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Srikanth B. Iyengar

Finite Free Complexes over Polynomial
Rings

The story I want to present begins with Hilbert. It concerns
linear operators acting on a vector space V over a field
k. The action of commuting linear operators ti,...,t; on
V can be codified into an action of the polynomial ring
S = k[x1,...,x4] on V, with each x; acting via t;. Said
otherwise, V is an S-module. A simple example is V = S,
with each x; acting by multiplication. The free module
(of rank n) is the n-fold direct sum, S", with the natural
action. These are called free modules because the action
is as free as possible, in that they induce no relations on
the x;. Not every module is free: consider k with each x;
acting as zero. Hilbert’s Syzygy Theorem states that any
S-module V' can be resolved by free S-modules, in the
sense that there is a diagram of maps

(1) 0 — Shn On, GBu O % op O gBo 0,
where 0; is compatible with the S-action, Kernel(d;) =
Image(0;+1) for each i > 1, and Cokernel(0;) = V. The
remarkable point is that only finitely many free modules
are involved; indeed Hilbert proved that there exists a
resolution with n < d. The module Image(0;) is called
an ith syzygy of V, so the theorem says that V has a
syzygy that is free. The integers B; are called the Betti
numbers of V; these are algebraic analogues of Betti
numbers in topology, and they are just as interesting as
their topological counterparts. The prototypical example
is a resolution of k called the Koszul complex. It appears
in essentially every article I have written; this one need
not be an exception, so here it is for d = 3:

X3 —X2  —X3 0
—X2 X1 0 —X3
X1 , L0 X1 X2 3 [X1 x2 Xx3]
0—S S S S—0.

I am viewing the elements of the various free modules as
column vectors. You can guess what the Koszul resolution
of k is for a general d; the Betti numbers satisfy g; = (%).

In the early 1970s Buchsbaum and Eisenbud conjectured
that whenever the k-vector space V is finite-dimensional,
its Betti numbers satisfy ; > (¢). This conjecture remains
open. It implies the following.

Total Rank Conjecture. >, f; > 24,

This inequality was conjectured by Horrocks and also by
Avramov. It was settled recently by Mark Walker whenever
the characteristic of k is not two using a beautiful
argument involving Adams operations on complexes.

Srikanth B. Iyengar is professor of mathematics at the University
of Utah. His email address is iyengar@math.utah.edu.
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A complex is a diagram F of the form (f) where
Kernel(0;) contains Image(0;+1) for each i; in the cases
of interest to us the corresponding quotient vector space,
called the homology of F in degree i, is finite-dimensional.
Resolutions of finite-dimensional modules are examples
of such complexes, but many natural constructs lead
to the more general kind. Experience had led us to
expect that properties of resolutions of finite-dimensional
modules would carry over to such F. In particular, it had
been conjectured (by me anyway) that the Total Rank
Conjecture holds also for such complexes.

Walker visited me last year, and within a few minutes
of our meeting (the date, April 27, is unforgettable)
we realized that between what he knew and what I
had learnt recently about Lefschetz elements in exterior
algebras—from a collaboration with Conca and Herbig—
we could construct counterexamples to the Total Rank
Conjecture for complexes. Subsequently it dawned on
us that the same simple idea yields counterexamples to
several other conjectures, including one due to Avramov
and Buchweitz about Betti numbers of modules over
complete intersection rings.

Lower bounds (almost all conjectural) similar to the
Total Rank Conjecture appear also in the context of group
actions on spaces. Notable among these is a conjecture
of Carlsson for spaces admitting a free action of (Z/pZ)",
the elementary abelian p-group of rank r, where p is a
prime number, and one due to Halperin about spaces that
admit a free action of the torus, (S')". Mark and I could
also construct counterexamples to algebraic analogues
of their conjectures. These examples challenge long-held
intuition about finite free complexes and have sowed a
sense of confusion in me. I'll try to convey some of this
in my talk.

Photo Credit

Author photo by Tatjana Ruf, copyright MFO, used on the terms
of the Creative Commons License Attribution-Share Alike 2.0
Germany.

Srikanth B. Iyengar is interested in
commutative algebra in its various
manifestations, and in particu-
lar in the modular representation
theory of finite groups. He was
awarded the Bessel Research Prize
(2007) by the Humboldt Foun-
dation, was a Simons Fellow in
Mathematics (2012-13), and is a
Fellow of the American Mathemat-
ical Society.
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Sarah Witherspoon

Derivatives, Derivations, and Hochschild

Cohomology
In the 1940s, inspired by homological methods in topol-
ogy, Hochschild, Eilenberg, and Mac Lane introduced them
in algebra. One outcome was Hochschild cohomology. It
encodes essential information about rings, topological
spaces, and categories. It has many applications, users,
and developers. For example, it encodes possible defor-
mations of an algebra, it measures coarse properties of
representations via support varieties, and it determines
geometric properties such as smoothness in both com-
mutative and noncommutative settings. Yet Hochschild
cohomology also has some remaining mysteries. These
are the focus of much current research and of my talk.
This story begins with the Leibniz rule for differentiation
of functions f and g on the real line:

d d d
E(fg) = E(f)gﬂ”a(g).

Generalize this rule to elements of rings R that are also
vector spaces over fields such as C or R: A linear function
0 from R to R is called a derivation if

6(fg) =96(fg+fo(g)

for all f and g in R. Fundamental examples are indeed
given by differentiation on rings of functions, such as
polynomial rings or functions on a manifold.

The set of all derivations on R forms a vector space.
This vector space is not closed under composition of
functions. However it is closed under a related binary
operation: If 6 and §" are two derivations on R, then so is
[6,08'], defined as

[6,6']:=0600 —0d 0.

The operation [, ] is called a commutator or Lie bracket,
and the vector space of derivations together with this
bracket operation is called a Lie algebra. Vector fields
on manifolds are derivations on their rings of functions,
forming central examples of such Lie algebras.

More generally, consider multilinear functions from
R X -+ X R to R. What is a suitable analogue of derivation?
Hochschild’s definition of cohomology for rings answers
this question via multilinear analogues of the Leibniz rule.
Hochschild cohomology spaces consist of multilinear
functions obeying these rules.

Is there an analogue, for multilinear functions, of the Lie
bracket on derivations? Yes! In the 1960s Gerstenhaber
introduced a bilinear operation on multilinear functions,
and thus on Hochschild cohomology, that is now called

Sarah Witherspoon is professor of mathematics at Texas A&M
University. Her email address is sjw@math.tamu.edu.
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the Gerstenhaber bracket. Together with additional al-
gebraic structure and fortuitous properties, Hochschild
cohomology spaces are important algebraic invariants for
rings.

Since its introduction by Hochschild and its further
development by Gerstenhaber and others, Hochschild
cohomology has found applications in many settings, for
example in algebraic deformation theory, representation
theory, and noncommutative geometry. For some of these
applications, a deep understanding of the Gerstenhaber
bracket is required. A view of Hochschild cohomology
as a certain Ext group has long promised insight that is
realized in recent work. In my talk I will survey some
of this work as well as give an overview of Hochschild
cohomology and its place in algebra.

Photo Credit
Author photo courtesy of Sarah Witherspoon.

Sarah Witherspoon’s research is
in noncommutative and homolog-
ical algebra. She is a Fellow of the
American Mathematical Society.
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Abdul-Aziz Yakubu

Population Cycles in Discrete-Time Infec-
tious Disease Models

ABSTRACT. The standard next generation matrix ap-
proach for calculating the basic reproduction number,
an important parameter in understanding the evolu-
tion and prevention of infections, suffers from some
assumptions that are not always met in real-world
systems. In this talk, we explore extensions through
two discrete-time infectious disease models, a SIR and
an ISAv model, and the different behaviors that arise.

My talk will focus on infectious disease transmission dy-
namics in periodic population environments. In infectious
disease epidemiology, the basic reproduction number, de-
noted by Ry, is an important threshold parameter that
provides insight when designing prevention and control
strategies for established infections. R is the average
number of secondary cases produced by an infectious
individual introduced into a population of susceptible
individuals.

The next generation matrix (NGM) approach for defining
and calculating R divides the population into compart-
ments, some of them infectious. It provides an easy way
to compute R from epidemiological reasoning and basic
infectious disease model ingredients. However, for au-
tonomous infectious disease models (without seasonality
or periodicity), the NGM approach assumes the existence
of alocally asymptotically stable disease-free equilibrium
in the demographic equation. That is, in the absence of
the disease, the population is assumed to be at a static
steady state. Populations do not grow indefinitely over
time, and density dependence or other factors tend to
drive populations toward their carrying capacity. How-
ever, it is possible for populations to experience some
fluctuations around the carrying capacity, a situation
that the existing NGM approach does not address. The
population fluctuations can be periodic (cyclic) or erratic
(chaotic). For example, such prominent and persistent
cyclic fluctuations have been observed in the abundance
of some sockeye salmon populations [2].

In a recent paper, van den Driessche and Yakubu
[4] used a general autonomous discrete-time epidemic
model to extend the NGM approach for calculating R to
account for period k population cycles in the disease-free
system, where k > 1. Ry < 1 implies the local asymptotic
stability of the periodic disease-free population cycle
and the disease goes extinct, whereas Ry > 1 implies
the instability of the periodic disease-free cycle and the

Abdul-Aziz Yakubu is professor of mathematics at Howard Uni-
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disease persists in the population. When Ry < 1 and
the demographic dynamics is asymptotically constant
or under geometric growth (nonoscillatory, k = 1), it
is possible for the disease-free equilibrium point (fixed
point) to be globally asymptotically stable [3]. In 2002,
Elaydi and Yakubu ([1, Theorem 3]) showed that it is
not possible for a disease-free population cycle with
period k > 2 to be globally asymptotically stable in the
“smooth” autonomous discrete-time epidemic model. In
the presentation, I will apply the extended NGM approach
for calculating R to two discrete-time infectious disease
models with Ricker recruitment functions. The first model
is a Susceptible-Infectious-Recovered (SIR) model with and
without vaccination, and the second one is an Infectious
Salmon Anemia Virus (ISAv) model [4].

The Ricker model was first used by Ricker in 1954
to study population cycles in fish. To illustrate density-
dependent population cycles in a demographic equation
(in the absence of a disease), in Figure 1 we consider
the discrete-time demographic equation with a Ricker
recruitment,

(]-) St+1:f(5t)+(1_d)5tl te{olllz!}!

with S; the population size of the susceptible individuals,
Ricker recruitment function

f(S) =rSe b,

r > 0 the intrinsic growth rate, and b > 0 a scaling
parameter. During each unit time interval, d € (0,1) is
the probability of natural death for each individual, and
(1 —d) is the probability of staying alive. Using knowledge
of the population size of the susceptible individuals, S, at
time t, model (1) predicts S¢+1. The model’s unit of time
depends on the specific application. For example, the unit
of time could be a convenient time for a follow-up census.
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Figure 1. As the intrinsic growth rate r increases, the
number S of susceptibles exhibits period-doubling
bifurcations en route to chaos.
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Figure 2. In this bifurcation diagram for the SIR
model, as R increases from values less than 1 to
values greater than 1, the dynamics change from
disease extinction to disease persistence on a locally
asymptotically stable period 4 population cycle.

In model (1), the population goes extinct when R; =
& < 1.However, when R, > 1 the disease-free population
persists on a fixed-point or cyclic or chaotic attractor.
When 1 < Ry < ei, the disease-free system persists on
the fixed-point attractor, z. = h’%. When R4 > e 5, the
disease-free equation (1) is known to undergo period-
doubling bifurcations en route to chaos as in Figure 1.

In general, the birth or recruitment function f of model
(1) is a nonlinear function that is capable of exhibiting
cyclic or chaotic dynamics. An epidemic process is built
on top of the demographic pattern generated by f. To
guarantee control over the disease-free dynamics (no
matter how complex they are) we assume that the disease
does not affect f in a significant way. This approach to
model construction is quite common for continuous-time
epidemic processes but less common for discrete-time
epidemic models ([3], [4]).

We construct the SIR and ISAv discrete-time infectious
disease models on top of model (1). SIR models have
been used to study a variety of diseases in humans and
animals, while ISAv models have been primarily used to
study infectious salmon anemia, a finfish disease caused
by a virus that belongs to a family of viruses called
Orthomyxoviridae. ISAv has caused significant mortality
among salmon farms in northern Europe, Canada, Maine,
and Chile. Our SIR and ISAv models share a common
demographic equation with a Ricker recruitment function.
In the presentation, I will use the extended NGM approach
to compute R, for both models. In the SIR model, the
dynamics of the Ricker demographic equation in the
absence of the disease is qualitatively equivalent to the
dynamics of the total population, S + I + R. However, in
the ISAv model, the dynamics of the salmon population
equation, in the absence of the disease, is qualitatively
different from that of the total salmon population, S + I.
When R > 1,Iwill show that the period of the disease-free
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Figure 3. In this bifuration diagram for the ISAv
model, as R increases from values less than 1 to
values greater than 1, the dynamics change from
disease extinction to disease persistence on a period
4 or 2 population cycle.

susceptible population cycle in the SIR model determines
the period of the infectious population cycle (see Figure 2).

Unlike the SIR model, in the ISAv model, the period of
the infectious salmon population can be different from
that of the cyclic disease-free salmon population. In par-
ticular, I will illustrate that the ISAv disease is capable of
stabilizing population fluctuations in the salmon popula-
tion (see Figure 3). Figure 3 shows an ISAv disease-induced
period-doubling reversal bifurcation, where the disease-
free salmon population is on a period 4 population cycle.
The extended NGM approach accounts for periodic popu-
lation cycles, and the resulting R computed can be used
to guide prevention and control strategies in additional
infectious disease environments.
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