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ABSTRACT. Borel reductions provide a method of proving that certain problems are impossible using countably
infinitary techniques based on countable information and provide a hierarchy of difficulty for classification
problems. This is illustrated with examples, including a recent result that a classification problem in dynamical
systems proposed by von Neumann in 1932 is impossible to solve with inherently countable tools.

Mathematics is uniquely capable of producing impos-
sibility results. The most famous examples include the
impossibility of

• proving the parallel postulate
• squaring the circle
• solving a general quintic polynomial
• solving the word problem for finitely presented

groups.
What do these results have in common? They have

rules that determine what methods are considered legal
for a solution. For example, the quintic is unsolvable
by radicals. Explicitly there is no algebraic formula for
solving the general quintic that uses expressions of the
form 𝑎1/𝑛 (𝑎 ∈ ℚ). Quintics are trivially solvable if you
allow expressions that stand for solutions to arbitrary
equations. Similarly it is impossible to square the circle
using ruler and compass; it is impossible to prove the
parallel postulate using the other Euclidean axioms, and
so forth.

The notion of unsolvability has various alternate mean-
ings, including the related notion of independence. In
the context of the word problem, being solvable would
mean the existence of a recursive algorithm for deciding
whether two words in the generators represent the same
element of the group. Heuristically, this would mean that
there is a protocol using inherently finite information
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that converges in finite time with a yes-no answer to the
question.

In contrast, here we describe a method for proving an
emerging form of impossibility result that says

Doing X is impossible using
inherently countable techniques.

Note that being unsolvable using inherently countable
techniques is a much stronger result than unsolvability
using inherently finite techniques. Moreover the objects
we describe here give a “hierarchy of difficulty” for many
types of problems in mathematics.

What precisely does the phrase inherently countable
technique mean? The context is Polish Spaces—those
spaces whose topology can be induced by a complete
separable metric. The collection of Borel sets is the
smallest 𝜎-algebra that contains the open sets. The Borel
sets can be viewed as the broadest class of sets for which
membership can be modeled as passing a countable—
possibly transfinite—protocol of yes/no questions asked
of an arbitrary countable collection of basic open sets.
Thus the statement that “𝐴 is not Borel” says that
there is no inherently countable method of determining
membership in 𝐴. The natural setting for considering the
Borel/non-Borel distinction is that of analytic sets, where
a subset 𝐴 of a Polish space 𝑋 is analytic if it is the
continuous image of a Borel subset 𝐵 of a Polish space 𝑌.
Similarly, 𝐶 is coanalytic if 𝑌\𝐶 is analytic.

An example of an impossibility result of this sort is due
independently to Kaufman and Solovay, who in 1983-84
showed that the collection of closed sets of uniqueness
for trigonometric series is not a Borel set. (A set 𝐸 ⊆ [0, 1]
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is a set of uniqueness if whenever ∑𝑐𝑛𝑒2𝜋𝑖𝑛𝑥 = 0 on
[0, 1] \𝐸 the series ∑𝑐𝑛𝑒2𝜋𝑖𝑛𝑥 is identically 0.) Hence the
classical problem of deciding whether the complement of
a given closed set determines the values of a trigonometric
series is simply not possible using anything resembling
even a countable transfinite computation. Following these
results there have been a plethora of similar results in
many areas, including one by Beleznay and the author
in 1995 showing that the classically studied collection of
so-called distal dynamical system is not a Borel set.

B. Weiss and the author1 hope to publish soon a
proof that the program initiated by von Neumann in
1932 ([3]) to classify the statistical behavior of Lebesgue
measure-preserving diffeomorphisms of the 2-torus
is impossible to carry out using inherently count-
able techniques. It is currently unknown if isomorphism
for diffeomorphisms is strictly above graph isomorphism.

Borel reduction is themain tool for proving certain proce-
dures are impossible. It originated in the late 1980s in the
work of Friedman and Stanley (1989) and independently
Harrington, Kechris, and Louveau. The idea starts with
the cliche that:

To solve 𝐴 you reduce it to a problem 𝐵 which you
already know how to solve.

Turning this on its head:
To show that solving 𝐵 is impossible, you start with
a known impossible problem 𝐴 and reduce it to 𝐵.

Formally:
Definition. Let 𝐴 and 𝐵 be subsets of Polish spaces𝑋 and
𝑌. Then 𝐴 is Borel reducible to 𝐵 if and only if there is a
Borel function 𝑓 ∶ 𝑋 → 𝑌 such that for 𝑥 ∈ 𝑋:

𝑥 ∈ 𝐴 if and only if 𝑓(𝑥) ∈ 𝐵.
Thus if 𝐴 is not Borel, 𝐵 cannot be either, since the

inverse image of a Borel set by a Borel function is Borel.
The function 𝑓 is a Borel reduction.

Define 𝐴 ≤ℬ 𝐵 if 𝐴 is Borel reducible to 𝐵. Then ≤ℬ
is transitive since one can compose Borel reductions.
Defining the equivalence relation 𝐴 ∼ℬ 𝐵 if 𝐴 ≤ℬ 𝐵 and
𝐵 ≤ℬ 𝐴 we see that ≤ℬ induces a partial ordering of the
∼ℬ equivalence classes.

The heuristic above interprets 𝐴 ≤ℬ 𝐵 as saying that 𝐵
is at least as complicated as 𝐴 (with respect to countably
feasible computations) and 𝐴 ∼ℬ 𝐵 as saying that they
have the same complexity. Among analytic sets, there
is a ≤ℬ-maximal equivalence class, called the complete
analytic sets.

For Borel reductions to be useful we must have an
example of a non-Borel set 𝐴 to start with. There are
many choices. One canonical example can be found by
taking 𝑋 to be the space of connected acyclic countable
graphs (allowing infinite valence) and 𝐴 ⊆ 𝑋 to be the
set of graphs with a nontrivial end (an end is an infinite
path through the graph). Equivalently we can take 𝑋 to
be the space of rooted connected countable trees and 𝐴
1“Measure Preserving Diffeomorphisms of the Torus are Unclassi-
fiable,” https://arxiv.org/abs/1705.04414

to be the collection of ill-founded trees—those trees that
have an infinite branch. (Figure 1 represents a tree with
an infinite branch.) In each example, the set 𝐴 is complete
analytic and not Borel. Thus if there is a Borel reduction
of 𝐴 to any set 𝐵 then 𝐵 is not Borel (and by transitivity 𝐵
is also complete).

Figure 1. The set of trees with an infinite path, like
the tree pictured here, is an example of a complete
analytic subset of the space of trees that is not
Borel—i.e., cannot be determined by a countable
process based on countable information.

An extension of the ordering ≤ℬ from subsets to
relations is its two-dimensional version, which we write
≤2

ℬ. For 𝐸 ⊆ 𝑋×𝑋 and 𝐹 ⊆ 𝑌×𝑌, we let 𝐸 ≤2
ℬ 𝐹 if and only

if there is a Borel 𝑓 ∶ 𝑋 → 𝑌 such that for (𝑥1, 𝑥2) ∈ 𝑋:
𝑥1𝐸𝑥2 if and only if 𝑓(𝑥1)𝐹𝑓(𝑥2).

The function 𝑓 is again called a Borel reduction.
Classification problems are the most common objects

of study here, because they are naturally given by equiv-
alence relations, such as those coming from attaching
invariants to collections of objects being studied. Saying
that one classification problem 𝐸 is Borel reducible to
another classification problem 𝐹 is a precise way of say-
ing that determining whether 𝑦1𝐹𝑦2 is at least as hard
as determining whether 𝑥1𝐸𝑥2. This subject has been
studied extensively over the last thirty years by many
mathematicians (see [2]).

Analytic equivalence relations fall into five basic inter-
secting categories (see Figure 2): countable equivalence
relations, 𝑆∞-actions, Polish group actions, Borel, and
non-Borel. The first three are qualitative:

{countable equivalence relations}
∩

{𝑆∞-actions}
∩

{Polish group actions}
To these we add the Borel/non-Borel distinction. The
countable equivalence relations are all Borel, hence this
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distinction only applies to 𝑆∞-actions, Polish group
actions, and those equivalence relations that are neither.

We now define these classes, give examples of each
type, and describe which are more complex than others.
Many more examples are completely understood; we only
scratch the surface of the subject.

Countable equivalence relations
A Borel equivalence relation with countable classes is
called a countable equivalence relation. It is a theorem of
Feldman and Moore (1975) that every such equivalence
relation is the orbit relation of a countable group of Borel
isomorphisms.

Group actions
The most ubiquitous examples of equivalence relations
come from group actions. If 𝐺 is a Polish group acting
on a Polish space 𝑋 in a Borel manner, then we get the
orbit equivalence relation, namely 𝑥 ∼ 𝑦 if and only if
there is a 𝑔 ∈ 𝐺,𝑔𝑥 = 𝑦. Especially important classes
of Polish group actions include those of 𝑆∞, the group
of permutations of the natural numbers, the group of
unitary operators on a separable Hilbert space, the group
MPT of measure-preserving transformations of [0, 1], and
groups of homeomorphisms of compact separable metric
spaces.

𝑆∞-actions
We let 𝑆∞ be the group of permutations of the natural
numbers. We illustrate the importance of 𝑆∞-actions
with an example. We can identify a countable group
𝐺 = ⟨𝑔𝑛 ∶ 𝑛 ∈ ℕ⟩ with its multiplication table {(𝑙,𝑚,𝑛) ∶
𝑔𝑙 ⋅ 𝑔𝑚 = 𝑔𝑛}. Defining 𝜒𝐺 ∶ ℕ×ℕ×ℕ → {0, 1} by setting
𝜒𝐺(𝑙,𝑚,𝑛) = 1 if and only if 𝑔𝑙 ⋅ 𝑔𝑚 = 𝑔𝑛, we get an
element of {0, 1}ℕ×ℕ×ℕ which, endowed with the product
topology, is a compact space homeomorphic to the Cantor
set. Let 𝑆∞ act on

𝐶𝐺 = {𝜒𝐺 ∶ 𝐺 is a countable group}
by setting (𝜙𝜒)(𝑙,𝑚,𝑛) = 𝜒(𝜙−1𝑙,𝜙−1𝑚,𝜙−1𝑛). Let𝐺 =
⟨𝑔𝑛⟩𝑛 and 𝐻 = ⟨ℎ𝑛⟩𝑛 be isomorphic. Then there is a
𝜙 ∈ 𝑆∞ such that this isomorphism takes 𝑔𝑛 to ℎ𝜙(𝑛).
Thus 𝜙𝜒𝐺 = 𝜒𝐻. For two countable groups 𝐺 and 𝐻
we’ve shown:
𝐺 is isomorphic to 𝐻 if and only if 𝜒𝐺 and 𝜒𝐻 are in the
same 𝑆∞ orbit.

We conclude that the isomorphism relation for count-
able groups is naturally encoded as the orbit equivalence
relation of an 𝑆∞-action.

Clearly there is nothing special here about groups:
for any class of countable algebraic structures the isomor-
phism relation is coded by an 𝑆∞-action. Being Borel re-
ducible to an 𝑆∞-action is thus equivalent to being able to
assign countable algebraic structures as invariants. Show-
ing that a given classification problem is not reducible
to an 𝑆∞-action is an impossibility result interpreted
as saying there are no complete algebraic invariants for

the equivalence relation. In the mid 1990s, Hjorth gave a
general method for doing this—the method of turbulence.

Polish group actions
More generally, many classification problems are given
as orbit equivalences of Polish group actions. Commonly
the group action is some form of conjugacy. We now
place some benchmarks into the setting being described
(Figure 2).

At the bottom of ≤2
ℬ

Since the Cantor set can be injected into every perfect
Polish space, the identity equivalence relation on {0, 1}ℕ
(the diagonal relation), denoted Id2ℕ , is at the bottom of
the≤2

ℬ ordering. A given relation 𝐸 being reducible to Id2ℕ

is equivalent to being able to attach complete numerical
invariants to the equivalence classes of 𝐸 in a Borel way.

Another important benchmark is 𝐸0: the equivalence
relation of eventual agreement of sequence of 0’s and
1’s. A fundamental result is due to Harrington, Kechris,
and Louveau, who proved for a Borel equivalence relation
𝐹 that either 𝐸0 is reducible to 𝐹 or 𝐹 has complete
numerical invariants (i.e., is reducible to 𝐼𝑑2ℕ ).

Maximal relations in a class
Several of the classes have a maximal equivalence
relation—in the sense that every equivalence relation
in that class is reducible to it. We describe these as
follows:

For countable equivalence relations
Let 𝐹2 be the free group on 2 generators. Then we can
identify the power set of𝐹2 with the product space {0, 1}𝐹2

and let 𝐹2 act by left translation on the exponent. (This
is the Bernoulli Shift for 𝐹2.) The resulting equivalence
relation is denoted 𝐸∞. It has countable classes, and every
countable Borel equivalence relation is reducible to 𝐸∞.

Another natural example of a maximal Borel equiva-
lence relation among those with countable classes was
identified by Hjorth and Kechris (2000): the relation
of conformal equivalence among (noncompact) Riemann
surfaces.

A third example is isomorphism for finitely generated
groups.

For 𝑆∞-actions
A graph whose vertices are natural numbers can be identi-
fied with an element of {0, 1}ℕ×ℕ by setting Χ𝐺(𝑛,𝑚) = 1
if and only if 𝑛 and𝑚 are connected by an edge. By letting
𝑆∞ act on the exponent, we code the equivalence relation
of isomorphism of countable graphs. Every 𝑆∞-action is
reducible to isomorphism of countable graphs.

For Polish group actions
Becker and Kechris (1996) proved that for every Polish
group there is a ≤2

ℬ-maximal orbit equivalence relation.
It then follows from a result of Uspenskiy, showing there
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Analytic Equivalence Relations

Isomorphism of 
Banach Spaces

Maximal unitary
group action

Isomorphism for ergodic
measure preserving
transformations

Isomorphism for ergodic
diffeomorphisms Maximal �1-action

Isomorphism of
countable graphs

Abelian Polish
group actions

Polish group 
actions

countable equivalence
relations

Maximal Polish
group actions

Unitary conjugacy of
normal operators

Bi-Lipshitz equivalence
of compact metric spaces

Borel equivalence
relations

S∞-actions

Figure 2. Five basic types of equivalence relations: analytic (the whole box), Borel (in red), those induced by
Polish group actions (in green), those induced by 𝑆∞-actions (in blue) and those that have countable classes (at
the bottom). In the diagram a line indicates the lower equivalence relation is Borel reducible to the upper
equivalence relation and a dotted line indicates the upper equivalence relation is not reducible to the lower
relation. Other relationships remain open.

is a universal Polish group, that there is a maximal
equivalence relation among all Polish group actions.

Borel equivalence relations

Friedman and Stanley (1998) showed that there is no
maximal Borel equivalence relation.

For Borel Polish group actions

Hjorth, Kechris, and Louveau (1998) showed therewere no
maximal Borel Polish group orbit equivalence relations.

Analytic equivalence relations

Harrington proved the existence of a maximal analytic
equivalence relation, but it wasn’t until the remarkable
work of Ferenczi, Louveau, and Rosendal (2009) that a
natural example was given. It is isomorphism for Banach
Spaces.

Placing mathematical examples in the ordering
Many well-known classification results have been placed
into the Borel Reducibility ordering. We now give only
a tiny sample of the known examples, ending with a
recent solution of von Neumann’s classification problem
for measure-preserving diffeomorphisms.

At the bottom are the countable equivalence relations—
those that have countable classes. These are always
induced by Borel actions of countable groups. Among
many possibilities we take as typical examples questions
from the classification of finite-rank torsion-free abelian
groups. Thomas showed that they form a collection of
problems of strictly increasing complexity as the rank
increases. Define the following equivalence relations.

≅𝑓𝑔 the isomorphism relation on
finitely generated groups

≅𝑛 the isomorphism of torsion-free abelian
groups of rank 𝑛

≅𝑝
𝑛 the isomorphism relation on 𝑝-local

abelian groups of rank 𝑛.
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The relationships between these equivalence relations

are given in Figure 3:

Figure 3. The Borel reducibility (≤2
ℬ ordering) of some

countable equivalence relations. The central spine
consists of isomorphism for torsion free abelian
groups of rank 𝑛. For primes 𝑝 the relation ≅𝑝

𝑛 is
strictly reducible to ≅𝑛 and if 𝑝 ≠ 𝑞 are prime the
relations ≅𝑝

𝑛 and ≅𝑞
𝑛 are ≤2

ℬ incomparable.

We now consider the following examples of equivalence
relations with uncountable classes (Figure 2):

Unitary conjugacy for normal operators
Here the classical spectral theorem shows the equivalence
relation is Borel and it is trivially reducible to the maxi-
mal unitary group action. This relation is strictly below
isomorphism for measure-preserving transformations.

Bi-Lipschitz equivalence of metric spaces
Rosendal (2005) showed that the relation on pairs of met-
ric spaces given by having a Lipschitz homeomorphism
with a Lipschitz inverse is a Borel equivalence relation
that is not reducible to a Polish group action.

ℓ1-actions
Every action of an abelian Polish group can be reduced
to an action of the abelian group ℓ1(ℕ) with pointwise
addition, hence to the maximal ℓ1-action. This in turn
can be reduced to the maximal unitary group action by
results of Gao and Pestov.

Isomorphism for MPTs
This is the equivalence relation of isomorphism (the
conjugacy action of MPT) of ergodic measure-preserving
transformations of [0, 1]. Classifying this equivalence
relation was proposed by Halmos in 1956. In 2008

Rudolph, Weiss, and the author [1] showed that this
equivalence relation is not Borel. The author observed
that the graph isomorphism problem can be reduced to
isomorphism of ergodic measure-preserving transforma-
tions. Furthermore, with Weiss (2003), the author showed
the equivalence relation is turbulent, hence strictly above
every equivalence relation induced by an 𝑆∞-action.

Open problems
We now note some open problems. We give two questions
related to geometry and end with a problem internal to
the subject.

Classification up to homeomorphism:
Von Neumann was concerned with classifying the statisti-
cal behavior ofdiffeomorphisms.Hence the relevant equiv-
alence relation was isomorphism by measure-preserving
transformations. In 1967, Smale suggested classifying
diffeomorphisms of surfaces up to conjugation by home-
omorphisms. This spawned a large and successful lit-
erature that solved the problem for structurally stable
diffeomorphisms, but not in general.

Let 𝑀 be a compact surface. Where does the equiva-
lence relation conjugacy by homeomorphism of pairs of
diffeomorphisms of 𝑀 sit in Figure 2? In particular is it
Borel?

Classifying smooth ℝ4 structures:
Taubes proved in 1987 that there are a continuum of
smooth structures on ℝ4 up to equivalence by diffeo-
morphisms. What is the complexity of this equivalence
relation on smooth structures?

What happens at the top?
Many problems, such as isomorphism of ergodic diffeo-
morphisms of the 2-torus, are reducible to the maximal
Polish group action, but it is not known if the reductions
are strict. While it seems unlikely to practitioners, it could
be that the problems shown are all ≤2

ℬ-equivalent.
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