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Introduction
TheOEIS® (orOn-Line Encyclopedia of Integer Sequences®)1
is a freely accessible database of number sequences, now
in its 54th year, and online since 1995. It contains over
300, 000 entries, and for each one gives a definition,
properties, references, computer programs, tables, etc.,
as appropriate. It is widely referenced: a webpage2 lists
over6, 000works that cite it, andoften say things like “this
theorem would not exist without the help of the OEIS.”
It has been called one of the most useful mathematical
sites in the Web.

The main use is to serve as a dictionary or fingerprint
file for identifying number sequences (and when you find
the sequence you are looking for, you will understand
why the OEIS is so popular). If your sequence is not
recognized, you see a message saying that if the sequence
is of general interest, you should submit it for inclusion
in the database. The resulting queue of new submissions
is a continual source of lovely problems.

I described the OEIS in a short article in the Septem-
ber 2003 issue of these Notices. The most significant
changes since then took place in 2009, when a nonprofit
foundation3 was set up to own and maintain the OEIS,
and in 2010 when the OEIS was moved off my home
page at AT&T Labs to a commercial host. The format has
also changed: since 2010 the OEIS has been a refereed
“wiki.” Four people played a crucial role in the transition:
Harvey P. Dale and Nancy C. Eberhardt helped set up
the Foundation, Russell S. Cox wrote the software, and
David L. Applegate helpedmove theOEIS. TheOEISwould
probably not exist today but for their help.

All submissions, of new sequences and updates, are
now refereed by volunteer editors. One of the rewards
of being an editor is that you see a constant flow of
new problems, often submitted by nonmathematicians,
which frequently contain juicy-looking questions that are
begging to be investigated.

This articlewill describe a selectionof recent sequences,
mostly connected with unsolved problems.

Sequences in theOEIS are identified by a 6-digit number
prefixed by A. A000001 is the number of groups of order
𝑛, A000002 is Kolakoski’s sequence, and so on. When
we were approaching a quarter of a million entries, the
editors voted to decide which sequence would become
A250000. The winner was the Peaceable Queens sequence,
described in the next section, and the runner-up was the
“circles in the plane” sequence A250001 discussed after
that. The 𝑛th term of the sequence under discussion is
usually denoted by 𝑎(𝑛).
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Figure 1. One of three solutions to the Peaceable
Queens problem on a 5 × 5 board, illustrating
𝑎(5) = 4.

Figure 2. A solution to the Peaceable Queens problem
on an 8 × 8 board, illustrating 𝑎(8) = 9. (There are
actually 10 white queens here but only 9 count since
the numbers of white and black queens must be
equal. Any one of the white queens could be omitted.)

Peaceable Queens
In A250000, 𝑎(𝑛) is the maximal number 𝑚 such that it
is possible to place 𝑚 white queens and 𝑚 black queens
on an 𝑛 × 𝑛 chess board so that no queen attacks a
queen of the opposite color. These are peaceable queens.
This is a fairly new problem with some striking pictures,
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Figure 3. A solution to the Peaceable Queens problem
on an 11 × 11 board, illustrating 𝑎(11) = 17.

Figure 4. A conjectured solution to the Peaceable
Queens problem on a 20 × 20 board, found by Bob
Selcoe, showing that 𝑎(20) ≥ 58.

an interesting conjecture, and a satisfactorily nonviolent
theme. It was posed by Robert A. Bosch in 1999, as a
variation on the classical problem of finding the number
of ways to place 𝑛 queens on an 𝑛×𝑛 board so that they
do not attack each other (A000170). It was added to the
OEIS in 2014 by Donald E. Knuth, and a number of people
have contributed to the entry since then. Only thirteen
terms are known:

𝑛 ∶ 1 2 3 4 5 6 7 8 9 10 11 12 13
𝑎(𝑛) ∶ 0 0 1 2 4 5 7 9 12 14 17 21 24

Figures 1-4 show examples of solutions for 𝑛 = 5, 8, 11
and (conjecturally) 20.

For larger values of 𝑛, the best solutions presently
known were found by Benoît Jubin and concentrate the
queens into four pentagonal regions, as shown in Figure 5

(and generalize the arrangement shown in Figure 4). This
construction gives a lower bound of ⌊7𝑛2/48⌋, a formula
which in fact matches all the best arrangements known
so far except 𝑛 = 5 and 9. It would be nice to know if this
construction really does solve the problem!

Figure 5. A general construction for the Peaceable
Queens problem found by Benoît Jubin, showing that
for large 𝑛, 𝑎(𝑛) ≥ ⌊7𝑛2/48⌋, a formula which might
be exact for all 𝑛 > 9.

Circles in the Plane
The runner-up in the competition for A250000 is now
A250001: here 𝑎(𝑛) is the number of ways to draw 𝑛
circles in the affine plane. Two circles must be disjoint or
meet in two distinct points (tangential contacts are not
permitted), and three circlesmay notmeet at a point.4 The
sequence was proposed by Jonathan Wild, a professor
of music at McGill University, who found the values
𝑎(1) = 1, 𝑎(2) = 3, 𝑎(3) = 14, 𝑎(4) = 173, and, jointly
with Christopher Jones, 𝑎(5) = 16951 (see Figures 6–8).

Wild and Jones have found that there are complications
which first appear when five circles are being considered:
here there are arrangements which theoretically could
exist if one considered only the intersections between
circles, but which cannot actually be drawn using circles.
For example, start with four circles arranged in a chain,
each one overlapping its two neighbors, and label the
overlaps a, b, c, d (see Figure 9). Suppose we try to add
a fifth circle that meets all four circles but avoids their
overlaps, encloses overlaps b and d, but does not enclose
overlaps a or c. This can be drawn if the fifth circle

4The circles may have different radii. Two arrangements are con-
sidered the same if one can be continuously changed to the other
while keeping all circles circular (although the radii may be con-
tinuously changed), without changing the multiplicity of intersec-
tion points, and without a circle passing through an intersection
point. Turning the whole configuration over is allowed.
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Figure 6. The fourteen ways to draw three circles in
the affine plane.

Figure 7. Eight of the 173 ways to draw four circles.
For the full set of 173 drawings, see A250001.

Figure 8. Seven further ways (out of 173) to draw four
circles.

is flattened to an ellipse, but it can be shown that the
arrangement cannot be realized with five circles. There
are twenty-six such unrealizable arrangements of five
circles, which can be ruled out by ad hoc arguments.

The delicate configurations like those in Figure 8 are
very appealing. It would be interesting to see all 17142
arrangements of five or fewer circles displayed along the
Great Wall of China.

Figure 9. A hypothetical arrangement of five circles
that can only be realized if one or more of the circles
is distorted.

Lexicographically Earliest Cube-Free Binary
Sequence
There is an obvious way to sort integer sequences
𝑎(1), 𝑎(2), 𝑎(3), 𝑎(4),… into lexicographic order. A num-
ber of recent entries in the OEIS are defined to be
the lexicographically earliest sequence of nonnegative or
positive integers satisfying certain conditions.

For example, one of the first results in the subject now
called “Combinatorics on Words” was Axel Thue’s 1912
theorem that the “Thue-Morse sequence”

𝑇 = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1,…

(A010060) contains no substring of the form 𝑋𝑋𝑋, that
is, 𝑇 is cube-free. 𝑇 can be defined as a fixed point
of the mapping 0 → 01, 1 → 10; alternatively, by taking
𝑎(𝑛) to be the parity of the number of 1s in the binary
expansion of 𝑛. One hundred and five years later, David W.
Wilson asked for the lexicographically earliest cube-free
sequence of 0s and 1s. Using a back-tracking algorithm,
he found what appear to be the first 10000 terms, which
begin

(1) 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1,… .

This is now A282317.
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There is no difficulty in showing that the sequence
exists.5 To see this, make the set 𝑆 of all infinite binary
sequences 𝑎 = (𝑎(1), 𝑎(2),…) into a metric space by
defining 𝑑(𝑎, 𝑏) to be 0 if 𝑎 = 𝑏, or 2−𝑖 if 𝑎 and 𝑏 first
differ at position 𝑖. This identifies 𝑆 with the Cantor set
in [0, 1). The subset 𝐹 ⊂ 𝑆 of infinite cube-free sequences
is nonempty and has an infimum 𝑐 say. It is easy to show
that the complement 𝑆\𝐹, sequences that contain a cube,
is an open set in this topology, so 𝐹 is closed and 𝑐 ∈ 𝐹.

So far only the first 999 terms of A282317 have been
verified to be correct (by showing that there is at least one
infinite cube-free sequence with that beginning). The rest
of the 10000 terms are only conjectural. It would be nice
to know more. In particular, does this sequence have an
alternative construction? There is no apparent formula
or recurrence, which seems surprising.

The EKG and Yellowstone Sequences
To continue the “lexicographically earliest” theme, many
recent entries in the OEIS are defined to be the lexi-
cographically earliest sequence 𝑎(1), 𝑎(2),… of distinct
positive integers satisfying certain divisibility conditions.

The first task here is usually to show that there
are no missing numbers, i.e., that the sequence is a
permutation of the positive integers. Sequences of this
type were studied in a 1983 paper by Erdős, Freud,
and Hegyvári, which included the examples A036552
(𝑎(2𝑛) = smallest missing number, 𝑎(2𝑛 + 1) = 2𝑎(2𝑛))
and A064736 (𝑎(2𝑛 + 2) = smallest missing number,
𝑎(2𝑛 + 1) = 𝑎(2𝑛) ⋅ 𝑎(2𝑛 + 2)). For these two it is clear
that there are no missing numbers. This is less obvious,
but still true, for JonathanAyres’sEKG sequence, A064413,
defined to be the lexicographically earliest sequence of
distinct positive integers such that

gcd(𝑎(𝑛 − 1), 𝑎(𝑛)) > 1 for all 𝑛 ≥ 3 .
This begins

1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, 18,
14, 7, 21, 24, 16, 20, 22, 11, 33, 27,… .

The proof that it is a permutation is omitted—it is similar
to the proof for the Yellowstone sequence given below.

Next, one can investigate the rate of growth. In the
case of A064413, the points appear to lie roughly on
three curved lines (Figure 10), although the following
conjecture of Lagarias, Rains, and Sloane (2002) is still
open.

5Thanks to Jean-Paul Allouche for this argument.

Figure 10. The first 10000 terms of the EKG sequence,
so named because locally this graph resembles an
EKG. Every number appears exactly once.

Conjecture 1. In the EKG sequence A064413, if 𝑎(𝑛) is
neither a prime nor three times a prime then

𝑎(𝑛) ∼ 𝑛(1 + 1
3 log𝑛) ;

if 𝑎(𝑛) is a prime then

𝑎(𝑛) ∼ 1
2 𝑛(1 + 1

3 log𝑛) ;

and if 𝑎(𝑛) is 3 times a prime then

𝑎(𝑛) ∼ 3
2 𝑛(1 + 1

3 log𝑛) .

Furthermore, if the sequence is a permutation, one
can also try to study its cycle structure. However, this
often leads to very difficult questions, similar to those
encountered in studying the Collatz conjecture, and
we can’t do much more than collect experimental data.
Typically there is a set of finite cycles, and one or more
apparently infinite cycles, but we can’t prove that the
apparently infinite cycles really are infinite, nor that they
are distinct. See the entries for A064413 and A098550
for examples.

The definition of the Yellowstone sequence (Reinhard
Zumkeller, 2004, A098550, [1]) is similar to that of the
EKG sequence, but now the requirement is that, for 𝑛 > 3,
gcd(𝑎(𝑛 − 2), 𝑎(𝑛)) > 1 and gcd(𝑎(𝑛 − 1), 𝑎(𝑛)) = 1 .

This begins

1, 2, 3, 4, 9, 8, 15, 14, 5, 6, 25, 12, 35,
16, 7, 10, 21, 20, 27, 22, 39, 11,… .

Figure 11 shows terms 𝑎(101) = 47 through 𝑎(200) =
279, with successive points joined by lines.

Theorem 2. The Yellowstone sequence A098550 is a per-
mutation of the positive integers.
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The proof is typical of the arguments used to prove that
several similar sequences are permutations, including the
EKG sequence above.

Proof. There are several steps.
(i) The sequence is infinite. (For 𝑝𝑎(𝑛−2) is always a can-
didate for 𝑎(𝑛), where 𝑝 is a prime larger than any divisor
of 𝑎(𝑖), 𝑖 < 𝑛.)
(ii) There are infinitely many different primes that divide
the terms of the sequence. (If not, there is a prime 𝑝 such
that all terms are products of primes less than 𝑝. Using
(i), find a term 𝑎(𝑛) > 𝑝2, and let 𝑞 be a common prime
factor of 𝑎(𝑛 − 2) and 𝑎(𝑛). But now 𝑝𝑞 < 𝑝2 < 𝑎(𝑛) is a
smaller candidate for 𝑎(𝑛), a contradiction.)
(iii) For any prime 𝑝, some term is divisible by 𝑝. (For if
not, no prime 𝑞 > 𝑝 can divide any 𝑎(𝑛): if 𝑎(𝑛) = 𝑘𝑞 is
the first multiple of 𝑞 to appear, 𝑘𝑝 would be a smaller
candidate for 𝑎(𝑛). This contradicts (ii).)
(iv) For any prime 𝑝, 𝑝 divides infinitely many terms. (If
not, let 𝑝𝑖 be larger than anymultiple of 𝑝 in the sequence,
and choose a prime 𝑞 > 𝑝𝑖. Again we obtain a contradic-
tion.)
(v) Every prime 𝑝 is a term in the sequence. (Suppose not,
and using (i), choose 𝑛0 such that 𝑎(𝑛) > 𝑝 for all 𝑛 > 𝑛0.
Using (iv), find 𝑎(𝑛) = 𝑘𝑝, 𝑘 > 1, for some 𝑛 > 𝑛0. But
then 𝑎(𝑛 + 2) = 𝑝, a contradiction.)
(vi) All numbers appear. For if not, let 𝑘 be the smallest
missing number, and choose 𝑛0 so that all of 1,… , 𝑘 − 1
have occurred in 𝑎(1),… ,𝑎(𝑛0). Let 𝑝 be a prime dividing
𝑘. Since, by (iv), 𝑝 divides infinitely many terms, there is a
number 𝑛1 > 𝑛0 such that gcd(𝑎(𝑛1), 𝑘) > 1. This forces
(2) gcd(𝑎(𝑛), 𝑘) > 1 for all 𝑛 ≥ 𝑛1.
(If not, there would be some 𝑗 ≥ 𝑛1 where gcd(𝑎(𝑗), 𝑘) > 1
and gcd(𝑎(𝑗+ 1), 𝑘) = 1, which would lead to 𝑎(𝑗+ 2) =
𝑘.) But (2) is impossible, because we know from (v) that
infinitely many of the 𝑎(𝑛) are primes. □

Figure 11. Plot of terms 𝑎(101) through 𝑎(200) of the
Yellowstone sequence. The sequence has a
downward spike to 𝑎(𝑛) when 𝑎(𝑛) is a prime, and
larger upward spikes (the “geysers,” which suggests
the name for this sequence) two steps later.

The growth of this sequence is more complicated than
that of the EKG sequence. Figure 12 shows the first
300,000 terms, without lines connecting the points. The
points appear to fall on or close to a number of distinct
curves. There is a conjecture in [1, p. 5] that would explain
these curves.

Three Further Lexicographically Earliest
Sequences
Here are three further examples of this type, all of which
are surely permutations of the positive integers. For the
first there is a proof, for the second there is “almost” a
proof, but the third may be beyond reach.

The first (Leroy Quet, 2007, A127202) is the lexico-
graphically earliest sequence of distinct positive integers
such that
gcd(𝑎(𝑛−1), 𝑎(𝑛)) ≠ gcd(𝑎(𝑛−2), 𝑎(𝑛−1)) for 𝑛 ≥ 3 .
It begins

1, 2, 4, 3, 6, 5, 10, 7, 14, 8, 9, 12, 11, 22,
13, 26, 15, 18, 16, 17, 34, 19,… .

For the second (Rémy Sigrist, 2017, A280864), the
definition is

if a prime 𝑝 divides 𝑎(𝑛), then it divides
exactly one of 𝑎(𝑛 − 1) and 𝑎(𝑛 + 1), for 𝑛 ≥ 2 ,

and the initial terms are

1, 2, 4, 3, 6, 8, 5, 10, 12, 9, 7, 14, 16, 11,
22, 18, 15, 20, 24, 21, 28, 26,… .

The proof that the first is a permutation is similar to
that for the Yellowstone sequence, although a bit more
involved (see A127202). The second struck me as one of

Figure 12. Scatterplot of the first 300,000 terms of
the Yellowstone sequence. The primes lie on the
lowest line (labeled “p”), the even numbers on the
second line (“E”), the majority of the odd composite
numbers on the third line (“C”), and the 3𝑝, 5𝑝, 7𝑝,
11𝑝,… points on the higher lines. The lines are not
actually straight, except for the red line 𝑓(𝑥) = 𝑥,
which is included for reference.
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those “drop everything and work on this” problems that
are common hazards when editing new submissions to
the OEIS. However, after several months, I could prove
that every prime and every even number appears, and that
if 𝑝 is an odd prime then there are infinitely many odd
multiples of 𝑝 (see A280864 for details), but I could not
prove that every odd number appears. The missing step
feels like it is only a couple of cups of coffee away, and
I’m hoping that some reader of this article will complete
the proof.

The third example (Henry Bottomley, 2000, A055265) is
the lexicographically earliest sequence of distinct positive
integers such that 𝑎(𝑛 − 1) + 𝑎(𝑛) is a prime for 𝑛 ≥ 2:

1, 2, 3, 4, 7, 6, 5, 8, 9, 10, 13, 16, 15,
14, 17, 12, 11, 18, 19, 22, 21, 20,… .

The terms appear to lie on or near the line 𝑎(𝑛) = 𝑛,
but the proof that every number appears may be difficult
because it involves the gaps between the primes.

Two-Dimensional Lexicographically Earliest
Arrays
The OEIS is primarily a database of sequences
(𝑎𝑛, 𝑛 ≥ 𝑛0). However, triangles of numbers are
included by reading them by rows. Pascal’s trian-
gle becomes 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, …,
which (without the extra spaces) is A007318. Doubly-
indexed arrays (𝑇𝑚,𝑛,𝑚 ≥ 𝑚0, 𝑛 ≥ 𝑛0) are converted
to sequences by reading them by antidiagonals (in
either the upwards or downwards directions, or both).
So an array (𝑇𝑚,𝑛,𝑚 ≥ 0,𝑛 ≥ 0) might become
𝑇0,0, 𝑇1,0, 𝑇0,1, 𝑇2,0, 𝑇1.1, 𝑇0,2,…. For example, the table of
Nim-sums 𝑚⊕𝑛:

(3)

0 1 2 3 4 5 6 7 ⋯
1 0 3 2 5 4 7 6 ⋯
2 3 0 1 6 7 4 5 ⋯
3 2 1 0 7 6 5 4 ⋯
4 5 6 7 0 1 2 3 ⋯
5 4 7 6 1 0 3 2 ⋯
6 7 4 5 2 3 0 1 ⋯
7 6 5 4 3 2 1 0 ⋯
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋯

produces the sequence A003987:

0, 1, 1, 2, 0, 2, 3, 3, 3, 3, 4, 2, 0, 2, 4,
5, 5, 1, 1, 5, 5, 6, 4, 6, 0, 6, 4, 6, … .

Doubly-indexed doubly-infinite arrays (𝑇𝑚,𝑛,𝑚 ∈ ℤ,
𝑛 ∈ ℤ) can become sequences by reading them in a
spiral around the origin, in say a counter-clockwise
direction: 𝑇0,0, 𝑇1,0, 𝑇1,1, 𝑇0,1, 𝑇−1,1, 𝑇−1,0, 𝑇−1,−1, 𝑇0,−1,…
(cf. Figure 13).

There are many “lexicographically earliest” versions of
these arrays. For example, the Nim-sum array (3) has an
equivalent definition: scan along upwards antidiagonals,
filling in each cell with the smallest nonnegative number
that is neither in the row to the left of that cell nor in the
column above it.

A variation on the Nim-sum array was proposed by
Alec Jones in 2016, as a kind of “infinite Sudoku array.”
This array (𝑇𝑚,𝑛,𝑚 ≥ 0,𝑛 ≥ 0) is to be filled in by
upwards antidiagonals, always choosing the smallest
positive integer such that no row, column, diagonal, or
antidiagonal contains a repeated term. The top left corner
of the array is:

(4)

1 3 2 6 4 5 10 11 ⋯
2 4 5 1 8 3 6 12 ⋯
3 1 6 2 9 7 5 4 ⋯
4 2 3 5 1 8 9 7 ⋯
5 7 1 4 2 6 3 15 ⋯
6 8 9 7 5 10 4 16 ⋯
7 5 4 3 6 14 8 9 ⋯
8 6 7 9 11 4 13 3 ⋯
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋯

The resulting sequence (A269526) is

1, 2, 3, 3, 4, 2, 4, 1, 5, 6, 5, 2, 6, 1, 4,
6, 7, 3, 2, 8, 5, 7, 8, 1, 5, 9, 3, 10, … .

This array has many interesting properties. If we
subtract 1 from each entry, the entries are the Nim-values
for a game played with two piles of counters, of sizes 𝑚
and 𝑛, and reminiscent of Wythoff’s game (see A004481,
A274528).

But the main question about the array (4) is, are the
individual rows, columns, and diagonals of this array
permutations of ℕ? (The antidiagonals are obviously not,

Figure 13. A274640: choose the smallest positive
number so that no row, column, or diagonal contains
a repeat. Are the rows, columns, diagonals
permutations of ℕ?

1068 Notices of the AMS Volume 65, Number 9

http://oeis.org/A280864
cav
Rectangle

cav
Rectangle

http://oeis.org/A007318
http://oeis.org/A274528
cav
Rectangle

cav
Rectangle

http://oeis.org/A004481
cav
Rectangle

http://oeis.org/A274640
cav
Rectangle

http://oeis.org/A269526
cav
Rectangle

http://oeis.org/A055265
http://oeis.org/A003987
cav
Rectangle



since they are finite sequences.) It is easy to see that each
column is a permutation. In column 𝑐 ≥ 0, a number 𝑘
will eventually be the smallest missing number and will
appear in some cell in that column, unless there is a
copy of 𝑘 to the North-West, West, or South-West of that
cell. But there are at most 𝑐 copies of 𝑘 in all the earlier
columns, so eventually 𝑘 will appear.

The rows are also permutations, although the proof is
less obvious. Consider row 𝑟 ≥ 0, and suppose 𝑘 never
appears. There are at most 𝑟 copies of 𝑘 in the earlier
rows, and these can affect only a bounded portion of row
𝑟. Consider a cell (𝑟, 𝑛), 𝑛 ≥ 0 large. If 𝑘 is not to appear
in that cell, there must be a copy of 𝑘 in the antidiagonal
to the South-West. So in the triangle bounded by row
𝑟, column 0, and the antidiagonal through (𝑟, 𝑛), there
must be at least 𝑛 + 1 − 𝑟 copies of 𝑘. Imagine these
𝑘s replaced by chess queens. By construction they are
mutually nonattacking. But it is known ([6, Problem 252],
or A274616) that on a triangular half-chessboard of side
𝑛, there can be at most 2𝑛/3 + 1 mutually nonattacking
queens, which for large 𝑛 leads to a contradiction.

As to the diagonals, although they appear to be per-
mutations, this is an open question. The argument using
nonattacking queens breaks down because the diagonal
of the half-chessboard contains only half asmany squares
as the sides. Even the main diagonal, A274318,

1, 4, 6, 5, 2, 10, 8, 3, 7, 9, 16, 26, 29,
22, 20, 23, 28, 38, 12, 32, 46, 13, 14, 11, 15,… ,

is not presently known to be a permutation of ℕ.
The spiral version of this array is evenmore frustrating.

This array ((𝑇(𝑚,𝑛),𝑚 ∈ ℤ,𝑛 ∈ ℤ), A274640, proposed
by Zak Seidov and Kerry Mitchell in June 2016), is
constructed in a counterclockwise spiral, filling in each
cell with the smallest positive number such that no row,
column, or diagonal contains a repeated term (Figures 13,
14). (“Diagonal” now means any line of cells of slope ±1.)

Although it seems very plausible that every row, col-
umn, and diagonal is a permutation of ℕ, now there are
no proofs at all. The eight spokes through the center
are sequences A274924–A274931. For example, the row
through the central cell is

…,14, 25, 13, 17, 10, 15, 7, 6, 5, 3,
1, 2, 4, 8, 11, 12, 16, 9, 19, 24, 22,… ,

which is A274928 reversed followed by A274924. Is it a
permutation of ℕ? We do not know.

Fun With Digits
Functions of the digits of numbers have always fascinated
people,6 and one such function was in the news in
2017. The idea underlying this story and several related
sequences is to start with some simple function 𝑓(𝑛) of

6Although in A Mathematician’s Apology, G. H. Hardy, refer-
ring to the fact that 1089 and 2178 are the smallest numbers
which when written backwards are nontrivial multiples of them-
selves (cf. A008919), remarked that this fact was “likely to amuse
amateurs,” but was not of interest to mathematicians.

Figure 14. Colored representation of central
200×200 portion of the spiral in Figure 13: the colors
represent the values, ranging from black (smallest) to
white (largest).

the digits of 𝑛 in some base, iterate it, and watch what
happens.

For the first example we write 𝑛 as a product of prime
powers, 𝑛 = 𝑝𝑒1

1 𝑝𝑒2
2 ⋯ with the 𝑝𝑖 in increasing order, and

define 𝑓(𝑛) to be the decimal concatenation 𝑝1𝑒1𝑝2𝑒2 …,
where we omit any exponents 𝑒𝑖 that are equal to 1. So
𝑓(7) = 𝑓(71) = 7, 𝑓(8) = 𝑓(23) = 23.

The initial values of 𝑓(𝑛) (A080670) are
𝑛 ∶ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 …

𝑓(𝑛): 1 2 3 22 5 23 7 23 32 25 11 223 13 27 35 24 17 232 …

If we start with a positive number 𝑛 and repeatedly
apply 𝑓, in many small cases we rapidly reach a prime
(or 1).7 For example, 9 = 32 → 32 = 25 → 25 = 52 →
52 = 2213 → 2213, a prime. Define 𝐹(𝑛) to be the prime
that is eventually reached, or −1 if the iteration never
reaches a prime. The value−1will occur if the iterates are
unbounded or if they enter a cycle of composite numbers.
The initial values of 𝐹(𝑛) (A195264) are

1, 2, 3, 211, 5, 23, 7, 23, 2213, 2213, 11,
223, 13, 311, 1129, 233, 17, 17137, 19,… .

𝐹(20) is currently unknown (after 110 steps the trajectory
of twenty has stalled at a 192-digit number which has not
yet been factored). At a DIMACS conference in October
2014 to celebrate the fiftieth anniversary of the start of
what is now the OEIS, John H. Conway offered $US1000

7In what follows we will tacitly assume 𝑛 ≥ 2, to avoid having to
repeatedly say “(or 1).”

October 2018 Notices of the AMS 1069

http://oeis.org/A080670
cav
Rectangle

http://oeis.org/A274924
http://oeis.org/A274931
cav
Rectangle

cav
Rectangle

http://oeis.org/A274924
cav
Rectangle

http://oeis.org/A274640
cav
Rectangle

http://oeis.org/A195264
cav
Rectangle

http://oeis.org/A274928
cav
Rectangle

http://oeis.org/A008919
cav
Rectangle

http://oeis.org/A274318
cav
Rectangle

http://oeis.org/A274616
cav
Rectangle



for a proof or disproof of his conjecture that the iteration
of 𝑓 will always reach a prime.

However, in June 2017 James Davis found a number
𝐷0 = 13532385396179 whose prime factorization is
13 ⋅ 532 ⋅ 3853 ⋅ 96179, and so clearly 𝑓(𝐷0) = 𝐷0 and
𝐹(𝐷0) = −1.

The method used by James Davis to find 𝐷0 is quite
simple. Suppose 𝑛 = 𝑚 ⋅ 𝑝 is fixed by 𝑓, where 𝑝 is
a prime greater than all the prime factors of 𝑚. Then
𝑓(𝑛) = 𝑓(𝑚)10𝑦 + 𝑝, where 𝑦 is the number of digits in
𝑝. From 𝑓(𝑛) = 𝑛 we have 𝑝= 𝑓(𝑚)10𝑦

𝑚−1 . Assuming 𝑝 ≠ 2, 5,
this implies that 𝑝 divides 𝑓(𝑚), and setting 𝑥 = 𝑓(𝑚)/𝑝,
we find that𝑚 = 𝑥10𝑦+1with𝑝= 𝑓(𝑚)

𝑥 prime. A computer
easily finds the solution 𝑥 = 1407,𝑦 = 5,𝑚 = 140700001,
𝑝 = 96179, and so 𝑛 = 𝐷0.

No other composite fixedpoints are known, andDavid J.
Seal has recently shown that there is no composite fixed
point less than 𝐷0. It is easy, however, to find numbers
whose trajectory under 𝑓 ends at 𝐷0, by repeatedly
finding a prime prefix of the previous number, as shown
by the example8 𝐷1 = 13532385396179 with 𝑓(𝐷1) = 𝐷0. So
presumably there are infinitely many 𝑛 with 𝐹(𝑛) = −1.

Consideration of the analogous questions in other
bases might have suggested that counterexamples to
Conway’s question could exist. We will use subscripts
to indicate the base (so 410 = 1002). The base-2 analog
of 𝑓, 𝑓2 (say), is defined by taking 𝑓2(𝑝𝑒1

1 𝑝𝑒2
2 ⋯) to be the

concatenation 𝑝1𝑒1𝑝2𝑒2 …, as before (again omitting any
𝑒𝑖 that are 1), except that now we write the 𝑝𝑖 and 𝑒𝑖
in base 2 and interpret the concatenation as a base-2
number. For example, 𝑓2(8) = 𝑓2(23) = 10112 = 1110.

The initial values of 𝑓2(𝑛) (A230625) are
𝑛: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 …

𝑓2(𝑛): 1 2 3 10 5 11 7 11 14 21 11 43 13 23 29 20 17 46 …

and the base-2 analog of 𝐹, 𝐹2 (A230627) is the prime (or
1) that is reached when 𝑓2 is repeatedly applied to 𝑛, or
−1 if no prime (or 1) is reached:
1, 2, 3, 31, 5, 11, 7, 11, 23, 31, 11, 43, 13, 23, 29, 251, 17, 23,… .

Now there is a fairly small composite fixed point, namely
255987, found by David J. Seal. Sean A. Irvine and Chai
Wah Wu have also studied this sequence, and the present
status is that 𝐹2(𝑛) is known for all 𝑛 less than 12388.
All numbers in this range reach 1, a prime, the composite
number 255987, or one of the two cycles 1007 ⟷ 1269
or 1503 ⟷ 3751. The numbers for which 𝐹2(𝑛) = −1 are
217, 255, 446, 558,… (A288847). Initially it appeared that
234 might be on this list, but Irvine found that after 104
steps the trajectory reaches the 51-digit prime

350743229748317519260857777660944018966290406786641.
Home Primes
A rather older problem arises if we change the definition
of 𝑓(𝑛) slightly, making 𝑓(8) = 222 rather than 23. So
if 𝑛 = 𝑝1 ⋅ 𝑝2 ⋅ 𝑝3 ⋅ …, where 𝑝1 ≤ 𝑝2 ≤ 𝑝3 ≤ …, then
𝑓(𝑛) is the decimal concatenation 𝑝1𝑝2𝑝3 … (A037276). In
1990, Jeffrey Heleen studied the analog of 𝐹(𝑛) for this

8Found by Hans Havermann.

function: that is, 𝐹(𝑛) is the prime reached if we start
with 𝑛 and repeatedly apply 𝑓, or −1 if no prime is ever
reached (A037274).

The trajectory of 8 now takes 14 steps to reach a prime
(the individual prime factors here have been separated by
spaces):
8 → 2 2 2 → 2 3 37 → 3 19 41 → 3 3 3 7 13 13 → 3 11123771
→ 7 149 317 941 →→ 229 31219729 → 11 2084656339
→ 3 347 911 118189 → 11 613 496501723 →
→ 97 130517 917327 → 53 1832651281459
→ 3 3 3 11 139 653 3863 5107
→ 3331113965338635107 ,

the last number being a prime.
Since 𝑓(𝑛) > 𝑛 if 𝑛 is composite, now there cannot

be any composite fixed points nor any cycles of length
greater than 1. The only way for 𝐹(𝑛) to be −1 is for the
trajectory of 𝑛 to be unbounded. This appears to be a
harder problem than the one in the previous section, since
so far no trajectory has been proved to be unbounded.
The first open case is 𝑛 = 49, which after 119 iterations
has reached a 251-digit composite number (see A056938).
The completion of the factorization for step 117 took 765
days by the general number field sieve, and at the time
(December 2014) was one of the hardest factorizations
ever completed.

Power Trains
A third choice for 𝑓(𝑛) was proposed by John H. Conway
in 2007: he called it the power train map. If the decimal
expansion of 𝑛 is 𝑑1𝑑2𝑑3 …𝑑𝑘 (with 0 ≤ 𝑑𝑖 ≤ 9, 0 < 𝑑1),
then 𝑓(𝑛) = 𝑑𝑑2

1 ⋅ 𝑑𝑑4
3 ⋯, ending with … ⋅ 𝑑𝑘 if 𝑘 is odd,

or with … ⋅ 𝑑𝑑𝑘
𝑘−1 if 𝑘 is even (A133500). We take 00

to be 1. For example, 𝑓(39) = 39 = 19683, 𝑓(623) =
62 ⋅ 3 = 108. Conway observed that 2592 = 2592 is
a nontrivial fixed point, and asked me if there were
any others. I found one more: 𝑛 = 246 ⋅ 36 ⋅ 510 ⋅ 72 =
24547284284866560000000000, for which 𝑓(𝑛) = 24 ⋅
54 ⋅ 72 ⋅ 84 ⋅ 28 ⋅ 48 ⋅ 66 ⋅ 56 ⋅ 00 ⋅ 00 ⋅ 00 ⋅ 00 ⋅ 00 = 𝑛. The
eleven known fixed points (including the trivial values
1,… ,9) form A135385, and it is known that there are no
further terms below 10100. Maybe this is a hint that for
all of the functions 𝑓(𝑛) that have just been mentioned,
there may be only a handful of genuinely exceptional
values?

A Memorable Prime
If you happen to need an explicit 20-digit prime
in a hurry, it is useful to remember that although
1, 121 = 112, 12321 = 1112, 1234321 = 11112,… , and
12345678987654321 = 1111111112 are not primes, the
next term in A173426 is a prime,

12345678910987654321 .
As David Broadhurst remarked on the Number Theory
Mailing List in August 2015, this is a memorable prime!
He also pointed out that on probabilistic grounds, there
should be infinitelymany values of𝑛 such that the decimal
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concatenation of the numbers 1 up through 𝑛 followed by
𝑛−1down through1 is a prime. Shortly afterwards, Shyam
Sunder Gupta found what is presumably the next prime in
the sequence, corresponding to 𝑛 = 2446, the 17350-digit
probable prime 1234567..244524462445..7654321. Serge
Batalov has shown that there are no further terms with
𝑛 < 60000. What is the next term? The values 10, 2446
are not enough to create an OEIS entry.

A Missing Prime
The previous question naturally led me to wonder what
the first prime is in the simpler sequence (A007908):

1, 12, 123, 1234,… , 12345678910, 1234567891011,… ,

formed by the decimal concatenation of the numbers
1 through 𝑛. In Unsolved Problems in Number Theory,
Richard K. Guy reports that this question was already
asked by Charles Nicol and John Selfridge. However,
although the same probabilistic argument suggests that
there should be an infinite number of primes of this type,
not a single one is known. I asked several friends to help
with the search, and as a result this task was taken up by
the folks who run the GIMP (or Great Internet Mersenne
Prime) search, and there is now a webpage9 that shows
the current status of the search for the first prime. As
of August 2017 the search seems to have stalled, the
present status being that all the potential values of 𝑛
through 344869 failed (obviously many values of 𝑛 can
be ruled out by congruence conditions). In this range the
candidates have about two million digits. One estimate
suggests that there is a probability of about 0.5 that a
prime will be found with 𝑛 < 106, so it would be good to
resume this search.

Post’s Tag System
In his recent book Elements of Mathematics: From Euclid
to Gödel10 John Stillwell mentions that Emil L. Post’s tag
system from the 1930s is still not understood. Post asked
the following question. Take a finite string, or word, 𝑆 of
0s and 1s, and if it begins with 0, append 00 to the end of
𝑆 and delete the first three symbols, or if it begins with
1, append 1101 to the end of 𝑆 and delete the first three
symbols. When this process is iterated, eventually one of
three things will happen: either 𝑆 will reach the empty
word (𝑆 dies), 𝑆 will enter a loop (𝑆 cycles), or 𝑆 will keep
growing for ever (𝑆 blows up). For example, 𝑆 = 1000
reaches the empty word 𝜖 at the 7th step:

1000 → 01101 → 0100 → 000 → 00 → 0 → 𝜖 ,

whereas 100100 enters a cycle of length six (indicated by
parentheses) after 15 steps:

9mersenneforum.org/showthread.php?t=20527.
10A superb successor to Felix Klein’s 1908, Elementary Mathemat-
ics from an Advanced Standpoint.

100100 → 1001101 → 11011101 → 111011101
(5)

→ 0111011101 → 101110100 → 1101001101
→ 10011011101 → 110111011101
→ 1110111011101 → 01110111011101
→ 1011101110100 → 11011101001101
→ 111010011011101 → 0100110111011101
→ (011011101110100 → 01110111010000
→ 1011101000000 → 11010000001101
→ 100000011011101 → 0000110111011101) .

Post was hoping to find an algorithm which, given 𝑆,
would determine which of these outcomes would occur.
He did not succeed.

Post called this process a ‘tag system.’ It can be
generalized by considering initial words over an alphabet
of size 𝑀 (rather than 2), allowing any fixed set 𝒜 of
𝑀 tag words to be appended (rather than 00 and 1101),
and deleting some fixed number 𝑃 of initial symbols
at each step (not necessarily 3). In 1961, Marvin Minsky
showed that such a generalized tag system could simulate
a Turing machine. By choosing an appropriate alphabet,
an appropriate set 𝒜 of tag words to be appended, and
an appropriate value of 𝑃 (in fact 𝑃 = 2 will do), any
computable function can be simulated. So, because of
the undecidability of the Halting Problem, for general tag
systems it is impossible to predict which initial words
will blow up.

But what about Post’s original tag system? Could this
simulate a Turing machine (by encoding the problem
in the initial word 𝑆)? At first this seems very unlikely,
but the Cook–Wolfram theorem that the one-dimensional
cellular automaton defined by Rule 110 can simulate a
Turing machine (by encoding the problem in the starting
state) suggests that it might be possible. If it is possible,
there must be some initial words that blow up (again
because of the Halting Problem).

In early 2017, when I read Stillwell’s book, the OEIS
contained three sequences related to the original tag
system, based on the work of Peter Asveld and submitted
by Jeffrey Shallit: A284116, giving the maximal number
of words in the ‘trajectory’ of any initial word 𝑆 of length
𝑛 (18 terms were known), and two sequences connected
with the especially interesting starting word 𝜎𝑛 of length
3𝑛 consisting of 𝑛 copies of 100. A284119(𝑛) is defined
to be the number of words in the trajectory of𝜎𝑛 before it
enters a cycle or dies, or−1 if the trajectory blows up, and
A284121(𝑛) is the length of the cycle, or 1 if the trajectory
dies, or −1 if the trajectory blows up. For example, from
(5) we see that A284119(2) = 15 and A284121(2) = 6.
Shallit had extended Asveld’s work and had found 43
terms of the two last-mentioned sequences.

I then added many further sequences based on tag
systems discussed by Asveld, Liesbeth De Mol, Shigeru
Watanabe, and others, and appealed to contributors to
the OEIS to extend them.

The most interesting response came from Lars
Blomberg, who investigated the trajectory of 𝜎𝑛 for
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𝑛 ≤ 110. On September 9, 2017, he reported that every
𝜎𝑛 for 𝑛 ≤ 110 had either died or cycled after at most
13 million terms, except for 𝜎110, which after 38.1011

steps had reached a word of length 107 and was still
growing. This was exciting news! Could 𝜎110 be the first
word to be discovered that blew up?11 Sadly, on October
4, 2017, Blomberg reported that after 43913328040672
steps 𝜎110 had terminated in the empty word.

Figure 15 displays the remarkable graph (technically,
a pin plot) of the number of steps for 𝜎𝑛 to either die
or cycle for 𝑛 ≤ 200. Figure 16 shows the lengths of the
successive words in the trajectory of 𝜎110.

Figure 15. Pin plot illustrating Lars Blomberg’s
remarkable discovery that the Post tag system
started at the word (100)110 takes an exceptionally
long time (43913328040672 steps) to converge.

Figure 16. Lengths of successive words in trajectory
of (100)110 under the Post tag system. The numbers
on the horizontal axis are spaced at multiples of 1012.

In the past six months Blomberg has continued this
investigation and has determined the fate of 𝜎𝑛 for all
𝑛 ≤ 6075. The new record-holder for the number of steps
before the trajectory dies is now held by 𝜎4974, which
takes 57042251906801 steps, while 𝜎110 is in second
place.

11Of course the fact that the same number 110 was involved
could not possibly be anything more than a coincidence.

Of course it is still possible that some initial word 𝑆, not
necessarily of the form 𝜎𝑛, will blow up, but this seems
increasingly unlikely. So Post’s tag system probably does
not simulate a Turing machine.

The question as to which 𝜎𝑛 die and which cycle
remains a mystery. Up to 𝑛 = 6075, Blomberg’s results
show that about one-sixth of the values of 𝑛 die and five-
sixths cycle. The precise values can be found in A291792.
It would be nice to understand this sequence better.

Coordination Sequences
This final section is concerned with coordination se-
quences, which arise in crystallography and in studying
tiling problems, have beautiful illustrations, and lead to
many unsolved mathematical questions.

Figure 17. A portion of the Cairo tiling.

The “Cairo” tiling, so called because it is said to be used
on many streets in that city, is shown in Figure 17. Let 𝐺
denote the corresponding infinite graph (with vertices for
points where three or more tiles meet, and edges between
two vertices where two tiles meet). The figure is also a
picture of the graph.

The distance between vertices 𝑃,𝑄 ∈ 𝐺 is defined to
be the number of edges in the shortest path joining them.
The coordination sequence of 𝐺 with respect to a vertex
𝑃 ∈ 𝐺 is then the sequence 𝑎(𝑛) (𝑛 ≥ 0) giving the
number of vertices 𝑄 at distance 𝑛 from 𝑃. Coordination
sequences have been studied by crystallographers for
many years [5].

The graph of the Cairo tiling has two kinds of vertices,
trivalent (where three edges meet) and tetravalent. As can
be seen from Figure 17, the coordination sequence with re-
spect to a tetravalent vertex begins1, 4, 8, 12, 16, 20, 24,…,
whichappears tobe thesameas thecoordinationsequence
A008574 for a vertex in the familiar square grid. This
observation seemed to be new. Chaim Goodman-Strauss
and I thought that such a simple fact should have a
simple proof, and we developed an elementary “coloring
book” procedure [4] which not only proved this result
but also established a number of conjectured formulas
for coordination sequences of other tilings mentioned in
entries in the OEIS. The “coloring book” drawing of the
Cairo graph centered at a tetravalent vertex is shown in
Figure 18. This coloring makes it easy to prove that the
coordination sequence is given by 𝑎(𝑛) = 4𝑛 for 𝑛 ≥ 1
(see [4] for details).
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Figure 18. The “coloring book” method applied to a
tetravalent vertex (the red dot) in the Cairo tiling,
used to prove that the coordination sequence is the
same as that for the square grid.

Fora trivalent vertex in theCairo tiling, the coordination
sequence is

1, 3, 8, 12, 15, 20, 25, 28, 31, 36,
41, 44, 47, 52, 57, 60, 63, 68,…

(this is now A296368), and we [4] show that for 𝑛 ≥ 3,
𝑎(𝑛) = 4𝑛 if 𝑛 is odd, 4𝑛−1 if 𝑛 ≡ 0 (mod 4), and 4𝑛+1
if 𝑛 ≡ 2 (mod 4).

One can similarly define coordination sequences for
other two- and higher-dimensional structures, and the
OEISpresently contains over 7000 such sequences (mostly
without formulas). Many more could be added. There are
many excellent websites with lists of tilings and crystals.
Brian Galebach’s website12 is especially important, as it
includes pictures of all “𝑘-uniform” tilings with 𝑘 ≤ 6,
with over 1000 tilings. Darrah Chavey’s article [2] and the
Michael Hartley and Printable Paper websites 13 havemany
further pictures, and the RCSR and ToposPro databases14
have thousands more.

Only last week (on May 4, 2018), Rémy Sigrist investi-
gated the Ammann–Beenker (or “octagonal”) tiling shown
in Figure 19, an aperiodic tiling with eight-fold rotational
symmetry about the central point.

12probabilitysports.com/tilings.html.
13www.dr-mikes-math-games-for-kids.com/archimedean
-graph-paper.html, https://www.printablepaper.net
/category/graph.
14rcsr.net, topospro.com.

Figure 19. Ammann-Beenker (or “octagonal”) tiling.

Sigrist determined the initial terms of the coordination
sequence with respect to the central vertex (A303981):

(6) 1, 8, 16, 32, 32, 40, 48, 72, 64, 96, 80,
104, 112, 112, 128, 152,…

Figure 20 shows the vertices at distances 0, 1, 2,… , 6 from
the center.

Figure 20. Illustrating the coordination sequence for
the Ammann-Beenker tiling, showing the vertices at
distances 0 though 6 from the central vertex.
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No formula or growth estimate is presently known for
this sequence. However, earlier this year Anton Shutov
and Andrey Maleev determined the asymptotic behavior
of the coordination sequence (A302176) with respect to
a vertex with five-fold rotational symmetry in a certain
Penrose tiling. So we end with a question: Can the Shutov-
Maleev approach be used to find the asymptotic growth
of (6)? Of course an explicit formula would be even nicer.
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