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Communicated by Christina Sormani

Morawetz, an avid sailor, invited us all to “sail with her, near the speed of sound.”
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Irene Gamba and Christina
Sormani
Introduction
In thismemorialwe celebrate themathematics ofCathleen
Synge Morawetz (1923–2017). She was awarded the Na-
tional Medal of Science in 1998 “for pioneering advances
in partial differential equations and wave propagation
resulting in applications to aerodynamics, acoustics and
optics.” In 2004 she won the Steele Prize for lifetime
achievement and in 2006 she won the Birkhoff Prize
“for her deep and influential work in partial differential
equations, most notably in the study of shock waves, tran-
sonic flow, scattering theory, and conformally invariant
estimates for the wave equation.”

As it is impossible to review all her profound contribu-
tions to pure and applied mathematics, we have chosen
instead to present some of her most influential work
in depth. Terence Tao presents the Morawetz Energies
and Morawetz Inequalities, which are ubiquitous in the
analysis of nonlinear wave equations. Leslie Greengard
and Tonatiuh Sánchez-Vizuet have written about her
work on scattering theory. Kevin R. Payne describes the
importance of her early work on transonic flows which
both provided a new understanding of mixed-type partial
differential equations and led to new methods of efficient
aircraft design. In this introduction, we provide a little
history about her career, and we close the article with a
quote of hers thanking one of the mathematicians who
supported her the most when she was young.

Morawetz was encouraged to study mathematics by
her mother and a family friend, Cecilia Kreger, who was
a mathematics professor at the University of Toronto.
Her father, who was also a mathematician at Toronto
did not encourage her pursuit of mathematics, but did
encourage her to be “ambitious.” Morawetz graduated
with a bachelors in mathematics at Toronto in 1945 and
completed her masters at MIT the following year.

In 1946 Morawetz was hired at New York University to
edit themanuscript “SupersonicFlowandShockWaves”by
Richard Courant and Kurt Otto Friedrichs. She described
this later in life as “an invaluable and immersive learning
experience.” Upon completing her doctorate in 1951 with
Friedrichs, Morawetz first accepted a research associate
position at MIT. However she quickly returned to New
York University, where she stayed for the remainder of her
career. Originally hired as research associate, she became
assistant professor in 1957. At that time Courant also
hired other NYU graduates to join the faculty, including
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Morawetz was awarded the National Medal of Science
in 1998 “for pioneering advances in partial
differential equations and wave propagation.”

Harold Grad, Anneli Cahn Lax, then Peter Lax and Louis
Nirenberg. They remained close friends throughout her
life. Morawetz was tenured in 1960 and earned a full
professorship in 1965, the year before being awarded her
first of two Guggenheim Fellowships. She was a Gibbs
Lecturer in 1981, gave an invited address for SIAM in
1982, and was Noether Lecturer in 1983 and 1988. She
served as the director of the Courant Institute at NYU
from 1984 to 1988.

Morawetz was an astounding mentor and a dedicated
coauthor. Irene Gamba worked with her in 1992–1994 as
an NSF postdoctoral fellow. She writes:

Our discussions lasted for endless hours andwere
most illuminating and prolific. They culminated
with two joint publications related to the approx-
imation to transonic flow problems, and the life
changing opportunity of joining the faculty as an
assistant professor in the fall of 1994. She was
an extraordinary role model for me.
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Cathleen Morawetz and fellow New York University
PhD, Harold Grad, back at NYU on the faculty (1964).

Morawetz collaborated often with younger mathemati-
cians, including Gregory Kriegsman, Walter Strauss, Alvin
Bayliss, Kevin Payne, Susan Friedlander, Jane Gilman,
and James Ralston. Among her doctoral students were
Christian Klingenberg and Leslie Sibner.

Morawetz was elected president of the American Math-
ematical Society in 1993. At that time funding in core
mathematics was under threat, the US government was
shut down twice, the job market for new doctorates in
mathematics was terrible, and universities were reconsid-
ering the importance of having research mathematicians
teaching their mathematics courses. We are facing these
same difficulties today and can learn from her example.

Morawetz with Irene Gamba on the day Morawetz
gave her Noether Lecture at the International
Congress of Mathematicians in 1998. Their work was
an extraordinary leap into an area that today remains
quite unexplored.

As AMS president, Morawetz joined forces with the
SIAM president, Margaret Wright, to defend the funding
of both pure and applied mathematics. “Together, they
formulated carefully worded statements for Congress and

agency leaders, always stressing (equally) the remarkable
track record of useful mathematics as well as the unex-
pected benefits that consistently emerge from undirected
basic research.” 1 Their work led eventually towards the
creation of the NSF DMS Grants for Vertical Integration of
Research and Education (VIGRE) “to increase the number
of well-prepared US citizens, nationals, and permanent
residents who pursue careers in the mathematical sci-
ences.” This program provided funding for postdocs,
graduate students, and undergraduates engaged in re-
search with one another and has directly influenced the
careers of many young mathematicians.

Morawetz with Bella Manel (l) and Christina Sormani
(r) at NYU in 1996. Manel received her doctorate at
NYU in 1939.

Morawetz was a powerful leader, a wonderful mentor,
and an amazing mathematician. All of us that were
fortunate enough to be influenced by her aura through
her ninety-four years of life can admire her relentless
pursuit of excellence. Perhaps we too can strive to make
a difference.

See Also

Morawetz’s retiring AMS presidential address: https://
www.ams.org/notices/199901/morawetz.pdf

Morawetz’s work on the board of JSTOR: https://www
.ams.org/notices/199806/comm-jstor.pdf

Happy 91st, Cathleen Synge Morawetz https://www.ams
.org/notices/201405/rnoti-p510.pdf

1Quote taken from a SIAM Memorial of Morawetz by Margaret
Wright and John Ewing.
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Terence Tao
Morawetz Inequalities
Cast a stone into a still lake. There is a large splash, and
waves begin radiating out from the splash point on the
surface of the water. But, as time passes, the amplitude of
the waves decays to zero.

This type of behavior is common in physical waves,
and also in the partial differential equations used in
mathematics to model these waves. Let us begin with the
classical wave equation

(1) − 𝜕𝑡𝑡𝑢+Δ𝑢 = 0,
where 𝑢 ∶ ℝ×ℝ3 → ℝ is a function of both time 𝑡 ∈ ℝ and
space 𝑥 ∈ ℝ3, which is a simple model for the amplitude
of a wave propagating at unit speed in three dimensional
space; here

Δ = 𝜕2

𝜕𝑥2
1
+ 𝜕2

𝜕𝑥2
2
+ 𝜕2

𝜕𝑥2
3

denotes the spatial Laplacian. One can verify that one has
the family of explicit solutions

(2) 𝑢(𝑡, 𝑥) = 𝐹(𝑡 + |𝑥|) − 𝐹(𝑡 − |𝑥|)
|𝑥|

to (1) for any smooth, compactly supported function
𝐹 ∶ ℝ → ℝ, where

|𝑥| = √𝑥2
1 + 𝑥2

2 + 𝑥2
3

denotes the Euclidean magnitude of a position 𝑥 ∈ ℝ3.
The dispersive nature of this equation can be seen in the
observation that the amplitude

sup
𝑥∈ℝ3

|𝑢(𝑡, 𝑥)|

of such solutions decays to zero as 𝑡 → ±∞, whilst other
quantities such as the energy

∫
ℝ3

1
2|𝜕𝑡𝑢(𝑡, 𝑥)|

2 + 1
2|∇𝑢(𝑡, 𝑥)|2 𝑑𝑥

stay constant in time (and in particular do not decay to
zero).

The wave equation can be viewed as a special case of
the more general linear Klein-Gordon equation

(3) − 𝜕𝑡𝑡𝑢+Δ𝑢 = 𝑚2𝑢,
where 𝑚 ≥ 0 is a constant. Even more important is the
linear Schrödinger equation, which we will normalize here
as

(4) 𝑖𝜕𝑡𝑢+ 1
2Δ𝑢 = 0,

where the unknown field 𝑢 ∶ ℝ × ℝ3 → ℂ is now
complex-valued. There are also nonlinear variants of these
equations, such as the nonlinear Klein-Gordon equation

(5) − 𝜕𝑡𝑡𝑢+Δ𝑢 = 𝑚2𝑢+ 𝜆|𝑢|𝑝−1𝑢,

Terrence Tao is James and Carol Collins Chair and professor of
mathematics at the University of California, Los Angeles. His email
address is tao@math.ucla.edu.

Morawetz worked to change the way we think about
partial differential equations.

and the nonlinear Schrödinger equation

(6) 𝑖𝜕𝑡𝑢+ 1
2Δ𝑢 = 𝜆|𝑢|𝑝−1𝑢,

where 𝜆 = ±1 and 𝑝 > 1 are specified parameters. There
are countless other further variations (both linear and
nonlinear) of thesedispersive equations, suchasEinstein’s
equations of general relativity, or the Korteweg-de Vries
equations for shallow water waves.

Figure 1. Dispersion is illustrated in this numerical
simulation of the Klein-Gordon equation
implemented by Brian Leu, Albert Liu, and Parth Sheth
using XSEDE when they were undergrads at U
Michigan in 2013. For a video see
www-personal.umich.edu/∼brianleu.

An important way to capture dispersion mathemati-
cally is through the establishment of dispersive inequali-
ties that assert, roughly speaking, that if a solution 𝑢 to
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one of these equations is sufficiently localized in space
at an initial time, 𝑡 = 0, then it will decay as 𝑡 → ∞. (If
a solution 𝑢 is not localized enough in space initially, it
does not need to decay; consider for instance the traveling
wave solution

𝑢(𝑡, 𝑥) = 𝐹(𝑡 − 𝑥1)
to the wave equation (1).) This decay has to be measured
in suitable function space norms, such as the 𝐿∞

𝑥 (ℝ3)
norm.

One can represent any solution 𝑢 to the linear
Schrödinger equation explicitly in terms of the initial
data 𝑢(0) by the formula

𝑢(𝑡, 𝑥) = 1
(2𝜋𝑖𝑡)3/2 ∫

ℝ3
𝑒−𝑖|𝑥−𝑦|2/2𝑡𝑢(0,𝑦) 𝑑𝑦

for all 𝑡 ≠ 0 and 𝑥 ∈ ℝ3, where the quantity (2𝜋𝑖𝑡)3/2
is defined using a suitable branch cut. From the tri-
angle inequality, this immediately gives the dispersive
inequality

(7) ‖𝑢(𝑡)‖𝐿∞𝑥 (ℝ3) ≤
1

(2𝜋|𝑡|)3/2 ‖𝑢(0)‖𝐿1𝑥(ℝ3).

If the solution is initially spatially localized in the sense
that the 𝐿1 norm

‖𝑢(0)‖𝐿1𝑥(ℝ3)
is finite, then the solution 𝑢(𝑡) decays uniformly to zero
as 𝑡 → ±∞. A similar (but slightly more complicated)
dispersive inequality can also be obtained for solutions
to the linear Klein-Gordon equation (3).

On the other hand, solutions to the linear Schrödinger
Equation (4) satisfy the pointwise mass conservation law

(8) 𝜕𝑡|𝑢|2 =
3
∑
𝑗=1

𝜕𝑥𝑗 Im(𝑢𝜕𝑥𝑗𝑢).

From this, one can easily derive conservation of the
spacial 𝐿2 norm of the solution:

‖𝑢(𝑡)‖𝐿2𝑥(ℝ3) = ‖𝑢(0)‖𝐿2𝑥(ℝ3).
In particular, the𝐿2 normof the solutionwill stay constant
in time, rather than decay to zero.

To reconcile this fact with the dispersive estimate, we
observe that solutions to dispersive equations such as
linear Schödinger equation spread out in space as time
goes to infinity (much as the ripples on a pond do),
allowing the 𝐿∞ norm of such a solution to go to zero
even while the 𝐿2 norm stays bounded away from zero.
As mentioned earlier, this effect can also be seen for the
wave equation (1).

The above analysis of the linear Schrödinger equation
relied crucially on having an explicit fundamental solution
at hand. What happens if one works with nonlinear (and
not completely integrable) equations, such as (5) or
(6), in which no explicit and tractable formula for the
solution is available? For linear equations (such as the
wave or Schrödinger equation outside of an obstacle, or
in the presence of potentials or magnetic fields) one
can still hope to use methods from spectral theory
to understand the long-time behavior (as is done for
instance in the famous RAGE theorem of Ruelle (1969),

Amrein-Georgescu (1973), and Enss (1977)). However,
such methods are absent for nonlinear equations such as
(5) or (6), particularly when dealing with solutions that
are too large for perturbative theory to be of much use.

Cathleen Synge Morawetz in 1964.

Recall that in 1961, Morawetz proved the decay of
solutions to the classical wave equation in the presence
of a star-shaped obstacle. Morawetz used the “Friedrichs
𝑎𝑏𝑐method,” in which one multiplied both sides of a PDE
such as (5) or (6) by a multiplier

𝑎𝜕𝑡𝑢+ 𝑏 ⋅ ∇𝑢+ 𝑐𝑢
for well chosen functions 𝑎,𝑏, 𝑐, integrated over a space-
time domain, and rearranging using integration by parts
and omitting some terms of definite sign, obtained a
useful integral inequality. The key discovery of Morawetz
(a version of which first appeared in work of Ludwig)
was that this method was particularly fruitful when the
multiplier was equal to the radial derivative

𝑥 ⋅ ∇𝑢
|𝑥|

of the solution (in some cases one also adds a lower order
term 𝑢

|𝑥| ).
In 1968, Morawetz applied this technique to study

solutions 𝑢 to the nonlinear Klein-Gordon equation (5),
assuming one is in the nonfocusing case with 𝜆 = 𝑚 = +1.
(In the focusing case 𝜆 = −1, the equation (5) admits
“soliton” solutions that are stationary in time and thus
do not disperse.) By using a multiplier of the above form,
Morawetz obtained an inequality of the form

(9) ∫
ℝ
∫
ℝ3

𝑈(𝑡, 𝑥) 𝑑𝑥𝑑𝑡 ≤ 𝐶𝐸(𝑢(0)),

where
𝑈(𝑡, 𝑥) = |𝑢(𝑡, 𝑥)|2 + |𝑢(𝑡, 𝑥)|𝑝+1

|𝑥| .
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Here the constant 𝐶 depends only on the exponent 𝑝 and
𝐸(𝑢(0)) is the energy:

𝐸(𝑢(0)) = ∫
ℝ3

1
2|∇𝑢(0, 𝑥)|2

+1
2|𝜕𝑡𝑢(0, 𝑥)|

2

+ 1
(𝑝+ 1)|𝑢(0, 𝑥)|

𝑝+1 𝑑𝑥.

This type of estimate is now known as a Morawetz
inequality. The key point here is that the left-hand side
of the Morawetz inequality in (9) contains an integration
over the entire time domain ℝ (as opposed to a time
integral over a bounded interval). It immediately rules
out soliton-type solutions that move at bounded speed
(as this would make the left-hand side of (9) infinite). It
forces some time-averaged decay of the solution near the
spatial origin 𝑥 = 0. For instance, it is immediate from (9)
that

1
𝑇 ∫

𝑇

0
∫
𝐾
|𝑢(𝑡, 𝑥)|2 𝑑𝑥 𝑑𝑡 → 0

as 𝑇 → ∞ for any compact spatial region 𝐾 ⊂ ℝ3.

Cathleen Morawetz and Walter Strauss in 2008.

Once one has some sort of decay estimate for a
dispersive equation, it is often possible to “bootstrap”
the estimate to obtain additional decay estimates. For
instance one might use the decay estimate one already
has tobound the right-handsideof anonlinearPDEsuchas
(5) or (6), and then solve the associated (inhomogeneous)
linear PDE to obtain a new decay estimate for the solution.

An early result of this type was developed by Morawetz
and Strauss in 1975. They showed that for any finite

energy solution 𝑢 to the nonlinear Klein-Gordon equation
(5) with 𝜆 = 𝑚 = +1 and 𝑝 = 3, the solution decays
like a solution to the linear Klein-Gordon equation (3).
More precisely, there exist finite solutions 𝑢+, 𝑢− to (3)
such that 𝑢(𝑡) − 𝑢+(𝑡) (resp. 𝑢(𝑡) − 𝑢−(𝑡)) goes to zero
in the energy norm as 𝑡 → +∞ (resp. 𝑡 → −∞). This can
be developed further into a satisfactory scattering theory
for such equations, which among other things gives a
continuous scattering map from 𝑢− to 𝑢+ or vice versa.
See Figure 2.

Figure 2. Here we see 𝑢− on the left in blue and 𝑢+ on
the right in red, with 𝑢 in purple approximating 𝑢− as
𝑡 → −∞ and approximating 𝑢+ as 𝑡 → ∞.

In the decades sinceMorawetz’s pioneeringwork,many
additionalMorawetz inequalitieshavebeendeveloped. For
instance, in 1978, Lin and Strauss developed Morawetz
inequalities for the nonlinear Schrödinger equation, and
Morawetz herself discovered further such estimates for
the wave equation outside of an obstacle. In more recent
years, “interaction Morawetz inequalities” were intro-
duced, which could control correlation quantities such
as

(10) ∫
ℝ
∫
ℝ3

∫
ℝ3

|𝑢(𝑡, 𝑥)|2|𝑢(𝑡, 𝑦)|𝑝
|𝑥 − 𝑦| 𝑑𝑥𝑑𝑦𝑑𝑡

for solutions 𝑢 to the nonlinear Schrödinger equation (6).
Oneway toviewMorawetz inequalities is asanassertion

of monotonicity of the radial momentum, which takes the
form

∫
ℝ3
(𝜕𝑡𝑢)(

𝑥
|𝑥| ⋅ ∇𝑢) 𝑑𝑥

for wave or Klein-Gordon equations, and

∫
ℝ3

Im(𝑢 𝑥
|𝑥| ⋅ ∇𝑢) 𝑑𝑥

for Schrödinger equations. Informally, this quantity is
expected to be positive when waves propagate away from
the origin, and negative when they propagate towards the
origin. The intuition is that while waves can sometimes
propagate towards the origin, eventually they will move
past the origin and begin radiating away from the origin.
However, in the absence of focusing mechanisms (such
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as a negative sign 𝜆 = −1 in the nonlinearity), the reverse
phenomenon of outward net radial momentum being
converted to inward net radial momentum cannot occur.
Thus the radial momentum is always expected to be
increasing in time.

On the other hand, under hypotheses such as fi-
nite energy, this radial momentum should be bounded.

The Morawetz
inequalities are
indispensible.

So by the fundamental the-
orem of calculus, the time
derivative of the radial mo-
mentum should have a
bounded integral in time.
Intuitively, one expects this
time derivative to be large
when the solution has a

strong presence near the origin, but not when the so-
lution is far away from the origin. Far from the origin the
radial vector field

𝑥
|𝑥| ⋅ ∇

behaves like a constant, and the radial momentum ap-
proaches a fixed coordinate of the total momentum. This
explains why Morawetz inequalities tend to involve fac-
tors such as 1

|𝑥| that localize the estimate to near the
origin.

The Morawetz inequalities are indispensible as an in-
gredient in controlling the long-time behavior of solutions
to a wide array of dispersive defocusing equations, includ-
ing a number of energy-critical or mass-critical equations
in which the analysis is particularly delicate and inter-
esting; see for instance the texts [1], [4], [3] for detailed
coverage of these topics. They have also been successfully
applied to many equations in general relativity (such as
Einstein’s equations for gravitational fields), for instance
to analyze the asymptotic behaviour around a black hole.
The fundamental tools that Morawetz has introduced to
the field of dispersive equations will certainly underlie
future progress in this field for decades to come.
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Leslie Greengard and Tonatiuh
Sánchez-Vizuet
Cathleen Morawetz and the Scattering of
Acoustic Waves
Cathleen Morawetz was a force at the Courant Institute
when one of us (L.G.) arrived as a postdoctoral fellow.
It was the last year of her directorship, but she made
the time to welcome all newcomers. Her generosity of
spirit was unmatched — she encouraged young people in
every discipline, and her humour and enthusiasm were
infectious.

When she began to study the decay properties of
acoustic waves after impinging on an obstacle, essentially
no general results were available. To understand the
relevant issues, let us begin with the formulation of the
problem in terms of the governing linear, scalar wave
equation in ℝ3, with a forcing term which is turned on for
a finite time:
(11) 𝑢𝑡𝑡(x, 𝑡) = Δ𝑢(x, 𝑡) + 𝑓(x, 𝑡).
Here, Δ𝑢 is the Laplacian operator acting on the scalar
function 𝑢(x, 𝑡) and 𝑓(x, 𝑡) is nonzero only in the finite
time interval 0 ≤ 𝑡 ≤ 𝑇. We assume that we have zero
initial (Cauchy) data at time 𝑡 = 0:

𝑢(x, 0) = 0 and 𝑢𝑡(x, 0) = 0.
We also assume that 𝑓(x, 𝑡) is a smooth, compactly
supported and square integrable function in space-time,
such as

(12) 𝑓(x, 𝑡) = 𝑊(‖x− x0‖)𝑊(2𝑡 − 𝑇
𝑇 ) ,

where x0 ∈ ℝ3 and 𝑊(𝑥) is a standard 𝐶∞ bump function
such as

𝑊(𝑥) = { 𝑒−
1

1−𝑥2 for |𝑥| < 1;
0 otherwise.

Then, it is well known that

(13) 𝑢(x, 𝑡) = 1
4𝜋 ∫

𝐵x0 (1)

𝑓(x′, 𝑡 − ‖x− x′‖)
‖x− x′‖ 𝑑x′ ,

where 𝐵x0(1) denotes the unit ball centered at x0. From
this formula it is clear that at any point x in space, the
solution first becomes nonzero at 𝑡 = 𝑑𝑚𝑖𝑛, where 𝑑𝑚𝑖𝑛
is the distance from x to the closest point in 𝐵x0(1). It
vanishes identically at x as soon as 𝑡 > 𝑇 + 𝑑𝑚𝑎𝑥, where
𝑑𝑚𝑎𝑥 is the distance from x to the farthest point in 𝐵x0(1).

Suppose now that, rather than propagating in free-
space, the outgoing spherical wavefront emanating from
x0 hits an object as in Figure 3. That is, we assume
there is a “sound-soft,” smooth, bounded obstacle Ω with
boundary 𝜕Ω, which is at some distance from 𝐵x0(1),
so that Ω ∩ 𝐵x0(1) = ∅. Then, using the language of
scattering theory, the total acoustic field is given by

Leslie Greengard is a Silver Professor of Mathematics and
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Figure 3. The evolution of an acoustic wave
impinging upon a non-star shaped object, 𝜋, at times
𝑡 = 1, 4, 8, 13, 19, 26 implemented using a high-order
integral equation solver. A video of the simulation
may be found at https://cims.nyu.edu/∼tonatiuh
/morawetz.html.

𝑢(x, 𝑡) + 𝑢𝑠𝑐𝑎𝑡(x, 𝑡), where the scattered field satisfies the
homogeneous wave equation

𝑢𝑠𝑐𝑎𝑡
𝑡𝑡 (x, 𝑡) − Δ𝑢𝑠𝑐𝑎𝑡(x, 𝑡) = 0

for 𝑡 > 0, with initial data
𝑢𝑠𝑐𝑎𝑡(x, 0) = 0 and 𝑢𝑠𝑐𝑎𝑡

𝑡 (x, 0) = 0
and Dirichlet boundary conditions

𝑢𝑠𝑐𝑎𝑡(x, 𝑡) = −𝑢(x, 𝑡)
for x ∈ 𝜕Ω.

Let y denote some fixed point away from both the ball
𝐵x0(1) and the obstacle Ω. The question is: can one prove
that the scattered field decays at y, and if so, at what
rate? Very little progress had been made on this question
until 1959, when Wilcox published a short note showing
that in the case of a spherical obstacle, an exact solution
could be expressed in terms of spherical harmonics. From

Figure 4. The evolution of an acoustic wave being 
scattered off a star shaped obstacle at the same 
sequence of times as in Figure 3. In the final panel, 
the scattered wave has almost completely left the 
simulation region, in contrast with the final panel of 
Figure 3.

this, Wilcox was able to conclude that the solution decays 
exponentially fast. While an important step, his result 
yielded no suggestion as to how to proceed in the general 
case.

In 1961, Morawetz [4] made a critical step forward. 
She showed that if the reflecting obstacle is star-shaped, 
then the solution to the wave equation decays like 𝑡−1/2. 
A region Ω is said to be star-shaped if there exists a point 
p ∈ Ω, such that for all x ∈ Ω, the line segment from p 
to x is contained in Ω. The object in Figure 3, for 
example, is not star shaped, while the object in Figure 4 
is. It is perhaps surprising that for non star-shaped 
obstacles, very little is understood to the present day.

The qualitative difference in the behavior of waves 
reflecting from obstacles that are not star-shaped and 
those that are is illustrated in Figures 3 and 4. In the
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first three panels of each figure, as the incoming wave
hits the object, the scattered wave is clearly visible, with
energy propagating outwards in all directions. In the
next three panels, more of the energy is carried away. In
Figure 3, some of the energy remains behind for quite
some time, and in the last panel a significant amount of
energy has focused in a small neighborhood. In Figure 4,
the energy has propagated outward without significant
concentration and appears to decay much more rapidly.

Remark. The simulations in these figures are actually for
the two-dimensional wave equation, with an incoming
plane wave of the form

𝑢𝑖𝑛𝑐(x, 𝑡) = 𝜒(𝑠/𝛼) sin3 (𝑠/𝛼), 𝑠 ∶= x ⋅ d− 𝑡.
The unit vector d points in the direction in which the wave
propagates, 𝜒(⋅) is a smooth approximation to the charac-
teristic function of the interval [0, 2𝜋], and 𝛼 is a scaling
factor that has the effect of shrinking (if 𝛼 < 1) or dilating
(if 𝛼 > 1) the wave profile. In two dimensions, waves do
not decay exponentially fast, even in the absence of a scat-
terer, but the focusing/trapping effect caused by nonstar
shaped obstacles is similar.

Peter Lax with Cathleen Morawetz at the 2008
Conference on Nonlinear Phenomena in Mathematical
Physics: Dedicated to Cathleen Synge Morawetz on
her 85th Birthday.

Morawetz’s writing style was very much that of a
storyteller. To get a sense of that, here is the beginning
of the proof of the main theorem in her 1961 paper [4]:

The proof is based on energy identities, i.e. qua-
dratic integral relations satisfied by all solutions.
This is one of the most powerful tools for getting
estimates for solutions of elliptic, hyperbolic or
mixed equations. The most familiar identity of
this kind for the wave equation is obtained by
multiplying 𝑢𝑡𝑡 = Δ𝑢 by 𝑢𝑡 and integrating in the
slab 0 ≤ 𝑡 ≤ 𝑡1; the resulting integral identity
satisfies the conservation of energy. Here we use
anothermultiplier in the place of 𝑢𝑡 introduced by
Protter for another purpose. The significance of

using alternative multipliers has been frequently
emphasized by Friedrichs and is often referred
to as Friedrichs’s 𝑎,𝑏, 𝑐-method. The multiplier
here is

(14) 𝑥𝑢𝑥 +𝑦𝑢𝑦 + 𝑧𝑢𝑧 + 𝑡𝑢𝑡 +𝑢
and from the resulting identity we conclude that
all the energy is carried outward.

In truth, Morawetz was being overly modest. It was her
keen insight that allowed for the selection of a multiplier
which would yield the desired result. The power and
generality of this approach led to breakthroughs in
many wave propagation problems, with the state of the
art collected in Morawetz’s 1966 monograph “Energy
identities for the wave equation,” originally released as a
Courant Institute technical report.

A second major step forward in understanding the
decay of waves scattered from star-shaped obstacles
came in 1963, in joint work with Lax and Phillips. They
showed that, in fact, such solutions decay exponentially
(as they do for a sphere), not just as 𝑡−1/2. The proof
relies on an observation of Lax and Phillips that there is
a function 𝑍(𝑡) which satisfies the semigroup property
(15) 𝑍(𝑡 + 𝑠) = 𝑍(𝑡)𝑍(𝑠),
and whose norm controls the decay of the solution. In
this context, Morawetz’s 1961 paper shows that for some
time 𝑡 = 𝜏, |𝑍(𝜏)| has decayed to less than one:

|𝑍(𝜏)| < 1 = 𝑒−𝛼 for some 𝛼 > 0.
That is enough to guarantee exponential decay! One
simply writes

𝑡 = 𝑛𝜏+ 𝑡1 where 𝑡1 < 𝜏,
from which

|𝑍(𝑡)| = |𝑍(𝑡1)||[𝑍(𝜏)]𝑛|
≤ |𝑍(𝑡1)|𝑒−𝛼𝑛 = 𝐶𝑒−𝛼𝑡/𝜏.

Nontrapping Objects
One of the features of star-shaped objects is that rays
impinging on them cannot be trapped. A ray here is
the path taken by an infinitely thin beam of light which
reflects from the surface according to geometrical optics.
For a complicated scatterer, one can imagine that a ray
could undergo successive bounces without escaping from
the convolutions of the surface 𝜕Ω in any finite time
interval (see Figure 5).

This situation was studied by Morawetz, Ralston, and
Strauss in their 1977 article, where they proved a remark-
able extension of Morawetz’s earlier results; if the object
Ω does not trap rays, then the scattered wave decays
exponentially. The proof involves the introduction of an
escape function (a generalization of the geometric intu-
ition of an “escape path of finite length”) and a different
multiplier from that in Morawetz’s 1961 paper. The use
of such Morawetz multipliers is now ubiquitous in the
analysis of PDEs.

Denoting by 𝑆 a sphere which contains the smooth
scatterer Ω, considering x ∈ 𝑆\Ω, and letting 𝜉 be a unit
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Figure 5. In 1977, Morawetz, Ralston, and Strauss
generalized the class of scatterers for which decay
results could be proven. They showed, in three
dimensions, that if the object Ω does not trap rays,
then the local energy of the wave must decay
exponentially. Star-shaped objects are a subset of
this much larger class. The path taken by a ray is
depicted, reflecting from the surface each time
according to geometrical optics.

vector in ℝ3, 𝑝(x, 𝜉) is said to be an escape function if
it is real-valued, 𝐶∞, and, informally speaking, “strictly
increasing along rays, 𝜉 being the ray direction at x.” Rays
are said to be not trapped if the total path length in 𝑆\Ω is
bounded and waves are said to be not trapped if the local
energy in 𝑆\Ω decays to zero uniformly. Without entering
into details, Morawetz, Ralston, and Strauss showed (1)
that if rays are not trapped, then there exists an escape
function and (2) that if there exists an escape function,
then waves are not trapped, fromwhich the result follows.

Geometric Optics and Frequency Domain Analysis
In the study of linear wave propagation, much of our
understanding comes from the frequency domain — that
is, analyzing the Fourier transform of the wave equation
(11):
(16) − 𝑘2𝑈(x, 𝑘) − Δ𝑈(x, 𝑘) = 𝐹(x, 𝑘).
Depending on the context, this is referred to as the
Helmholtz or reduced wave equation. In 1968, Morawetz,
together with Don Ludwig, began an investigation of exte-
rior scattering from star-shaped surfaces in the frequency
domain [5]. Two major results were presented there. First,
they provided a key proof of the well-posedness of the
scattering problem for sound-soft boundaries (homoge-
neous Dirichlet boundary conditions) with respect to the
boundary data and forcing term 𝐹(x, 𝑘) in (16). They also
introduced what are now called Morawetz identities for
the Helmholtz equation. Second, they showed that the
formulas produced by the theory of geometrical optics are

asymptotic to the exact solution. The relevant asymptotic
regimes are illustrated in Figure 6.

Without entering into technical details, geometrical
optics is based on expanding the incoming and scattered
waves in terms of a series in inverse powers of the
wavenumber 𝑘 about the point x0 (see Figure 6). Ludwig
had earlier proposed an expansion for the penumbra
region as well. Morawetz and Ludwig showed that all of
these expansions are truly asymptotic: to the solution in
the illuminated region and penumbra, and asymptotically
zero in the deep shadow.

Penumbra

Penumbra

Deep shadow

Illuminated

Illuminated

x0

Shadow boundary

Shadow boundary

Figure 6. The asymptotic regimes for geometrical
optics. For a fixed point x0, the two tangent lines to
the scatterer define the shadow boundary (dashed
black lines), which separates the illuminated region
from the shadow region. The penumbra is a
neighborhood of the shadow boundary, formed by
the union of all shadow boundaries of spherical
waves with centers in a neighborhood of x0. (Adapted
from [5]).

Although Morawetz herself did little numerical compu-
tation, her analytic work (especially on multipliers) has
played a major role in the design of numerical methods.
We cannot do justice to the literature here, but refer the
reader to three recent papers: one on eigenvalue compu-
tation, one on frequency domain scattering, and one on
time-domain integral equations [1–3]. We have only been
able to scratch the surface of her legacy in this note. Her
contributions are profound and deep, and have changed
the way we think about partial differential equations.
She was a wonderful friend and colleague and is greatly
missed.
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Kevin R. Payne
Transonic Flow and Mixed Type
Partial Differential Equations
The work of Cathleen Morawetz on transonic fluid flow
and the underlying PDEs of mixed elliptic-hyperbolic type
spanned her career. Here we describe her earliest work.
Beginning in the mid 1950s, Morawetz began working on
transonic flow problems through her interactions with
Kurt O. Friedrichs and Lipman Bers. This problem area
was ripe for the unique blend of joyous ingenuity and
practical tenacity which characterized her approach to
happily doing mathematics in order to say something
about a real world problem. Morawetz quickly made a
name for herself by giving a mathematical answer to
an important engineering question in transonic airfoil
design.

Morawetz in 1958.

Morawetz periodically returned to this area with bursts
ofproductivity that resulted in fundamental contributions
over the next five decades. The photo of Morawetz in 1958
shows the happy face that Morawetz would display when

Kevin Payne is an associate professor at Università di Milano. His
email address is kevin.payne@unimi.it

discussing what interested her most. It was with the same
gentle smile and glint in the eyes that she might also show
herwarm toughness and attachment to physical relevance
when liquidating a night’s calculations of a collaborator
with a phrase like: “You know, the solutions should not
really behave this way. Let’s change the equation.”

What is Transonic Flow About?
In aerodynamics, a basic question is:How does one fly at a
relatively high speed, with relatively low cost and relatively
low ecological damage? In Morawetz’s 1982 article in the
Bulletin of the AMS, she described the problem as follows.
The science of flight depends on the relative speed of
the aircraft with respect to the speed of sound in the
surrounding air. At relatively low speeds, the subsonic
range, one can “sail” by designingwings to “get asmuch as
possible of a free ride” from the wind. At very high speeds,
the supersonic range, one needs “rocket propulsion” to
overcome the drag produced by shocks that invariably
form (the sonic boom). The goal of studying transonic
flow is to find a compromise which allows for “sailing”
efficiently “near the speedof sound.” Shocksproducedrag,
which increases fuel consumption and hence increases
cost. As seen in Figure 16, shocks (colored red) begin to
appear on airfoils in wind tunnels when the upstream
velocity is below, but near the speed of sound.

Figure 7. As wind tunnel speed increases from
subsonic (blue regime, Mach 𝑀 < 1) to supersonic
(yellow regime, Mach 𝑀 > 1), some supersonic shock
(in red) appears over the wing already at Mach M=.85.
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The 2-D irrotational, stationary, compressible and isen-
tropic flow of air about a profile 𝒫 is governed by an
equation for the potential 𝜙(𝑥,𝑦) whose gradient is the
velocity field of the fluid with variable density 𝜌:

(17) (𝑐2 −𝜑2
𝑥)𝜑𝑥𝑥 − 2𝜑𝑥𝜑𝑦𝜑𝑥𝑦 + (𝑐2 −𝜑2

𝑦)𝜑𝑦𝑦 = 0.

The natural boundary condition is to have normal
derivative

(18) 𝜕𝜑
𝜕𝑛 = 0 on 𝜕𝒫.

The nature of the flow is determined by the local Mach
number 𝑀 = 𝑞/𝑐 where 𝑞 = |∇𝜑| is the flow speed and
𝑐 > 0 is the local speed of sound defined by 𝑐2 = 𝜕𝑝/𝜕𝜌,
where the adiabatic pressure density relation in air is
𝑝 = 𝑝(𝜌) ∼ 𝜌𝛾 with 𝛾 ≈ 1.4. Observe that equation (17)
is of the form

𝐴𝜑𝑥𝑥 − 2𝐵𝜑𝑥𝑦 +𝐶𝜑𝑥𝑥.
It is elliptic when

𝐴𝐶−𝐵2 > 0,
which occurs at points where the flow is subsonic (𝑞 < 𝑐).
It is hyperbolic when

𝐴𝐶−𝐵2 < 0,
which occurs at points where the flow is supersonic (𝑞 > 𝑐)
(see Figure 7). A transonic flow happens when there are
both sub- and supersonic regions and the equation (17)
is of mixed elliptic-hyperbolic type.

The presence of shocks in supersonic regions corre-
sponds to drastic changes in air density and pressure
coming from the compressibility, and these large pressure
changes propagate at supersonic speeds, resulting in a
shock wave which typically has a small but finite thick-
ness. In Figure 7, the shock wave region is depicted in red.
The velocity field ∇𝜑 governed by (17) will experience
jump discontinuities as one crosses the shock wave. One
can use the presence of such discontinuities to detect
the presence of shocks. The mathematical description of
shocks requires a separate analysis of entropy effects,
where equation (17) has broken down.

The Transonic Controversy
By the time of the Third International Congress for Ap-
plied Mechanics in 1930, a lively debate centered around
the question: Do transonic flows about a given airfoil al-
ways, never, or sometimes produce shocks? In particular,
is it possible to design a viable airfoil capable of shock-free
flight at a range of transonic speeds? Contrasting evidence
was presented at the congress which led many aerody-
namicists to take opposing views. G.I. Taylor presented
convergent Rayleigh series expansions for the velocity
potential of some smooth transonic flows, while A. Buse-
mann presented the results of wind tunnel experiments
that indicated the presence of a lot of shocks. World War
II moved attention to rocket propulsion. An answer would
await the work of Morawetz in the 1950s. It was a case of
“mathematics coming to the rescue.”

Figure 8. Morawetz’s theorem proved that any
perturbation of the wing inside the yellow supersonic
regime creates shocks.

Morawetz’s Answer to the Transonic Controversy
In a series of papers published in 1956–58 in Comm. Pure
Appl. Math., Morawetz gave a mathematical answer by
proving that shock-free transonic flows are unstable with
respect to arbitrarily small perturbations in the shape
of the profile. Her theorem says that even if one can
design a viable profile capable of a shock-free transonic
flow, imperfection in its construction will result in the
formation of shocks at the design speed.

Theorem. Let 𝜑 be a transonic solution to (17)-(18) with
continuous velocity field ∇𝜑 and fixed speed 𝑞∞ at infinity
about a symmetric profile𝒫 as in Figure 8. For an arbitrary
perturbation 𝒫̃ of 𝒫 along an arc inside the supersonic
region attached to the profile which contains the point of
maximum speed in the flow, there is NO continuous ∇𝜑̃
solving the corresponding problem (17)-(18) with 𝒫̃.

Morawetz’s proof involved two major steps. First, she
determined the correct boundary value problem satisfied
the perturbation of the velocity potential in thehodograph
plane where a hodograph transformation linearizes the
PDE (17) and sends the known profile exterior into an
unknown domain. Then, using carefully tailored integral
identities, she proved a uniqueness theorem for regular
solutions of the transformed PDE with data prescribed
on only a proper subset of the transformed boundary
profile, which says that the transformed problem is
overdetermined and no regular solutions exist. Morawetz
extended this result to include fixed profiles but finite
perturbations in 𝑞∞, and the extension to non symmetric
profiles was carried out by L. Pamela Cook (Indiana Univ.
Math. J., 1978).

Engineering Impact
WhileMorawetz’swork left open the theoretical possibility
of a perfect transonic airfoil capable of shock-free flight
over a small range of transonic speeds, imperfection
in its construction means the search for it is futile.
Instead engineers must calibrate wing design to minimize
shock strength over a useful range of transonic speeds.
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Beginning in the early 1960s with the work of H.H.
Pearcy and later R.R. Whitcomb on supercritical airfoils,
transonic airfoil design paid close attention to the impact
of Morawetz’s findings. In the midst of the energy crisis
of the 1970s, this direction of research exploded as
part of the field of computational fluid dynamics. The
type-dependent difference scheme of E.M. Murman and
J.D. Cole (1971), the complex characteristic method of P.
Garabedian and D. Korn (1971), and the rotated difference
scheme of A. Jameson (1974) were some of the milestones
in the economically viable calculation of steady transonic
flows and codes for transonic airfoil design.

Morawetz with Paul Garabedian, whose complex
characteristic method with D. Korn applied
Morawetz’s work to computational fluid dynamics.

Mathematical Impact
Cathleen Morawetz’s early work on transonic flow both
transformed the field of mixed type partial differential
equations and served as excellent publicity for math-
ematics. Commenting on the transonic controversy in
1955, the celebrated aerodynamicist Theodore von Kár-
mán observed: “… the mathematician may exactly prove
existence and uniqueness of solutions in cases where the
answer is evident to the physicist or engineer… On the
other hand, if there is really serious doubt about the
answer, the mathematician is of little help.” Morawetz’s
surprising theorem on the nonexistence of smooth flows
was a cheerful response to von Kármán’s well-intentioned
challenge.

Having settled the engineering question about the “ex-
ceptional nature” of shock-free transonic flows, Morawetz
turned to related questions: Can one prove robust exis-
tence theorems for weak shock solutions? Can one “con-
tract” a weak shock to a sonic point on the profile? The
first question was supported by work of Garabedian-Korn
in 1971, which demonstrated that small perturbations of
continuous flows can have only weak shocks. The second
question was inspired by the thinking of K.G. Guderley in
the 1950s. Morawetz took two very different approaches
to such questions.

Taking a singular perturbation with a hodograph trans-
formation, the questions reduce to proving the existence
of weak solutions to the Dirichlet problem for linear
mixed type equations on domains Ω in the hodograph
plane:

𝐾(𝜎)𝜓𝜃𝜃 +𝜓𝜎𝜎 = 𝑓 in Ω(19)
and 𝜓 = 0 on 𝜕Ω,(20)

where 𝐾(𝜎) ∼ 𝜎 as 𝜎 → 0. Here 𝜓 is the stream function
of the flow, 𝜎 is a logarithmic rescaling of the flow
speed which is sonic at 𝜎 = 0, and 𝜃 is the flow angle.
For special domains, Morawetz [Comm. Pure Appl. Math.
1970] proved the surprising result of the existence of a
unique weak solution to the problem.

Inspired by the differencing method of Jameson,
Morawetz introduced an artificial viscosity parameter
𝜈 into the nonlinear potential equation by replacing
the (inviscid) Bernoulli law

𝜌 = 𝜌𝐵(|∇𝜑|)
with a first order PDE which retards the density 𝜌.
An ambitious program ensued in order to prove the
existence of weak solutions to the inviscid problem as
a weak limit of viscous solutions. Powerful but delicate
tools in the application of the compensated compactness
method of F. Murat, L. Tartar, and R. Di Perna were
applied with success to complete parts of the program
in Morawetz [Comm. Pure Appl. Math. 1985, 1991] and
Gamba-Morawetz [Comm. Pure Appl. Math. 1996].

The Legacy of Cathleen Morawetz

Cathleen Morawetz with her family in 1958 when she
solved the transonic controversy.

During the period 1952–2007, Morawetz produced 22
deep research papers and 10 survey papers on transonic
flow and mixed type partial differential equations. She
was an exemplary figure of the applied mathematician
“who proves theorems to solve problems.” Morawetz
discovered and implemented a wide variety of tools to
handle the complexity of mixed type PDEs. She developed
energy methods and important identities by the skillful
and ingenious use of multiplier methods championed by
K. Friedrichs [Comm. Pure Appl. Math. 1958] and found
surprising maximum principles which were calibrated to
invariances in the equation.

The legacy of Cathleen Morawetz includes her dedica-
tion to the proposition that “there is no such thing as
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a distant relative,” which she applied to every part of
her well-lived life. Her grace, warmth and generosity to
generations of mathematicians working in the area will
be long remembered. She was a truly inspirational figure
who invited us all to “sail with her, near the speed of
sound.”2
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Closing Thoughts

Cathleen Synge Morawetz with Richard Courant.

We close this article with a quote by Cathleen Synge
Morawetz. Upon receiving the Birkhoff Prize in 2006, she
said:

There are many, many people whom I would have
liked to thank for helping me over the years, but
I would not have room for their names on this

2Quotes in this paragraph are from Kevin Payne’s talk “Cath-
leen’s mathematics: transonic flow” and Nancy Morawetz’s talk,
respectively, at the Courant Institute “Celebration in Honor of
Cathleen Synge Morawetz” on November 17, 2017.

page. But one person stands out for supporting
and encouraging me when I was between the
crucial professional ages of twenty-three and
thirty-five. I worked part-time on my PhD, part-
time as a postdoc, and I had four children. That
person was Richard Courant, the creator of the
Courant Institute at New York University, where I
have been a professor ever since.

It is truly rare for any department to support awoman’s
career in this way: with part-time research-associate posi-
tions and a long term commitment that does not require
the woman to relocate every few years to eventually ob-
tain a tenure track position. Many women leave academia
after completing their doctorates, switching to jobs in in-
dustry, while others land in teaching positions and never
have the opportunity to develop a research career. It is a
great loss of talent. Imagine a world in which Morawetz
had never developed her paramount results on transonic
flowmodels, functional inequalities and scattering theory.
Imagine a world in which more women’s research were
supported as well as hers was. It would be a better place.
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