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Alan Baker, FieldsMedallist, died on the 4th of February
2018 in Cambridge, England, after suffering a severe stroke
a few days earlier.

He achieved amajor breakthrough in transcendence the-
ory and applied it to obtain a new and important large
class of transcendental numbers (opening the way to the
subsequent discovery of several other such classes); devel-
oped quantitative versions and applied them to the effec-
tive solutions of many classical diophantine equations as
well as the resolution of the celebrated Gauss Conjecture
on class numbers of imaginary quadratic number fields;
and started the study of extensions to elliptic curves (open-
ing the way to later generalizations to abelian varieties and
commutative group varieties and in turn their applications
to old and new problems in diophantine geometry).

The following [3] is perhaps themost easily stated of his
results. Given non-zero 𝑘 in the ring 𝐙 of rational integers,
all solutions 𝑥,𝑦 in 𝐙 of the so-called “Mordell equation”

𝑦2 = 𝑥3 + 𝑘 (1)
satisfy

max{|𝑥|, |𝑦|} ≤ exp(1010|𝑘|10000). (2)
Despite (1) being around since at least the year 1621, there
were no estimates at all for 𝑥,𝑦 until [2] in 1968. Thus
given 𝑘 one can in principle solve (1) completely; even
this fact was not previously known.

Baker’s parents Barnet and Bessie (with roots in east-
ern Europe) lived in Forest Gate in East London, where
he was born on August 19, 1939. From a very early age
he showed signs of mathematical brilliance and was en-
couraged by his parents. Already his father was very gifted
in this direction. After having attended Stratford Gram-
mar School he went with a scholarship to University Col-
lege London where he studied mathematics. He finished
with a first class degree before he moved to Trinity College
(where he would be based for the rest of his life) in Cam-
bridge to study for MA and PhD degrees with Harold Dav-
enport, one of the leading number theorists at the time
with many international connections. During this time
(between 1962 and 1965) he published eight papers that
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made his very high potential obvious. He received his PhD
in 1964 and one year later was elected Fellow of Trinity in
the research category. In 1970 he was awarded the Fields
Medal at the International Congress in Nice on the basis
of his outstanding work on linear forms in logarithms and
its consequences. Since then he received many honours
including the prestigious Adams Prize of Cambridge Uni-
versity, the election to the Royal Society (1973) and the
Academia Europaea; and he was made an honorary fellow
of University College London, a foreign fellow of the In-
dian Academy of Science, a foreign fellow of the National
Academy of Sciences India, an honorary member of the
Hungarian Academy of Sciences, and a fellow of the Amer-
ican Mathematical Society.

In 1974 hewas elected to a personal chair for PureMath-
ematics at the University of Cambridge. Between 1969
and 1988 he supervised a number of outstanding PhD stu-
dents, and 389 mathematical descendants are listed.

Figure 2. Mate Gyory, Alan Baker, and Rob Tijdeman
at a number theory conference in Eger, Hungary, in
1996.

As mentioned, Baker had done substantial work before
1966. For example therewas a very interesting article around
Roth’s Theorem andMahler’s Classification. But it was two
papers of 1964 on rational approximation that probably
made a more permanent impression on number-theorists.
The second of these papers [1] established among other
things the striking inequality

|21/3 − 𝑝
𝑞| > 10−6

𝑞2.955 (3)

for all rational integers 𝑝,𝑞 > 0. Since Roth it had been
known that the exponent 2.955 could be reduced arbitrar-
ily close to 2, and this even for any irrational algebraic
number in place of 21/3; but that result (the main reason
for Roth’s own Fields Medal) was not “effective” in the
sense that the multiplying constant (10−6 in the above)

could not then be calculated or even estimated. And to
this day no one knows how to do this, even in (3) with
exponent 2.3, say.

Baker’s result (3) was significant, not because 2.955 is
particularly near 2, but because it is strictly less than the
degree 3 of 21/3, which is the trivial exponent supplied by
the much earlier ideas of Liouville. It made it an easy mat-
ter to solve completely any diophantine equation

𝑥3 − 2𝑦3 = 𝑚

in integers 𝑥 and 𝑦. Before this result, there had been no
algorithm at all, just as for (1).

Strangely enough, Baker’s proof (using the so-called Padé
theory with an extra 3-adic twist) broke down completely
for

𝑥3 − 5𝑦3 = 𝑚. (4)
He himself found a way round this, and in the process
opened up an entirely new area of diophantine approxima-
tion, with his wonderful sequence [2] of papers on linear
forms in logarithms dating from 1966.

The classical theorem of Hermite-Lindemann is equiv-
alent to the fact that if 𝛼 is a non-zero algebraic number,
and log𝛼 is any non-zero choice of its complex logarithm,
then 1 and log𝛼 are linearly independent over the field𝐐
of all algebraic numbers. Similarly the classical theorem of
Gelfond–Schneider is equivalent to the fact that if 𝛼1, 𝛼2
are non-zero algebraic numbers, and log𝛼1, log𝛼2 are
any choices of logarithms that are linearly independent
over the field𝐐 of rational numbers, then they are linearly
independent over𝐐. Nothingwas known about even three
logarithms until Baker proved (1966-68)

Theorem. If 𝛼1,… ,𝛼𝑛 are non-zero algebraic numbers,
and log𝛼1,… , log𝛼𝑛 are any choices of logarithms which
are linearly independent over 𝐐, then

1, log𝛼1,… , log𝛼𝑛 (5)
are linearly independent over 𝐐.

The readermay easily construct simple examples of tran-
scendental numbers not covered by Hermite-Lindemann
or Gelfond-Schneider; a less simple example is

∫
1

0

d𝑥
𝑥3 + 1 = 𝜋√3

9 + log2
3

quoted by Siegel in his famous transcendence monograph.
In a paragon of modesty, clarity, and foresight, Baker

wrote in the first of his sequence
Finally, as regards the proof of the theorem, our method de-

pends on the construction of an auxiliary function of several
complex variables which would seem to be the natural gener-
alisation of the function of a single variable used in Gelfond’s
original work. The subsequent treatment employed by Gelfond,
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however, is not applicable in the more general context and so
it has been necessary to devise a new technique. Nevertheless
it will be appreciated that the argument involves many famil-
iar ideas. The method will probably be capable of considerable
development for it applies in principle to many other auxiliary
functions apart from the one constructed here.

Let us give an idea of this “new technique,” for simplic-
ity taking 𝑛 = 3 and ignoring the extra 1 in (5), so that we
have to deduce a contradiction from a relation

𝛽1 log𝛼1 +𝛽2 log𝛼2 = log𝛼3 (6)
with𝛽1, 𝛽2 also algebraic. The auxiliary functionΦ(𝑧1, 𝑧2)
is a polynomial of large degree in

𝑒𝑧1 , 𝑒𝑧2 , 𝑒𝛽1𝑧1+𝛽2𝑧2 (7)
which indeed generalize in a fairly natural way (although
noone had previouslywritten themdown)Gelfond’sΦ(𝑧)
and 𝑒𝑧, 𝑒𝛽𝑧. Note that from (6) the functions (7) take al-
gebraic values at all points

(𝑧1, 𝑧2) = (𝑠 log𝛼1, 𝑠 log𝛼2), 𝑠 = 0, 1, 2,…
and this is true even of their partial derivatives. That en-
ables Φ to be constructed, with algebraic coefficients not
all zero, such that

𝜕𝑡1

𝜕𝑧𝑡1
1

𝜕𝑡2

𝜕𝑧𝑡2
2
Φ(𝑠 log𝛼1, 𝑠 log𝛼2) = 0

for all non-negative integers 𝑠, 𝑡1, 𝑡2 in some large range

𝑠 ≤ 𝑆, 𝑡1 + 𝑡2 ≤ 𝑇. (8)
Gelfond had shown by an extrapolation technique on his
Φ(𝑧) that his range 𝑠 ≤ 𝑆, 𝑡 ≤ 𝑇 could be extended to
say 𝑠 ≤ 𝑆, 𝑡 ≤ 2𝑇. This step could be then iterated, even
indefinitely, to get zeroes of infinite multiplicity and so the
required contradiction.

To this day no one knows how to increase𝑇 in (8) to2𝑇.
But Baker, by applying similar extrapolation techniques on
all the separate Φ𝜏1,𝜏2(𝑧) = 𝜕𝜏1

𝜕𝑧𝜏11
𝜕𝜏2
𝜕𝑧𝜏22

Φ(𝑧 log𝛼1, 𝑧 log𝛼2),
𝜏1 +𝜏2≤ 𝑇/2 was able to modify (8) to say

𝑠 ≤ 8𝑆, 𝑡1 + 𝑡2 ≤ 𝑇/2.
The number of conditions here is roughly twice that in (8)
and so we have gained something. We can iterate but not
indefinitely in any profitable way. Already this was a new
sort of difficulty, which Baker overcame by getting just as
many zeroes as are needed for the contradiction (along the
principle that a polynomial of degree𝐷 cannot have𝐷+1
zeroes).

So Baker’s main achievement was to introduce several
complex variables (not being afraid of possible Hartogs-
style complications), reduce them to a single variable along
a line, and supply the missing zero estimates.

Figure 3. Alan Baker with Yu Kunrui on the occasion
of Peter Sarnak’s 61st birthday conference at the IAS
in 2014.

In fact he didmore, obtaining positive lower bounds for
the absolute value of linear forms

𝛽0 +𝛽1 log𝛼1 +⋯+𝛽𝑛 log𝛼𝑛 (9)
in terms only of certain complexity measures (heights) of
the algebraic numbers appearing. This was vital for the
applications; and crucial too was that the lower bounds
should be sufficiently strong. The earlier bounds sufficed
for (1) and (4), butmore sophisticationwas needed for his
solution [2,I] of the Gauss Conjecture that the only imag-
inary quadratic fields with class number ℎ = 1 have dis-
criminantΔ at most 163 in absolute value, and even more
for his extension [5] to ℎ = 2 (there followed a collabo-
ration with Stark who had independently obtained these
results) leading finally to |Δ| ≤ 427. Similarly the work
led to Feldman’s improvement on the Liouville exponent
for any algebraic number of degree at least three, for exam-
ple

|51/3 − 𝑝
𝑞| > 10−12900

𝑞2.9999999999998

(also by which (4) can be solved) due to Baker and Stewart
[8]. And with Wüstholz [9] in 1993 Baker took the lower
bounds for (9) already extremely close to their modern-
day versions.

The foresight in the above quotation was illustrated by
Baker himself in making a start [4] on analogues of his
Theorem for elliptic functions, where log𝛼 = ∫𝛼1 d𝑥/𝑥 is
replaced by an “elliptic logarithm”

∫
𝛼

∞

d𝑥
√4𝑥3 −𝑔2𝑥 − 𝑔3

.

He gave an account of much of this (and more besides) in
his book [6], a worthy successor to the classics of Siegel,
Gelfond, and Schneider.

Baker single-handedly transformed the subject of tran-
scendence and diophantine approximation, and others have
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taken things yet further. For example Tijdeman used linear
forms in logarithms to show that there are at most finitely
many solutions 𝑝 > 1,𝑞 > 1, 𝑟 > 1, 𝑠 > 1 to Catalan’s
equation 𝑝𝑠 − 𝑞𝑟 = 1, and then Mihăilescu showed that
the only solution is indeed (𝑝, 𝑞, 𝑟, 𝑠) = (3, 2, 3, 2) as
Catalan had conjectured. And various authors developed
the elliptic and higher analogues culminating in the work
of Wüstholz on general commutative group varieties. This
further led via so-called “isogeny estimates” to effective ver-
sions of Faltings’s Finiteness Theorems and the Tate Con-
jecture for abelian varieties, and even to the solution of
geometric problems such as the existence of “small” po-
larizations. Some of this was in turn described in Baker’s
book [10] (not to be confused with the attractive [7], much
more elementary) with Wüstholz. Since then the material
has been found useful also in aspects of the André-Oort
Conjecture.

Figure 4. Gerd Faltings and Alan Baker on the
occasion of Peter Sarnak’s 61st birthday conference
at the IAS in 2014.

As mentioned, Baker was firmly based in Cambridge; it
seems that college life there suited him especially in the
style of Trinity, whose society he enriched. He had a flat
in London and enjoyed life there too, for example the the-
atre. He was enthusiastic about travel, and as his reputa-
tion grew he was able to combine this with professional
visits to China and many parts of Europe and especially
of America. In later life he made regular trips to Switzer-
land to work with Wüstholz at ETH Zürich. It was there,
during a conference in honour of his 60th birthday, that
he gave an entertaining and typically candid speech about
his life, starting with his recollections of wartime London
and ending with his regrets about never marrying.
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