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There are several monographs on aspects of reverse math-
ematics, but none can be described as a “general audi-
ence” text. Simpson’s Subsystems of Second Order Arith-
metic [3], rightly regarded as a classic, makes substantial
assumptions about the reader’s background in mathemat-
ical logic. Hirschfeldt’s Slicing the Truth [2] is more ac-
cessible but also makes assumptions beyond an upper-
level undergraduate background and focuses more specif-
ically on combinatorics. The field has been due for a gen-
eral treatment accessible to undergraduates and to math-
ematicians in other areas looking for an easily compre-
hensible introduction to the field.

With Reverse Mathematics: Proofs from the Inside
Out [5], John Stillwell provides exactly that kind of intro-
duction. The book is aimed at upper-level undergraduates
and professional mathematicians who are interested in
the details of arithmetization and in seeing several ex-
amples of the methods used in reverse mathematics but
who do not have previous knowledge of mathematical
logic or computability theory.

When Is an Axiom Necessary?

Sometimes, when we prove a mathematical theorem, ev-
ery step in the proof seems to be somehow required by
the theorem at hand. Other times, we look at a particular
step with skepticism. Have we used a sledgehammer to
drive a nail, applying a very strong theorem to a problem
that could be solved with simpler means? Are the tech-
niques used in the proof genuinely necessary to obtain
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the theorem at hand? This question is a central motiva-
tion of the field of reverse mathematics in mathematical
logic.

Mathematicians have long investigated the problem
of the Parallel Postulate in geometry: which theorems
require it, and which can be proved without it? Analo-
gous questions arose about the Axiom of Choice: which
theorems genuinely require the Axiom of Choice for their
proofs?

In each of these cases, it is easy to see the importance
of the background theory. After all, what use is it to prove
a theorem “without the Axiom of Choice” if the proof
uses some other axiom that already implies the Axiom
of Choice? To address the question of necessity, we must
begin by specifying a precise set of background axioms—
our base theory. This allows us to answer the question of
whether an additional axiom is necessary for a particular
proof, as follows.

When a

Suppose we find that a
theorem T is provable from
our base theory together

1 with an additional axiom A
theorem IS that is not provable in the
prove d fro 111 base theory. To show that A

is necessary, we can try to
prove a reversal: we assume
T as if it were an axiom, to-
gether with our base theory,
and prove A as if it were a
theorem. If we can do this,
we have shown that A and
T are equivalent, relative to
the base theory. Moreover,
any other axiom A" which al-
lows us to prove T over our
base theory would also allow us to prove A. The reversal
shows that A is, in a precise sense, the weakest axiom that,
together with the base theory, allows us to prove T.
Many results of this kind have been obtained. For
example, the Parallel Postulate is equivalent to Playfair’s
axiom in absolute geometry, and in topology the Axiom

the right
axioms, the
axioms can be
proved from
the theorem.
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Figure 1. Harvey Friedman proposed the program of
reverse mathematics at the 1974 International
Congress of Mathematicians.

of Choice is equivalent to Tychonoff’s theorem over
Zermelo-Fraenkel set theory.

Reverse mathematics studies the strength of everyday
mathematical theorems in this way. At the 1974 Interna-
tional Congress of Mathematicians Harvey Friedman [1]
(see Figure 1) laid out the founding vision for this pro-
gram: “When a theorem is proved from the right axioms,
the axioms can be proved from the theorem.” The key to
this analysis is to choose a base system strong enough
to formalize the theorems we want to study but not so
strong that it proves those theorems outright. Friedman
proposed using specific base theories from second-order
arithmetic instead of geometry or set theory. Equally im-
portantly, he proposed looking at fundamental theorems
of mathematics—results such as the Bolzano-Weierstrass
theorem in calculus—rather than more esoteric theorems
in set theory or topology.

Stephen Simpson [3] (Figure 2) rephrased the main
question as: “Which set existence axioms are required
to prove the theorems of everyday, non-set-theoretic
mathematics?” In many cases, the required axioms turn
out to be very modest.

Second-Order Arithmetic

Second-order arithmetic is a family of formal systems
for studying the natural numbers, real numbers, and
many other basic mathematical objects. It takes as given
only two fundamental types of objects: “numbers,” which
are intended to represent natural numbers, and “sets,”
which are intended to represent sets of natural numbers.
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Work of Weyl, Hilbert and Bernays, and Feferman showed
that much of elementary real analysis can be studied
in second-order arithmetic via arithmetization, in which
more complicated objects are represented—coded—as
numbers or sets of numbers.

For example, an in-
teger can be coded as

a pair of natural num- Wthh aXiOmS are
bers with the correct ;
difference, and a rational l’equlred to ]9 rove
number can be coded as the thQOVQmS Of
a pair of integers with
everyday
mathematics?

the correct ratio. A real
number can be coded as
a Cauchy sequence of ra-
tional numbers, perhaps
with a fixed rate of convergence. By using more complex
coding systems, we can also represent R" for each n,
open subsets of R, and continuous functions from R"
to R™. Algebraic structures such as countable groups
and fields and countable vector spaces over countable
fields can also be coded into sets of natural numbers.
In combinatorics, countable graphs and countable parti-
tions of countable sets can be formalized directly into
second-order arithmetic.

Not everything can be coded this way. Second-order
arithmetic is not able to talk about arbitrary subsets of
R nor about objects of very high cardinality. In this way,
it is more suitable for “ordinary” theorems that talk about
countable algebraic objects or complete separable metric
spaces.

There are several motivations for using second-order
arithmetic. It is a concrete and relatively weak founda-
tional system, and the provability of ordinary mathemati-
cal theorems in this setting shows that stronger systems
such as set theory or topos theory are not required for

Figure 2. Stephen Simpson has proved many key
results in reverse mathematics. His monograph
Subsystems of Second Order Arithmetic [3] is the
standard graduate-level reference text.
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these theorems. Another motivation is the close relation-
ship between second-order arithmetic and computability
theory. This relationship is one of the keys to the suc-
cess of reverse mathematics: by working in second-order
arithmetic, we can use a powerful toolbox of methods
from computability theory to study theorems that, at first
glance, seem unrelated to computation.

Subsystems of Second-Order Arithmetic

Subsystems of second-order arithmetic are simply axiom
systems for second-order arithmetic which can have vary-
ing levels of strength. Following tradition, subsystems
are often named with short acronyms, many of which
have subscripts or superscripts indicating particular vari-
ations. The weakest subsystem usually encountered is
known as RCAy. It has axioms saying that N is a discrete
ordered semiring and a set of relatively weak induction
axioms. RCA( also has set existence axioms which say,
essentially, that if we have sets By, ...,Bx and a set A is
Turing computable from these sets, then the set A must
exist. The acronym “RCA” stands for “recursive compre-
hension axiom,” where “recursive” is used as a synonym
of “computable.”

A model M of RCAq consists of a set of numbers N,
which may or may not be the ordinary natural numbers,
and a collection of subsets of N. Crucially, we do not
require that all subsets of N¥ must be included. Instead,
we rely on the set existence axioms to know that partic-
ular sets will be included in the model, that is, to know
they will “exist.” Allowing the model to contain only some
subsets of N™ also avoids the standard proof that all mod-
els of Peano’s axioms are isomorphic, because that proof
requires quantifying over all subsets.

The standard model of second-order arithmetic con-
sists of the ordinary natural numbers and every subset of
the natural numbers. Another important model of RCAg
has the ordinary natural numbers but only includes the
Turing computable subsets of the naturals. We say that
this model, called REC, “believes that every set is com-
putable.” If a theorem is provable in RCA, then the theo-
rem is true in REC. Thus, in particular, a theorem provable
in RCA, cannot imply the existence of uncomputable sets
of natural numbers. We often view RCA as a formaliza-
tion of computable analysis.

The remaining subsystems usually encountered in re-
verse mathematics (see Figure 3) consist of RCA( together
with additional axioms. One such subsystem, ACA(, con-
sists of RCA( with one additional axiom: “if f: N - N is
a function, the range of f must exist.” This seemingly in-
nocuous statement is not provable in RCA, as it is not
true in REC. In terms of computability, the new axiom is
equivalent to saying that for each set A € N we may form
the Turing jump A’. (The Turing jump of a set is the range
of a particular function computable from the set.) Thus,
in a model of ACAy, the collection of sets is closed under
Turing jump. We often view ACA as a formalization of
Weyl’s predicative analysis. The acronym “ACA” stands
for “arithmetical comprehension axiom.”
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Figure 3. Relationships between six subsystems.
WKL, and RT3 form an incomparable pair below ACA,.
RT3 itself can be split into two strictly weaker
systems, COH and SRT%, which together are
equivalent to RT5.

There are many subsystems between RCAy and ACA,.
One of these, WKL, is named after a weak form of Kénig’s
lemma and is related to several theorems of analysis and
countable algebra. A second, RT%, is a fragment of the
infinite version of Ramsey’s theorem. These systems are
incomparable: neither proves the axioms of the other over
RCAy. Moreover, RT% can be split into a “cohesive set”
principle COH and a “stable version” SRT3. Each of these
is strictly weaker than RT3, but taken together their ax-
ioms are equivalent to the axiom of RT3 over RCA,. Figure
3 shows the relationship between the subsystems just
mentioned.

The measure of strength in reverse mathematics gives
a complex, nonlinear hierarchy. However, many ordinary
theorems of mathematics turn out to be equivalent, over
RCA,, to the axioms of one of five linearly ordered subsys-
tems (the reason for this phenomenon is not completely
clear). Simpson named these subsystems the “Big Five”
(see Figure 4).

The weakest three of the Big Five are RCA,, WKLy, and
ACA,. These three are sufficient for almost all theorems
of a standard undergraduate mathematics curriculum
that can be stated in second-order arithmetic. Beyond
them are two stronger systems, ATR, and H%-CAO. The
Big Five subsystems are shown in Figure 4 along with a
mathematical theorem representative of each.

Stillwell’s Reverse Mathematics

Stillwell focuses on RCAy, WKLy, ACAy, and on a few
carefully chosen mathematical results from introductory
real analysis. He carefully limits the amount of logic and
computability included in the main portion of the text.
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|H}—CA0 - The Cantor-Bendixson Theorem |

Y

ATR( - Ulm’s theorem for abelian p-groups

Y
ACA( - The Bolzano-Weierstrass Theorem

Y

WKL - The Heine-Borel Theorem

Y
RCA( - The Intermediate Value Theorem

Figure 4. The “Big Five” subsystems of second-order
arithmetic and a representative theorem equivalent
to each.

The later portion includes some comments on the logical
details, but still at a level intended for a general reader.
This necessarily means that some of the beautiful inter-
actions between computability, second-order arithmetic,
and mathematical theorems are less clearly visible, but it
is very much in line with the mathematical character of
reverse mathematics.

A key aspect of reverse mathematics, which can some-
times be obscured by the logical methods employed, is an
underlying love of the mathematics being studied. Many
researchers in reverse mathematics gravitate towards
well-known, basic theorems of mathematics (the Bolzano-
Weierstrass theorem, Ramsey’s theorem, Hilbert’s basis
theorem, etc.) in order to understand these theorems bet-
ter. The mathematics itself provides a central motivation
for the logical analysis being performed.

Accordingly, work in reverse mathematics requires a
detailed understanding of both the logical tools and the
mathematics being studied. More advanced treatments
may make substantial assumptions about the reader’s
background in both of these areas. Stillwell presents
a careful introduction to a portion of elementary real
analysis, its arithmetization, and its provability in ACA,
without assuming the reader is already fluent in the
details.

The standard proof of a result can sometimes be
formalized directly into a desired subsystem of second-
order arithmetic. In other cases, a new proof must be
discovered if the previous proof used methods that
were stronger than necessary. In either case, the re-
verse mathematics analysis of a theorem leaves us with
more information than the mere fact that the theorem
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is provable. Stillwell’s treatment of several theorems
of elementary real analysis demonstrates this in a way
unobscured by the underlying logical machinery.

Stillwell shows how ACA, is equivalent over RCA,
to the Bolzano-Weierstrass theorem (“every bounded
sequence of reals has a convergent subsequence”). He
also proves that WKL, is equivalent over RCA, to the
Heine-Borel theorem in the form “if a sequence of ratio-
nal intervals covers [0, 1], then some finite subsequence
is also a cover.” Along the way, he clearly demonstrates
how these results are related to particular statements
about infinite paths through trees, which is what allows
computability methods to be applied to the theorems.

In Zermelo-Fraenkel set theory, the Bolzano-
Weierstrass theorem and the Heine-Borel theorem are
both provable, and so they are trivially equivalent. By
looking at them in a weaker base system such as RCA,
we see that there is, in a precise sense, a difference
between open cover compactness and sequential com-
pactness on the real line. This kind of separation result
illustrates the additional information that can be ob-
tained through reverse mathematics. We understand the
two theorems better by seeing an intrinsic way in which
they differ.

Because the author avoids most of the logical machin-
ery, the book will not prepare readers to jump directly
into research. The introductory treatment also omits sub-
systems stronger than ACA, which are required to prove
theorems such as the Cantor-Bendixson theorem. These
higher subsystems are closely related to generalized com-
putability theory in much the same way that the weaker
systems are related to Turing computability. So, if it does
its job, the book will leave a reader asking for more.

What could be the next step after reading this book?
The first four chapters of Simpson [3] give a thorough
survey of arithmetization and the reverse mathematics
of mathematical theorems in RCAjy, WKLy, and ACA,.
Hirschfeldt [2] provides an introduction to many recent
results in the reverse mathematics of combinatorics.
Solomon [4] gives an introductory, but more technical,
summary of several reverse mathematics results in al-
gebra. Beyond these is a large and growing research
literature.

References

[1] HARVEY FRIEDMAN, Some systems of second order arithmetic
and their use, Proc. Intl. Cong. Math., (Vancouver, B. C., 1974),
Canad. Math. Congress, 1975, pp. 235-242.

[2] DENIS R. HIRSCHFELDT, Slicing the Truth, Lecture Notes Se-
ries., Inst. Math. Sci., Nat. Univ. of Singapore, vol. 28, World
Scientific, 2015.

[3] STEPHEN G. SIMPSON, Subsystems of Second Order Arithmetic,
2nd ed., Perspectives in Logic, Cambridge Univ. Press, Assoc.
Symb. Logic, 20009.

[4] REED SOLOMON, Ordered groups: a case study in reverse
mathematics, Bull. Symbolic Logic 5 (1999), no. 1, 45-58.
[5] JOHN STILLWELL, Reverse Mathematics: Proofs from the Inside
Out, Princeton Univ. Press, 2017.

1101


http://www.ams.org/mathscinet-getitem?mr=0429508
cav
Rectangle

http://www.ams.org/mathscinet-getitem?mr=3244278
cav
Rectangle

http://www.ams.org/mathscinet-getitem?mr=2517689
cav
Rectangle

http://www.ams.org/mathscinet-getitem?mr=1681895
cav
Rectangle


BOOK REVIEW

Photo Credits

Figure 1 courtesy of Renate Schmid, 2011, Oberwolfach Photo
Collection.

Figure 2 courtesy of Renate Schmid, 2008, Oberwolfach Photo
Collection.

Figures 3 and 4 created by author.

Author photo courtesy of Rick Haye / Marshall University.

ABOUT THE AUTHOR

Carl Mummert’s research is in
mathematical logic (particularly re-
verse mathematics, second-order
arithmetic, and computability the-
ory), topology, and combinatorics.
His teaching incorporates tech-
niques from Inquiry Based Learn-
Carl Mummert ing (IBL).

1102 NOTICES OF THE AMS VOLUME 65, NUMBER 9


http://www.samsi.info/games-19-20
cav
Rectangle

http://www.samsi.info/sem-deep-lng
cav
Rectangle

cav
Rectangle

http://samsi.info/games-19-20
http://www.samsi.info/sem-deep-lng
http://www.samsi.info/sem-cas-inf

