1(𝑀) satisfying 𝐿̄𝑓 = 0 whenever 𝐿̄ ∈ 𝑇1,0(𝑀). One
active area of research is the characterization of CR
mappings between CR submanifolds.

We return toourmotivating example inℂ2. Observe that
the real and imaginary parts of 𝐿̄ are linearly independent
tangential vector fields. However, the tangent space of
the boundary of a domain in ℂ2 must have three real
dimensions, so there must exist a third vector field 𝑇 to
complete the basis. For example, we can use

𝑇 = 𝑖
2
∑
𝑗=1

( 𝜕𝜌
𝜕 ̄𝑧𝑗

𝜕
𝜕𝑧𝑗

− 𝜕𝜌
𝜕𝑧𝑗

𝜕
𝜕 ̄𝑧𝑗

) .

Notice that whenever a CR submanifold is of hypersurface
type, there must always exist a unique (up to a choice

of orientation) real tangential vector field that is orthog-
onal to the complex tangent space. The richness of CR
manifolds lies in the interplay between the CR structure,
which reflects the ambient complex structure, and this
remaining direction, which acts like a totally real vector
field.

The model example of a CR submanifold is the
boundary 𝑀 of the Siegel upper half space

Ω = {𝑧 ∈ ℂ2 ∶ Im𝑧2 > |𝑧1|2}.
We choose 𝐿̄ = 𝜕

𝜕 ̄𝑧1 −2𝑖𝑧1 𝜕
𝜕 ̄𝑧2 to represent the CR equations

and 𝑇= 𝜕
𝜕𝑧2 +

𝜕
𝜕 ̄𝑧2 to represent the totally real direction. In

this setting, 𝐿̄ is also known as the Lewy operator in honor
of Lewy’s result showing local nonsolvability of 𝐿̄. This
result stands in stark contrast to the real case where the
Malgrange–Ehrenpreis Theorem tells us that any partial
differential operator with real constant coefficients is
locally solvable. Lewy showed that in order for 𝐿̄𝑢 = 𝑓 to
be locally solvable on 𝑀 when 𝑓 is a real function of Re𝑧2,
it must be the case that 𝑓 is real-analytic. We note that
the boundary of the Siegel upper half space also admits a
group structure making it isomorphic to the Heisenberg
group, but this useful tool is outside the scope of this
article.

We can reformulate thenotionof aCRmanifoldwithout
complexification of the tangent bundle. If we write the
coordinates of ℂ𝑛 by (𝑧1,… , 𝑧𝑛) where 𝑧𝑗 = 𝑥𝑗 +𝑖𝑦𝑗, then
the complex structure is denoted by 𝐽 and acts on vector
fields via

𝐽 𝜕
𝜕𝑥𝑗

= 𝜕
𝜕𝑦𝑗

and 𝐽 𝜕
𝜕𝑦𝑗

= − 𝜕
𝜕𝑥𝑗

,

where 𝑗 ∈ {1,… ,𝑛}. Themap 𝐽 has two eigenvalues: 𝑖 and
−𝑖. In the complexified tangent bundle, the eigenvectors
corresponding to 𝑖 are linear combinations of 𝜕

𝜕𝑧𝑗 =
1
2( 𝜕

𝜕𝑥𝑗
− 𝑖 𝜕

𝜕𝑦𝑗
), and the eigenvectors corresponding to −𝑖

are linear combinationsof 𝜕
𝜕 ̄𝑧𝑗 = 1

2( 𝜕
𝜕𝑥𝑗

+𝑖 𝜕
𝜕𝑦𝑗

). Evenwithout
complexifying the tangent bundle, we can see that 𝐽 is
analogous to multiplication by ±𝑖 since 𝐽2 = −𝐼, where
𝐼 is the identity map. If 𝑀 ⊂ ℂ𝑛 and 𝑝 ∈ 𝑀, the tangent
space at 𝑝 is denoted 𝑇𝑝(𝑀), and the holomophic tangent
space at 𝑝, 𝐻𝑝(𝑀), is defined by

𝐻𝑝(𝑀) = 𝑇𝑝(𝑀) ∩ 𝐽{𝑇𝑝(𝑀)}.
A smooth submanifold of ℂ𝑛 is an embedded CRmanifold
exactly when dimℝ 𝐻𝑝(𝑀) is independent of 𝑝. This
formulation of a CR manifold gives us a clean way to
find many examples (and nonexamples). For example, all
affine subspaces in ℂ𝑛 are CR submanifolds, while the
manifold

𝑀 = {(𝑧1, 𝑧2) ∶ 𝑥2 = 0 and 𝑦2 = |𝑧1|2}
is not, since dimℝ 𝐻(0,𝑝2)(𝑀) = 2, but dimℝ 𝐻𝑝(𝑀) = 0
if 𝑝1 ≠ 0. Returning to our initial example 𝑆, the
equator of the unit sphere, one can check [Bog91, Ex-
ample 1, p. 99] that dimℝ 𝐻(1,0,…,0)(𝑀) = 2𝑛 − 2 and
dimℝ 𝐻(0,1,0,…,0)(𝑀) = 2𝑛 − 4, so that 𝑀 is not a CR
submanifold of ℂ𝑛. However, it turns out that the only
bad points of 𝑀 are (±1, 0,… , 0), and the manifold
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𝑀̃ = 𝑀\{(±1, 0,… , 0)} is a (noncompact) CR submanifold
of ℂ𝑛.

Problems on CR
manifolds can
be approached
frommany
different
directions.

We have highlighted only
the most basic aspects of
the theory of CR mani-
folds; namely, wemotivated
the study of CR manifolds
by considering boundary
values of holomorphic func-
tions, and we presented
two formulations of the
definition of CR mani-
folds to provide a wealth
of examples. Problems on
CR manifolds can be ap-

proached from many different directions, and we
encourage the reader to seek out [Bog91] or [CS01]
for a unified and in-depth discussion.
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