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Through such descriptions, Iwasawa theory unveils in-
tricate links between algebraic, geometric, and analytic ob-
jects of an arithmetic nature. The existence of such links
is a common theme in many central areas within arith-
metic geometry. So it is that Iwasawa theory has found
itself a subject of continued great interest. This year’s Ari-
zona Winter School attracted nearly 300 students hoping
to learn about it!

The literature on Iwasawa theory is vast and often tech-
nical, but the underlying ideas possess undeniable beauty.
I hope to convey some of this while explaining the origi-
nal questions of Iwasawa theory and giving a sense of the
directions in which the area is heading.
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Algebraic Number Theory

To understand Iwasawa theory requires some knowledge
of the background out of which it arose. We attempt to
chart a course, beginning with a whirlwind tour of the el-
ements of algebraic number theory. We make particular
note of two algebraic objects, the class group and the unit
group of a number field, that play central roles for us.

Algebraic numbers are the roots inside the complex num-
bers of nonzero polynomials in a single variable with ra-
tional coefficients. They lie in finite field extensions of ℚ
called number fields. The set of algebraic numbers forms
a subfield ℚ of ℂ known as an algebraic closure of ℚ. In-
side ℚ sits a subring ℤ of algebraic integers, consisting of
the roots of monic polynomials with integer coefficients.

The field automorphisms ofℚ form a huge group called
the absolute Galois group 𝐺ℚ = Gal(ℚ/ℚ). These au-
tomorphisms permute the roots of each rational polyno-
mial, and consequently this action preserves the algebraic
integers.

We’ll use 𝐹 to denote a number field. The integer ring
𝒪𝐹 of 𝐹 is the subring of algebraic integers in 𝐹. It is a
PID if and only if it’s a UFD, but unlike 𝒪ℚ = ℤ, it need
not in general be either. Rather, 𝒪𝐹 is what is known as a
Dedekind domain. As such, it has the property that every
nonzero ideal factors uniquely up to ordering into a prod-
uct of prime ideals. This property provides a replacement
for unique factorization of elements. A “prime” of 𝐹 is a
nonzero prime ideal of 𝒪𝐹.

A fractional ideal of 𝐹 is a nonzero, finitely generated
𝒪𝐹-submodule of 𝐹. Nonzero ideals of 𝒪𝐹 are fractional
ideals, but so are, for instance, all 𝒪𝐹-multiples of 1

2 . The
set 𝐼𝐹 of fractional ideals is an abelian group under mul-
tiplication with identity 𝒪𝐹. The class group Cl𝐹 of 𝐹 is
the quotient of 𝐼𝐹 by its subgroup of principal fractional
ideals generated by nonzero elements of 𝐹. The group Cl𝐹
is trivial if and only if 𝒪𝐹 is a PID.

Remarkably, Cl𝐹 is finite. Its order ℎ𝐹 is known as the
class number. Like the class group itself, it is the subject
of many open questions. For instance, work of Heegner,
Baker, and Stark in the 1950s and ’60s solved a problem
of Gauss by showing that there are exactly nine imaginary
quadratic fields with class number one: ℚ(𝑖), ℚ(√−2),
ℚ(√−3), ℚ(√−7),…. On the other hand, Gauss’ con-
jecture that there are infinitely many such real quadratic
fields is still open.

A number field 𝐹 can be viewed as a subfield of ℂ in
multiple ways. That is, any𝜎 ∈ 𝐺ℚ gives an isomorphism
𝜎∶ 𝐹 → 𝜎(𝐹), and 𝜎(𝐹) is a subfield of ℂ as well, so
precomposition with 𝜎 yields a different “archimedean”
embedding of 𝐹 in ℂ. We may then place a metric on 𝐹 by
restricting the usual distance function. An embedding of𝐹
inℂ is real if it has image inℝ and complex if it is not real,

in which case it has dense image inℂ. The numbers of real
and complex-conjugate pairs of complex embeddings are
respectively denoted 𝑟1(𝐹) and 𝑟2(𝐹).

The unit group 𝒪×
𝐹 of invertible elements in 𝒪𝐹 under

multiplication is deeply intertwined with the class group
Cl𝐹. In fact, these groups are the kernel and cokernel of
the map 𝐹× → 𝐼𝐹 taking an element to its principal frac-
tional ideal. Dirichlet’s unit theorem says that 𝒪×

𝐹 is a di-
rect product of the group of roots of unity in 𝐹 and a free
abelian group of rank 𝑟 = 𝑟1(𝐹) + 𝑟2(𝐹) − 1. This is
proven using logarithms of absolute values of units with
respect to archimedean embeddings. The regulator 𝑅𝐹 of
𝐹 is a nonzero real number defined as a determinant of a
matrix formed out of such logarithms.

The prototypical example is 𝐹 = ℚ(√−5), for which
𝒪𝐹 = ℤ[√−5]. One has 𝑟1(𝐹) = 0, 𝑟2(𝐹) = 1, and
𝒪×

𝐹 = {±1}. We have two factorizations of 6 into irre-
ducible elements of ℤ[√−5] that don’t differ up to units:

6 = 2 ⋅ 3 = (1 +√−5)(1 −√−5).
The unique factorization into primes that resolves this for
our purposes is

(6) = (2, 1 +√−5)2(3, 1 +√−5)(3, 1 −√−5).
The class number of ℚ(√−5) is 2, so the class group is
generated by the class of any nonprincipal ideal, such as
(2, 1 +√−5) or (3, 1 ±√−5).

Ramification in an extension of number fields is akin
to the phenomenon of branching in branched covers in
topology. As we’ve implicitly noted, the factorization of
(2) in ℤ[√−5] is (2, 1+√−5)2. The square is telling us
that the same prime is occurring (at least) twice in the fac-
torization: this is the branching. Whenever this happens
in an extension of number fields, we say that the prime of
the base field ramifies in the extension. Only finitely many
primes ramify in an extension of number fields.

The Dedekind zeta function of 𝐹 is the unique mero-
morphic continuation to ℂ of the series

𝜁𝐹(𝑠) = ∑
𝔞⊂𝒪𝐹

(𝑁𝔞)−𝑠,

where 𝔞 runs over the nonzero ideals of 𝒪𝐹 and 𝑁𝔞 is the
index of 𝔞 in 𝒪𝐹. It has a simple pole at 𝑠 = 1 and sat-
isfies a functional equation relating 𝜁𝐹(𝑠) and 𝜁𝐹(1 − 𝑠)
that involves factors coming from the archimedean embed-
dings. The Dedekind zeta function of ℚ is the ubiquitous
Riemann zeta function 𝜁(𝑠).

The functional equation tells us that 𝜁𝐹(𝑠) vanishes to
order the rank 𝑟 of 𝒪×

𝐹 at 𝑠 = 0. The leading term in
its Taylor expansion is given by the analytic class number
formula

𝜁(𝑟)
𝐹 (0)
𝑟! = −ℎ𝐹𝑅𝐹

𝑤𝐹
,
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where 𝑤𝐹 is the number of roots of unity in 𝐹. This pro-
vides an important instance of a meromorphic function
intertwining the unit and class groups. More broadly, it’s
a first fundamental example of the links between analytic
and algebraic objects of arithmetic.

To a prime 𝔭 of 𝐹, we can attach a 𝔭-adic metric under
which elements are closer together if their difference lies
in a higher power of 𝔭. We may complete 𝐹 with respect
to this metric to obtain a complete “local” field 𝐹𝔭 that
has a markedly non-Euclidean topology. It has a compact
valuation ring 𝒪𝔭 equal to the open and closed unit ball
about 0.

For example, the 𝑝-adic metric 𝑑𝑝 on ℚ is defined by
𝑑𝑝(𝑥, 𝑦) = 𝑝−𝑛 for the largest 𝑛 ∈ ℤ such that 𝑥 − 𝑦 ∈
𝑝𝑛ℤ. The completion of ℚ with respect to 𝑑𝑝 is called the
𝑝-adic numbers ℚ𝑝, which has valuation ring the 𝑝-adic
integers ℤ𝑝. Alternatively, ℤ𝑝 is the inverse limit of the
rings ℤ/𝑝𝑛ℤ under the reduction maps between them.

Every prime 𝔭 of 𝐹 is maximal in 𝒪𝐹 with finite residue
field𝒪𝐹/𝔭. The Galois group𝐺 of a finite Galois extension
𝐸/𝐹 acts transitively on the set of primes 𝔮 of 𝐸 containing
𝔭. The stabilizer of 𝔮 in𝐺 is called its decomposition group
𝐺𝔮 and is isomorphic to Gal(𝐸𝔮/𝐹𝔭). The extension 𝒪𝐸/𝔮
of 𝒪𝐹/𝔭 has cyclic Galois group generated by 𝑥 ↦ 𝑥𝑁𝔭.
This element lifts to an element of 𝐺𝔮 called a Frobenius
element at 𝔮. The lift is unique if 𝔭 is unramified in 𝐸/𝐹.
It is independent of 𝔮 if𝐺 is also abelian, in which case we
denote it by 𝜑𝔭.

The Hilbert class field 𝐻𝐹 of 𝐹 is the largest unramified
abelian extension of 𝐹. Here, “unramified” means that no
prime ramifies and no real embedding becomes complex.
The Artin map taking the class of a prime 𝔭 to𝜑𝔭 provides
an isomorphism

Cl𝐹 ⟶∼ Gal(𝐻𝐹/𝐹).

For example, the Hilbert class field of ℚ(√−5) is
ℚ(√5, 𝑖), and the Artin isomorphism tells us whether or
not a prime 𝔭 of ℤ[√−5] is principal via the sign in𝜑𝔭(𝑖)
= ±𝑖. Class field theory concerns “reciprocity maps” gen-
eralizing the Artin isomorphism by relaxing the ramifica-
tion conditions. These can be used to prove reciprocity
laws generalizing Gauss’ law of quadratic reciprocity.

Cyclotomic Fields

Iwasawa theory has its origins in the study of the arithmetic
of cyclotomic fields, a classical area of number theory that
dates back to attempts at proving Fermat’s last theorem in
themid-1800s. This is a fascinating subject in its own right,
not least for the connections it reveals between Bernoulli
numbers and the structure of cyclotomic class groups.

For a positive integer𝑁, the𝑁th cyclotomic fieldℚ(𝜁𝑁)
is given by adjoining the primitive𝑁th root of unity𝜁𝑁 =

𝑒2𝜋𝑖/𝑁 toℚ. The Kronecker–Weber theorem states that ev-
ery finite abelian extension of the rationals is contained in
a cyclotomic field. If 𝑁 > 1, the prime ideals that ram-
ify in ℚ(𝜁2𝑁) are exactly those dividing 𝑁. The integer
ring of ℚ(𝜁𝑁) is ℤ[𝜁𝑁], so every cyclotomic integer is a
ℤ-linear combination of roots of unity.

Each element 𝜎 of Gal(ℚ(𝜁𝑁)/ℚ) carries 𝜁𝑁 to an-
other primitive 𝑁th root of unity, which has the form 𝜁𝑖

𝑁
for some 𝑖 prime to 𝑁. The map taking 𝜎 to the unit 𝑖
modulo 𝑁 provides an isomorphism

Gal(ℚ(𝜁𝑁)/ℚ)⟶∼ (ℤ/𝑁ℤ)×

known as the 𝑁th cyclotomic character.
For 𝑥, 𝑦, and 𝑧 satisfying the Fermat equation in odd

prime exponent 𝑝, we have a factorization

𝑥𝑝 +𝑦𝑝 =
𝑝−1

∏
𝑖=0

(𝑥 + 𝜁𝑖
𝑝𝑦) = 𝑧𝑝

in ℤ[𝜁𝑝]. Using this, Kummer proved in an 1850 paper
that if 𝑝 is regular, which is to say that 𝑝 ∤ ℎℚ(𝜁𝑝), then
Fermat’s last theorem holds in exponent 𝑝. (Its use lies in
the fact that if 𝑝 is regular, then (𝑥 + 𝜁𝑖

𝑝𝑦) cannot be the
𝑝th power of a nonprincipal ideal.) It’s known that there
are infinitely many irregular primes but not that there are
infinitely many regular primes, though over sixty percent
of primes up to any given number are expected to be regu-
lar.

For 𝑘 ≥ 0, the 𝑘th Bernoulli number 𝐵𝑘 ∈ ℚ is the
𝑘th derivative at 0 of the function 𝑥

𝑒𝑥−1 . One has 𝐵𝑘 = 0
for odd 𝑘 ≥ 3. Here’s a table of Bernoulli numbers for
positive even indices:

𝑘 2 4 6 8 10 12 14

𝐵𝑘 1
6 − 1

30
1
42 − 1

30
5
66 − 691

2730
7
6

Kummer proved the following, which amounts to a spe-
cial case of the class number formula.

Theorem (Kummer). A prime 𝑝 is irregular if and only if 𝑝
divides the numerator of 𝐵𝑘 for some positive even 𝑘 < 𝑝.

In particular, 691 is irregular as it divides 𝐵12. Here’s a
table of irregular primes 𝑝 < 150 and the indices 𝑛 of the
Bernoulli numbers 𝐵𝑛 they divide:

𝑝 37 59 67 101 103 131 149
𝑛 32 44 58 68 24 22 130

The prime 157 divides both 𝐵62 and 𝐵110. The index of
irregularity 𝑖𝑝 of 𝑝 is the number of Bernoulli numbers 𝐵𝑘
with 𝑘 < 𝑝 even that 𝑝 divides. Its values up to an increas-
ingly large bound are expected to fit a Poisson distribution
with parameter 1

2 . The latest in a long history of compu-
tations is due to Hart, Harvey, and Ong for 𝑝 < 231 =
2147483648. In this range, 𝑖𝑝 attains a maximum value
of 9.
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Regularity of𝑝 is equivalent to the triviality of the Sylow
𝑝-subgroup 𝐴 of Clℚ(𝜁𝑝). We call 𝐴 the 𝑝-part of the class
group. So, what more does the fact that an odd 𝑝 divides
a particular Bernoulli number tell us about𝐴? The answer
is found in the action of

Δ = Gal(ℚ(𝜁𝑝)/ℚ) ≅ (ℤ/𝑝ℤ)×

on 𝐴 induced by the Δ-action on field elements.
For each𝛿 ∈ (ℤ/𝑝ℤ)×, there is a unique element𝜔(𝛿)

∈ ℤ×
𝑝 of order dividing 𝑝−1 that reduces to 𝛿. The result-

ing homomorphism

𝜔∶ (ℤ/𝑝ℤ)× → ℤ×
𝑝

is a splitting of the reduction modulo 𝑝 map. The group
𝐴 breaks up as a direct sum

𝐴 = ⨁
𝑖∈ℤ/(𝑝−1)ℤ

𝐴(𝑖)

of subgroups

𝐴(𝑖) = {𝑎 ∈ 𝐴 ∣ 𝛿(𝑎) = 𝜔(𝛿)𝑖𝑎 for all 𝛿 ∈ Δ}
for integers 𝑖 modulo 𝑝 − 1. For obvious reasons, these
are often calledΔ-eigenspaces of𝐴. We shall seek to study
such eigenspaces, beginning with the following important
theorem.

Theorem (Herbrand–Ribet). If 𝑘 is a positive even integer
with 𝑘 < 𝑝, then 𝑝 divides 𝐵𝑘 if and only if 𝐴(𝑝−𝑘) ≠ 0.

Herbrand proved in 1932 that 𝐴(𝑝−𝑘) = 0 unless 𝑝 di-
vides 𝐵𝑘. Ribet proved the converse in a 1976 paper [Ri].
The proof of Herbrand’s theorem relies on a direct con-
struction of an annihilator of the class group in ℤ[Δ] due
to Stickelberger. Ribet’s proof is more delicate, involving a
congruence betweenmodular forms that occurs when𝑝 di-
vides 𝐵𝑘 and its consequences for a Galois representation.
We’ll explain his method later.

There is also a coarser decomposition of𝐴 as𝐴+⊕𝐴−,
where 𝐴± is the subgroup of elements on which complex
conjugation acts as±1. Then𝐴± is the direct sumof theΔ-
eigenspaces of 𝐴 for even/odd 𝑖. The Herbrand–Ribet the-
orem concerns 𝐴−, but Kummer had already shown that
𝐴− = 0 implies 𝐴 = 0.

The order of 𝐴+ is the highest power of 𝑝 dividing the
class numberℎ+ of the fixed fieldℚ(𝜁𝑝)+ of complex con-
jugation. In 1920, Vandiver rediscovered and later popu-
larized a conjecture of Kummer’s that 𝐴+ = 0. Hart, Har-
vey, and Ong have verified this conjecture for 𝑝 < 231.

Vandiver’s conjecture can be rephrased as a question
about units. That is, the group of cyclotomic units inℤ[𝜁𝑝]
is generated by

1 +𝜁𝑝 +⋯+𝜁𝑗−1
𝑝 for 1 < 𝑗 < 𝑝.

The class number formula implies that the index of this
subgroup of the unit group ℤ[𝜁𝑝]× is ℎ+. Vandiver’s con-
jecture asserts that 𝑝 does not divide this index.

By a reflection principle of Leopoldt, an even
eigenspace 𝐴(𝑘) vanishes if 𝐴(𝑝−𝑘) = 0, while 𝐴(𝑘) = 0
implies that 𝐴(𝑝−𝑘) is cyclic. The proof of this uses class
field theory and a general duality between Galois and field
elements known as Kummer theory.

Classical Iwasawa Theory
Iwasawa theory concerns the growth of arithmetic objects
in towers of number fields. More precisely, it concerns the
growth of 𝑝-parts of class groups, and more general ob-
jects called Selmer groups, in towers of number fields of
𝑝-power degree. This growth exhibits a certain regularity
that in good circumstances can be partially described by a
𝑝-adic variant of a complex-valued 𝐿-function.

The simplest sort of tower consists of a sequence 𝐹𝑛 of
fields

𝐹 = 𝐹0 ⊂ 𝐹1 ⊂ 𝐹2 ⊂ ⋯ ⊂ 𝐹∞ =
∞
⋃
𝑛=0

𝐹𝑛

with 𝐹𝑛/𝐹 cyclic of degree 𝑝𝑛. The Galois group Γ =
Gal(𝐹∞/𝐹) of the tower is the inverse limit of the groups
Γ𝑛 = Gal(𝐹𝑛/𝐹) ≅ ℤ/𝑝𝑛ℤ and as such is isomorphic to
the additive group of ℤ𝑝. It is thus a compact group un-
der the 𝑝-adic topology. Every number field 𝐹 has a cyclo-
tomic ℤ𝑝-extension defined as the unique ℤ𝑝-extension of
𝐹 inside the union of the fields 𝐹(𝜁𝑝𝑛).

If 𝐹 has more than one ℤ𝑝-extension, it has infinitely
many. Yet, the Galois group of the compositum of all ℤ𝑝-
extensions still has finite ℤ𝑝-rank 𝑡 ≥ 𝑟2(𝐹)+1. Leopoldt
conjectured this to be an equality in 1962. This notori-
ously difficult conjecture can be phrased as the equality of
the ℤ-rank of the unit group 𝒪×

𝐹 and the ℤ𝑝-rank of the
closure of its image inside the direct sum of its local com-
pletions at primes over 𝑝. Leopoldt’s conjecture is known
for abelian extensions ofℚ and imaginary quadratic fields
by 1967 work of Brumer.

Let’s fix a ℤ𝑝-extension 𝐹∞ of 𝐹 in our discussion. In
1959, Iwasawa proved a result on the growth of the orders
of the 𝑝-parts 𝐴𝑛 of the class groups of the fields 𝐹𝑛 [Iw1].

Theorem (Iwasawa). There exist nonnegative integers 𝜆 and
𝜇 and an integer 𝜈 such that

|𝐴𝑛| = 𝑝𝑝𝑛𝜇+𝑛𝜆+𝜈

for all sufficiently large 𝑛.
As a 𝑝-group, 𝐴𝑛 is a module over ℤ𝑝. Since it also has

a commuting Γ𝑛-action, 𝐴𝑛 is a module for the group ring
ℤ𝑝[Γ𝑛], which consists of finite formal sums of elements
of Γ𝑛 with ℤ𝑝-coefficients.

We can compare the𝐴𝑛 via norm maps𝐴𝑛+1 → 𝐴𝑛 for
every 𝑛 ≥ 0, as well as via maps 𝐴𝑛 → 𝐴𝑛+1 induced by
the inclusion of 𝐹𝑛 in 𝐹𝑛+1. These maps are compatible
with the action of ℤ𝑝[Γ𝑛+1] on both sides, with the action
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on 𝐴𝑛 arising through the restriction map Γ𝑛+1 → Γ𝑛. The
Iwasawa algebra

Λ = lim⟵
𝑛

ℤ𝑝[Γ𝑛]

then acts on both the inverse limit lim⟵𝑛
𝐴𝑛 and the direct

limit 𝐴∞ = lim⟶𝑛
𝐴𝑛𝐴𝑛. The Iwasawa algebra is a com-

pletion of the usual group ring ℤ𝑝[Γ], and as such it is a
compact topological ring. Modules overΛ are also known
as Iwasawa modules.

The Artin isomorphism identifies 𝐴𝑛 with the Galois
group Gal(𝐿𝑛/𝐹𝑛) of the maximal unramified abelian 𝑝-
extension (i.e., of 𝑝-power degree) 𝐿𝑛 of 𝐹𝑛. These maps
are compatible with norms on class groups and restriction
on Galois groups.

The inverse limit of Artin isomorphisms identifies
lim⟵𝑛

𝐴𝑛 with the Galois group

𝑋∞ = Gal(𝐿∞/𝐹∞),
where 𝐿∞ = ⋃𝑛 𝐿𝑛. As an inverse limit of finite 𝑝-groups,
𝑋∞ is said to be pro-𝑝, and 𝐿∞ is the maximal unramified
abelian pro-𝑝-extension of 𝐹∞.

The Γ-action on the inverse limit of the 𝐴𝑛 is identified
via the Artin isomorphisms with the conjugation action of
Γ on𝑋∞. For this, one lifts𝛾 ∈ Γ to 𝛾̃ ∈ Gal(𝐿∞/𝐹) and
allows 𝛾 to act on 𝜎 ∈ 𝑋∞ by

𝛾∶ 𝜎 ↦ 𝛾̃𝜎𝛾̃−1.
This gives 𝑋∞ the structure of a Λ-module, and we refer to
𝑋∞ as the unramified Iwasawa module. In that each 𝐴𝑛 is
finite, 𝑋∞ is finitely generated and torsion over Λ.

The Λ-module 𝑋∞ is compact, while 𝐴∞ is discrete. To
obtain a compactΛ-module from𝐴∞, we take its Pontrya-
gin dual𝐴∨

∞ = Hom(𝐴∞,ℚ𝑝/ℤ𝑝), which is again finitely
generated and torsion. Its structure is very closely related
to that of 𝑋∞.

In good circumstances, such as when 𝐹∞ is the cyclo-
tomic ℤ𝑝-extension of 𝐹 = ℚ(𝜁𝑝), we can recover 𝐴𝑛
from 𝑋∞ as the largest quotient of 𝑋∞ upon which Γ𝑝𝑛

acts trivially. Crucial to this is the fact that Γ is a pro-𝑝-
group. Because of this, Λ is a local ring, and one can em-
ploy Nakayama’s lemma. This stands in stark contrast to
the case of finite Galois extensions of prime-to-𝑝 degree,
for which one has far less control over the growth of 𝑝-
parts of class groups. Nevertheless, Washington showed
in 1979 that the 𝑝-parts eventually stop growing in the cy-
clotomic ℤℓ-extension for ℓ ≠ 𝑝 of an abelian extension
of ℚ.

As observed by Serre, the Iwasawa algebra Λ is isomor-
phic to a power series ring ℤ𝑝J𝑇K in a single variable 𝑇.
For this, we fix a topological generator 𝛾 of Γ, which is
to say an element generating a dense subgroup or, equiv-
alently, an element that restricts to a generator of each Γ𝑛.

There is then a unique continuous isomorphism of com-
pact ℤ𝑝-algebras that takes 𝛾− 1 to 𝑇. We shall use such
an isomorphism to identify Λ and ℤ𝑝J𝑇K.

The structure theory of finitely generated modules over
Λ mimics the theory of finitely generated modules over
a PID if one treats Λ-modules as being defined up to fi-
nite submodules and quotient modules. The idea is that
Λ becomes a PID upon localization at any principal prime
ideal, and there are no nonzero finite modules over the lo-
calization.

A homomorphism 𝑓∶ 𝑀 → 𝑁 of finitely generated Λ-
modules is called a pseudo-isomorphism if it has finite
kernel and cokernel. The notion of pseudo-isomorphism
gives an equivalence relation on any set of finitely gener-
ated, torsion Λ-modules.

Theorem (Iwasawa, Serre). For any finitely generated, torsion
Λ-module 𝑀, there is a pseudo-isomorphism

𝑀 →
𝑟

⨁
𝑖=1

Λ/(𝑓𝑘𝑖
𝑖 ) ⊕

𝑠
⨁
𝑗=1

Λ/(𝑝𝑚𝑗),

where 𝑟, 𝑠 ≥ 0, each 𝑓𝑖 is a monic irreducible polynomial in
ℤ𝑝[𝑇] satisfying 𝑓𝑖 ≡ 𝑇deg𝑓𝑖 mod 𝑝, and each 𝑘𝑖 and𝑚𝑗 is
a positive integer.

In the notation of the theorem, we set

𝜆(𝑀) =
𝑟
∑
𝑖=1

𝑘𝑖 deg𝑓𝑖 and 𝜇(𝑀) =
𝑠
∑
𝑗=1

𝑚𝑗.

We can also associate to𝑀 its characteristic ideal char(𝑀)
in Λ. That is, given the above pseudo-isomorphism, we
define

char(𝑀) = (𝑝𝜇(𝑀)
𝑟
∏
𝑖=1

𝑓𝑘𝑖
𝑖 ) .

The polynomial ∏𝑟
𝑖=1 𝑓

𝑘𝑖
𝑖 is the usual characteristic poly-

nomial of 𝑇 acting on the finite-dimensional ℚ𝑝-vector
space 𝑀⊗ℤ𝑝 ℚ𝑝.

In the case of the unramified Iwasawa module 𝑋∞, the
quantities 𝜆 = 𝜆(𝑋∞) and 𝜇 = 𝜇(𝑋∞) are those in Iwa-
sawa’s growth formula. In fact, we also have 𝜆 = 𝜆(𝐴∨

∞)
and 𝜇 = 𝜇(𝐴∨

∞), with the characteristic ideals of 𝑋∞ and
𝐴∨

∞ differing by the change of variables𝑇 ↦ (1+𝑇)−1−1.
Iwasawa conjectured that 𝜇 = 0 if 𝐹∞ is the cyclotomic

ℤ𝑝-extension of 𝐹. Ferrero and Washington proved that
this holds when𝐹/ℚ is abelian [FW]. In this case, Iwasawa
also showed that the (−1)-eigenspace 𝑋−

∞ for the action
of complex conjugation has no finite Λ-submodule.

For 𝐹∞ the cyclotomic ℤ𝑝-extension of 𝐹 = ℚ(𝜇𝑝), the
Iwasawa module 𝑋∞ has an action of Δ = Gal(𝐹/ℚ)
that commutes with its Λ-action, so we can again break
up 𝑋∞ as a direct sum of Δ-eigenspaces. In the computa-
tions of Hart–Harvey–Ong, not a single Δ-eigenspace of
𝑋∞ has 𝜆-invariant greater than 1. Such an eigenspace
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𝑋(𝑖)
∞ is nonzero if and only if𝐴(𝑖) is nonzero, so these com-

putations imply that 𝜆 ≤ 9 for 𝑝 < 231.

𝑝-adic 𝐿-Functions
For any positive integer 𝑛, the Riemann zeta function sat-
isfies

𝜁(1 − 𝑛) = −𝐵𝑛
𝑛 .

The prime 𝑝 divides the denominator of 𝐵𝑛 in lowest form
if and only if 𝑝−1 divides 𝑛, by an 1840 result of Clausen
and von Staudt. Let’s assume𝑝−1 does not divide𝑛, since
otherwise it’s known that the relevant eigenspace 𝐴(1)

= 𝐴(𝑝−𝑛) is 0.
For 𝑚 ≡ 𝑛 mod 𝑝− 1, Kummer showed in 1851 that

𝜁(1 −𝑚) ≡ 𝜁(1 − 𝑛) mod 𝑝.
This explains why our criterion for regularity requires only
indices 𝑛 < 𝑝. Even better, if 𝑚 ≡ 𝑛 mod 𝑝𝑗−1(𝑝 − 1)
for some 𝑗 ≥ 1, then we have

(1 − 𝑝𝑚−1)𝜁(1 −𝑚) ≡ (1 − 𝑝𝑛−1)𝜁(1 − 𝑛) mod 𝑝𝑗.
Fixing an even integer 𝑘, these congruences imply the

existence of a continuous ℤ𝑝-valued function 𝐿𝑝(𝜔𝑘, 𝑠)
of a 𝑝-adic variable 𝑠 ∈ ℤ𝑝 satisfying

𝐿𝑝(𝜔𝑘, 1 − 𝑛) = (1 − 𝑝𝑛−1)𝜁(1 − 𝑛)
for all 𝑛 ≡ 𝑘 mod 𝑝 − 1. Here, as before, 𝜔 denotes the
𝑝-adic character 𝜔∶ (ℤ/𝑝ℤ)× → ℤ×

𝑝 .
The 𝑝-adic 𝐿-functions 𝐿𝑝(𝜔𝑘, 𝑠) were constructed by

Kubota and Leopoldt. Their values at other nonnegative
integers are similarly given by special values of Dirichlet
𝐿-functions of complex-valued characters of Δ. The Rie-
mann zeta function is the Dirichlet 𝐿-function for the triv-
ial character.

The Iwasawa Main Conjecture
The Iwasawa main conjecture describes the characteristic
ideal of𝑋(𝑝−𝑘)

∞ for an odd prime𝑝 and an even integer 𝑘 in
terms of the𝑝-adic 𝐿-function 𝐿𝑝(𝜔𝑘, 𝑠). As𝑋(1)

∞ is trivial
since 𝐴(1) = 0, let us suppose that 𝑘 ≢ 0 mod 𝑝− 1.

Iwasawa showed that 𝐿𝑝(𝜔𝑘, 𝑠) is determined on 𝑠 ∈
ℤ𝑝 by a unique power series 𝑓𝑘 ∈ Λ satisfying

𝑓𝑘((1 + 𝑝)𝑠 − 1) = 𝐿𝑝(𝜔𝑘, 𝑠).
Here, we’ve taken the variable 𝑇 to correspond to 𝛾 − 1
for the topological generator 𝛾 of Γ that raises all roots of
unity of 𝑝-power order to the power 1+𝑝, and (1+𝑝)𝑠 is
the limit of the sequence of (1+𝑝)𝑠𝑛 for 𝑠𝑛 ∈ ℤ satisfying
𝑠𝑛 ≡ 𝑠 mod 𝑝𝑛ℤ𝑝.

The following conjecture of Iwasawa’s, formulated in
the late 1960s, was given a proof by Mazur and Wiles in
a 1984 paper [MW].

Theorem (Iwasawa main conjecture, Mazur–Wiles). For
any even integer 𝑘 ≢ 0 mod 𝑝− 1, we have

char(𝑋(𝑝−𝑘)
∞ ) = (𝑓𝑘).

Themain conjecture implies that the highest power of𝑝
dividing 𝐿𝑝(𝜔𝑘, 𝑠) is also the order of the largest quotient

of 𝑋(𝑝−𝑘)
∞ upon which 𝑇 acts as (1 + 𝑝)𝑠 − 1. Taking

𝑠 = 0, the main conjecture gives the order of 𝐴(𝑝−𝑘); it
does not, however, tell us the isomorphism class (though
refinements do exist).

The main conjecture can also be formulated in terms of
the 𝑝-ramified Iwasawa module 𝔛∞ = Gal(𝑀∞/𝐹∞) for
𝑀∞ the union of the maximal abelian 𝑝-extensions of the
𝐹𝑛 ramified only at the unique primes (1−𝜁𝑝𝑛+1) over 𝑝.
This version of the main conjecture asserts that

char(𝔛(𝑘)
∞ ) = (𝑔𝑘),

where 𝑔𝑘 is given by the change of variables 𝑔𝑘(𝑇) =
𝑓𝑘((1+𝑝)(1+𝑇)−1 −1). The equivalence follows from
an Iwasawa-theoretic version of Kummer duality.

In [Iw2], Iwasawa proved his main conjecture assuming
that 𝐴(𝑘) = 0. In this case, the equality of characteristic
ideals becomes an isomorphism

𝑋(𝑝−𝑘)
∞ ≅ Λ/(𝑓𝑘).

It’s worth understanding how Iwasawa’s argument goes,
as through it one obtains a form of the main conjecture
free from 𝐿-functions asserting an equality of characteris-
tic ideals of Iwasawa modules coming from unit and class
groups.

Iwasawa studied the image of the cyclotomic units in-
side the local units of the completion at the prime over
𝑝, working up the tower of completions at 𝑝 of the fields
𝐹𝑛 by considering sequences of elements compatible un-
der norm maps. The Λ-module 𝒰∞ of norm-compatible
sequences of local units contains submodulesℰ∞ and𝒞∞
generated by the sequences of global units and cyclotomic
units, respectively.

Class field theory provides an exact sequence

0 → ℰ∞/𝒞∞ → 𝒰∞/𝒞∞ → 𝔛∞ → 𝑋∞ → 0.

This in turn yields an exact sequence with each module re-
placed by its𝜔𝑘-eigenspace underΔ. If𝑋(𝑘)

∞ = 0, then the
class number formula can be used to see that ℰ(𝑘)

∞ = 𝒞(𝑘)
∞

as well. The four-term exact sequence therefore reduces to
an isomorphism

𝒰(𝑘)
∞ /𝒞(𝑘)

∞ ≅ 𝔛(𝑘)
∞ .

Iwasawa then obtains that𝔛(𝑘)
∞ ≅ Λ/(𝑔𝑘) from the follow-

ing unconditional theorem, which amounts to a 𝑝-adic
regulator computation on cyclotomic units.

JANUARY 2019 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 21



Theorem (Iwasawa). There is an isomorphism of Λ-modules

𝒰(𝑘)
∞ /𝒞(𝑘)

∞ ≅ Λ/(𝑔𝑘).

As characteristic ideals are multiplicative in exact
sequences of finitely generated, torsion Λ-modules, this
also tells us unconditionally that the main conjecture is
equivalent to the equality

char(ℰ(𝑘)
∞ /𝒞(𝑘)

∞ ) = char(𝑋(𝑘)
∞ )

in which no 𝐿-functions appear.

Modular Forms
One might say that the theme of the work of Ribet and
Mazur–Wiles is that the study of the geometry of varieties
over ℚ can be used to solve arithmetic questions. Specifi-
cally, their work makes use of modular curves and congru-
ences between modular forms. The Galois representations
attached to modular forms are two-dimensional, present-
ing a natural next class of objects to study beyond the one-
dimensional abelian characters of class field theory. We
embark upon another brief tour.

The group of matrices in GL2(ℝ) with positive deter-
minant acts by Möbius transformations on the upper half-
planeℍ of complex numbers with positive imaginary part.
A modular curve is a quotient of ℍ by the action of a sub-
group of SL2(ℤ) that is determined by congruences among
its entries. This quotient can be compactified by adding in
the equivalence classes of the cusps, which are the rational
numbers and infinity.

A modular form 𝑓 is a holomorphic function of ℍ that
transforms under a congruence subgroup Γ (in the stan-
dard notation, but not to be confused with the Galois
group appearing in Iwasawa theory) in amanner prescribed
by its “weight” 𝑘, and which is bounded and holomorphic
at the cusps. Specifically, if (𝑎 𝑏

𝑐 𝑑) ∈ Γ, then

𝑓(𝑎𝑧+ 𝑏
𝑐𝑧+ 𝑑) = (𝑐𝑧 + 𝑑)𝑘𝑓(𝑧).

A modular form is a cusp form if it is zero at all cusps.
If (1 1

0 1) ∈ Γ, then 𝑓(𝑧 + 1) = 𝑓(𝑧), so 𝑓 has a Fourier
expansion about the cusp at ∞ of the form

𝑓 =
∞
∑
𝑛=0

𝑎𝑛(𝑓)𝑞𝑛

with 𝑞 = 𝑒2𝜋𝑖𝑧 for 𝑧 ∈ ℍ. If 𝑓 is a cusp form, then
𝑎0(𝑓) = 0.

There are Hecke operators 𝑇𝑛 for each 𝑛 ≥ 1 that act
on modular forms by summing over the action of repre-
sentatives of the double coset Γ ( 1 0

0 𝑛 ) Γ as a union of right
cosets. A modular form is an eigenform if it is a simulta-
neous eigenform for all Hecke operators. If an eigenform
is normalized so that 𝑎1(𝑓) = 1, then 𝑇𝑛(𝑓) = 𝑎𝑛(𝑓)𝑓

for all 𝑛 ≥ 1. The Fourier coefficients 𝑎𝑛(𝑓) of a normal-
ized eigenform 𝑓 are algebraic numbers that are integral for
𝑛 ≥ 1, and the coefficient field they generate is a number
field.

Eisenstein series form a class of modular forms that are
not cusp forms. For instance, for a positive even integer
𝑘 ≥ 4, we have an Eisenstein series

𝐸𝑘 = −𝐵𝑘
2𝑘 +

∞
∑
𝑛=1

∑
𝑑∣𝑛

𝑑𝑘−1𝑞𝑛

which is an eigenform of weight 𝑘 for Γ = SL2(ℤ) itself.
When an odd prime 𝑝 divides 𝜁(1 − 𝑘) = −𝐵𝑘/𝑘, the
constant term of 𝐸𝑘 is zero modulo 𝑝. In this case, the re-
duction of 𝐸𝑘 modulo 𝑝 may be lifted to a cuspidal eigen-
form with coefficients in the ring of integers of a number
field. For example, 𝐸12 is congruent modulo 691ℤJ𝑞K to
the unique normalized cusp form

𝑞
∞
∏
𝑛=1

(1 − 𝑞𝑛)24

of weight 12 for SL2(ℤ).
To a normalized cuspidal eigenform 𝑓 of weight 𝑘 ≥ 2,

work of Shimura and Deligne attached a 𝑝-adic Galois rep-
resentation 𝜌𝑓∶ 𝐺ℚ → GL2(𝐾𝑓), with 𝐾𝑓 the field ob-
tained by adjoining to ℚ𝑝 the Fourier coefficients of 𝑓.
Equivalently, it is a two-dimensional 𝐾𝑓-vector space 𝑉𝑓
with a commuting 𝐺ℚ-action. This representation 𝜌𝑓 is
irreducible and odd (i.e., it has determinant −1 on com-
plex conjugation), and it has the property that the trace
of 𝜌𝑓(𝜑ℓ) for a Frobenius element 𝜑ℓ of an unramified
prime over a rational prime ℓ is equal to 𝑎ℓ(𝑓).

Inside 𝑉𝑓, there is a rank-two module 𝐿𝑓 for the val-
uation ring 𝒪𝑓 of 𝐾𝑓 that is preserved by the 𝐺ℚ-action.
Roughly, this says that 𝜌𝑓 can be viewed as taking values
in GL2(𝒪𝑓). So, it makes sense to reduce 𝜌𝑓 modulo the
maximal ideal of 𝒪𝑓 and talk about the resulting repre-
sentation ̄𝜌𝑓 ∶ 𝐺ℚ → GL2(𝔽𝑞) over the residue field 𝔽𝑞.
This residual representation is unique up to isomorphism
if and only if it is irreducible. Otherwise, its isomorphism
class depends upon the choice of 𝐿𝑓.

The Method of Ribet–Mazur–Wiles
Ribet and Mazur–Wiles employed congruences between
cusp forms and Eisenstein series to construct unramified
abelian extensions of cyclotomic fields. As we’ve noted, if
𝑝 ∣ 𝐵𝑘 for an even 𝑘 < 𝑝, then there exists a cuspidal eigen-
form 𝑓 congruent to 𝐸𝑘 modulo the maximal ideal of 𝒪𝑓.
The fixed field of the kernel of the Galois representation
𝜌𝑓 is ramified only at the prime 𝑝. Ribet used this to con-
struct an unramified abelian 𝑝-extension of 𝐹 = ℚ(𝜁𝑝)
on which Δ acts through 𝜔𝑝−𝑘. By class field theory, if
the extension is nontrivial, then 𝐴(𝑝−𝑘) is nonzero, which
is Ribet’s converse to Herbrand’s theorem.
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The method works by playing two facts forced by the
congruence off of each other. The first is that 𝑓 is ordi-
nary in the sense that 𝑎𝑝(𝑓) is a 𝑝-adic unit. For ordinary
forms, there exists a basis of 𝑉𝑓 such that 𝜌𝑓 restricted to
a decomposition group at 𝑝 is upper triangular as a map
to GL2(𝒪𝑓). If needed, one can rescale so that the map
𝜙∶ 𝐺ℚ → 𝔽𝑞 to the residue field 𝔽𝑞 given by the reduction
of the lower left-hand corner of 𝜌𝑓 modulo the maximal
ideal of 𝒪𝑓 is nonzero on the larger group 𝐺ℚ.

The second fact is that the residual Galois representa-
tion ̄𝜌𝑓 is reducible. The above basis can actually be cho-
sen so that ̄𝜌𝑓 has the form

̄𝜌𝑓(𝜎) = (𝜔
𝑘−1(𝜎) 0
𝜙(𝜎) 1)

on 𝜎 ∈ 𝐺ℚ, viewing 𝜔 as a character of 𝐺ℚ. The re-
striction of𝜙 to Gal(ℚ/𝐹) is then a homomorphism that
is unramified at the prime over 𝑝 by construction, so it
factors through the Galois group of a nontrivial unram-
ified abelian 𝑝-extension 𝐻 of 𝐹 that is Galois over ℚ.
The group Δ acts on Gal(𝐻/𝐹) compatibly with conju-
gation of matrices, which is to say that it acts by 𝜔𝑝−𝑘 =
(𝜔𝑘−1)−1.

Mazur andWiles generalized and refined Ribet’smethod
in the context of Iwasawa theory in order to prove themain
conjecture and its generalization to arbitrary abelian exten-
sions ofℚ. By studying the Galois actions on Jacobians of
modular curves, they construct an unramified abelian ex-
tension of the field 𝐹∞ of all 𝑝-power roots of unity with

Galois group aΛ-module quotient of𝑋(𝑝−𝑘)
∞ that has char-

acteristic ideal (𝑓𝑘).
Having proven that (𝑓𝑘) ∣ char(𝑋(𝑝−𝑘)

∞ ), Mazur and
Wiles apply a consequence of analytic class number for-
mula to obtain the main conjecture. That is, Iwasawa had
shown in 1972 that

(𝑝−3)/2

∑
𝑗=1

𝜆(𝑋(𝑝−2𝑗)
∞ ) =

(𝑝−3)/2

∑
𝑗=1

deg𝑓2𝑗.

From this, it follows that one divisibility for all odd eigen-
spaces implies the other.

Later work of Wiles gave a more streamlined perspec-
tive, casting the proof in terms of the theory of families
of ordinary modular forms of Hida. That is, Wiles em-
ployed the residual representation of a Galois representa-
tion 𝜌ℱ∶ 𝐺ℚ → GL2(𝕀𝑓) attached to a 𝑝-adically contin-
uously varying family ℱ of ordinary cuspidal eigenforms
congruent to a family of Eisenstein series, where 𝕀𝑓 is a fi-
nite local Λ-algebra.

The Method of Euler Systems
Work of Thaine and Kolyvagin led to a new and more ex-
plicit, though technically complex, approach to the main

conjecture, which Rubin completed to a full proof. The
method useswhat Kolyvagin termed an Euler system, a first
example of which consists of cyclotomic units in abelian
extensions ofℚ. This system of elements is used to bound
the order of an even eigenspace of the 𝑝-part of the class
group by the order of an eigenspace of the quotient of the
global units by the cyclotomic units.

The key property is a norm compatibility from ℚ(𝜁𝑁ℓ)
to ℚ(𝜁𝑁) for 𝑝 dividing 𝑁 and a prime ℓ. Explicitly, if
ℓ ∤ 𝑁, one has

𝑁ℚ(𝜁𝑁ℓ)/ℚ(𝜁𝑁)(1 − 𝜁𝑁ℓ) =
1−𝜁𝑁

1 −𝜁ℓ−1
𝑁

.

With this relation, one applies a Galois-theoretic deriva-
tive construction to elements 1 − 𝜁𝑁ℓ for good choices
of primes ℓ congruent to ±1 modulo a sufficiently high
power of 𝑝 to obtain field elements that are powers of cho-
sen nonprincipal ideals.

Up the cyclotomic tower, the method of Euler systems
shows that

char(𝑋(𝑘)
∞ ) ∣ char(ℰ(𝑘)

∞ /𝒞(𝑘)
∞ )

for even 𝑘 ∈ ℤ. This is equivalent to the opposite divisi-
bility to that of Mazur–Wiles, and again the analytic class
number formula yields equality.

Totally Real and CM Fields

The Iwasawa main conjecture generalizes directly from ℚ
to totally real fields, those number fields with only real
archimedean embeddings. The relevant𝑝-adic𝐿-functions
were separately constructed by Deligne and Ribet, Cassou-
Noguès, and Barsky. Wiles proved a main conjecture for
odd eigenspaces of the unramified Iwasawa module 𝑋∞
over the cyclotomic ℤ𝑝-extension 𝐹∞ of an abelian exten-
sion 𝐹 of a totally real field using Galois representations
attached to Hilbert modular forms [Wi]. Greenberg has
conjectured that the even eigenspaces of 𝑋∞ are finite.

The existence of an Euler system in abelian extensions
of totally real fields was conjectured by Stark and Rubin,
but it is still unproven. This is related to Hilbert’s twelfth
problem, or Kronecker’s Jugendtraum, of an explicit class
field theory over totally real fields. In contrast, abelian ex-
tensions of imaginary quadratic fields contain analogues
of cyclotomic units called elliptic units that do form an
Euler system. In this case, there is an explicit form of class
field theory arising from the theory of complex multipli-
cation (CM) of elliptic curves that we’ll discuss. Elliptic
units are generated by values at torsion points of a theta
function that is a meromorphic function on a CM elliptic
curve.

In 1977, Coates and Wiles proved an analogue of Iwa-
sawa’s theorem on local units modulo cyclotomic units for
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an imaginary quadratic field 𝐾 with ℎ𝐾 = 1 [CW]. Choos-
ing a split prime 𝑝 with 𝑝𝒪𝐾 = 𝔭 ̄𝔭, their theorem states
that the quotient of the local units at 𝔭 modulo elliptic
units up a ℤ𝑝-extension of 𝐾 ramified only at 𝔭 is isomor-
phic to the quotient of the one-variable Iwasawa algebra by
a power series corresponding to a 𝑝-adic 𝐿-function con-
structed by Katz.

The compositum of ℤ𝑝-extensions of an imaginary qua-
dratic field𝐾 has Galois group ℤ2

𝑝. Its Iwasawa algebra is a
power series ring in two variables over ℤ𝑝. The unramified
Iwasawa module𝑋∞ over the corresponding ℤ2

𝑝-extension
of an abelian extension of𝐾 is conjecturally small enough
to have unit characteristic ideal. The main conjecture here
compares 𝑋∞ and the quotient of global units by elliptic
units. It was proven by Rubin using the method of Euler
systems in 1991 [Ru]. If 𝑝 splits in 𝐾, one can instead re-
place 𝑋∞ with a larger Iwasawa module that allows rami-
fication at exactly one of the two primes over 𝑝. This gives
an equivalent form involving a two-variable Katz 𝑝-adic
𝐿-function.

In 1994, Hida and Tilouine gave an alternate proof of
the specialization of this conjecture to an anticyclotomic
ℤ𝑝-extension using an approach closer to that of Mazur–
Wiles. Their work extends to analogues of imaginary qua-
dratic fields over totally real fields known as CM fields for
which one once again has no known Euler system to em-
ploy. More recently, progress has been made on a divisi-
bility in a general main conjecture over CM fields, in par-
ticular by Hsieh.

Elliptic Curves and BSD
Elliptic curves over number fields provide a next step be-
yond the theory of multiplicative groups that we’ve been
in effect describing. In this setting, the arithmetic objects
that replace class groups are known as Selmer groups. We
run quickly through the arithmetic theory of elliptic curves,
from the basic theory to deep results and a famous conjec-
ture, before we begin passing up towers.

A complex elliptic curve 𝐸 is defined by an equation

𝑦2 = 𝑥3 +𝑎𝑥+ 𝑏
with 𝑎,𝑏 ∈ ℂ and 4𝑎3 + 27𝑏2 ≠ 0 to ensure smooth-
ness. More precisely, it is the projective curve of genus one
defined by the homogenization of the above polynomial.
Effectively, this means adding a single point ∞ at infinity.

The set 𝐸(ℂ) of points of 𝐸 with complex coordinates
has an abelian group law with ∞ as its identity. It is given
by drawing a line between two points 𝑃 and 𝑄 and declar-
ing the third point of the line in 𝐸(ℂ) to be −𝑃−𝑄, tak-
ing multiplicity into account. We’ll assume that 𝑎,𝑏 ∈ ℚ,
which is to say that 𝐸 is rational. The Mordell–Weil group
𝐸(𝐹) of points with coordinates in a number field 𝐹 is
then a finitely generated subgroup of 𝐸(ℂ).

The group 𝐸(ℚ) has a canonical action of 𝐺ℚ via the
action on coordinates. A point of 𝐸(ℂ) ≅ (ℝ/ℤ)2 is said
to be 𝑛-torsion if it has order dividing 𝑛. The group 𝐸[𝑛]
of all 𝑛-torsion points is a subgroup of 𝐸(ℚ) isomorphic
to (ℤ/𝑛ℤ)2.

A rational elliptic curve 𝐸 has a ring 𝒪 of endomor-
phisms consisting of nonzero ℚ-rational maps 𝐸 → 𝐸
taking ∞ to itself. Among these are the morphisms given
by multiplication by integers using the group law of 𝐸. If
𝒪 ≠ ℤ, then 𝒪 is a finite index subring of the integer ring
of an imaginary quadratic field. In this case, we say that 𝐸
has CM by 𝒪.

The cohomology of a group 𝐺 with coefficients in a
module𝑀 for the group ringℤ[𝐺] is a sequence of abelian
groups𝐻𝑖(𝐺,𝑀) that allows one to study the group action
using the tools of homological algebra. For Galois groups,
the closely related theory of Galois cohomology is a cru-
cial tool in Iwasawa theory. Many theorems of class field
theory can be phrased in terms of duality in Galois coho-
mology, and abelian groups of arithmetic interest can be
encoded in cohomology.

For a number field 𝐹, the group 𝐸(𝐹)/𝑛𝐸(𝐹) is con-
tained in 𝐻1(Gal(ℚ/𝐹), 𝐸[𝑛]). In fact, it is contained in
a smaller subgroup of cohomology classes that are unram-
ified at all but finitely many primes and partially vanish
locally at the remaining primes. The direct limit over 𝑛
of these subgroups of 𝐻1(Gal(ℚ/𝐹), 𝐸[𝑛]) is the Selmer
group Sel𝐸(𝐹) we wish to study.

The most important thing to know about the Selmer
group is that it intertwines the Mordell–Weil group with
a mysterious, conjecturally finite group called the Shafar-
evich–Tate group X𝐸(𝐹) of 𝐸. That is, there is an exact
sequence:

0 → 𝐸(𝐹) ⊗ℚ/ℤ → Sel𝐸(𝐹) → X𝐸(𝐹) → 0.

This is analogous to what happens with cohomology with
coefficients in roots of unity: in that case, the unit and class
groups get wrapped up together.

The intertwining of 𝐸(ℚ) and X𝐸(ℚ) is also reflected
in analytic formulas. One can construct an 𝐿-series for
𝐸 from the data of the number of 𝔽𝑝-points of mod 𝑝
reductions of a minimal equation for 𝐸. It has analytic
continuation to ℂ by the modularity of rational elliptic
curves proven byWiles, Taylor–Wiles, and Breuil–Conrad–
Diamond–Taylor, which tells one that 𝐸 has an associated
cuspidal eigenform with the same 𝐿-series.

The Birch and Swinnerton–Dyer conjecture, or BSD,was
formulated in 1965 and is one of the Clay Math Institute’s
Millennium Problems.

Conjecture (Birch and Swinnerton–Dyer). The order of van-
ishing of the 𝐿-function 𝐿(𝐸, 𝑠) at 𝑠 = 1 is equal to the rank
of 𝐸(ℚ).
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BSD has a refined form that links the leading term of
𝐿(𝐸, 𝑠) in its Taylor expansion about 𝑠 = 1 to the orders
of the torsion subgroup 𝐸(ℚ)tor of Mordell–Weil and of
X𝐸(ℚ). The conjectural BSD formula has the form

𝐿(𝑟)(𝐸, 1)
𝑟! = |X𝐸(ℚ)|Ω𝐸𝑅𝐸 ∏ℓ 𝑐ℓ

|𝐸(ℚ)tor|2
, (1)

where 𝑟 is the order of vanishing, 𝑅𝐸 is a regulator related
to the heights of rational points, the quantity Ω𝐸 is a real
period, and each 𝑐ℓ for a prime ℓ is the number of com-
ponents of a certain mod ℓ reduction of 𝐸, all but finitely
many being 1.

Much of the progress on BSD to date employs Iwasawa
theory. For instance, the first major result that serves as
theoretical evidence for BSD was due to Coates–Wiles. As
a consequence of their theorem on local units modulo el-
liptic units, they proved that if 𝑟 = 0 and 𝐸 has CM by a
subring of 𝒪𝐾 for 𝐾 with ℎ𝐾 = 1, then 𝐸(ℚ) is finite.

Iwasawa Theory of Elliptic Curves
We turn to the question of how Selmer groups of a rational
elliptic curve 𝐸 grow in the cyclotomic ℤ𝑝-extension ℚ∞
of ℚ. This amounts to studying the finitely generated Λ-
module

𝔛𝐸 = Hom(Sel𝐸(ℚ∞),ℚ𝑝/ℤ𝑝)
that is the Pontryagin dual of the direct limit
Sel𝐸(ℚ∞)[𝑝∞] of 𝑝-power torsion subgroups of the
Selmer groups Sel𝐸(ℚ𝑛).

The elliptic curve 𝐸 has good reduction at 𝑝 if its mod
𝑝 reduction 𝐸𝑝 is nonsingular, and it is then ordinary if 𝐸𝑝
has a point of order 𝑝. For such elliptic curves, Mazur and
Swinnerton–Dyer constructed a𝑝-adic𝐿-function𝐿𝑝(𝐸, 𝑠)
interpolating values of 𝐿(𝐸, 𝑠) up to certain Euler factors,
and again it is determined by a power series ℒ𝐸. Mazur
then formulated the following main conjecture.

Conjecture (Main conjecture for elliptic curves). Suppose
that 𝐸 has good ordinary reduction at 𝑝 and that 𝐸(ℚ)[𝑝] is
an irreducible 𝐺ℚ-representation. Then 𝔛𝐸 is Λ-torsion and

char(𝔛𝐸) = (ℒ𝐸).
For elliptic curves with CM, this is equivalent to the

main conjecture for imaginary quadratic fields and split
primes 𝑝 proven by Rubin. The general divisibility
char(𝔛𝐸) ∣ (ℒ𝐸) was proven by Kato via the method of
Euler systems [Ka]. Kato’s Euler system is constructed us-
ing cohomological products formed from pairs of Siegel
units on a modular curve parameterizing 𝐸, first studied
by Beilinson. The other divisibility was proven under fairly
mild hypotheses by Skinner and Urban using Galois repre-
sentations attached to automorphic forms on the unitary
group GU(2, 2) [SU]. With no analytic class number for-
mula that can be used in this setting, one needs bothmeth-
ods.

We mention a bit of what’s known for elliptic curves
with good supersingular (i.e., nonordinary) reduction. For
𝑝 ≥ 5, there are in this case not one but two Selmer groups
constructed by Kobayashi and two 𝑝-adic 𝐿-functions con-
structed by Pollack. The corresponding main conjecture
was proven by Rubin and Pollack for CM curves in 2004.
In this case, 𝑝 does not split in𝐾, and the main conjecture
is closely related to Rubin’s main conjecture without 𝐿-
functions for imaginary quadratic fields. The main conjec-
ture for non-CM curves has recently been proven by Wan
under a hypothesis on the congruence subgroup. Sprung
has additionally treated the prime 3, in particular employ-
ing work of Kim and Lei in the formulation.

The main conjecture for elliptic curves implies a 𝑝-adic
analogue of BSD of Mazur–Tate–Teitelbaum that relates
the rank of 𝐸(ℚ) to the order of vanishing of 𝐿𝑝(𝐸, 𝑠) at
1. As 𝐿(𝐸, 𝑠) is complex analytic and 𝐿𝑝(𝐸, 𝑠) is 𝑝-adic
analytic, the derivatives are not clearly related, and neither
form of BSD obviously implies the other in the case of pos-
itive rank.

The order 𝑟 of vanishing of 𝐿(𝐸, 𝑠) at 𝑠 = 1 is known
as the analytic rank of 𝐸, and the actual rank of 𝐸(ℚ) is
known as the algebraic rank. Kolyvagin used an Euler sys-
tem of Heegner points and a theorem of Gross and Zagier
to prove that if the analytic rank of 𝐸 is 𝑟 ≤ 1, then the al-
gebraic rank is 𝑟 andX𝐸(ℚ) is finite. Both the converse to
this and the BSD formula follow from the main conjecture
for 𝑟 = 0. Recent work of Skinner and of Zhang implies a
converse for 𝑟 = 1 under mild hypotheses, and for 𝑟 = 1
significant progress has been made towards the BSD for-
mula as well, particularly in work of Jetchev, Skinner, and
Wan.

Recent Directions

Iwasawa theory extends to study the growth of other arith-
metic objects attached to Galois representations in towers
of number fields. Beginning in the late 1980s, Greenberg
proposed main conjectures for a whole host of ordinary
motivic Galois representations, and even continuously 𝑝-
adically varying families thereof. Since then, main conjec-
tures have been extended to more general towers, nonordi-
nary families, finer-grained analogues, and even character-
istic 𝑝 base fields. Recent developments have seen consid-
erable progress on methods of proof of both divisibilities.
Here’s a sampling.

The early part of the new millennium saw the devel-
opment of Iwasawa theory over towers of number fields
with Galois groups that are isomorphic to subgroups of
GL𝑛(ℤ𝑝) for some 𝑛. The breakthrough came in a paper
of Coates, Fukaya, Kato, Sujatha, and Venjakob contain-
ing a noncommutative main conjecture for elliptic curves.
Invariants playing the roles of characteristic ideals and 𝑝-
adic 𝐿-functions lie in a first 𝐾-group of a localization of
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the noncommutative Iwasawa algebra. Soon after, Fukaya
and Kato formulated a remarkably general noncommuta-
tive main conjecture that relates closely to the equivariant
Tamagawa number conjecture of Burns and Flach which in
turn generalized a conjecture of Bloch and Kato on special
values of 𝐿-functions.

At the start of this decade, a noncommutative main con-
jecture for totally real fields was proven through work of
Ritter and Weiss, Burns, and Kakde, assuming Iwasawa’s
conjecture on the vanishing of the 𝜇-invariant. The key
step is the verification of congruences among Deligne–
Ribet 𝑝-adic 𝐿-functions over different totally real fields
to reduce to the main conjecture proven by Wiles.

The work of Skinner–Urban has inspired a rush of new
theorems on divisibilities in main conjectures, with recent
progress on the construction of Galois representations at-
tached to automorphic forms in the sense of the Langlands
program providing a boon for the area. The construction
of𝑝-adic𝐿-functions that interpolate special values of com-
plex 𝐿-functions is a whole industry unto itself and often
proceeds via distributions formed out of modular symbols
or computations of local integrals.

Euler systems have long had a reputation as difficult to
construct that has only recently begun to soften. An ap-
proach to construct them via geometric methods starting
from cycles on varieties was initiated in work of Bertolini,
Darmon, Prasanna, and Rotger and carried further in work
of Loeffler, Zerbes, Lei, Kings, and Skinner. One typically
computes complex and 𝑝-adic regulators to prove nonva-
nishing of Euler systems and relate them with (𝑝-adic) 𝐿-
functions.

Beyond Mazur–Wiles

I end with a brief discussion of a deeper relationship be-
tween the geometry of modular curves and the arithmetic
of cyclotomic fields. In a 2011 paper, I formulated a conjec-
ture relating relative homology classes {𝛼 → 𝛽} of paths
between cusps on amodular curve, taken here to be𝑋1(𝑝),
and cup products 𝑥∪𝑦 of cyclotomic units in a Galois co-
homology group that agrees with 𝐴− modulo 𝑝. In fact,
there is a simple explicit map

{𝑎
𝑐 → 𝑏

𝑑} ↦ (1−𝜁𝑐
𝑝) ∪ (1 − 𝜁𝑑

𝑝)

taking one set of elements to the other (for 𝑎𝑑 − 𝑏𝑐 =
1 and 𝑝 ∤ 𝑐𝑑). On a certain Eisenstein quotient of the
plus part of homology, I conjectured this to provide an
inverse to a canonical version of the map that appeared in
the proof of Ribet’s theorem.

Up the cyclotomic tower, this yields what can be viewed
as a refinement of the Iwasawa main conjecture. That is, it
provides not only an equality of characteristic ideals, but
an isomorphism given by a recipe on special elements.

Fukaya and Kato proved a major result in this direction in
which the derivative of the 𝑝-adic 𝐿-function plays a cru-
cial and potentially unavoidable intermediate role. Their
result implies the conjecture for 𝑝 < 231.

Fukaya, Kato, and I expect this to be a special case of
a general phenomenon of the geometry and topology of
locally symmetric spaces of higher dimension informing
the arithmetic of Galois representations attached to lower-
dimensional automorphic forms. This begs the question
of its elliptic curve analogue, which is but one of a wealth
of intriguing possibilities for future directions in Iwasawa
theory.
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