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Berger’s classification of Riemannian holonomy groups is
a strong organizing principle in differential geometry. It
tells us about exceptional geometric structures, existing
only in certain dimensions, that occupy central roles in
physics, and generally serves as a road map for some
research trends in algebraic and symplectic geometry.

To each Riemannian manifold (𝑀,𝑔) there are associ-
ated parallel transport maps 𝑃𝛾 that move vectors along
a path 𝛾 ∶ 𝐼 → 𝑀 such that the motion looks parallel
from the metric’s point of view. Fixing a point 𝑝 in 𝑀 the
holonomy group is the group, written Hol𝑝(𝑔), of parallel
transport maps around loops based at 𝑝, as in Figure 1.
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Figure 1. The holonomy group results from
parallel-translating a vector around all loops from a
fixed point A. On the round sphere, it includes all
rotations, but on some manifolds, it is a smaller
subgroup.

Jacob Gross is a PhD student at Oxford University. His email
address is jacob.a.gross@gmail.com.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: http://dx.doi.org/10.1090/noti1701

If 𝑀 is path-connected then Hol𝑝(𝑔) is, up to conju-
gacy, independent of 𝑝. One should always regard the
holonomy group as coming with a natural representation:
the inclusion Hol𝑝(𝑔) → GL(𝑇𝑝𝑀). In 1926 Élie Cartan ob-
served that the holonomy group acts reducibly if and only
if the metric is (locally) a product metric. This reduces the
problem of classifying holonomy groups of Riemannian
manifolds to the problem of classifying holonomy groups
of irreducible Riemannian manifolds. Cartan also wrote
down all the holonomy groups of so-called ‘symmetric
spaces.’ A symmetric space is a Riemannian manifold 𝑀
such that, at each 𝑝 ∈ 𝑀, the geodesic reflection 𝑠𝑝 is an
isometry. Euclidean spacesℝ𝑛, spheres 𝑆𝑛, and hyperbolic
spaces H𝑛 are all examples of symmetric spaces.

For (simply-connected) irreduciblenonsymmetricRiem-
manian manifolds, Marcel Berger wrote down a list of all
possible holonomy groups.

Theorem (Berger, 1955). Let (𝑀,𝑔) be a simply-connected,
irreducible, nonsymmetric Riemannian manifold. Let 𝑛 =
dim 𝑀. Then the holonomy group Hol(𝑔) of (𝑀,𝑔) is either
• SO(𝑛),
• U(𝑚) with 𝑛 = 2𝑚 and 𝑚 ≥ 2,
• SU(𝑚) with 𝑛 = 2𝑚 and 𝑚 ≥ 2,
• Sp(𝑚) with 𝑛 = 4𝑚 and 𝑚 ≥ 2,
• Sp(𝑚)Sp(1) with 𝑛 = 4𝑚 and 𝑚 ≥ 2,
• 𝐺2 with 𝑛 = 7,
• Spin(7) with 𝑛 = 8, or
• Spin(9) with 𝑛 = 16.

As it turns out, there are no irreducible nonsymmetric
Riemannian manifolds with holonomy group equal to
Spin(9). In 1968 Alexeevsky eliminated Spin(9) from this
list. All other entries on Berger’s list, however, do occur as
the holonomy group of some irreducible nonsymmetric
Riemannian manifold, although it took some time to
realize this.

Manifolds with holonomy contained in U(𝑚) are called
Kähler, manifolds with holonomy contained in SU(𝑚) are
called Calabi–Yau, and those with holonomy contained in
Sp(𝑚) are called hyperkähler.
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Berger’s list, in a sense, echoes the classification of real

normed division algebras.

Theorem (Dickson). There are exactly four real normed
division algebras: the real numbers ℝ, the complex num-
bers ℂ, the quaternions ℍ, and the octonions 𝕆.

Manifolds with
special holonomy
are important in

physics.

Each group in
Berger’s list is a
group whose ele-
ments are automor-
phisms/isometries of
a vector space over
some real divison al-
gebra. For example
SO(𝑚) (resp. SU(𝑚))
is a group of automor-

phisms of ℝ𝑚 (resp. ℂ𝑚). In this sense, Sp(𝑚) and
Sp(𝑚)Sp(1) holonomies are quaternionic geometries,
while 𝐺2 holonomy and Spin(7) holonomy are octo-
nionic geometries; 𝐺2 is the group of automorphisms of
𝕆 and Spin(7) is the group of isometries of the octo-
nions 𝕆 generated by left multiplication by unit length
imaginary octonions.

Manifolds with special holonomy are important in
physics. One reason is that a so-called “parallel spinor
field” is required for the equations of supersymmetry
to work. On a general Riemannian manifold, the parallel
tensors determine the holonomy group. On a spin mani-
fold, the holonomy group determines the parallel spinors.
For this reason, manifolds with special holonomy groups
(especially SU(3) and 𝐺2) can be useful in theoretical
physics.

Manifolds with holonomy SU(3), Calabi–Yau 3-
folds, form so-called “string compactifications” in
ten-dimensional supersymmetric string theories. This
means that, in such a string theory, the universe is locally
modeled on ℝ(1,3) × 𝑋, where ℝ(1,3) denotes Minkowski
spacetime and 𝑋 is a Calabi–Yau manifold of 6 real
dimensions. In𝑀-theory, the universe is supposed to have
11 dimensions and to be locally modelled on ℝ(1,3) ×𝑋,
where 𝑋 is a compact (singular) seven-dimensional
manifold with holonomy 𝐺2.

𝐺2 and Spin(7) manifolds are rather unlike Calabi–Yau
manifolds, however, in that it is notoriously hard to
write down examples. To illustrate the difficulty: finding
a metric with holonomy 𝐺2 amounts to solving a simulta-
neous system of forty-nine nonlinear PDEs. Bryant wrote
down the first metrics with holonomy 𝐺2 and with holo-
nomy Spin(7) in 1987. These metrics were not complete.
Later Bryant and Salamon constructed complete noncom-
pact examples of manifolds with holonomomy 𝐺2 and
Spin(7). In 1993 Joyce constructed the first examples of
compact 7-manifolds with holonomy 𝐺2 and of compact
8-manifolds with holonomy Spin(7). Since then other ex-
amples of compact manifolds with holonomy 𝐺2 have
been constructed by Corti–Haskins–Pacini–Nördstrom,
Joyce–Karigiannis, and Kovalev.
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