
OPINION

June/July 2018 notices of the AMs 681

searched for a word containing the initial letters of the
words “formal,” “proof,” and “Kepler,” and settled on “Fly-
speck,” which means “to scrutinize, or examine carefully.”
The project was completed in August of 2014.1

In May of 2016, three computer scientists, Marijn Heule,
Oliver Kullmann, and Victor Marek, announced a solution
to an open problem posed by Ronald Graham. Graham had
asked whether it is possible to color the positive integers
red and blue in such a way that there are no monochro-
matic Pythagorean triples, that is, no monochromatic
triple a, b, c satisfying a2 + b2 = c2. Heule, Kullmann, and
Marek determined that it is possible to color the integers
from 1 to 7,824 in such a way (see Figure 1), but that there
is no coloring of the integers from 1 to 7,825 with this
property. They obtained this result by designing, for each
n, a propositional formula that describes a coloring of 1,
. . . , n with no monochromatic triple. They then used a
propositional satisfiability solver, together with heuristics
tailored to the particular problem, to search for satisfying
assignments for specific values of n.

For n = 7,824, the search was successful, yielding an
explicit coloring of the corresponding range of integers.
For the negative result, however, it is riskier to take the
software’s failure to find a coloring as an ironclad proof
that there isn’t one. Instead, Heule, Kullmann, and Marek
developed an efficient format to encode a proof that the
search was indeed exhaustive, providing a certificate that
could be checked by independent means. The resulting

Introduction
In 1998 Thomas Hales announced a proof of the Kepler
conjecture, which states that no nonoverlapping arrange-
ment of equal-sized spheres in space can attain a density
greater than that achieved by the naive packing obtained
by arranging them in nested hexagonal layers. The result
relied on extensive computation to enumerate certain
combinatorial configurations known as “tame graphs” and
to establish hundreds of nonlinear inequalities.

He submitted the result to the Annals of Mathematics,
which assigned a team of referees to review it. Hales
found the process unsatisfying: it was more than four
years before the referees began their work in earnest, and
they cautioned that they did not have the resources to
review the body of code and vouch for its correctness. In
response, he launched an effort to develop a formal proof
in which every calculation, and every inference, would be
fully checked by a computer. To name the project, Hales

The Mechanization
of Mathematics
Jeremy Avigad

Communicated by Daniel Velleman

Note: The opinions expressed here are not necessarily those of Notices.

Jeremy Avigad is professor of philosophy and mathematical sci-
ences at Carnegie Mellon University. His email address is avigad@
cmu.edu.

For permission to reprint this article, please contact:
reprint-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1688

ABSTRACT. In computer science, formal methods are
used to specify, develop, and verify hardware and
software systems. Such methods hold great promise
for mathematical discovery and verification of math-
ematics as well.

1Hales provided an engaging account of the refereeing process and
the motivation behind the Flyspeck project in a talk presented to
the Isaac Newton Institute in the summer of 2017, www.newton.
ac.uk/seminar/20170710100011001.

http://www.newton.ac.uk/seminar/20170710100011001
http://www.newton.ac.uk/seminar/20170710100011001

Opinion

682 notices of the AMs VoluMe 65, nuMber 6

and Rob Meyerhoff relied on computer assistance (as well
as Perelman’s proof of the geometrization conjecture) to
provide a sharp bound on exceptional slopes in Thurston’s
Dehn surgery theorem. Other examples can be found
under the Wikipedia entry for “computer-assisted proof,”
and in a survey by Hales [4].

But the uses of computation in the Flyspeck project
and the solution to the Pythagorean triples problem have
a different and less familiar character. Hales’ 1998 result
was a computer-assisted proof in the conventional sense,
but the Flyspeck project was dedicated to verification,
using the computer to check not only the calculations but
also the pen-and-paper components of the proof, including
all the background theories, down to constructions of the
integers and real numbers. In the work on the Pythagorean
triples problem, the computer was used to carry out a heu-
ristic search rather than a directed computation. Moreover,
in the negative case, the result of the computation was a
formal proof that could be used to certify the correctness
of the result.

What these two examples have in common is that they
are mathematical instances of what computer scientists
refer to as formal methods: computational methods that
rely on formal logic to make mathematical assertions,
specify and search for objects of interest, and verify
results. In particular, both Flyspeck and the Pythagorean
triples result rely crucially on formal representations of
mathematical assertions and formal notions of mathemat-
ical inference and proof.

The thesis I will put forth in this article is that these
two results are not isolated curiosities, but, rather, early
signs of a fundamental expansion of our capacities for

discovering, verifying, and communi-
cating mathematical knowledge. The
goal of this article is to provide some
historical context, survey the incipient
technologies, and assess their long-
term prospects.

The Origins of Mechanized
Reasoning
Computer scientists, especially those
working in automated reasoning and
related fields, find a patron saint in
Ramon Llull, a thirteenth-century Fran-
cisan monk from Mallorca. Llull is best
known for his Ars generalis ultima (“ul-
timate general art”), a work that pres-
ents logical and visual aids designed

to support reasoning that could win Muslims over to the
Christian faith. For example, Llull listed sixteen of God’s
attributes—goodness, greatness, wisdom, perfection,
eternity, and so on—and assigned a letter to each. He then
designed three concentric paper circles, each of which had
the corresponding letters inscribed around its border. By
rotating the circles, one could form all combinations of
the three letters, and thereby appreciate the multiplicity
of God’s attributes (see Figure 2). Other devices supported
reasoning about the faculties and acts of the soul, the
virtues and the vices, and so on.

proof is 200 terabytes long, leading to popular reports in
the international press of the longest proof ever found.
They managed to produce a 68-gigabyte certificate with
enough information for users to reproduce the proof on
their own, and made it publicly available.

The use of computers in mathematics is by no means
new. Numerical methods are routinely used to predict
the weather, model the economy, and
track climate change, as well as to make
decisions and optimize outcomes in
industry. Computer algebra systems
like Mathematica, Maple, and Sage are
widely used in applied mathematics
and engineering.

By now we have even gotten used to
the fact that computers can contribute
to results in pure mathematics. The
1976 proof of the four color theorem
by Kenneth Appel and Wolfgang Haken
used the computer to check that each
of a list of 1,936 maps had a required
property, and to date there is no proof
that can be checked by hand. In 2002,
Warwick Tucker used careful calcula-
tion to show that the Lorenz attractor exists, that is, that
Lorenz’s original equations do indeed give rise to chaotic
behavior in a precise sense. In doing so, he settled the
fourteenth problem on a list of open problems prepared
by Stephen Smale at the turn of the twenty-first century.
In 2005 Manjul Bhargava and Jonathan Hanke used so-
phisticated computations to prove a conjecture by John
Conway, now called the 290 theorem, which asserts that
any positive definite quadratic form with integral coeffi-
cients that represents all positive integers up to 290 in fact
represents all the positive integers. In 2013 Marc Lackenby

Figure 1. A family of colorings of the integers from 1
to 7,824 with no monochromatic Pythagorean triple.
White squares can be colored either red or blue.

Both Flyspeck and
the Pythagorean
triples result rely

crucially on…
formal notions

of mathematical
inference and proof.

Opinion

June/July 2018 notices of the AMs 683

nations”). In 1666 he wrote a treatise, Dissertatio de arte
combinatoria, which contained a mixture of logic and
modern combinatorics. The unifying theme once again
was a method for combining concepts and reasoning about
these combinations. In this treatise, Leibniz famously
proposed the development of a characteristica universa-
lis, a symbolic language that could express any rational
thought, and a calculus ratiocinator, a mechanical method
for assessing its truth.

Although Leibniz made some initial progress towards
this goal, his languages and calculi covered a very re-
stricted fragment of logical inference. It is essentially the
fragment we now call propositional logic, rediscovered by
George Boole in the middle of the nineteenth century. But
soon after Boole, others began to make good on Leibniz’s
promise of a universal language of thought, or, at least,
languages that were sufficient to represent more complex
assertions. Peirce, Schröder, Frege, Peano, and others
expanded logical symbolism to include quantifiers and
relations. In 1879 Gottlob Frege published his landmark
work, Begriffsschrift (“concept writing”), which presented
an expressive logical language together with axioms and
rules of inference. In the introduction, he situated the
project clearly in the Leibnizian tradition while carefully
restricting its scope to scientific language and reasoning.

In the early twentieth century, the work of David Hil-
bert and his students and collaborators, Ernst Zermelo’s
axiomatization of set theory, and Bertrand Russell and
Alfred North Whitehead’s Principia Mathematica all fur-
thered the project of using symbolic systems to provide a

Although this work sounds quirky today, it is based
on three fundamental assumptions that are now so in-
grained in our thought that it is hard to appreciate their
significance:

 • We can represent concepts, assertions, or objects of
thought with symbolic tokens.

 • Compound concepts (or assertions or thoughts) can be
obtained by forming combinations of more basic ones.

 • Mechanical devices, even as simple as a series of
concentric wheels, can be helpful in constructing and
reasoning about such combinations.
Llull was influenced by an early Muslim thinker, al-

Ghazali, and the first two as-
sumptions can be found even
earlier in the work of Aristo-
tle. For example, the theory of
the syllogism in Prior Analyt-
ics offers general arguments in
which letters stand for arbitrary
predicates, and Aristotle’s other
writings address the question of
how predicates can combine to
characterize or define a subject.
But Llull’s use of mechanical de-
vices and procedures to support

reasoning was new, and, in the eyes of many, this makes
him the founder of mechanized reasoning.

Almost 400 years later, Llull’s ideas were an inspiration
to Gottfried Leibniz, who, in his doctoral dissertation,
dubbed the method ars combinatoria (“the art of combi-

Figure 2. A thirteenth-century Franciscan monk, Ramon Llull, designed logical and visual aids to reason about the
multipicity of God's attributes.

Llull’s ideas
were an

inspiration
to Gottfried

Leibniz.

Opinion

684 notices of the AMs VoluMe 65, nuMber 6

It should not be surprising that such technologies bear
on mathematical activity as well. Proving the correctness
of a piece of hardware or software is an instance of proving
a theorem, in this case, the theorem that states that the
hardware or software, described in mathematical terms,
meets its specification. Searching for bugs in hardware or
software is simply an instance of searching for a mathe-
matical object that satisfies given constraints. Moreover,
claims about the behavior of hardware and software are
made with respect to a body of mathematical background.
For example, verifying software often depends on integer
or floating point arithmetic and on properties of basic
combinatorial structures. Verifying a hardware control
system may invoke properties of dynamical systems, dif-
ferential equations, and stochastic processes.

Of course, there is a difference in character between
proving ordinary mathematical theorems and proving
hardware and software correct. Verification problems
in computer science are generally difficult because of
the volume of detail, but they typically do not have the
conceptual depth one finds in mathematical proofs. But
although the focus here is on mathematics, you should
keep in mind that there is no sharp line between mathe-
matical and computational uses of formal methods, and
many of the systems and tools I will describe can be used
for both purposes.

Verified Proof
Interactive theorem proving involves the use of compu-
tational proof assistants to construct formal proofs of
mathematical claims using the axioms and rules of a for-
mal foundation that is implemented by the system. The
user of such an assistant generally has a proof in mind and
works interactively with the system to transform it into
a formal derivation. Proofs are presented to the system
using a specialized proof language, much like a program-
ming language. The computational assistant processes the
input, complains about the parts it cannot understand,
keeps track of goals and proof obligations, and responds
to queries, say, about definitions and theorems in the
background libraries. Most importantly, every inference
is checked for correctness using a small, trusted body of
code, known as the kernel or trusted computing base. Some
systems even retain, in memory, a complete description
of the resulting axiomatic derivation, a complex piece of
data that can be exported and verified by an independent
reference checker.

The choice of axiomatic foundation varies. Some
systems are based on set theory, in which every object
denotes a set. Predicates are then used to pick out which
sets represent objects like integers, real numbers, func-
tions, triangles, and structures. Most systems, however,
implement frameworks in which every object is assigned a
type that indicates its intended use. For example, an object
of type int is an integer, and an object of type int à int
is a function from integers to integers. Such an approach
often permits more convenient forms of input, since a
system can use knowledge of data types to work out the
meaning of a given expression. It also makes it possible
for a system to catch straightforward errors, such as when

foundation for mathematical reasoning. The project was
so successful that, in 1931, Kurt Gödel could motivate his
incompleteness theorems with the following assessment:

The development of mathematics toward
greater precision has led, as is well known, to
the formalization of large tracts of it, so that
one can prove any theorem using nothing but a
few mechanical rules. The most comprehensive
formal systems that have been set up hitherto
are the system of Principia mathematica (PM)
on the one hand and the Zermelo-Fraenkel
axiom system of set theory (further developed
by J. von Neumann) on the other. These two
systems are so comprehensive that in them all
methods of proof used today in mathematics
are formalized, that is, reduced to a few axioms
and rules of inference. [3]

This brief historical overview will help situate the work
I intend to present here. To properly bridge the gap from
the beginning of the twentieth century to the present, I
would have to survey not only the history of logic, founda-
tions of mathematics, and computer science but also the
history of automated reasoning and interactive theorem
proving. Nothing I can do in the scope of this article would
do these subjects justice, so I will now set them aside and
jump abruptly to the present day.

Formal Methods in Computer Science
The phrase “formal methods” is used to describe a body of
methods in computer science for specifying, developing,
and verifying complex hardware and software systems.
The word “formal” indicates the use of formal languages
to write assertions, define objects, and specify constraints.
It also indicates the use of formal semantics, that is, ac-
counts of the meaning of a syntactic expression, which can
be used to specify the desired behavior of a system or the
properties of an object sought. For example, an algorithm
may be expected to return a tuple of numbers satisfying a
given constraint, C, expressed in some specified language,
whereby the logical account spells out what it means for
an object to satisfy the symbolically expressed constraint.
Finally, the word “formal” suggests the use of formal rules
of inference, which can be used to verify claims or guide
a search.

Put briefly, formal methods are used in computer sci-
ence to say things, find things, and check things. Using an
approach known as model checking, an engineer describes
a piece of hardware or software and specifies a property
that it should satisfy. A tool like a satisfiability solver
(SAT solver) or satisfiability-modulo-theories solver (SMT
solver) then searches for a counterexample trace, that
is, an execution path that violates the specification. The
search is designed to be exhaustive so that failure to find
such a trace guarantees that the specification holds. In a
complementary approach known as interactive theorem
proving, the engineer seeks to construct, with the help of
the computer, a fully detailed formal proof that the artifact
meets its specification.

Opinion

June/July 2018 notices of the AMs 685

to a base point. This opens up possibilities for using inter-
active theorem provers to reason about subtle topological
constructions. Moreover, Voevodsky showed that one can
consistently add an axiom that states, roughly, that iso-
morphic structures are equal, which is to say, the entire
language of dependent type theory respects homotopic
equivalence. The field has come to be known as homotopy
type theory, a play on the homotopical intepretation of
type theory and the theory of homotopy types.

At this stage, it may seem premature to predict that
formally verified proof will become common practice.
Even the most striking successes in formally verified
mathematics so far have done little to alter the status quo.
Hales’ result was published in the Annals of Mathematics
and widely celebrated long before the formal verification
was complete, and even though the verification of the
Feit–Thompson theorem turned up minor misstatements
and gaps in the presentations they followed, the correct-
ness of the theorem was not in doubt, and the repairs
were routine.

But the mathematical literature is filled with errors,
ranging from typographical errors, missing hypothe-
ses, and overlooked cases to mistakes that invalidate a
substantial result. In a talk delivered in 2014,2 Vladimir
Voevodsky surveyed a number of substantial errors in
the literature in homotopy theory and higher category
theory, including a counterexample, discovered by Carlos
Simpson in 1998, to the main result of a paper he himself
had published with Michal Kapronov in 1989. Voevodsky
ultimately turned to formal verification because he felt
that it was necessary for the level of rigor and precision
the subject requires.

The situation will only get worse as proofs get lon-
ger and more complex. In a 2008 opinion piece in the
Notices, “Desperately seeking mathematical truth” [5],
Melvyn Nathanson lamented the difficulties in certifying
mathematical results: “We mathematicians like to talk
about the ‘reliability’ of
our literature, but it is,
in fact, unreliable.” His
essay was not meant
to be an advertisement
for formal verification,
but it can easily be read
that way.

Checking the details
of a mathematical proof
is far less enjoyable than exploring new concepts and
ideas, but it is important nonetheless. Rigor is essential
to mathematics, and even minor errors are a nuisance to
those trying to read, reconstruct, and use mathematical
results. Even expository gaps are frustrating, and it would
be nice if we could interactively query proofs for more
detail, spelling out any inferences that are not obvious to
us at first. It seems inevitable that, in the long run, formal
methods will deliver such functionality.

a user applies a function to an object of the wrong type.
The complexity of the typing system can vary, however.
Some versions of type theory have a natural computational
interpretation, so that the definition of a function like the
factorial function on the nonnegative integers comes with
a means of evaluating it.

Many core theorems of mathematics have been formal-
ized in such systems, such as the prime number theorem,
the four color theorem, the Jordan curve theorem, Gödel’s
first and second incompleteness theorems, Dirichlet’s the-
orem on primes in an arithmetic progression, the Cartan
fixed-point theorems, and the central limit theorem. Veri-
fying a big name theorem is always satisfying, but a more
important measure of progress lies in the mathematical
libraries that support them. To date, a substantial body
of definitions and theorems from undergraduate mathe-
matics has been formalized, and there are good libraries
for elementary number theory, real and complex analysis,
point-set topology, measure-theoretic probability, abstract
algebra, Galois theory, and so on. In November of 2008
the Notices devoted a special issue to the topic of inter-
active theorem proving, which provides an overview of
the state of the field at the time (see also [1]). As a result,
here I will discuss only a few landmarks that have been
achieved since then.

In 2012 Georges Gonthier and thirteen co-authors
announced the culmination of a six-year project that
resulted in the verification of the Feit–Thompson odd
order theorem. Feit and Thompson’s journal publication
in 1963 ran 255 pages, a length that is not shocking by
today’s standards but was practically unheard of at the
time. The formalization was carried out in Coq, a theorem
prover based on a constructive type theory using a proof
language designed by Gonthier known as SSReflect. The
formalization included substantial libraries for finite
group theory, linear algebra, and representation theory.
All told, the proof comprised roughly 150,000 lines of
formal proof, including 4,000 definitions and 13,000
lemmas and theorems.

Another major landmark is the completion of the
formal verification of the Kepler conjecture, described
in the introduction. Most of the proof was carried out in
a theorem prover known as HOL light, though one com-
ponent, the enumeration of tame graphs, was carried out
in Isabelle.

Yet another interesting development in the last few
years stems from the realization, due to Steve Awodey and
Michael Warren and, independently, Vladimir Voevodsky,
that dependent type theory, the logical framework used
by a number of interactive theorem provers, has a novel
topological interpretation. In this interpretation, data
types correspond to topological spaces or, more precisely,
abstract representations of topological spaces up to ho-
motopy. Expressions that would ordinarily be understood
as functions between data types are interpreted instead
as continuous maps. An expression of the form x = y is
interpreted as saying that there is a path between x and y,
and the rules for reasoning about equality in dependent
type theory correspond to a common pattern of reasoning
in homotopy theory in which paths are contracted down

2www.math.ias.edu/~vladimir/Site3/Univalent_Founda-
tions_files/2014_IAS.pdf.

The
mathematical

literature is filled
with errors.

http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/2014_IAS.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/2014_IAS.pdf

Opinion

686 notices of the AMs VoluMe 65, nuMber 6

ification of the four color theorem used such a strategy
to evaluate the computational component of the proof.

One notable effort along these lines, by Frédéric
Chyzak, Assia Mahboubi, Thomas Sibut-Pinote, and Enrico
Tassi, yielded a verification of Apéry’s celebrated 1973
proof of the irrationality of ζ(3). The starting point for
the project was a Maple worksheet, designed by Bruno
Salvy, that carried out the relevant symbolic computation.
The group’s strategy was to extract algebraic identities
from the Maple computations and then construct formal
axiomatic proofs of these identities in Coq. A fair amount
of work was needed to isolate and manage side condi-
tions that were ignored by Maple, such as showing that a
symbolic expression in the denominator of a fraction is
nonzero under the ambient hypotheses.

Yet another interesting project was associated with
Tucker’s solution to Smale’s 14th problem. To demon-
strate the existence of the Lorenz attractor, Tucker en-
closed a Poincaré section of the flow defined by the Lorenz
equations with small rectangles and showed that each
rectangle (together with a cone enclosing the direction
in which the attractor is expanding) is mapped by the
flow inside another such rectangle (and cone). Tucker, a
leading figure in the art of validated computation, relied
on careful numeric computation for most of the region,
coupled with a detailed analysis of the dynamics around
the origin. Quite recently, Fabian Immler was able to verify
the numeric computations in Isabelle. To do so, he not
only formalized enough of the theory of dynamical sys-
tems to express all the relevant claims, but also defined
the data structures and representations needed to carry
out the computation efficiently and derived enough of
their properties to show that the computation meets its
specification.

Once again, on the basis of such examples, it may seem
bold to predict that formally verified computation will
become commonplace in mathematics. The need, however,
is pressing. The increasing use of computation to establish
mathematical results raises serious concerns as to their
correctness, and it is interesting to see how mathemati-
cians struggle to address this. In their 2003 paper, “New
upper bounds on sphere packings. I,” Cohn and Elkies
provide a brief description of a search algorithm:

To find a function g [with properties that guar-
antee an upper bound] … , we consider a linear
combination of g1, g3, … , g4m+3, and require
it to have a root at 0 and m double roots at z1,
… , zm. . . . We then choose the locations of z1,
… , zm to minimize the value r of the last sign
change of g. To make this choice, we do a com-
puter search. Specifically, we make an initial
guess for the locations of z1, … , zm, and then
see whether we can perturb them to decrease
r. We repeat the perturbations until reaching
a local optimum.

After presenting the bounds that constitute the main
result of the paper, they write:

Verified Computation
When Hales submitted his proof of the Kepler conjecture
to the Annals, a sticking point was that the mathemat-
ically trained referees were not equipped to vouch for
the correctness of the code. Hales and his collaborators
countered this concern by verifying these computations
as well as the conventional mathematical arguments. This
was not the first example of a formally verified proof that
involved substantial computation: Gonthier’s verification
of the four color theorem in Coq was of a similar nature,
relying on a simplified computational approach by Rob-
ertson, Sanders, Seymour, and Thomas.

This brings us to the subtle question as to what, exactly,
it means to verify a computation. Researchers working
in formal verification are very sensitive to the question
as to what components of a system have to be trusted to
ensure the correctness of a result. Ordinary pen-and-paper
proofs are checked with respect to the axioms and rules of
a foundational deductive system. In that case, the trust lies
with the kernel, typically a small, carefully written body
of code, as well as the soundness of the axiomatic system
itself, the hardware that runs the kernel, and so on. To
verify the nonlinear inequalities in the Flyspeck project,
Hales and a student of his, Alexey Solovyev, reworked
the algorithms so that they produce proofs as they go.
Whenever a calculation depended on a fact like 12 × 7 =
84, the algorithm would produce a formal proof, which
was then checked by the kernel. In other words, every com-
putational claim was subjected to the same standard as a
pen-and-paper proof. Checking the nonlinear inequalities
involved verifying floating point calculations, and the full
process required roughly 5,000 processor hours on the
Microsoft Azure cloud.

Another approach to verifying computation involves
describing a function in the formal foundational language
of a theorem prover, proving that the description meets
the desired specification, and then using an automated
procedure to extract a program in a conventional program-
ming language to compute its values. The target of the
extraction procedure is often a functional programming
language like ML or Haskell. This approach requires a
higher degree of trust, since it requires that the extraction
process preserve the semantics of the formal expression.
Of course, one also has to trust the target programming
language and its compiler or interpreter. Even so, the
verification process imposes a much higher standard
of correctness than unverified code. When writing or-
dinary mathematical code, it is easy to make mistakes
like omitting corner cases or misjudging the properties
that are maintained by an iterative loop. In the approach
just described, every relevant property has to be speci-
fied, and every line of code has to be shown to meet the
specifications. In the Flyspeck project, the combinatorial
enumeration of tame graphs was verified in this way by
Tobias Nipkow and Gertrud Bauer.

There is also a middle ground in which functions are
defined algorithmically within the formal system and
then executed using an evaluator that is designed for that
purpose. There is then a tradeoff between the complexity
of the evaluator and the reliability of the result. The ver-

Opinion

June/July 2018 notices of the AMs 687

Whatever means we develop to address these questions
have to scale. Perhaps the bodies of code associated with
the examples above are manageable, but what will happen
when results rely on code that is even more complicated,
and, say, ten times as long? With results like the four color
theorem and Hales’ theorem, we are gradually getting past
the vain hope that every interesting mathematical theo-
rem will have a humanly surveyable proof. But it seems
equally futile to hope that every computational proof will
make use of code that can easily be understood, and so
the usual difficulties associated with understanding com-
plicated proofs will be paired with similar difficulties in
understanding complicated programs.

Formal Search
Formal verification does not have a visceral appeal to most
mathematicians: the work can be painstakingly difficult,
and the outcome is typically just the confirmation of a
result that we had good reason to believe from the start.
In that respect, the Pythagorean triple theorem of Heule,
Kullmann, and Marek fares much better. Here the outcome
of the effort was a new theorem of mathematics, a natu-
ral Ramsey-like result, and a very pretty one at that. The
result relied on paradigmatic search techniques from the
formal methods community, and it seems worthwhile to
explore the extent to which such methods can be put to
good mathematical work.

To date, such applications of formal methods to math-
ematics are few and far between. In 1996 William McCune
proved the Robbins conjecture, settling a question that
had been open since the 1930s as to whether a certain sys-
tem of equations provided an equivalent axiomatization of
Boolean algebras. The result was featured in an article by
Gina Kolata in the New York Times. But the subject matter
was squarely in the field of mathematical logic, and so it is
not surprising that an automated theorem prover (in this
case, one designed specifically for equational reasoning)
could be used for such purposes.

Systems like McCune’s can also be used to explore
consequences of other first-order axioms. For exam-
ple, McCune himself showed that the single equation
(w ((x–1w)–1z))((yz)–1y)=x axiomatizes groups in a language
with a binary multiplication and a unary inverse, and
Kenneth Kunen later showed that this is the shortest such
axiom. Kunen went on to use interactive theorem provers
to contribute notable results to the theory of nonasso-
ciative structures such as loops and quasigroups. (More
examples of this sort are discussed in [2].)

Since the beginning of this century, propositional
satisfiability solvers have been the killer app for formal
methods, permitting algorithmic solutions to problems
that were previously out of reach. On the heels of the Py-
thagorean triples problem, Heule has recently established
that the Schur number S(5) is equal to 160; in other words,
there is a five-coloring of the integers from 1 to 160 with
no monochromatic triple a, b, c with a + b = c, but no such
coloring of the integers from 1 to 161.

A SAT solver had a role to play in work on the Erdös
discrepancy problem. Consider a sequence (xi)i>0, where
each xi is ± 1, and consider sums of this sequence along

These bounds were calculated using a com-
puter. However, the mathematics behind the
calculations is rigorous. In particular, we use
exact rational arithmetic, and apply Sturm’s
theorem to count real roots and make sure we
do not miss any sign changes.

The passage goes on to explain how they used approxi-
mations to real-valued calculations by rational calculations
without compromising correctness of the results. In their
2013 paper “The maximal number of exceptional Dehn
surgeries,” Lackenby and Meyerhoff turn to the topic of
computation:

We now discuss computational issues and re-
sponses arising from our parameter space anal-
ysis. The computer code was written in C++.

They then proceed to sketch the algorithms they used
to carry out the calculations described in the paper, as
well as the methods for interval arithmetic, and some of
the optimizations they used. They also discuss the use of
Snap, a program for studying arithmetic invariants of hy-
perbolic 3-manifolds, which incorporates exact arithmetic
based on algebraic numbers. In their preprint “Universal
quadratic forms and the 290 theorem” Bhargava and
Hanke are forthright in worrying about the reliability of
their computations:

As with any large computation, the possibility
of error is a real issue. This is especially true
when using a computer, whose operation
can only be viewed intermittently and whose
accuracy depends on the reliability of many
layers of code beneath the view of all but the
most proficient computer scientist. We have
taken many steps to ensure the accuracy of our
computations, the most important of which are
described below.

These steps include checks for correctness, careful
management of roundoff errors, and, perhaps most im-
portantly, making the source code available on a web page
maintained by the authors.

The paper by Cohn and Elkies appeared in the Annals of
Mathematics, the one by Lackenby and Meyerhoff appeared
in Inventiones Mathematicae, and the paper by Bhargava
and Hanke will appear in Inventiones as well. This makes
it clear that substantial uses of computation have begun
to infiltrate the upper echelons of pure mathematics, and
the trend is likely to continue. In the passages above, the
authors are doing everything they can to address concerns
about the reliability of the computations, but the mathe-
matical community does not yet have clear standards for
evaluating such results. Are referees expected to read the
code and certify the behavior of each subroutine? Are they
expected to run the code and, perhaps, subject it to empir-
ical testing? Can they trust the reliability of the software
libraries and packages that are invoked? Should authors
be required to comment their code sufficiently well for a
computer-savvy referee to review it?

Opinion

688 notices of the AMs VoluMe 65, nuMber 6

communities to work more closely together. Combinator-
ics is a natural place to start, because the core concepts
are easily accessible and familiar to computer scientists.
But it will take real mathematical effort to understand how
problems in other domains can be reduced to the task of
finding finite pieces of data or ruling out the existence of
such data by considering sufficiently many cases.

Indeed, for all we know, there may be lots of lovely the-
orems of mathematics that can only be proved that way.
For the last two thousand years, we have been looking for
proofs of a certain kind, because those are the proofs that
we can survey and understand. In that respect, we may be
like the drunkard looking for his keys under a streetlamp
even though he lost them a block away, because that is
where the light is. We should be open to the possibility
that new technologies can open new mathematical vistas
and afford new types of mathematical understanding.
The prospect of ceding a substantial role in mathematical
reasoning to the computer may be disconcerting, but it
should also be exhilarating, and we should look forward
to seeing where the technology takes us.

Digital Infrastructure
Contemporary digital technologies for storage, search, and
communication of information provide another market for
formal methods in mathematics. Mathematicians now rou-
tinely download papers, search the web for mathematical
results, post questions on Math Overflow, typeset papers
using , and exchange mathematical content via email.
Digital representations of mathematical knowledge are
therefore central to the mathematical process. It stands
to reason that mathematics can benefit from having better
representations and better tools to manage them.

 and have transformed mathematical dissemi-
nation and communication by providing precise means for
specifying the appearance of mathematical expressions.
MathML, building on XML, goes a step further, providing
markup to specify the meaning of mathematical expres-
sions as well. But MathML stops short of providing a foun-
dational specification language, which is clearly desirable:
imagine being able to find the statement of a theorem
online, and then being able to look up the meaning of
each defined term, all the way down to the primitives of
an axiomatic system if necessary. That would provide
clarity and uniformity, and help ensure that the results
we find mean what we think they mean. The availability
of such formal specifications would also support veri-
fication: we could have a shared public record of which
results have been mechanically verified and how, and we
could use theorems from a public repository to verify our
own local results. Automated reasoning tools could make
use of such background knowledge, and could, in turn,
be used to support a more robust search. Contemporary
sledgehammer tools for interactive theorem provers rely
on heuristics to extract relevant theorems from a database
and then use them to carry out a given inference. With such
technology, one could ask whether a given statement is
equivalent to, or an easy consequence of, something in a
shared repository of known facts.

multiples of a fixed positive integer, such as x1 + x2 +
x3 + … and x2 + x4 + x6 + … and x3 + x6 + x9 +…. In the
1930s, Erdös asked whether it is possible to keep the
absolute value of such sums—representing the discrep-
ancy between the number of +1’s and –1’s along the
sequence—uniformly bounded. In other words, he asked
whether there are a sequence (xi) and a value C such that
for every n and d, ∑n

i =1xid≤ C, and he conjectured that
no such pair exists. In 2010 Tim Gowers launched the
collaborative Polymath5 project on his blog to work on
the problem. In 2014 Boris Konev and Alexei Lisitsa used
a SAT solver to provide a partial result, namely, that there
is no sequence satisfying the conclusion with C = 2. Spe-
cifically, they showed that there is a finite sequence x1, …,
x1,160 with discrepancy at most 2, but no such sequence
of length 1,161. The following year, Terence Tao proved
the full conjecture, with a conventional proof. This was a
much more striking achievement, but we still have Konev
and Lisitsa, and a SAT solver, to thank for exact bounds
in the case C = 2. SAT solvers have been applied to other
combinatorial problems as well.

The line between discovery and verification is not
sharp. Anyone writing a search procedure does so with
the intention that the results it produces are reliable,
but, as with any piece of software, as the code becomes
more complex, it becomes increasingly necessary to have
mechanisms to ensure that the results are correct. This
is especially true of powerful search tools, which rely on
complicated tricks and heuristics to improve performance
at the risk of compromising soundness. It is important that
the solution to the Pythagorean triples problem produced
a formal proof that could be verified independently, and,
in fact, that proof has been checked by three proof check-
ers that themselves have been formally verified, one in
Isabelle, one in Coq, and one in a theorem prover named
ACL2. This provides a high degree of confidence in the
correctness of the result.

Today, the use of formal methods in discovery is even
less advanced than the use of formal methods in verifi-
cation. The results described above depend, for the most
part, on finding consequences of first-order axioms for
algebraic structures, searching for finite objects satisfying
combinatorial constraints, or ruling out the existence of
such objects by exhaustive enumeration. It is not sur-
prising that computers can be used to exhaust a large
number of finite cases, but few mathematical problems
are presented to us in that form. And spinning out conse-
quences of algebraic axioms is a far cry from discovering
consequences of rich mathematical assumptions involving
heterogeneous structures and mappings between them.

But just as pure mathematicians have discovered uses
for computation in number theory, algebraic topology,
differential geometry, and discrete geometry, one would
expect to find similarly diverse applications for formal
search methods. The problem may simply be that re-
searchers in these fields do not yet have a sense of what
formal search methods can do, whereas the computer
scientists who develop them do not have the expertise
needed to identify the mathematical domains of applica-
tion. If that is the case, it is only a matter of getting the

Opinion

June/July 2018 notices of the AMs 689

proof assistant that could work out small lemmas and
results, at the level of a capable graduate student. The
second is genuine search technology that can tell us
whether a given fact is currently known, either because
we would like to use it in a proof, or because we think we
have a proof and are wondering whether it is worthwhile
to work out the details. The third is a real proof checker,
that is, something we can call when we think we have
proved something and want confirmation that we have
not made a mistake.

We are not there yet, but such technology seems to be
within reach. There are no apparent conceptual hurdles
that need to be overcome, though getting to that point will
require a good deal of careful thought, clever engineering,
experimentation, and hard work. And even before tools
like these are ready for everyday use, we can hope to find
pockets of mathematics where the methods provide a
clear advantage: proofs that rely on nontrivial calculations,
subtle arguments for which a proof assistant can provide
significant validation, and problems that are more easily
amenable to search techniques. Verification is not an all-
or-nothing affair. Short of a fully formalized axiomatic
proof, formalizing a particularly knotty or subtle lemma
or verifying a key computation can lend confidence to the
correctness of a result. Even just formalizing definitions
and the statements of key theorems, as proposed by the
Formal Abstracts project, adds helpful clarity and preci-
sion. Formal methods can also be used in education: if we
teach students how to write formal proofs and informal

For all these purposes, formal specifications are es-
sential. As a first step towards obtaining them, Hales has
recently launched a Formal Abstracts Project, which is
designed to encourage mathematicians to write formal
abstracts of their papers. To process and check the defini-
tions, he has chosen an interactive theorem prover called
Lean, an open source project led by Leonardo de Moura at
Microsoft Research (and to which I am a contributor). In
the coming years, the Formal Abstracts project plans to
seed the repository with core definitions from all branches
of mathematics, and develop guidelines, tools, and infra-
structure to support widespread use.

 Conclusions
In the summer of 2017, the Isaac Newton Institute hosted
a six-week workshop, Big Proof, dedicated to the technol-
ogies described here (see Figure 3).3 As part of a panel
discussion, Timothy Gowers gave a frank assessment of
the new technology and the potential interest to mathe-
maticians. He observed that the phrase “interactive proof
assistant” is rather appealing until one learns that such
assistants actually make proving a theorem a lot more
difficult. The fact that a substantial body of undergraduate
mathematics has been formalized is generally unexciting
to the working mathematician, and existing tools currently
offer little to improve our mathematical lives.

Gowers did enumerate three technologies that he felt
would have widespread appeal. The first is a bona fide

Figure 3. In the summer of 2017, the Isaac Newton Institute hosted a six-week workshop, Big Proof, dedicated to
the technologies described here.

3Talks delivered at the program are available online at www.
newton.ac.uk/event/bpr.

http://www.newton.ac.uk/event/bpr
http://www.newton.ac.uk/event/bpr

Opinion

690 notices of the AMs VoluMe 65, nuMber 6

proofs at the same time, the two perspectives reinforce
one another.4

The mathematics community needs to put some skin in
the game, however. Proving theorems is not like verifying
software, and computer scientists do not earn promotions
or secure funding by making mathematicians happy. We
need to buy into the technology if we want to reap the
benefits.

To that end, institutional inertia needs to be overcome.
Senior mathematicians generally do not have time to invest
in developing a new technology, and it is hard enough to
learn how to use the new tools, let alone contribute to their
improvement. The younger generation of mathematicians
has prodigious energy and computer savvy, but younger
researchers would be ill-advised to invest time and effort
in formal methods if it will only set back their careers. To
allow them to explore the new methods, we need to give
them credit for publications in journals and conferences
in computer science, and recognize that the mathematical
benefits will come only gradually. Ultimately, if we want to
see useful technologies for mathematics, we need to hire
mathematicians to develop them.

The history of mathematics is a history of doing what-
ever it takes to extend our cognitive reach, and designing
concepts and methods that augment our capacities to
understand. The computer is nothing more than a tool
in that respect, but it is one that fundamentally expands
the range of structures we can discover and the kinds of
truths we can reliably come to know. This is as exciting a
time as any in the history of mathematics, and even though
we can only speculate as to what the future will bring, it
should be clear that the technologies before us are well
worth exploring.

References
[1] Jeremy Avigad and John Harrison, Formally verified math-

ematics, Commun. ACM 57(4):66–75, 2014.
[2] Michael J. Beeson, The mechanization of mathematics. In

Alan Turing: Life and Legacy of a Great Thinker, pages 77–134.
Springer, Berlin, 2004. MR2172456

[3] Kurt Gödel, Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme I. Monatsh. Math. Phys.,
38(1):173–198, 1931. Reprinted with English translation in
Kurt Gödel: Collected Works, volume 1, Feferman et al, eds.,
Oxford University Press, New York, 1986, pages 144–195.
MR1549910

[4] Thomas C. Hales, Mathematics in the age of the Turing ma-
chine. In Turing’s Legacy: Developments from Turing’s Ideas
in Logic, volume 42 of Lecture Notes in Logic, pages 253–298.
Assoc. Symbol. Logic, La Jolla, CA, 2014. MR3497663

[5] Melvyn B. Nathanson, Desperately seeking mathematical
proof, Math. Intelligencer, 31(2):8–10, 2009. MR2505014

4See the freely available textbook, Logic and Proof, by Robert
Y. Lewis, Floris van Doorn, and me: leanprover.github.io/
logic_and_proof/.

ACKNOWLEDGMENT. I am grateful to Jasmin Blan-
chette and Robert Y. Lewis for corrections, suggestions,
and improvements.

Jeremy Avigad

ABOUT THE AUTHOR

Jeremy Avigad’s research interests
include mathematical logic, formal
verification, and the history and
philosophy of mathematics.

Image Credits
Figure 1 courtesy of Marijn J. Heule.
Figure 2 images are in the public domain.
Figure 3 courtesy of Isaac Newton Institute.
Author photo courtesy of Carnegie Mellon University.

The following is excerpted from The Hope Circuit: A
Psychologist’s Journey from Helplessness to Optimism by
Martin E. P. Seligman. Copyright © 2018. Available from
PublicAffairs, an imprint of Hachette Book Group, Inc.

A Full Fellowship?

I found that I could make deep contact only
with the most serious students. Robin Forman
was a mathematical whiz and in a band that
did The Doors almost as well as The Doors
themselves. His band played at my “Master
Blasters,” the master’s open house I held pe-
riodically with loud music in my attempt to
appear less geeky to my students. Robin bore
an uncanny resemblance to my college room-
mate Wilfrid Schmid, Princeton valedictorian
of 1964, now gone off to parts unknown.“Har-
vard mathematics is my first choice, and I just
got accepted, but with $5,000 minus tuition,”
Robin said, exuding disappointment, when he
came to me in April for advice.

“That is an amazing coincidence,” I replied.
“My roommate, Wilfrid, also first in our class,
applied to Harvard almost twenty years ago
and was only given $5,000 minus tuition. He
asked my advice, and I told him to phone the
chairman of math at Harvard and tell him con-
fidently, ‘Perhaps, you don’t know who I am.’
Wilfrid did this and was promptly given a full
fellowship at Harvard. Phone the chairman of
math at Harvard and tell him, ‘Perhaps you
don’t know who I am,’” I suggested. “I phoned
the chairman of math at Harvard and said
exactly those words,” Robin reported back
to me the next day. “Wilfrid Schmid is the
chairman, and he gave me a full fellowship.”

http://www.ams.org/mathscinet-getitem?mr=2172456
http://www.ams.org/mathscinet-getitem?mr=1549910
http://www.ams.org/mathscinet-getitem?mr=3497663
http://www.ams.org/mathscinet-getitem?mr=2505014
http://leanprover.github.io/logic_and_proof/
http://leanprover.github.io/logic_and_proof/

