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Jonathan D. Hauenstein

Numerical Algebraic Geometry and Opti-
mization
Convex programming aims to minimize a convex objec-
tive function over a convex set, called the feasible set. For
example, linear programmingminimizes a linear function
over a polytope (intersection of finitely many linear half-
spaces as in Figure 1(a)) while semidefinite programming
minimizes a linear function over a spectrahedron (inter-
section of the cone of positive semidefinite matrices with
a linear space as in Figure 1(b)).

(a) (b)

Figure 1. Example of (a) a polytope and (b) a
spectrahedron.

When the feasible set has a nonempty interior, a stan-
dard approach for solving convex programs are interior
pointmethods. Conversely, when the feasible set is empty,
the program is said to be infeasible and the traditional
Farkas’ lemma is a standard approach for verifying infea-
sibility. For example, every infeasible linear program can
be verified using the traditional Farkas’ lemma. However,
there are so-called weakly infeasible semidefinite pro-
grams where this is not the case. To illustrate, consider
the following semidefinite program:

(1)
minimize 𝑥11

subject to [ 𝑥11 1
1 0 ] ⪰ 0

where 𝐴 ⪰ 0 means that 𝐴 is a positive semidefinite
matrix. Since the determinant of the matrix in (1) is
−1, the program (1) is clearly infeasible. Moreover, (1) is
weakly infeasible since the corresponding alternative via
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the traditional Farkas’ lemma is also infeasible, i.e., there
does not exist 𝑦 ∈ ℝ2 such that

[ 0 𝑦1
𝑦1 𝑦2

] ⪰ 0

2 ⋅ 𝑦1 + 0 ⋅ 𝑦2 = −1.
One numerical challenge in identifying weakly infeasi-

ble semidefinite programs is that perturbations can be
strongly infeasible or strictly feasible. For example,

minimize 𝑥11

subject to [ 𝑥11 1
1 𝜖 ] ⪰ 0

is strongly infeasible for 𝜖 < 0 and strictly feasible for
𝜖 > 0. Liu and Pataki [3] showed that many commonly-
used software packages in semidefinite programming
have difficulty identifying weakly infeasible semidefinite
programs when the reason for infeasibility is not trivially
obvious. Suchmessy instanceswere obtainedbyobscuring
their structure via row operations and rotations. Thus, a
change of perspective was needed for identifying weakly
infeasible semidefinite programs.

Using the lens of numerical algebraic geometry
[1,4], the mathematical foundation of traditional interior
point methods is to numerically track a solution path
of a homotopy from a point in the interior of the
feasible set to an optimizer. With this viewpoint, weakly
infeasible semidefinite programs can be identified [2]
using the following three techniques from numerical
algebraic geometry: projective space for compactifying
infinite length solution paths, adaptive precision path
tracking for navigating through ill-conditioned areas, and
endgames for accurately computing singular endpoints.

To illustrate, we consider the following convex program
modified from (1):

(2)
minimize 𝜆

subject to [ 𝑥11 +𝜆 1
1 𝜆 ] ⪰ 0.

The corresponding optimal value is easily observed to
be 𝜆∗ = 0, but this is actually an infimum that is not
attained as a minimum, a condition that is equivalent
to (1) being weakly infeasible. Therefore, optimizers to (2)
are “at infinity” meaning that a solution path defined by
traditional interior point methods will have infinite length
and approach an asymptote as represented in Figure 2(a).
Compactification using projective space yields a finite
length path that can be efficiently tracked as represented
in Figure 2(b).

Complex analysis enters the scene to accurately com-
pute the endpoint. The winding number (also called the
cycle number) of the endpoint for the path displayed in
Figure 2(b) is 2, meaning that the path over the complex
numbers locally behaves like the complex square root
function. Hence, the Cauchy integral theorem can be used
to compute the endpoint of this path by integrating along
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(a) (b)

Figure 2. (a) A plot of paths at a given (red) point may
have infinite length with limiting asymptote
corresponding with 𝜆∗ = 0.
(b) Compactification using projective space yields a
finite-length path that can be efficiently tracked.

(a) (b)

Figure 3. To compute the endpoint of a path as in
Figure 2(b), one uses the Cauchy integral theorem
and integrates along a closed loop like the one with
winding number 2 with real (a) and imaginary (b)
parts pictured here.

a closed loop as shown in Figure 3. Due to periodicity, nu-
merical integration by the trapezoid rule is exponentially
convergent [5]. Such a procedure for computing the end-
point is called the Cauchy endgame. Since any endpoint
with winding number larger than 1 is necessarily singular,
ill-conditioning that necessarily arises near the endpoint
can be controlled using adaptive precision path tracking
methods.

This viewpoint for identifying weakly infeasible semi-
definite programs using numerical algebraic geometry
and the software package Bertini [1] along with several
other interactions of numerical algebraic geometry and
optimization will be discussed in Arkansas.
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Kathryn Mann

Group Actions, Geometry, and Rigidity
Classical representation theory is concerned with rep-
resentations of discrete groups into Lie groups. In
topological or smooth dynamics we are concerned with
representations of discrete groups into the group of home-
omorphisms or diffeomorphisms of a manifold 𝑀, and the
behavior of these representations under perturbation or
deformation. Our recent result says that rigidity can arise
only in certain geometric ways.

Rigidity
A representation 𝜌 of a discrete group Γ into a topological
group𝐺 is rigid, loosely speaking, if it has no non-obvious
deformations. “Obviousdeformations” arise by conjugacy:
if 𝜌 ∶ Γ → 𝐺 is a representation and 𝑔𝑡 a path based at
the identity in 𝐺, then 𝛾 ↦ 𝑔𝑡𝜌(𝛾)𝑔−1

𝑡 gives a continuous
path of representations starting at 𝜌. Thus, one way to
formalize the notion of rigidity is to define 𝜌 to be rigid
if it is an isolated point in the space of representations up
to conjugacy, Hom(Γ,𝐺)/𝐺.

What is remarkable is that such examples exist at
all. Perhaps the most famous rigidity result—and the
first theorem that I remember being truly astounded by
as a graduate student—is Mostow rigidity. In geometric
language, it says that a compact manifold of dimension
at least 3 admits at most one hyperbolic structure.
In representation-theoretic language, it states that the
inclusion Γ → SO(𝑛, 1) of a co-compact lattice Γ into the
Lie group SO(𝑛, 1), for 𝑛 ≥ 3, is rigid in the sense above.

Mostow rigidity completely fails in dimension 2; in
fact a genus 𝑔 compact surface has a much stud-
ied (6𝑔 − 6)-dimensional moduli space of hyperbolic
structures. My talk is about how to recover rigidity by
passing to the nonlinear, dynamical setting of groups of
homeomorphisms.

Geometry and Group Actions
The story begins with hyperbolic structures on surfaces. If
Σ𝑔 is a surface of genus 𝑔 ≥ 2, equipped with a hyperbolic
structure, then the universal cover Σ̃𝑔 can be identified
with the hyperbolic plane and 𝜋1(Σ𝑔) with a subgroup of
the isometry group SO(2, 1) ≅ PSL(2,ℝ). The hyperbolic
plane has a natural compactification—in the Poincaré disk
model depicted in Figure 1, the compactification adds the
circle at the boundary of the open disk—and the action
of PSL(2,ℝ) by hyperbolic isometries of the disc extends
to an action on 𝑆1 = ℝ∪{∞} by Möbius transformations.
This is an example of what we call a “geometric” action

Kathryn Mann is the Manning Assistant Professor at Brown Uni-
versity. Her email address is mann@math.brown.edu.

For permission to reprint this article, please contact:
reprint-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1738

Figure 1. The Poincaré disc model of ℍ2, tiled by
fundamental domains for a genus 2 surface.
Hyperbolic isometries extend to the boundary and
provide an example of a geometric action.

of 𝜋1(Σ𝑔) on the circle. More generally, we say an action
of a discrete group Γ on a manifold 𝑀 is geometric if
the action Γ → Homeo(𝑀) factors through an embedding
Γ → 𝐺 → Homeo(𝑀), where 𝐺 is a connected Lie group
acting transitively on 𝑀, and Γ ⊂ 𝐺 a co-compact lattice.

It is not difficult to classify all geometric actions
of groups on the circle; they are virtually all surface
groups, embedded into copies of PSL(2,ℝ) and its central
extensions byfinite cyclic groups. In earlierwork, I showed
that these geometric examples were all rigid—they are
isolated points in the moduli space of representations of
a surface group into Homeo(𝑆1). Alternate, independent
proofs have since been proposed by S. Matsumoto and J.
Bowden.

Hidden Lie Groups
Recently, Maxime Wolff and I proved the remarkable
converse: if 𝜌 ∶ 𝜋1(Σ𝑔) → Homeo(𝑆1) is rigid, then 𝜌 is
geometric.1 In other words, an underlying geometric
structure is the only source of dynamical rigidity for
surface groups acting by homeomorphisms on the circle.

This result is much more difficult than the original
“geometric implies rigid” direction. In that first direction,
one is given a geometric representation 𝜌—which can be
written down completely explicitly—and one just needs to
show that it is stable under perturbation. For the converse,
one starts with a completely mysterious representation,
save for the knowledge that whatever it is, it can’t be
deformed. From there, the goal is to conjure up an ambient
Lie group.

The proof uses classical dynamical tools such as the ro-
tation number of Poincaré, and various refinements of our
own invention, but alsomapping class groups and surface
topology, a combination theorem for actions admitting
Markov-partition-like structures due to Matsumoto, and
perspectives borrowed from Calegari, Ghys, and others.

1Technically, this holds after passing to a Hausdorff quotient of
the representation space.
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While the end result has turned into a cohesive narrative,
the process felt like a three-year ordeal of “hit it with
everything we’ve got.” Fortunately, the philosophy of
the proof—constructing geometry from rigidity—can be
communicated quite easily in a simplified setting that
avoids all the technical nightmare. That’s the version
you’ll see in my talk.
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