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searched for a word containing the initial letters of the 
words “formal,” “proof,” and “Kepler,” and settled on “Fly-
speck,” which means “to scrutinize, or examine carefully.” 
The project was completed in August of 2014.1

In May of 2016, three computer scientists, Marijn Heule, 
Oliver Kullmann, and Victor Marek, announced a solution 
to an open problem posed by Ronald Graham. Graham had 
asked whether it is possible to color the positive integers 
red and blue in such a way that there are no monochro-
matic Pythagorean triples, that is, no monochromatic 
triple a, b, c satisfying a2 + b2 = c2. Heule, Kullmann, and 
Marek determined that it is possible to color the integers 
from 1 to 7,824 in such a way (see Figure 1), but that there 
is no coloring of the integers from 1 to 7,825 with this 
property. They obtained this result by designing, for each 
n, a propositional formula that describes a coloring of 1, 
. . . , n with no monochromatic triple. They then used a 
propositional satisfiability solver, together with heuristics 
tailored to the particular problem, to search for satisfying 
assignments for specific values of n.

For n = 7,824, the search was successful, yielding an 
explicit coloring of the corresponding range of integers. 
For the negative result, however, it is riskier to take the 
software’s failure to find a coloring as an ironclad proof 
that there isn’t one. Instead, Heule, Kullmann, and Marek 
developed an efficient format to encode a proof that the 
search was indeed exhaustive, providing a certificate that 
could be checked by independent means. The resulting 

Introduction
In 1998 Thomas Hales announced a proof of the Kepler 
conjecture, which states that no nonoverlapping arrange-
ment of equal-sized spheres in space can attain a density 
greater than that achieved by the naive packing obtained 
by arranging them in nested hexagonal layers. The result 
relied on extensive computation to enumerate certain 
combinatorial configurations known as “tame graphs” and 
to establish hundreds of nonlinear inequalities.

He submitted the result to the Annals of Mathematics, 
which assigned a team of referees to review it. Hales 
found the process unsatisfying: it was more than four 
years before the referees began their work in earnest, and 
they cautioned that they did not have the resources to 
review the body of code and vouch for its correctness. In 
response, he launched an effort to develop a formal proof 
in which every calculation, and every inference, would be 
fully checked by a computer. To name the project, Hales 
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and Rob Meyerhoff relied on computer assistance (as well 
as Perelman’s proof of the geometrization conjecture) to 
provide a sharp bound on exceptional slopes in Thurston’s 
Dehn surgery theorem. Other examples can be found 
under the Wikipedia entry for “computer-assisted proof,” 
and in a survey by Hales [4].

But the uses of computation in the Flyspeck project 
and the solution to the Pythagorean triples problem have 
a different and less familiar character. Hales’ 1998 result 
was a computer-assisted proof in the conventional sense, 
but the Flyspeck project was dedicated to verification, 
using the computer to check not only the calculations but 
also the pen-and-paper components of the proof, including 
all the background theories, down to constructions of the 
integers and real numbers. In the work on the Pythagorean 
triples problem, the computer was used to carry out a heu-
ristic search rather than a directed computation. Moreover, 
in the negative case, the result of the computation was a 
formal proof that could be used to certify the correctness 
of the result.

What these two examples have in common is that they 
are mathematical instances of what computer scientists 
refer to as formal methods: computational methods that 
rely on formal logic to make mathematical assertions, 
specify and search for objects of interest, and verify 
results. In particular, both Flyspeck and the Pythagorean 
triples result rely crucially on formal representations of 
mathematical assertions and formal notions of mathemat-
ical inference and proof. 

The thesis I will put forth in this article is that these 
two results are not isolated curiosities, but, rather, early 
signs of a fundamental expansion of our capacities for 

discovering, verifying, and communi-
cating mathematical knowledge. The 
goal of this article is to provide some 
historical context, survey the incipient 
technologies, and assess their long-
term prospects.

The Origins of Mechanized 
Reasoning
Computer scientists, especially those 
working in automated reasoning and 
related fields, find a patron saint in 
Ramon Llull, a thirteenth-century Fran-
cisan monk from Mallorca. Llull is best 
known for his Ars generalis ultima (“ul-
timate general art”), a work that pres-
ents logical and visual aids designed 

to support reasoning that could win Muslims over to the 
Christian faith. For example, Llull listed sixteen of God’s 
attributes—goodness, greatness, wisdom, perfection, 
eternity, and so on—and assigned a letter to each. He then 
designed three concentric paper circles, each of which had 
the corresponding letters inscribed around its border. By 
rotating the circles, one could form all combinations of 
the three letters, and thereby appreciate the multiplicity 
of God’s attributes (see Figure 2). Other devices supported 
reasoning about the faculties and acts of the soul, the 
virtues and the vices, and so on.

proof is 200 terabytes long, leading to popular reports in 
the international press of the longest proof ever found. 
They managed to produce a 68-gigabyte certificate with 
enough information for users to reproduce the proof on 
their own, and made it publicly available.

The use of computers in mathematics is by no means 
new. Numerical methods are routinely used to predict 
the weather, model the economy, and 
track climate change, as well as to make 
decisions and optimize outcomes in 
industry. Computer algebra systems 
like Mathematica, Maple, and Sage are 
widely used in applied mathematics 
and engineering.

By now we have even gotten used to 
the fact that computers can contribute 
to results in pure mathematics. The 
1976 proof of the four color theorem 
by Kenneth Appel and Wolfgang Haken 
used the computer to check that each 
of a list of 1,936 maps had a required 
property, and to date there is no proof 
that can be checked by hand. In 2002, 
Warwick Tucker used careful calcula-
tion to show that the Lorenz attractor exists, that is, that 
Lorenz’s original equations do indeed give rise to chaotic 
behavior in a precise sense. In doing so, he settled the 
fourteenth problem on a list of open problems prepared 
by Stephen Smale at the turn of the twenty-first century. 
In 2005 Manjul Bhargava and Jonathan Hanke used so-
phisticated computations to prove a conjecture by John 
Conway, now called the 290 theorem, which asserts that 
any positive definite quadratic form with integral coeffi-
cients that represents all positive integers up to 290 in fact 
represents all the positive integers. In 2013 Marc Lackenby 

Figure 1. A family of colorings of the integers from 1 
to 7,824 with no monochromatic Pythagorean triple. 
White squares can be colored either red or blue. 
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nations”). In 1666 he wrote a treatise, Dissertatio de arte 
combinatoria, which contained a mixture of logic and 
modern combinatorics. The unifying theme once again 
was a method for combining concepts and reasoning about 
these combinations. In this treatise, Leibniz famously 
proposed the development of a characteristica universa-
lis, a symbolic language that could express any rational 
thought, and a calculus ratiocinator, a mechanical method 
for assessing its truth.

Although Leibniz made some initial progress towards 
this goal, his languages and calculi covered a very re-
stricted fragment of logical inference. It is essentially the 
fragment we now call propositional logic, rediscovered by 
George Boole in the middle of the nineteenth century. But 
soon after Boole, others began to make good on Leibniz’s 
promise of a universal language of thought, or, at least, 
languages that were sufficient to represent more complex 
assertions. Peirce, Schröder, Frege, Peano, and others 
expanded logical symbolism to include quantifiers and 
relations. In 1879 Gottlob Frege published his landmark 
work, Begriffsschrift (“concept writing”), which presented 
an expressive logical language together with axioms and 
rules of inference. In the introduction, he situated the 
project clearly in the Leibnizian tradition while carefully 
restricting its scope to scientific language and reasoning.

In the early twentieth century, the work of David Hil-
bert and his students and collaborators, Ernst Zermelo’s 
axiomatization of set theory, and Bertrand Russell and 
Alfred North Whitehead’s Principia Mathematica all fur-
thered the project of using symbolic systems to provide a 

Although this work sounds quirky today, it is based 
on three fundamental assumptions that are now so in-
grained in our thought that it is hard to appreciate their 
significance: 

 • We can represent concepts, assertions, or objects of 
thought with symbolic tokens.

 • Compound concepts (or assertions or thoughts) can be 
obtained by forming combinations of more basic ones.

 • Mechanical devices, even as simple as a series of 
concentric wheels, can be helpful in constructing and 
reasoning about such combinations.
Llull was influenced by an early Muslim thinker, al-

Ghazali, and the first two as-
sumptions can be found even 
earlier in the work of Aristo-
tle. For example, the theory of 
the syllogism in Prior Analyt-
ics offers general arguments in 
which letters stand for arbitrary 
predicates, and Aristotle’s other 
writings address the question of 
how predicates can combine to 
characterize or define a subject. 
But Llull’s use of mechanical de-
vices and procedures to support 

reasoning was new, and, in the eyes of many, this makes 
him the founder of mechanized reasoning.

Almost 400 years later, Llull’s ideas were an inspiration 
to Gottfried Leibniz, who, in his doctoral dissertation, 
dubbed the method ars combinatoria (“the art of combi-

Figure 2. A thirteenth-century Franciscan monk, Ramon Llull, designed logical and visual aids to reason about the 
multipicity of God's attributes.
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It should not be surprising that such technologies bear 
on mathematical activity as well. Proving the correctness 
of a piece of hardware or software is an instance of proving 
a theorem, in this case, the theorem that states that the 
hardware or software, described in mathematical terms, 
meets its specification. Searching for bugs in hardware or 
software is simply an instance of searching for a mathe-
matical object that satisfies given constraints. Moreover, 
claims about the behavior of hardware and software are 
made with respect to a body of mathematical background. 
For example, verifying software often depends on integer 
or floating point arithmetic and on properties of basic 
combinatorial structures. Verifying a hardware control 
system may invoke properties of dynamical systems, dif-
ferential equations, and stochastic processes.

Of course, there is a difference in character between 
proving ordinary mathematical theorems and proving 
hardware and software correct. Verification problems 
in computer science are generally difficult because of 
the volume of detail, but they typically do not have the 
conceptual depth one finds in mathematical proofs. But 
although the focus here is on mathematics, you should 
keep in mind that there is no sharp line between mathe-
matical and computational uses of formal methods, and 
many of the systems and tools I will describe can be used 
for both purposes.

Verified Proof
Interactive theorem proving involves the use of compu-
tational proof assistants to construct formal proofs of 
mathematical claims using the axioms and rules of a for-
mal foundation that is implemented by the system. The 
user of such an assistant generally has a proof in mind and 
works interactively with the system to transform it into 
a formal derivation. Proofs are presented to the system 
using a specialized proof language, much like a program-
ming language. The computational assistant processes the 
input, complains about the parts it cannot understand, 
keeps track of goals and proof obligations, and responds 
to queries, say, about definitions and theorems in the 
background libraries. Most importantly, every inference 
is checked for correctness using a small, trusted body of 
code, known as the kernel or trusted computing base. Some 
systems even retain, in memory, a complete description 
of the resulting axiomatic derivation, a complex piece of 
data that can be exported and verified by an independent 
reference checker.

The choice of axiomatic foundation varies. Some 
systems are based on set theory, in which every object 
denotes a set. Predicates are then used to pick out which 
sets represent objects like integers, real numbers, func-
tions, triangles, and structures. Most systems, however, 
implement frameworks in which every object is assigned a 
type that indicates its intended use. For example, an object 
of type int is an integer, and an object of type int à int 
is a function from integers to integers. Such an approach 
often permits more convenient forms of input, since a 
system can use knowledge of data types to work out the 
meaning of a given expression. It also makes it possible 
for a system to catch straightforward errors, such as when 

foundation for mathematical reasoning. The project was 
so successful that, in 1931, Kurt Gödel could motivate his 
incompleteness theorems with the following assessment:

The development of mathematics toward 
greater precision has led, as is well known, to 
the formalization of large tracts of it, so that 
one can prove any theorem using nothing but a 
few mechanical rules. The most comprehensive 
formal systems that have been set up hitherto 
are the system of Principia mathematica (PM) 
on the one hand and the Zermelo-Fraenkel 
axiom system of set theory (further developed 
by J. von Neumann) on the other. These two 
systems are so comprehensive that in them all 
methods of proof used today in mathematics 
are formalized, that is, reduced to a few axioms 
and rules of inference. [3]

This brief historical overview will help situate the work 
I intend to present here. To properly bridge the gap from 
the beginning of the twentieth century to the present, I 
would have to survey not only the history of logic, founda-
tions of mathematics, and computer science but also the 
history of automated reasoning and interactive theorem 
proving. Nothing I can do in the scope of this article would 
do these subjects justice, so I will now set them aside and 
jump abruptly to the present day.

Formal Methods in Computer Science
The phrase “formal methods” is used to describe a body of 
methods in computer science for specifying, developing, 
and verifying complex hardware and software systems. 
The word “formal” indicates the use of formal languages 
to write assertions, define objects, and specify constraints. 
It also indicates the use of formal semantics, that is, ac-
counts of the meaning of a syntactic expression, which can 
be used to specify the desired behavior of a system or the 
properties of an object sought. For example, an algorithm 
may be expected to return a tuple of numbers satisfying a 
given constraint, C, expressed in some specified language, 
whereby the logical account spells out what it means for 
an object to satisfy the symbolically expressed constraint. 
Finally, the word “formal” suggests the use of formal rules 
of inference, which can be used to verify claims or guide 
a search.

Put briefly, formal methods are used in computer sci-
ence to say things, find things, and check things. Using an 
approach known as model checking, an engineer describes 
a piece of hardware or software and specifies a property 
that it should satisfy. A tool like a satisfiability solver 
(SAT solver) or satisfiability-modulo-theories solver (SMT 
solver) then searches for a counterexample trace, that 
is, an execution path that violates the specification. The 
search is designed to be exhaustive so that failure to find 
such a trace guarantees that the specification holds. In a 
complementary approach known as interactive theorem 
proving, the engineer seeks to construct, with the help of 
the computer, a fully detailed formal proof that the artifact 
meets its specification. 
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to a base point. This opens up possibilities for using inter-
active theorem provers to reason about subtle topological 
constructions. Moreover, Voevodsky showed that one can 
consistently add an axiom that states, roughly, that iso-
morphic structures are equal, which is to say, the entire 
language of dependent type theory respects homotopic 
equivalence. The field has come to be known as homotopy 
type theory, a play on the homotopical intepretation of 
type theory and the theory of homotopy types.

At this stage, it may seem premature to predict that 
formally verified proof will become common practice. 
Even the most striking successes in formally verified 
mathematics so far have done little to alter the status quo. 
Hales’ result was published in the Annals of Mathematics 
and widely celebrated long before the formal verification 
was complete, and even though the verification of the 
Feit–Thompson theorem turned up minor misstatements 
and gaps in the presentations they followed, the correct-
ness of the theorem was not in doubt, and the repairs 
were routine.

But the mathematical literature is filled with errors, 
ranging from typographical errors, missing hypothe-
ses, and overlooked cases to mistakes that invalidate a 
substantial result. In a talk delivered in 2014,2 Vladimir 
Voevodsky surveyed a number of substantial errors in 
the literature in homotopy theory and higher category 
theory, including a counterexample, discovered by Carlos 
Simpson in 1998, to the main result of a paper he himself 
had published with Michal Kapronov in 1989. Voevodsky 
ultimately turned to formal verification because he felt 
that it was necessary for the level of rigor and precision 
the subject requires.

The situation will only get worse as proofs get lon-
ger and more complex. In a 2008 opinion piece in the 
Notices, “Desperately seeking mathematical truth” [5], 
Melvyn Nathanson lamented the difficulties in certifying 
mathematical results: “We mathematicians like to talk 
about the ‘reliability’ of 
our literature, but it is, 
in fact, unreliable.” His 
essay was not meant 
to be an advertisement 
for formal verification, 
but it can easily be read 
that way.

Checking the details 
of a mathematical proof 
is far less enjoyable than exploring new concepts and 
ideas, but it is important nonetheless. Rigor is essential 
to mathematics, and even minor errors are a nuisance to 
those trying to read, reconstruct, and use mathematical 
results. Even expository gaps are frustrating, and it would 
be nice if we could interactively query proofs for more 
detail, spelling out any inferences that are not obvious to 
us at first. It seems inevitable that, in the long run, formal 
methods will deliver such functionality.

a user applies a function to an object of the wrong type. 
The complexity of the typing system can vary, however. 
Some versions of type theory have a natural computational 
interpretation, so that the definition of a function like the 
factorial function on the nonnegative integers comes with 
a means of evaluating it.

Many core theorems of mathematics have been formal-
ized in such systems, such as the prime number theorem, 
the four color theorem, the Jordan curve theorem, Gödel’s 
first and second incompleteness theorems, Dirichlet’s the-
orem on primes in an arithmetic progression, the Cartan 
fixed-point theorems, and the central limit theorem. Veri-
fying a big name theorem is always satisfying, but a more 
important measure of progress lies in the mathematical 
libraries that support them. To date, a substantial body 
of definitions and theorems from undergraduate mathe-
matics has been formalized, and there are good libraries 
for elementary number theory, real and complex analysis, 
point-set topology, measure-theoretic probability, abstract 
algebra, Galois theory, and so on. In November of 2008 
the Notices devoted a special issue to the topic of inter-
active theorem proving, which provides an overview of 
the state of the field at the time (see also [1]). As a result, 
here I will discuss only a few landmarks that have been 
achieved since then.

In 2012 Georges Gonthier and thirteen co-authors 
announced the culmination of a six-year project that 
resulted in the verification of the Feit–Thompson odd 
order theorem. Feit and Thompson’s journal publication 
in 1963 ran 255 pages, a length that is not shocking by 
today’s standards but was practically unheard of at the 
time. The formalization was carried out in Coq, a theorem 
prover based on a constructive type theory using a proof 
language designed by Gonthier known as SSReflect. The 
formalization included substantial libraries for finite 
group theory, linear algebra, and representation theory. 
All told, the proof comprised roughly 150,000 lines of 
formal proof, including 4,000 definitions and 13,000 
lemmas and theorems.

Another major landmark is the completion of the 
formal verification of the Kepler conjecture, described 
in the introduction. Most of the proof was carried out in 
a theorem prover known as HOL light, though one com-
ponent, the enumeration of tame graphs, was carried out 
in Isabelle.

Yet another interesting development in the last few 
years stems from the realization, due to Steve Awodey and 
Michael Warren and, independently, Vladimir Voevodsky, 
that dependent type theory, the logical framework used 
by a number of interactive theorem provers, has a novel 
topological interpretation. In this interpretation, data 
types correspond to topological spaces or, more precisely, 
abstract representations of topological spaces up to ho-
motopy. Expressions that would ordinarily be understood 
as functions between data types are interpreted instead 
as continuous maps. An expression of the form x = y is 
interpreted as saying that there is a path between x and y, 
and the rules for reasoning about equality in dependent 
type theory correspond to a common pattern of reasoning 
in homotopy theory in which paths are contracted down 

2www.math.ias.edu/~vladimir/Site3/Univalent_Founda-
tions_files/2014_IAS.pdf.
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ification of the four color theorem used such a strategy 
to evaluate the computational component of the proof.

One notable effort along these lines, by Frédéric 
Chyzak, Assia Mahboubi, Thomas Sibut-Pinote, and Enrico 
Tassi, yielded a verification of Apéry’s celebrated 1973 
proof of the irrationality of ζ(3). The starting point for 
the project was a Maple worksheet, designed by Bruno 
Salvy, that carried out the relevant symbolic computation. 
The group’s strategy was to extract algebraic identities 
from the Maple computations and then construct formal 
axiomatic proofs of these identities in Coq. A fair amount 
of work was needed to isolate and manage side condi-
tions that were ignored by Maple, such as showing that a 
symbolic expression in the denominator of a fraction is 
nonzero under the ambient hypotheses. 

Yet another interesting project was associated with 
Tucker’s solution to Smale’s 14th problem. To demon-
strate the existence of the Lorenz attractor, Tucker en-
closed a Poincaré section of the flow defined by the Lorenz 
equations with small rectangles and showed that each 
rectangle (together with a cone enclosing the direction 
in which the attractor is expanding) is mapped by the 
flow inside another such rectangle (and cone). Tucker, a 
leading figure in the art of validated computation, relied 
on careful numeric computation for most of the region, 
coupled with a detailed analysis of the dynamics around 
the origin. Quite recently, Fabian Immler was able to verify 
the numeric computations in Isabelle. To do so, he not 
only formalized enough of the theory of dynamical sys-
tems to express all the relevant claims, but also defined 
the data structures and representations needed to carry 
out the computation efficiently and derived enough of 
their properties to show that the computation meets its 
specification.

Once again, on the basis of such examples, it may seem 
bold to predict that formally verified computation will 
become commonplace in mathematics. The need, however, 
is pressing. The increasing use of computation to establish 
mathematical results raises serious concerns as to their 
correctness, and it is interesting to see how mathemati-
cians struggle to address this. In their 2003 paper, “New 
upper bounds on sphere packings. I,” Cohn and Elkies 
provide a brief description of a search algorithm:

To find a function g [with properties that guar-
antee an upper bound] … , we consider a linear 
combination of g1, g3, … , g4m+3, and require 
it to have a root at 0 and m double roots at z1, 
… , zm. . . . We then choose the locations of z1, 
… , zm to minimize the value r of the last sign 
change of g. To make this choice, we do a com-
puter search. Specifically, we make an initial 
guess for the locations of z1, … , zm, and then 
see whether we can perturb them to decrease 
r. We repeat the perturbations until reaching 
a local optimum.

After presenting the bounds that constitute the main 
result of the paper, they write:

Verified Computation
When Hales submitted his proof of the Kepler conjecture 
to the Annals, a sticking point was that the mathemat-
ically trained referees were not equipped to vouch for 
the correctness of the code. Hales and his collaborators 
countered this concern by verifying these computations 
as well as the conventional mathematical arguments. This 
was not the first example of a formally verified proof that 
involved substantial computation: Gonthier’s verification 
of the four color theorem in Coq was of a similar nature, 
relying on a simplified computational approach by Rob-
ertson, Sanders, Seymour, and Thomas.

This brings us to the subtle question as to what, exactly, 
it means to verify a computation. Researchers working 
in formal verification are very sensitive to the question 
as to what components of a system have to be trusted to 
ensure the correctness of a result. Ordinary pen-and-paper 
proofs are checked with respect to the axioms and rules of 
a foundational deductive system. In that case, the trust lies 
with the kernel, typically a small, carefully written body 
of code, as well as the soundness of the axiomatic system 
itself, the hardware that runs the kernel, and so on. To 
verify the nonlinear inequalities in the Flyspeck project, 
Hales and a student of his, Alexey Solovyev, reworked 
the algorithms so that they produce proofs as they go. 
Whenever a calculation depended on a fact like 12 × 7 = 
84, the algorithm would produce a formal proof, which 
was then checked by the kernel. In other words, every com-
putational claim was subjected to the same standard as a 
pen-and-paper proof. Checking the nonlinear inequalities 
involved verifying floating point calculations, and the full 
process required roughly 5,000 processor hours on the 
Microsoft Azure cloud.

Another approach to verifying computation involves 
describing a function in the formal foundational language 
of a theorem prover, proving that the description meets 
the desired specification, and then using an automated 
procedure to extract a program in a conventional program-
ming language to compute its values. The target of the 
extraction procedure is often a functional programming 
language like ML or Haskell. This approach requires a 
higher degree of trust, since it requires that the extraction 
process preserve the semantics of the formal expression. 
Of course, one also has to trust the target programming 
language and its compiler or interpreter. Even so, the 
verification process imposes a much higher standard 
of correctness than unverified code. When writing or-
dinary mathematical code, it is easy to make mistakes 
like omitting corner cases or misjudging the properties 
that are maintained by an iterative loop. In the approach 
just described, every relevant property has to be speci-
fied, and every line of code has to be shown to meet the 
specifications. In the Flyspeck project, the combinatorial 
enumeration of tame graphs was verified in this way by 
Tobias Nipkow and Gertrud Bauer.

There is also a middle ground in which functions are 
defined algorithmically within the formal system and 
then executed using an evaluator that is designed for that 
purpose. There is then a tradeoff between the complexity 
of the evaluator and the reliability of the result. The ver-
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Whatever means we develop to address these questions 
have to scale. Perhaps the bodies of code associated with 
the examples above are manageable, but what will happen 
when results rely on code that is even more complicated, 
and, say, ten times as long? With results like the four color 
theorem and Hales’ theorem, we are gradually getting past 
the vain hope that every interesting mathematical theo-
rem will have a humanly surveyable proof. But it seems 
equally futile to hope that every computational proof will 
make use of code that can easily be understood, and so 
the usual difficulties associated with understanding com-
plicated proofs will be paired with similar difficulties in 
understanding complicated programs.

Formal Search
Formal verification does not have a visceral appeal to most 
mathematicians: the work can be painstakingly difficult, 
and the outcome is typically just the confirmation of a 
result that we had good reason to believe from the start. 
In that respect, the Pythagorean triple theorem of Heule, 
Kullmann, and Marek fares much better. Here the outcome 
of the effort was a new theorem of mathematics, a natu-
ral Ramsey-like result, and a very pretty one at that. The 
result relied on paradigmatic search techniques from the 
formal methods community, and it seems worthwhile to 
explore the extent to which such methods can be put to 
good mathematical work.

To date, such applications of formal methods to math-
ematics are few and far between. In 1996 William McCune 
proved the Robbins conjecture, settling a question that 
had been open since the 1930s as to whether a certain sys-
tem of equations provided an equivalent axiomatization of 
Boolean algebras. The result was featured in an article by 
Gina Kolata in the New York Times. But the subject matter 
was squarely in the field of mathematical logic, and so it is 
not surprising that an automated theorem prover (in this 
case, one designed specifically for equational reasoning) 
could be used for such purposes.

Systems like McCune’s can also be used to explore 
consequences of other first-order axioms. For exam-
ple, McCune himself showed that the single equation 
(w ((x–1w)–1z))((yz)–1y)=x axiomatizes groups in a language 
with a binary multiplication and a unary inverse, and 
Kenneth Kunen later showed that this is the shortest such 
axiom. Kunen went on to use interactive theorem provers 
to contribute notable results to the theory of nonasso-
ciative structures such as loops and quasigroups. (More 
examples of this sort are discussed in [2].) 

Since the beginning of this century, propositional 
satisfiability solvers have been the killer app for formal 
methods, permitting algorithmic solutions to problems 
that were previously out of reach. On the heels of the Py-
thagorean triples problem, Heule has recently established 
that the Schur number S(5) is equal to 160; in other words, 
there is a five-coloring of the integers from 1 to 160 with 
no monochromatic triple a, b, c with a + b = c, but no such 
coloring of the integers from 1 to 161. 

A SAT solver had a role to play in work on the Erdös 
discrepancy problem. Consider a sequence (xi)i>0, where 
each xi is ± 1, and consider sums of this sequence along 

These bounds were calculated using a com-
puter. However, the mathematics behind the 
calculations is rigorous. In particular, we use 
exact rational arithmetic, and apply Sturm’s 
theorem to count real roots and make sure we 
do not miss any sign changes.

The passage goes on to explain how they used approxi-
mations to real-valued calculations by rational calculations 
without compromising correctness of the results. In their 
2013 paper “The maximal number of exceptional Dehn 
surgeries,” Lackenby and Meyerhoff turn to the topic of 
computation:

We now discuss computational issues and re-
sponses arising from our parameter space anal-
ysis. The computer code was written in C++.

They then proceed to sketch the algorithms they used 
to carry out the calculations described in the paper, as 
well as the methods for interval arithmetic, and some of 
the optimizations they used. They also discuss the use of 
Snap, a program for studying arithmetic invariants of hy-
perbolic 3-manifolds, which incorporates exact arithmetic 
based on algebraic numbers. In their preprint “Universal 
quadratic forms and the 290 theorem” Bhargava and 
Hanke are forthright in worrying about the reliability of 
their computations:

As with any large computation, the possibility 
of error is a real issue. This is especially true 
when using a computer, whose operation 
can only be viewed intermittently and whose 
accuracy depends on the reliability of many 
layers of code beneath the view of all but the 
most proficient computer scientist. We have 
taken many steps to ensure the accuracy of our 
computations, the most important of which are 
described below.

These steps include checks for correctness, careful 
management of roundoff errors, and, perhaps most im-
portantly, making the source code available on a web page 
maintained by the authors.

The paper by Cohn and Elkies appeared in the Annals of 
Mathematics, the one by Lackenby and Meyerhoff appeared 
in Inventiones Mathematicae, and the paper by Bhargava 
and Hanke will appear in Inventiones as well. This makes 
it clear that substantial uses of computation have begun 
to infiltrate the upper echelons of pure mathematics, and 
the trend is likely to continue. In the passages above, the 
authors are doing everything they can to address concerns 
about the reliability of the computations, but the mathe-
matical community does not yet have clear standards for 
evaluating such results. Are referees expected to read the 
code and certify the behavior of each subroutine? Are they 
expected to run the code and, perhaps, subject it to empir-
ical testing? Can they trust the reliability of the software 
libraries and packages that are invoked? Should authors 
be required to comment their code sufficiently well for a 
computer-savvy referee to review it?
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communities to work more closely together. Combinator-
ics is a natural place to start, because the core concepts 
are easily accessible and familiar to computer scientists. 
But it will take real mathematical effort to understand how 
problems in other domains can be reduced to the task of 
finding finite pieces of data or ruling out the existence of 
such data by considering sufficiently many cases.

Indeed, for all we know, there may be lots of lovely the-
orems of mathematics that can only be proved that way. 
For the last two thousand years, we have been looking for 
proofs of a certain kind, because those are the proofs that 
we can survey and understand. In that respect, we may be 
like the drunkard looking for his keys under a streetlamp 
even though he lost them a block away, because that is 
where the light is. We should be open to the possibility 
that new technologies can open new mathematical vistas 
and afford new types of mathematical understanding. 
The prospect of ceding a substantial role in mathematical 
reasoning to the computer may be disconcerting, but it 
should also be exhilarating, and we should look forward 
to seeing where the technology takes us.

Digital Infrastructure
Contemporary digital technologies for storage, search, and 
communication of information provide another market for 
formal methods in mathematics. Mathematicians now rou-
tinely download papers, search the web for mathematical 
results, post questions on Math Overflow, typeset papers 
using , and exchange mathematical content via email. 
Digital representations of mathematical knowledge are 
therefore central to the mathematical process. It stands 
to reason that mathematics can benefit from having better 
representations and better tools to manage them.

 and  have transformed mathematical dissemi-
nation and communication by providing precise means for 
specifying the appearance of mathematical expressions. 
MathML, building on XML, goes a step further, providing 
markup to specify the meaning of mathematical expres-
sions as well. But MathML stops short of providing a foun-
dational specification language, which is clearly desirable: 
imagine being able to find the statement of a theorem 
online, and then being able to look up the meaning of 
each defined term, all the way down to the primitives of 
an axiomatic system if necessary. That would provide 
clarity and uniformity, and help ensure that the results 
we find mean what we think they mean. The availability 
of such formal specifications would also support veri-
fication: we could have a shared public record of which 
results have been mechanically verified and how, and we 
could use theorems from a public repository to verify our 
own local results. Automated reasoning tools could make 
use of such background knowledge, and could, in turn, 
be used to support a more robust search. Contemporary 
sledgehammer tools for interactive theorem provers rely 
on heuristics to extract relevant theorems from a database 
and then use them to carry out a given inference. With such 
technology, one could ask whether a given statement is 
equivalent to, or an easy consequence of, something in a 
shared repository of known facts. 

multiples of a fixed positive integer, such as x1 + x2 + 
x3 + … and x2 + x4 + x6 + … and x3 + x6 + x9 +…. In the 
1930s, Erdös asked whether it is possible to keep the 
absolute value of such sums—representing the discrep-
ancy between the number of +1’s and –1’s along the 
sequence—uniformly bounded. In other words, he asked 
whether there are a sequence (xi) and a value C such that 
for every n and d, ∑n

i =1xid≤ C, and he conjectured that 
no such pair exists. In 2010 Tim Gowers launched the 
collaborative Polymath5 project on his blog to work on 
the problem. In 2014 Boris Konev and Alexei Lisitsa used 
a SAT solver to provide a partial result, namely, that there 
is no sequence satisfying the conclusion with C = 2. Spe-
cifically, they showed that there is a finite sequence x1, …, 
x1,160 with discrepancy at most 2, but no such sequence 
of length 1,161. The following year, Terence Tao proved 
the full conjecture, with a conventional proof. This was a 
much more striking achievement, but we still have Konev 
and Lisitsa, and a SAT solver, to thank for exact bounds 
in the case C = 2. SAT solvers have been applied to other 
combinatorial problems as well. 

The line between discovery and verification is not 
sharp. Anyone writing a search procedure does so with 
the intention that the results it produces are reliable, 
but, as with any piece of software, as the code becomes 
more complex, it becomes increasingly necessary to have 
mechanisms to ensure that the results are correct. This 
is especially true of powerful search tools, which rely on 
complicated tricks and heuristics to improve performance 
at the risk of compromising soundness. It is important that 
the solution to the Pythagorean triples problem produced 
a formal proof that could be verified independently, and, 
in fact, that proof has been checked by three proof check-
ers that themselves have been formally verified, one in 
Isabelle, one in Coq, and one in a theorem prover named 
ACL2. This provides a high degree of confidence in the 
correctness of the result.

Today, the use of formal methods in discovery is even 
less advanced than the use of formal methods in verifi-
cation. The results described above depend, for the most 
part, on finding consequences of first-order axioms for 
algebraic structures, searching for finite objects satisfying 
combinatorial constraints, or ruling out the existence of 
such objects by exhaustive enumeration. It is not sur-
prising that computers can be used to exhaust a large 
number of finite cases, but few mathematical problems 
are presented to us in that form. And spinning out conse-
quences of algebraic axioms is a far cry from discovering 
consequences of rich mathematical assumptions involving 
heterogeneous structures and mappings between them. 

But just as pure mathematicians have discovered uses 
for computation in number theory, algebraic topology, 
differential geometry, and discrete geometry, one would 
expect to find similarly diverse applications for formal 
search methods. The problem may simply be that re-
searchers in these fields do not yet have a sense of what 
formal search methods can do, whereas the computer 
scientists who develop them do not have the expertise 
needed to identify the mathematical domains of applica-
tion. If that is the case, it is only a matter of getting the 
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proof assistant that could work out small lemmas and 
results, at the level of a capable graduate student. The 
second is genuine search technology that can tell us 
whether a given fact is currently known, either because 
we would like to use it in a proof, or because we think we 
have a proof and are wondering whether it is worthwhile 
to work out the details. The third is a real proof checker, 
that is, something we can call when we think we have 
proved something and want confirmation that we have 
not made a mistake.

We are not there yet, but such technology seems to be 
within reach. There are no apparent conceptual hurdles 
that need to be overcome, though getting to that point will 
require a good deal of careful thought, clever engineering, 
experimentation, and hard work. And even before tools 
like these are ready for everyday use, we can hope to find 
pockets of mathematics where the methods provide a 
clear advantage: proofs that rely on nontrivial calculations, 
subtle arguments for which a proof assistant can provide 
significant validation, and problems that are more easily 
amenable to search techniques. Verification is not an all-
or-nothing affair. Short of a fully formalized axiomatic 
proof, formalizing a particularly knotty or subtle lemma 
or verifying a key computation can lend confidence to the 
correctness of a result. Even just formalizing definitions 
and the statements of key theorems, as proposed by the 
Formal Abstracts project, adds helpful clarity and preci-
sion. Formal methods can also be used in education: if we 
teach students how to write formal proofs and informal 

For all these purposes, formal specifications are es-
sential. As a first step towards obtaining them, Hales has 
recently launched a Formal Abstracts Project, which is 
designed to encourage mathematicians to write formal 
abstracts of their papers. To process and check the defini-
tions, he has chosen an interactive theorem prover called 
Lean, an open source project led by Leonardo de Moura at 
Microsoft Research (and to which I am a contributor). In 
the coming years, the Formal Abstracts project plans to 
seed the repository with core definitions from all branches 
of mathematics, and develop guidelines, tools, and infra-
structure to support widespread use.

 Conclusions
In the summer of 2017, the Isaac Newton Institute hosted 
a six-week workshop, Big Proof, dedicated to the technol-
ogies described here (see Figure 3).3 As part of a panel 
discussion, Timothy Gowers gave a frank assessment of 
the new technology and the potential interest to mathe-
maticians. He observed that the phrase “interactive proof 
assistant” is rather appealing until one learns that such 
assistants actually make proving a theorem a lot more 
difficult. The fact that a substantial body of undergraduate 
mathematics has been formalized is generally unexciting 
to the working mathematician, and existing tools currently 
offer little to improve our mathematical lives.

Gowers did enumerate three technologies that he felt 
would have widespread appeal. The first is a bona fide 

Figure 3. In the summer of 2017, the Isaac Newton Institute hosted a six-week workshop, Big Proof, dedicated to 
the technologies described here. 

3Talks delivered at the program are available online at www.
newton.ac.uk/event/bpr.

http://www.newton.ac.uk/event/bpr
http://www.newton.ac.uk/event/bpr
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proofs at the same time, the two perspectives reinforce 
one another.4

The mathematics community needs to put some skin in 
the game, however. Proving theorems is not like verifying 
software, and computer scientists do not earn promotions 
or secure funding by making mathematicians happy. We 
need to buy into the technology if we want to reap the 
benefits.

To that end, institutional inertia needs to be overcome. 
Senior mathematicians generally do not have time to invest 
in developing a new technology, and it is hard enough to 
learn how to use the new tools, let alone contribute to their 
improvement. The younger generation of mathematicians 
has prodigious energy and computer savvy, but younger 
researchers would be ill-advised to invest time and effort 
in formal methods if it will only set back their careers. To 
allow them to explore the new methods, we need to give 
them credit for publications in journals and conferences 
in computer science, and recognize that the mathematical 
benefits will come only gradually. Ultimately, if we want to 
see useful technologies for mathematics, we need to hire 
mathematicians to develop them.

The history of mathematics is a history of doing what-
ever it takes to extend our cognitive reach, and designing 
concepts and methods that augment our capacities to 
understand. The computer is nothing more than a tool 
in that respect, but it is one that fundamentally expands 
the range of structures we can discover and the kinds of 
truths we can reliably come to know. This is as exciting a 
time as any in the history of mathematics, and even though 
we can only speculate as to what the future will bring, it 
should be clear that the technologies before us are well 
worth exploring.
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The following is excerpted from The Hope Circuit: A 
Psychologist’s Journey from Helplessness to Optimism by 
Martin E. P. Seligman. Copyright © 2018. Available from 
PublicAffairs, an imprint of Hachette Book Group, Inc.  

A Full Fellowship?

I found that I could make deep contact only 
with the most serious students. Robin Forman 
was a mathematical whiz and in a band that 
did The Doors almost as well as The Doors 
themselves. His band played at my “Master 
Blasters,” the master’s open house I held pe-
riodically with loud music in my attempt to 
appear less geeky to my students. Robin bore 
an uncanny resemblance to my college room-
mate Wilfrid Schmid, Princeton valedictorian 
of 1964, now gone off to parts unknown.“Har-
vard mathematics is my first choice, and I just 
got accepted, but with $5,000 minus tuition,” 
Robin said, exuding disappointment, when he 
came to me in April for advice. 

“That is an amazing coincidence,” I replied. 
“My roommate, Wilfrid, also first in our class, 
applied to Harvard almost twenty years ago 
and was only given $5,000 minus tuition. He 
asked my advice, and I told him to phone the 
chairman of math at Harvard and tell him con-
fidently, ‘Perhaps, you don’t know who I am.’ 
Wilfrid did this and was promptly given a full 
fellowship at Harvard. Phone the chairman of 
math at Harvard and tell him, ‘Perhaps you 
don’t know who I am,’” I suggested. “I phoned 
the chairman of math at Harvard and said 
exactly those words,” Robin reported back 
to me the next day. “Wilfrid Schmid is the 
chairman, and he gave me a full fellowship.” 
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