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Introduction
Matroid theory is a combinatorial theory of independence
which has its origins in linear algebra and graph theory
and turns out to have deep connections with many other
fields. There are natural notions of independence in
linear algebra, graph theory, matching theory, the theory
of field extensions, and the theory of routings, among
others. Matroids capture the combinatorial essence that
those notions share.
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Gian-Carlo Rota, who helped lay the foundations of
the field and was one of its most energetic ambassadors,
rejected the “ineffably cacophonous”nameofmatroids.He
proposed calling them combinatorial geometries instead.1
This alternative name never really caught on, but the
geometric roots of the field have since grown much
deeper, bearing many new fruits.

The geometric approach tomatroid theory has recently
led to the solution of long-standing questions and to the
development of fascinating mathematics at the intersec-
tion of combinatorics, algebra, and geometry. This article
is a selection of some recent successes, stemming from
three geometric models of matroids.

1It was tempting to call this note “The geometry of geometries.”
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Definitions
Matroids were defined independently in the 1930s by
Nakasawa and Whitney. A matroid 𝑀 = (𝐸, ℐ) consists of
a finite set 𝐸 and a collection ℐ of subsets of 𝐸, called the
independent sets, such that
(I-1) ∅ ∈ ℐ.
(I-2) If 𝐽 ∈ ℐ and 𝐼 ⊆ 𝐽, then 𝐼 ∈ ℐ.
(I-3) If 𝐼, 𝐽 ∈ ℐ and |𝐼| < |𝐽|, then there exists 𝑗 ∈ 𝐽 − 𝐼

such that 𝐼 ∪ 𝑗 ∈ ℐ.
We will assume that every singleton {𝑒} is independent.

Thanks to (I-2), it is enough to list the collection ℬ of
maximal independent sets; these are called the bases of
𝑀. By (I-3), they have the same size 𝑟 = 𝑟(𝑀), which we
call the rank of the matroid. Our running example will be
the matroid with

(1) 𝐸 = 𝑎𝑏𝑐𝑑𝑒, ℬ = {𝑎𝑏𝑐, 𝑎𝑏𝑑, 𝑎𝑏𝑒, 𝑎𝑐𝑑, 𝑎𝑐𝑒},
omitting brackets for easier readability. See Figure 1.

Let us now discuss the two most important motivating
examples of matroids; there are many others.

Vector Configurations
Let 𝔽 be a field, let 𝐸 be a set of vectors in a vector space
over 𝔽, and let ℐ be the collection of linearly independent
subsets of 𝐸. Then (𝐸, ℐ) is a linear matroid (over 𝔽).

Graphs
Let 𝐸 be the set of edges of a graph 𝐺 and let ℐ be
the collection of forests of 𝐺, that is, the subsets of 𝐸
containing no cycle. Then (𝐸, ℐ) is a graphical matroid.

Figure 1. A linear and a graphical representation of
the matroid of (1) with ℬ = {𝑎𝑏𝑐, 𝑎𝑏𝑑,𝑎𝑏𝑒, 𝑎𝑐𝑑, 𝑎𝑐𝑒}.

There are several natural operations on matroids. For
𝑆 ⊆ 𝐸, the restriction 𝑀|𝑆 and the contraction 𝑀/𝑆 are
matroids on the ground sets 𝑆 and 𝐸 − 𝑆, respectively,
with independent sets

ℐ|𝑆 = {𝐼 ⊆ 𝑆 ∶ 𝐼 ∈ ℐ},
ℐ/𝑆 = {𝐼 ⊆ 𝐸− 𝑆 ∶ 𝐼 ∪ 𝐼𝑆 ∈ ℐ}

for any maximal independent subset 𝐼𝑆 of 𝑆. When 𝑀 is a
linear matroid in a vector space 𝑉, 𝑀|𝑆 and 𝑀/𝑆 are the
linear matroids on 𝑆 and 𝐸−𝑆 that 𝑀 determines on the
vector spaces span(𝑆) and 𝑉/span(𝑆), respectively.

The direct sum 𝑀1 ⊕𝑀2 of two matroids 𝑀1 = (𝐸1, ℐ1)
and 𝑀2 = (𝐸2, ℐ2) on disjoint ground sets is the matroid
on 𝐸1 ∪𝐸2 with independent sets

ℐ1 ⊕ ℐ2 = {𝐼1 ∪ 𝐼2 ∶ 𝐼1 ∈ ℐ1, 𝐼2 ∈ ℐ2}.
Every matroid decomposes uniquely as a direct sum of
its connected components.

Finally, the orthogonal matroid of 𝑀, denoted 𝑀⟂, is
the matroid on 𝐸 with bases

ℬ⟂ = {𝐸− 𝐵 ∶ 𝐵 ∈ ℬ}.
Remarkably, this simple notion simultaneously general-
izes orthogonal complements and dual graphs. If 𝑀 is
the matroid for the columns of a matrix whose rowspan
is 𝑈 ⊆ 𝑉, then 𝑀⟂ is the matroid for the columns of
any matrix whose rowspan is 𝑈⟂. If 𝑀 is the matroid
for a planar graph 𝐺, drawn on the plane without edge
intersections, then 𝑀⟂ is the matroid for the dual graph
𝐺⟂, whose vertices and edges correspond to the faces and
edges of 𝐺, respectively, as shown in Figure 2.

Figure 2. The planar graph of Figure 1 and its dual
graph, whose set of bases is ℬ⟂ = {𝑏𝑑,𝑏𝑒, 𝑐𝑑,
𝑐𝑒, 𝑑𝑒}.

Enumerative Invariants
Two matroids 𝑀1 = (𝐸1, ℐ1) and 𝑀2 = (𝐸2, ℐ2) are isomor-
phic if there is a relabeling bijection 𝜙 ∶ 𝐸1 → 𝐸2 that
maps ℐ1 to ℐ2. A matroid invariant is a function 𝑓 on ma-
troids such that 𝑓(𝑀1) = 𝑓(𝑀2) whenever 𝑀1 and 𝑀2 are
isomorphic. Let us introduce a few important examples.

The 𝑓-vector and the ℎ-vector
The independent sets of𝑀 form a simplicial complex ℐ by
(I-2); its 𝑓-vector counts the number 𝑓𝑘(𝑀) of independent
sets of 𝑀 of size 𝑘 + 1 for each 𝑘. The ℎ-vector of 𝑀,
defined by

𝑟
∑
𝑘=0

𝑓𝑘−1(𝑞 − 1)𝑟−𝑘 =
𝑟
∑
𝑘=0

ℎ𝑘𝑞𝑟−𝑘,

stores this information more compactly. For example, the
matroid of (1) has

𝑓(𝑀) = (1, 5, 9, 5), ℎ(𝑀) = (1, 2, 2, 0).

The Characteristic Polynomial
We define the rank function 𝑟 ∶ 2𝐸 → ℤ of a matroid 𝑀 by

𝑟(𝐴) = largest size of an independent subset of 𝐴,
for 𝐴 ⊆ 𝐸. Let 𝑟 = 𝑟(𝑀) = 𝑟(𝐸) be the rank of 𝑀.
When 𝑀 is a linear matroid, 𝑟(𝐴) = dimspan(𝐴). The
characteristic polynomial of 𝑀 is

𝜒𝑀(𝑞) = ∑
𝐴⊆𝐸

(−1)|𝐴|𝑞𝑟(𝑀)−𝑟(𝐴).

The sequence 𝑤(𝑀) of Whitney numbers of the first kind
is defined by 𝜒𝑀(𝑞) = 𝑤0𝑞𝑟 − 𝑤1𝑞𝑟−1 + ⋯ + (−1)𝑟𝑤𝑟𝑞0.
For example, the matroid of (1) has

𝑤(𝑀) = (1, 4, 5, 2).
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The characteristic polynomial of a matroid is one of
its most fundamental invariants. For graphical and linear
matroids, it has the following interpretations.

Graphs
If 𝑀 is the matroid of a connected graph 𝐺, then 𝑞𝜒𝑀(𝑞)
is the chromatic polynomial of 𝐺; it counts the colorings
of the vertices of 𝐺 with 𝑞 given colors such that no two
neighbors have the same color.

Hyperplane Arrangements
Suppose 𝑀 is the matroid of nonzero vectors 𝑣1,… ,𝑣𝑛 ∈
𝔽𝑑, and consider the arrangement 𝒜 of hyperplanes

𝐻𝑖 ∶ 𝑣𝑖 ⋅ 𝑥 = 0, 1 ≤ 𝑖 ≤ 𝑛,
and its complement 𝑉(𝒜) = 𝔽𝑑 − (𝐻1 ∪ ⋯ ∪ 𝐻𝑛). De-
pending on the underlying field, 𝜒𝑀(𝑞) stores different
information about 𝑉(𝒜):

(a) (𝔽 = 𝔽𝑞) 𝑉(𝒜) consists of 𝜒𝑀(𝑞) points.
(b) (𝔽 = ℝ) 𝑉(𝒜) consists of |𝜒𝑀(−1)| regions.
(c) (𝔽 = ℂ) The Poincaré polynomial of 𝑉(𝒜)

∑
𝑘≥0

rank 𝐻𝑘(𝑉(𝒜), ℤ)𝑞𝑘 = (−1)𝑑𝜒𝑀(−1/𝑞).

Geometric Model 1. Matroid Polytopes
A crucial insight into the geometry of matroids came from
two seemingly unrelated places: combinatorial optimiza-
tion and algebraic geometry. From both points of view, it
is natural to model a matroid in terms of the following
polytope.

Definition 1 (Edmonds, 1970). Let 𝑀 be a matroid on the
ground set 𝐸. The matroid polytope

𝑃𝑀 = conv{𝑒𝐵 ∶ 𝐵 is a basis of 𝑀},
where {𝑒𝑖 ∶ 𝑖 ∈ 𝐸} is the standard basis of ℝ𝐸, and we
write 𝑒𝐵 = 𝑒𝑏1 +⋯+ 𝑒𝑏𝑟 for 𝐵 = {𝑏1,… , 𝑏𝑟}.

Figure 3 shows the matroid polytope for example (1).

Figure 3. The matroid polytope for our sample
matroid (1). The vertices exhibit which triplets form
bases.

Combinatorial Optimization
The central question of combinatorial optimization is the
following: Given a family ℬ of combinatorial objects and
a cost function 𝑐 ∶ ℬ → ℝ, find the object(s) 𝐵 in ℬ for

which the cost 𝑐(𝐵) is minimized. To do this, one often
looks for a polytope 𝑃ℬ ⊂ ℝ𝑑 modeling the family ℬ and
a linear function 𝑓 on ℝ𝑑 such that

• 𝑃ℬ has a vertex 𝑣𝐵 for each object 𝐵 ∈ ℬ, and
• 𝑐(𝐵) = 𝑓(𝑣𝐵) for each 𝐵 ∈ ℬ.

If one cando this, then the optimal object(s)𝐵 corresponds
to the vertices of the face of the polytope 𝑃ℬ where the
linear function 𝑓 is minimized. This simple, beautiful idea
is the foundation of linear programming. There are many
techniques to optimize 𝑓, whose efficiency depends on
the complexity of the polytope 𝑃ℬ.

Edmonds observed that, given a matroid 𝑀 and a
cost function 𝑐 ∶ 𝐸 → ℝ on its ground set, the bases 𝐵 =
{𝑏1,… ,𝑏𝑟}of𝑀ofminimumcost𝑐(𝐵) ∶= 𝑐(𝑏1)+⋯+𝑐(𝑏𝑟)
can be found via linear programming on the matroid
polytope 𝑃𝑀.

As a sample application, Edmonds used these ideas
to solve the matroid intersection problem for matroids 𝑀
and 𝑁 on the same ground set. This problem asks us to
find the size of the largest set which is independent in
both 𝑀 and 𝑁.

Algebraic Geometry
Instead of studying the 𝑟-dimensional subspaces of ℂ𝑛

one at a time, it is often useful to study them all at once.
They can be conveniently organized into the space of
𝑟-subspaces of ℂ𝑛 called the Grassmannian Gr(𝑟, 𝑛); each
point of Gr(𝑟, 𝑛) represents an 𝑟-subspace of ℂ𝑛.

A choice of a coordinate system on ℂ𝑛 gives rise to the
Plücker embedding of

Gr(𝑟, 𝑛) 𝑝↪ ℙℂ(𝑛𝑟)−1

as follows. For an 𝑟-subspace 𝑉 ⊂ ℂ𝑛, choose an 𝑟 × 𝑛
matrix 𝐴 with 𝑉 = rowspan(𝐴). Then for each of the (𝑛𝑟)
𝑟-subsets 𝐵 of [𝑛] let

𝑝𝐵(𝑉) ∶= det(𝐴𝐵)
be the determinant of the 𝑟 × 𝑟 submatrix 𝐴𝐵 of 𝐴
whose columns are given by the subset 𝐵. Although
there are many different choices for the matrix 𝐴, they
can be obtained from one another by elementary row
operations, which only change the Plücker vector 𝑝(𝑉)
by multiplication by a global constant. Therefore 𝑝(𝑉) is
well defined as an element of projective space. The map 𝑝
provides a realization of the Grassmannian as a smooth
projective variety.

The torus 𝕋 = (ℂ−{0})𝑛 acts on ℂ𝑛 by stretching the 𝑛
coordinate axes, thus inducing an action of 𝕋 on Gr(𝑟, 𝑛).
This action gives rise to a moment map 𝜇 ∶ Gr(𝑟, 𝑛) → ℝ𝑛

given by

𝜇(𝑉)𝑖 =
∑𝐵∋𝑖 |det(𝐴𝐵)|2
∑𝐵 |det(𝐴𝐵)|2

for 1 ≤ 𝑖 ≤ 𝑛.

Now consider the trajectory 𝕋 ⋅ 𝑉 of the 𝑟-subspace
𝑉 ∈ Gr(𝑟, 𝑛) as the torus 𝕋 acts on it, and take its closure.
Where does the resulting toric variety 𝕋 ⋅ 𝑉 ⊂ Gr(𝑟, 𝑛)
go under the moment map? Precisely to the matroid
polytope!
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Define the matroid 𝑀(𝑉) of the subspace 𝑉 ⊂ ℂ𝑛 to be
thematroid of the columns of𝐴; its bases 𝐵 correspond to
the nonzero Plücker coordinates 𝑝𝐵(𝑉). Gelfand, Goresky,
MacPherson, and Serganova showed that

𝜇(𝕋 ⋅ 𝑉) = 𝑃𝑀(𝑉).

Thus matroid polytopes arise naturally in this algebro-
geometric setting as well.

As a sample application, the degree of 𝕋 ⋅ 𝑉 ⊂ ℙℂ(𝑛𝑟)−1

is then given by the volume of the matroid polytope
𝑃𝑀(𝑉). Ardila, Benedetti, and Doker used this to find a
purely combinatorial formula for deg(𝕋 ⋅ 𝑉) in terms of
the matroid 𝑀(𝑉).2

A Geometric Characterization of Matroids
Inmost contexts where polytopes arise, it is advantageous
if they happen to have a nice structure. For example, in
optimization, the edges of the polytope are crucial to
various algorithms for linear programming. In geometry,
they control the GKM presentation of the equivariant
cohomology of the Grassmannian.

Matroid polytopes have the following beautiful com-
binatorial characterization, which was discovered in the
context of toric geometry.

Theorem 2 (Gelfand–Goresky–MacPherson–Serganova,
1987). A collection ℬ of subsets of [𝑛] is the set of bases
of a matroid if and only if every edge of the polytope

𝑃ℬ ∶= conv {𝑒𝐵 ∶ 𝐵 ∈ ℬ} ⊂ ℝ𝑛

is a translate of 𝑒𝑖 − 𝑒𝑗 for some 𝑖, 𝑗.

This makes matroid polytopes a very useful model
for matroids. In fact, one could define a matroid to be
a subpolytope of the cube [0, 1]𝑛 that uses only these
vectors as edges. Notice that from this polytopal point
of view, even if one cares only about linear matroids, all
matroids are equally natural. Matroid theory provides the
correct level of generality.

The theorem above shows that in matroid theory, a
central role is played by one of the most important vector
configurations in mathematics, the root system for the
special linear group SL𝑛:

𝐴𝑛−1 = {𝑒𝑖 − 𝑒𝑗 ∶ 1 ≤ 𝑖, 𝑗 ≤ 𝑛},

as shown in Figure 4 for 𝑛 = 4. From this point of view, it
is natural to extend this construction to other Lie groups.
The resulting theory of Coxeter matroids, introduced by
Gelfand and Serganova, is ripe for further combinatorial
exploration.

2This was the subject of Carolina Benedetti and Jeff Doker’s fi-
nal project for the first course offered by the SFSU-Colombia
Combinatorics Initiative in 2007, as described in [2].

Figure 4. The root system 𝐴3 = {𝑒𝑖 − 𝑒𝑗 ∶ 1 ≤ 𝑖, 𝑗 ≤ 4},
where 𝑒𝑖 − 𝑒𝑗 is denoted 𝑖𝑗. Root systems play an
essential role in matroid theory, as demonstrated by
Theorem 2.

Hopf Algebra
Joni and Rota showed that many combinatorial families
have natural merging and breaking operations that give
them the structure of a Hopf algebra, with many useful
consequences. In particular, in the 1970s and 1980s, Joni–
Rota and Schmitt defined the Hopf algebra of matroids 𝕄
as the span of the set of matroids modulo isomorphism,
with the product ⋅ ∶ 𝕄⊗𝕄 → 𝕄 and coproduct Δ ∶ 𝕄 →
𝕄⊗𝕄 given by

𝑀 ⋅𝑁 ∶= 𝑀⊕𝑁 for matroids 𝑀 and 𝑁,

Δ(𝑀) ∶= ∑
𝑆⊆𝐸

(𝑀|𝑆) ⊗ (𝑀/𝑆) for a matroid 𝑀 on 𝐸.

For 𝕄 to be a Hopf algebra, we require an antipode map
𝑆, which is the Hopf-theoretic analogue of an inverse.
General results of Schmitt and Takeuchi show that this
map exists.

The antipode 𝑆 is a fundamental ingredient of a
Hopf algebra, so it is important to find an efficient
formula for it. For the Hopf algebra of matroids 𝕄, this
was only resolved recently, thanks to the new insight
that the matroid polytope plays an essential role. An
important preliminary observation, which readily follows
from Theorem 2, is that every face of a matroid polytope
is itself a matroid polytope.

Theorem 3 (Aguiar–Ardila, 2017). The antipode of the
Hopf algebra of matroids 𝕄 is given by

𝑆(𝑀) = ∑
𝑃𝑁 face of 𝑃𝑀

(−1)𝑐(𝑁)𝑁

for any matroid 𝑀, where 𝑐(𝑁) denotes the number of
connected components of 𝑁.

This formula is the best possible: it involves no cancel-
lation. It has the unexpected consequence that matroid
polytopes are also algebraic in nature. In the Hopf al-
gebraic structure of matroids, matroid polytopes are
fundamental.
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Geometric Model 2. Bergman Fans
We now introduce a second geometric model of matroids,
coming from tropical geometry. The flats of 𝑀 are an
important ingredient; these are the subsets 𝐹 ⊆ 𝐸 such
that 𝑟(𝐹∪ 𝑒) > 𝑟(𝐹) for all 𝑒 ∉ 𝐹. We say 𝐹 is proper if it
does not have rank 0 or 𝑟. The lattice of flats of𝑀, denoted
𝐿𝑀, is the set of flats, partially ordered by inclusion, as
shown in Figure 5.

Figure 5. The lattice of flats of our sample matroid (1).

When 𝑀 is the matroid of a vector configuration 𝐸 in
a vector space 𝑉, the flats of 𝑀 are the (subsets of 𝐸
contained in the) subspaces spanned by 𝐸.

Tropical Geometry
Tropicalization is a powerful technique that turns an
algebraic variety 𝑉 into a simpler, piecewise linear space
Trop𝑉 that still contains geometric information about
𝑉. Tropical geometry answers questions in algebraic
geometry by translating them into polyhedral questions
that can be approached combinatorially [4].

An important early success of the theory was
Mikhalkin’s 2005 tropical computation of the Gromov-
Witten invariants of ℂℙ2, which count the plane curves
of degree 𝑑 and genus 𝑔 passing through 3𝑑 + 1 − 𝑔
general points. Since then, many new results in classical
algebraic geometry have been obtained through tropical
techniques.

Tropical varieties are simpler than algebraic varieties,
but they are still very intricate. An important example
to understand is that of linear spaces. What is the
tropicalization of a linear subspace 𝑉 of ℂ𝑛? Sturmfels
realized that the answer depends only on the matroid of
𝑉. It can be described as follows.

Definition/Theorem 4 (Ardila–Klivans, 2006).
(1) The Bergman fan Σ𝑀 of a matroid 𝑀 on 𝐸 is the

polyhedral complex in ℝ𝐸/ ⟨𝑒𝐸⟩ consisting of the cones

𝜎ℱ = cone{𝑒𝐹 ∶ 𝐹 ∈ ℱ}

for each flagℱ = {𝐹1 ⊊ ⋯ ⊊ 𝐹𝑙} of proper flats of𝑀. Here
𝑒𝐹 ∶= 𝑒𝑓1 +⋯+ 𝑒𝑓𝑘 for 𝐹 = {𝑓1,… , 𝑓𝑘}.

(2) The tropicalization of a linear subspace 𝑉 of ℂ𝑛 is
the Bergman fan of its matroid:

Trop𝑉 = Σ𝑀(𝑉).

(3) The Bergman fan Σ𝑀 is a cone over a wedge of 𝑤𝑟
spheres of dimension 𝑟 − 2, where 𝑤𝑟 is the last Whitney
number of the first kind.

de

c

b

a

bcde

ade

ac

ab

Figure 6. The Bergman fan of our sample matroid (1)
is modeled after the lattice of flats of Figure 5. It has
8 rays and 9 facets. It is a cone over a wedge of
𝑤3 = 2 circles.

A Geometric Characterization of Bergman Fans
Tropical varieties have a natural notion of degree, analo-
gous to the notion of the degree of an algebraic variety.
We have the following remarkable characterization.

Theorem 5 (Fink, 2013). A tropical variety has degree 1
if and only if it is the Bergman fan of a matroid.

We conclude that Bergman fans are also excellent
models for matroids. In fact, one could define a matroid
to be a tropical variety of degree 1; this is the tropical
analogue of a linear space. Notice that, although Σ𝑀 only
arises via tropicalization when 𝑀 is a linear matroid, one
should really consider the Bergman fans of all matroids;
they are equally natural from the tropical point of view.
Again, matroid theory really provides the correct level of
generality.

The theorems above explain the important role that
matroids play in tropical geometry. On the one hand, they
provide a useful testing ground, providing hints for the
kinds of general results that may be possible and the
sorts of difficulties that one should expect. On the other
hand, they are fundamental building blocks; for instance,
in analogy with the classical definition of a manifold, a
tropical manifold is a tropical variety that locally looks
like a (Bergman fan of a) matroid, as in Figure 7.
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Figure 7. A tropical manifold is a tropical variety that
locally looks like a (Bergman fan of a) matroid.

The Chow Ring and Hodge Theory
The Chow ring of the Bergman fan Σ𝑀 is defined to be

𝐴∗(Σ𝑀) ∶= ℝ[𝑥𝐹 ∶ 𝐹 proper flat of 𝑀]/(𝐼𝑀 + 𝐽𝑀),
where

𝐼𝑀 = ⟨𝑥𝐹1𝑥𝐹2 ∶ 𝐹1 ⊊ 𝐹2 and 𝐹1 ⊋ 𝐹2⟩ ,

𝐽𝑀 = ⟨∑
𝐹∋𝑖

𝑥𝐹 − ∑
𝐹∋𝑗

𝑥𝐹 ∶ 𝑖, 𝑗 ∈ 𝐸⟩ .

This ring has a natural geometric interpretation when𝑀 is
linearoverℂ: Feichtner andYuzvinskyproved that𝐴∗(Σ𝑀)
is the Chow ring of De Concini and Procesi’s wonderful
compactification of the complement of a hyperplane
arrangement.

Surprisingly, 𝐴∗(Σ𝑀) behaves as nicely as the coho-
mology ring of a smooth projective variety. This is one
of the most celebrated recent results in matroid theory,
since it provided the tools to prove several long-standing
conjectures, as we now briefly explain.

Theorem 6 (Adiprasito–Huh–Katz, 2015). The Chow ring
𝐴∗(Σ𝑀) of the Bergman fan of a matroid 𝑀 satisfies
Poincaré duality, the hard Lefschetz theorem, and the
Hodge–Riemann relations.

The inspiration for this theorem is geometric, coming
from the Grothendieck standard conjectures on algebraic
cycles. The statement and proof are combinatorial. For
further details and a precise statement, see [1], [3].

Let us focus on a comparatively small but very powerful
consequence. The Chow ring 𝐴∗(Σ𝑀) is graded of degree
𝑟 − 1, and there is an isomorphism deg ∶ 𝐴𝑟−1 → ℝ
characterized by the property that deg(𝐹1 ⋯𝐹𝑟−1) = 1
for any full flag 𝐹1 ⊊ ⋯ ⊊ 𝐹𝑟−1 of proper flats. Say a
function 𝑐 ∶ 2𝐸 → ℝ is submodular if 𝑐∅ = 𝑐𝐸 = 0 and
𝑐𝐴 + 𝑐𝐵 ≥ 𝑐𝐴∪𝐵 + 𝑐𝐴∩𝐵 for any 𝐴,𝐵 ⊆ 𝐸, and let

𝐾(𝑀) = { ∑
𝐹 flat

𝑐𝐹𝑥𝐹 ∶ 𝑐 submodular} ⊂ 𝐴1(Σ𝑀).

The Hodge–Riemann relations imply that for any
𝐿1,… , 𝐿𝑟−3, 𝑎, 𝑏 ∈ 𝐾(𝑀), if we write 𝐿 = 𝐿1 ⋯𝐿𝑟−3, we
have
(2) deg(𝐿𝑎2)deg(𝐿𝑏2) ≤ deg(𝐿𝑎𝑏)2.

Unimodality and Log-Concavity
We say a sequence 𝑎0, 𝑎1,… ,𝑎𝑟 of nonnegative integers is
unimodal if there is an index 0 ≤ 𝑚 ≤ 𝑟 such that

𝑎0 ≤ 𝑎1 ≤ ⋯ ≤ 𝑎𝑚−1 ≤ 𝑎𝑚 ≥ 𝑎𝑚+1 ≥ ⋯ ≥ 𝑎𝑟,
and, more strongly, it is log-concave if for all 1 ≤ 𝑖 ≤ 𝑟−1,

𝑎𝑖−1𝑎𝑖+1 ≤ 𝑎2
𝑖 .

It is flawless if we have
𝑎𝑖 ≤ 𝑎𝑠−𝑖

for all 1≤ 𝑖≤ 𝑠
2 , where 𝑠 is the largest index with 𝑎𝑠 ≠ 0.

Many sequences in mathematics have these properties,
but proving it is often very difficult. Aside from their
intrinsic interest, these kinds of questions have been
a source of fresh mathematics, because their solutions
have often required a fundamentally new construction or
connection and have given rise to unforeseen structural
results about the objects of interest.

For matroids, this Hodge theory provides such a
connection. Consider the elements of the Chow ring
𝐴∗(Σ𝑀),

𝛼 = 𝛼𝑖 = ∑
𝐹∋𝑖

𝑥𝐹, 𝛽 = 𝛽𝑖 = ∑
𝐹 /∋𝑖

𝑥𝐹,

which are independent of 𝑖 and lie in the cone 𝐾(𝑀). A
clever combinatorial computation in 𝐴∗(Σ𝑀) shows that

deg(𝛼𝑘𝛽𝑟−1−𝑘) = | coeff. of 𝑞𝑘 in 𝜒𝑀(𝑞)/(𝑞 − 1)|.
As 𝑘 varies, this sequence of degrees is log-concave by
(2). In turn, by elementary arguments, this implies the
following theorems, which were conjectured by Rota,
Heron, Mason, and Welsh in the 1970s and 1980s.

Theorem 7 (Adiprasito–Huh–Katz, 2015). For any ma-
troid 𝑀 of rank 𝑟, the following sequences, defined in
“Enumerative Invariants,” are unimodal and log-concave:

• the Whitney numbers of the first kind 𝑤(𝑀), and
• the 𝑓-vector 𝑓(𝑀).

Geometric Model 3. Conormal Fans
We now introduce another polyhedral model of 𝑀 that
leads to stronger inequalities for matroid invariants. We
say that a flag ℱ = {𝐹1 ⊆ ⋯ ⊆ 𝐹𝑙} of nonempty flats of 𝑀
and a flag 𝒢 = {𝐺1 ⊇ ⋯ ⊇ 𝐺𝑙} of nonempty flats of 𝑀⟂ of
the same length are compatible if

𝑙
⋂
𝑖=1

(𝐹𝑖 ∪𝐺𝑖) = 𝐸,
𝑙
⋃
𝑖=1

(𝐹𝑖 ∩𝐺𝑖) ≠ 𝐸.

All maximal compatible pairs have length 𝑛− 2.
Definition 8 (Ardila–Denham–Huh, 2017). The conormal
fan Σ𝑀,𝑀⟂ of a matroid 𝑀 is the polyhedral complex in
ℝ𝐸/ ⟨𝑒𝐸⟩ × ℝ𝐸/ ⟨𝑒𝐸⟩ consisting of the cones

𝜎ℱ,𝒢 = cone{𝑒𝐹𝑖 + 𝑓𝐺𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑙}
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for each compatible pair of flags (ℱ,𝒢). Here {𝑒𝑖 ∶ 𝑖 ∈ 𝐸}
and {𝑓𝑖 ∶ 𝑖 ∈ 𝐸} are the standard bases for two copies of
ℝ𝐸.

It would be interesting to find an intrinsic character-
ization of conormal fans of matroids, in analogy with
Theorems 2 and 5.

The Chow Ring and Hodge Theory
Consider the polynomial ring with variables 𝑥𝐹,𝐺 where
𝐹 and 𝐺 are nonempty flats of 𝑀 and 𝑀⟂ respectively,
not both 𝐸, such that 𝐹 ∪ 𝐺 = 𝐸. When it is defined, we
write 𝑥ℱ,𝒢 = 𝑥𝐹1,𝐺1 ⋯𝑥𝐹𝑙,𝐺𝑙 for flagsℱ = {𝐹1 ⊊ ⋯ ⊊ 𝐹𝑙} and
𝒢 = {𝐺1 ⊋ ⋯ ⊋ 𝐺𝑙}. We also need the special elements

𝑎𝑖 = ∑
𝐸≠𝐹∋𝑖

𝑥𝐹,𝐺, 𝑎′
𝑖 = ∑

𝐸≠𝐺∋𝑖
𝑥𝐹,𝐺, 𝑑𝑖 = ∑

𝐹∩𝐺∋𝑖
𝑥𝐹,𝐺.

We define the Chow ring of the conormal fan of 𝑀 to be

𝐴∗(Σ𝑀,𝑀⟂) ∶= ℝ[𝑥𝐹,𝐺]/(𝐼𝑀,𝑀⟂ + 𝐽𝑀,𝑀⟂),

where

𝐼𝑀,𝑀⟂ = ⟨𝑥ℱ,𝒢 ∶ ℱ and 𝒢 are not compatible⟩ ,

𝐽𝑀,𝑀⟂ = ⟨𝑎𝑖 −𝑎𝑗, 𝑎′
𝑖 −𝑎′

𝑗 ∶ 𝑖, 𝑗 ∈ 𝐸⟩ .

The Chow ring of the conormal fan behaves as nicely
as the Chow ring of the Bergman fan, though proving it
requires significant additional work.

Theorem 9 (Ardila–Denham–Huh, 2017). The Chow ring
𝐴∗(Σ𝑀,𝑀⟂) of the conormal fan of a matroid satisfies
Poincaré duality, the hard Lefschetz theorem, and the
Hodge–Riemann relations.

This Chow ring 𝐴∗(Σ𝑀,𝑀⟂) has degree 𝑛−2, and there
is an isomorphism deg ∶ 𝐴𝑛−2 → ℝ characterized by
the property that deg(𝑥ℱ,𝒢) = 1 for any maximal pair
of compatible flags ℱ and 𝒢. The inequality (2) is still
satisfied for elements of a suitable cone 𝐾(𝑀,𝑀⟂).

Unimodality, Log-Concavity, and Flawlessness
We now apply (2) to the elements 𝑎 = 𝑎𝑖 and 𝑑 = 𝑑𝑖 of
the Chow ring 𝐴∗(Σ𝑀,𝑀⟂), which are independent of 𝑖 and
lie in the relevant cone 𝐾(𝑀,𝑀⟂). A subtle combinatorial
argument shows that

deg(𝑎𝑘𝑑𝑛−2−𝑘) = | coeff. of 𝑞𝑘+1 in 𝜒𝑀(𝑞 + 1)|.

As 𝑘 varies, this sequence of coefficients is the ℎ-vector of
the broken circuit complex 𝐵𝐶<(𝑀). This is the collection
of subsets of 𝐸 − min𝐸 that do not contain a broken
circuit; that is, a set of the form 𝐶−min𝐶 for a minimal
dependent set 𝐶. The broken circuit complex depends
on a choice of a linear order < on 𝐸, but its ℎ-vector is
independent of <.

The inequalities (2) for the Chow ring 𝐴𝑀,𝑀⟂ then
imply the following theorems, which were conjectured by
Brylawski and Dawson in the 1980s.

Theorem 10 (Ardila–Denham–Huh, 2017). For any ma-
troid𝑀 of rank 𝑟, the following sequences, defined in “Enu-
merative Invariants,” are unimodal and log-concave:

• the ℎ-vector of the broken circuit complex, and
• the ℎ-vector ℎ(𝑀).
Theorem 10 is significantly stronger than Theorem 7.

By work of Juhnke-Kubitzke and Le, it also implies a 2003
conjecture of Swartz: These ℎ-vectors are flawless.
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