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In this article we discuss the work of Karen Uhlenbeck,
mainly from the 1980s, focused on variational problems
in differential geometry.

The calculus of variations goes back to the 18th century.
In the simplest setting we have a functional

𝐹(𝑢) = ∫Φ(𝑢,𝑢′)𝑑𝑥,
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defined on functions 𝑢 of one variable 𝑥. Then the condi-
tion that ℱ is stationary with respect to compactly
supported variations of 𝑢 is a second order differential
equation—the Euler–Lagrange equation associated to the
functional. One writes

𝛿ℱ = ∫𝛿𝑢 𝜏(𝑢) 𝑑𝑥,

where

𝜏(𝑢) = 𝜕Φ
𝜕𝑢 − 𝑑

𝑑𝑥
𝜕Φ
𝜕𝑢′ . (1)

The Euler–Lagrange equation is 𝜏(𝑢) = 0. Similarly
for vector-valued functions of a variable 𝑥 ∈ 𝐑𝑛. Depend-
ing on the context, the functions would be required to sat-
isfy suitable boundary conditions or, as in most of this ar-
ticle, might be defined on a compact manifold rather than
a domain in𝐑𝑛, and 𝑢might not exactly be a function but
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Figure 1. Finding a critical point with a minimax
sequence.

a more complicated differential geometric object such as a
map, metric, or connection. One interprets 𝜏(𝑢), defined
as in (1), as the derivative at 𝑢 of the functional ℱ on a
suitable infinite dimensional space 𝒳 and the solutions
of the Euler–Lagrange equation are critical points of ℱ.

A fundamental question is whether one can exploit the
variational structure to establish the existence of solutions
to Euler–Lagrange equations. This question came into fo-
cus at the beginning of the 20th century. Hilbert’s 22nd
problem from 1904 was:

Has not every regular variational problem a solution, pro-
vided certain assumptions regarding the given boundary condi-
tions are satisfied?

If the functional ℱ is bounded below one might hope
to find a solution of the Euler–Lagrange equation which
realises the minimum of ℱ on 𝒳. More generally, one
might hope that if𝒳 has a complicated topology then this
will force the existence ofmore critical points. For example,
if Δ is a homotopy class of maps from the 𝑝-sphere 𝑆𝑝

to 𝒳 one can hope to find a critical point via a minimax
sequence, minimising over maps 𝜙 ∈ Δ the maximum of
ℱ(𝜙(𝑣)) over points 𝑣 ∈ 𝑆𝑝.

In Hilbert’s time the only systematic results were in the
case of dimension 𝑛 = 1 and for linear problems, such
as the Dirichlet problem for the Laplace equation. The de-
velopment of a nonlinear theory in higher dimensions has
been the scene for huge advances over the past century and
provides the setting for much of Karen Uhlenbeck’s work.

Harmonic Maps in Dimension 2
We begin in dimension 1 where geodesics in a Riemann-
ian manifold are classical examples of solutions to a vari-
ational problem. Here we take 𝑁 to be a compact, con-
nected, Riemannianmanifold and fix two points𝑝,𝑞 in𝑁.
We take𝒳 to be the space of smooth paths𝛾 ∶ [0, 1] → 𝑁

with 𝛾(0) = 𝑝,𝛾(1) = 𝑞, and the energy functional

ℱ(𝛾) = ∫
1

0
|∇𝛾|2,

where the norm of the “velocity vector” ∇𝛾 is computed
using the Riemannian metric on 𝑁. The Euler–Lagrange
equation is the geodesic equation, in local co-ordinates,

𝛾″
𝑖 −∑

𝑗,𝑘
Γ𝑖
𝑗𝑘𝛾′

𝑗𝛾′
𝑘 = 0,

where the “Christoffel symbols” Γ𝑖
𝑗𝑘 are given by well-

known formulae in terms of the metric tensor and its
derivatives. In this case the variational picture works as
well as one could possibly wish. There is a geodesic from
𝑝 to 𝑞 minimising the energy. More generally one can use
minimax arguments and (at least if 𝑝 and 𝑞 are taken in
general position) the Morse theory asserts that the homol-
ogy of the path space 𝒳 can be computed from a chain
complex with generators corresponding to the geodesics
from 𝑝 to 𝑞. This can be used in both directions: facts
from algebraic topology about the homology of the path
space give existence results for geodesics, and, conversely,
knowledge of the geodesics can feed into algebraic topol-
ogy, as in Bott’s proof of his periodicity theorem.

The existence of a minimising geodesic between two
points can be proved in an elementaryway and the original
approach of Morse avoided the infinite dimensional path
space 𝒳, working instead with finite dimensional approx-
imations, but the infinite-dimensional picture gives the
best starting point for the discussion to follow. The basic
point is a compactness property: any sequence 𝛾1, 𝛾2,… in
𝒳 with bounded energy has a subsequence which converges in
𝐶0 to some continuous path from 𝑝 to 𝑞. In fact for a path
𝛾 ∈ 𝒳 and 0 ≤ 𝑡1 < 𝑡2 ≤ 1 we have

𝑑(𝛾(𝑡1), 𝛾(𝑡2)) ≤ ∫
𝑡2

𝑡1
|∇𝛾| ≤ ℱ(𝛾)1/2 |𝑡1 − 𝑡2|1/2,

where the last step uses the Cauchy–Schwartz inequality.
Thus a bound on the energy gives a 1

2 -Hölder bound on
𝛾 and the compactness property follows from the Ascoli-
Arzela theorem.

In the same vein as the compactness principle, one can
extend the energy functional ℱ to a completion 𝒳 of 𝒳
which is an infinite dimensional Hilbert manifold, and el-
ements of 𝒳 are still continuous (in fact 1

2 -Hölder con-
tinuous) paths in 𝑁. In this abstract setting, Palais and
Smale introduced a general “Condition C” for functionals
on Hilbert manifolds, which yields a straightforward vari-
ational theory. (This was extended to Banach manifolds
in early work of Uhlenbeck [24].) The drawback is that,
beyond the geodesic equations, most problems of interest
in differential geometry do not satisfy this Palais–Smale
condition, as illustrated by the case of harmonic maps.
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The harmonic map equations were first studied system-
atically by Eells and Sampson [5]. We now take 𝑀,𝑁
to be a pair of Riemannian manifolds (say compact) and
𝒳 = Maps(𝑀,𝑁) the space of smooth maps. The energy
of a map 𝑢 ∶ 𝑀 → 𝑁 is given by the same formula

ℱ(𝑢) = ∫
𝑀
|∇𝑢|2,

where at each point 𝑥 ∈ 𝑀 the quantity |∇𝑢| is the stan-
dard norm defined by the metrics on𝑇𝑀𝑥 and𝑇𝑁𝑢(𝑥). In
local co-ordinates the Euler Lagrange equations have the
form

Δ𝑀𝑢𝑖 −∑
𝑗𝑘

Γ𝑖
𝑗𝑘∇𝑢𝑗∇𝑢𝑘 = 0, (2)

where Δ𝑀 is the Laplacian on 𝑀. This is a quasi-linear
elliptic system, with a nonlinear term which is quadratic
in first derivatives. The equation is the natural common
generalisation of the geodesic equation in𝑁 and the linear
Laplace equation on 𝑀.

The key point now is that when dim 𝑀 > 1 the energy
functional does not have the same compactness property.
This is bound up with Sobolev inequalities and, most funda-
mentally, with the scaling behaviour of the functional. To
explain, in part, the latter consider varying the metric 𝑔𝑀
on 𝑀 by a conformal factor 𝜆. So 𝜆 is a strictly positive
function on 𝑀 and we have a new metric ̃𝑔𝑀 = 𝜆2𝑔𝑀.
Then one finds that the energy ̃𝐹 defined by this new met-
ric is

ℱ̃(𝑢) = ∫
𝑀
𝜆2−𝑛|∇𝑢|2,

where 𝑛 = dim𝑀. In particular if 𝑛 = 2 we have ℱ̃ = ℱ.
Now take 𝑀 = 𝑆2 with its standard round metric and 𝜙 ∶
𝑆2 → 𝑆2 a Möbius map. This is a conformal map and it
follows from the above that for any 𝑢 ∶ 𝑆2 → 𝑁 we have
ℱ(𝑢∘𝜙) = ℱ(𝑢). Since the space of Möbius maps is not
compact we can construct a sequence of maps 𝑢∘𝜙𝑖 with
the same energy but with no convergent subsequence.

We now recall the Sobolev inequalities. Let 𝑓 be a
smooth real valued function on 𝐑𝑛, supported in the unit
ball. We take polar co-ordinates (𝑟, 𝜃) in 𝐑𝑛, with 𝜃 ∈
𝑆𝑛−1. For any fixed 𝜃 we have

𝑓(0) = ∫
1

𝑟=0

𝜕𝑓
𝜕𝑟𝑑𝑟.

So, integrating over the sphere,

𝑓(0) = 1
𝜔𝑛

∫
𝑆𝑛−1

∫
1

𝑟=0

𝜕𝑓
𝜕𝑟𝑑𝑟𝑑𝜃,

where 𝜔𝑛 is the volume of 𝑆𝑛−1. Since the Euclidean vol-
ume form is 𝑑𝑛𝑥 = 𝑟𝑛−1𝑑𝑟𝑑𝜃 we can write this as

𝑓(0) = 1
𝜔𝑛

∫
𝐵𝑛

|𝑥|1−𝑛 𝜕𝑓
𝜕𝑟 𝑑𝑛𝑥.

The function 𝑥 ↦ |𝑥|1−𝑛 is in 𝐿𝑞 over the ball for any
𝑞 < 𝑛/𝑛−1. Let 𝑝 be the conjugate exponent, with 𝑝−1+
𝑞−1 = 1, so 𝑝 > 𝑛. Then Hölder’s inequality gives

|𝑓(0)| ≤ 𝐶𝑝‖∇𝑓‖𝐿𝑝

where 𝐶𝑝 is 𝜔−1
𝑛 times the 𝐿𝑞(𝐵𝑛) norm of 𝑥 ↦ |𝑥|1−𝑛.

The upshot is that for 𝑝 > 𝑛 there is a continuous em-
bedding of the Sobolev space 𝐿𝑝

1—obtained by completing
in the norm ‖∇𝑓‖𝐿𝑝—into the continuous functions on
the ball. In a similar fashion, if 𝑝 < 𝑛 there is a contin-
uous embedding 𝐿𝑝

1 → 𝐿𝑟 for the exponent range 𝑟 ≤
𝑛𝑝/(𝑛 − 𝑝), which is bound up with the isoperimetric
inequality in 𝐑𝑛. The arithmetic relating the exponents
and the dimension 𝑛 reflects the scaling behaviour of the
norms. If we define 𝑓𝜇(𝑥) = 𝑓(𝜇𝑥), for 𝜇 ≥ 1, then

‖𝑓𝜇‖𝐶0 = ‖𝑓‖𝐶0 ,
‖𝑓𝜇‖𝐿𝑟 = 𝜇−𝑛/𝑟‖𝑓‖𝐿𝑟 ,
‖𝑓𝜇‖𝐿𝑝

1
= 𝜇1−𝑛/𝑝‖𝑓‖𝐿𝑝

1
.

It follows immediately that there can be no continuous
embedding 𝐿𝑝

1 → 𝐶0 for 𝑝 < 𝑛 or 𝐿𝑝
1 → 𝐿𝑟 for 𝑟 >

𝑛𝑝/(𝑛 − 𝑝).
The salient part of this discussion for the harmonicmap

theory is that the embedding 𝐿𝑝
1 → 𝐶0 fails at the criti-

cal exponent 𝑝 = 𝑛. (To see this, consider the function
log log 𝑟−1.) Taking 𝑛 = 2 this means that the energy of
a map from a 2-manifold does not control the continuity
of the map and the whole picture in the 1-dimensional
case breaks down. This was the fundamental difficulty ad-
dressed in the landmark paper [12] of Sacks and Uhlen-
beckwhich showed that, with a deeper analysis, variational
arguments can still be used to give general existence re-
sults.

Rather thanworking directlywithminimising sequences,
Sacks and Uhlenbeck introduced perturbed functionals on
𝒳 = Maps(𝑀,𝑁) (with 𝑀 a compact 2-manifold):

ℱ𝛼(𝑢) = ∫
𝑀
(1 + |∇𝑢|2)𝛼.

For 𝛼 > 1 we are in the good Sobolev range, just as in the
geodesic problem. Fix a connected component 𝒳0 of 𝒳
(i.e. a homotopy class of maps from 𝑀 to 𝑁). For 𝛼 > 1
there is a smooth map 𝑢𝛼 realising the minimum of ℱ𝛼
on 𝒳0. This map 𝑢𝛼 satisfies the corresponding Euler–
Lagrange equation, which is an elliptic PDE given by a vari-
ant of (2). The strategy is to study the convergence of𝑢𝛼 as
𝛼 tends to 1. The main result can be outlined as follows.
To simplify notation, we understand that 𝛼 runs over a
suitable sequence decreasing to 1.

• There is a finite set 𝑆 ⊂ 𝑀 such that the 𝑢𝛼 con-
verge in 𝐶∞ over 𝑀\𝑆.

MARCH 2019 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 305



M N

U

3

2

2
3

1

1

Figure 2. Schematic representation of “bubbling.”

• The limit 𝑢 of the maps 𝑢𝛼 extends to a smooth
harmonic map from 𝑀 to 𝑁 (which could be a
constant map).

• If 𝑥 is a point in𝑆 such that the𝑢𝛼 do not converge
to 𝑢 over a neighbourhood of 𝑥 then there is a
non-trivial harmonic map 𝑣 ∶ 𝑆2 → 𝑁 such that
a suitable sequence of rescalings of the 𝑢𝛼 near 𝑥
converge to 𝑣.

In brief, the only way that the sequence 𝑢𝛼 may fail to
converge is by forming “bubbles,” in which small discs in
𝑀 are blown up into harmonic spheres in𝑁. We illustrate
the meaning of this bubbling through the example of ra-
tional maps of the 2-sphere. (See also the expository article
[11].) For distinct points 𝑧1,…𝑧𝑑 in 𝐂 and non-zero co-
efficients 𝑎𝑖 consider the map

𝑢(𝑧) =
𝑑
∑
𝑖=1

𝑎𝑖
𝑧 − 𝑧𝑖

,

which extends to a degree 𝑑 holomorphic map 𝑢 ∶ 𝑆2 →
𝑆2 with 𝑢(∞) = 0. These are in fact harmonic maps, with
the same energy 8𝜋𝑑. Take 𝑧1 = 0,𝑎1 = 𝜖. If we make
𝜖 tend to 0, with the other 𝑎𝑖 fixed, then away from 0 the
maps converge to the degree (𝑑−1)map∑𝑑

2 𝑎𝑖(𝑧−𝑧𝑖)−1.
On the other hand if we rescale about 0 by setting

𝑢̃(𝑧) = 𝑢(𝜖𝑧) = 1
𝑧 +

𝑑
∑
𝑖=2

𝑎𝑖
𝜖𝑧 − 𝑧𝑖

the rescaled maps converge (on compact subsets of 𝐂) to
the degree 1 map

𝑣(𝑧) = 1
𝑧 − 𝑐

with 𝑐 = ∑𝑑
2 𝑎𝑖/𝑧𝑖.

A key step in the Sacks andUhlenbeck analysis is a “small
energy” statement (related to earlier results ofMorrey). This
says that there is some 𝜖 > 0 such that if the energy of a
map 𝑢𝛼 on a small disc 𝐷 ⊂ 𝑁 is less than 𝜖 then there

are uniform estimates of all derivatives of 𝑢𝛼 over the half-
sized disc. The convergence result then follows from a cov-
ering argument. Roughly speaking, if the energy of the
map on 𝑀 is at most 𝐸 then there can be at most a fixed
number 𝐸/𝜖 of small discs on which the map is not con-
trolled. The crucial point is that 𝜖 does not depend on the
size of the disc, due to the scale invariance of the energy.
To sketch the proof of the small energy result, consider a
simpler model equation

Δ𝑓 = |∇𝑓|2, (3)

for a function 𝑓 on the unit disc in 𝐂. Linear elliptic the-
ory, applied to the Laplace operator, gives estimates of the
schematic form

‖∇𝑓‖𝐿𝑞
1
≤ 𝐶‖Δ𝑓‖𝐿𝑞 + LOT,

where LOT stands for “lower order terms” in which (for
this sketch) we include the fact that one will have to restrict
to an interior region. Take for example 𝑞 = 4/3. Then
substituting into the equation (3) we have

‖∇𝑓‖𝐿4/3
1

≤ 𝐶‖|∇𝑓|2‖𝐿4/3 + LOT ≤ 𝐶‖∇𝑓‖2
𝐿8/3 + LOT.

Now in dimension2wehave a Sobolev embedding𝐿4/3
1 →

𝐿4 which yields

‖∇𝑓‖𝐿4 ≤ 𝐶‖∇𝑓‖2
𝐿8/3 + LOT.

On the other hand, Hölders inequality gives the interpola-
tion

‖∇𝑓‖𝐿8/3 ≤ ‖∇𝑓‖1/2
𝐿2 ‖∇𝑓‖1/2

𝐿4 .
So, putting everything together, one has

‖∇𝑓‖𝐿4 ≤ 𝐶‖∇𝑓‖𝐿4‖∇𝑓‖𝐿2 + LOT.
If ‖∇𝑓‖𝐿2 ≤ 1/2𝐶 we can re-arrange this to get

‖∇𝑓‖𝐿4 ≤ LOT.
In other words, in the small energy regime (with √𝜖 =
1/2𝐶) we can bootstrap using the equation to gain an es-
timate on a slightly stronger norm (𝐿4 rather than 𝐿2) and
one continues in similar fashion to get interior estimates
on all higher derivatives.

This breakthrough work of Sacks and Uhlenbeck ties in
with many other developments from the same era, some
of which we discuss in the next section and some of which
we mention briefly here.

• Inminimal submanifold theory: when𝑀 is a2-sphere
the image of a harmonic map is a minimal surface
in𝑁 (ormore precisely a branched immersed sub-
manifold). In this way, Sacks and Uhlenbeck ob-
tained an important existence result for minimal
surfaces.

• In symplectic topology the pseudoholomorphic
curves, introduced by Gromov in 1986, are exam-
ples of harmonic maps and a variant of the Sacks–
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Uhlenbeck theory is the foundation for all the en-
suing developments (see, for example, [7]).

• In PDE theory other “critical exponent” variational
problems, in which similar bubbling phenomena
arise, were studied intensively (see for example
the work of Brezis and Nirenberg [4]).

• In Riemannian geometry the Yamabe problem of
finding a metric of constant scalar curvature in a
given conformal class (on a manifold of dimen-
sion 3 or more) is a critical exponent variational
problem for the Einstein-Hilbert functional (the
integral of the scalar curvature), restricted to met-
rics of volume 1. Schoen proved the existence of
a minimiser, completing the solution of the Yam-
abe problem, using a deep analysis to rule out the
relevant bubbling [14].

A beautiful application of the Sacks–Uhlenbeck theory
was obtained in 1988 byMicallef andMoore [8]. The argu-
ment is in the spirit of classical applications of geodesics
in Riemannian geometry. Micallef and Moore considered
a curvature condition on a compact Riemannian manifold
𝑁 (of dimension at least 4) of having “positive curvature
on isotropic 2-planes.” They proved that if 𝑁 satisfies this
condition and is simply connected then it is a homotopy
sphere (and thus, by the solution of the Poincaré conjec-
ture, is homeomorphic to a sphere). The basic point is
that a non-trivial homotopy class in 𝜋𝑘(𝑁) gives a non-
trivial element of 𝜋𝑘−2(𝒳), where 𝒳 = Maps(𝑆2,𝑁),
which gives a starting point for a minimax argument. If
𝑁 is not a homotopy sphere then by standard algebraic
topology there is some 𝑘 with 2 ≤ 𝑘 ≤ 1

2dim𝑁 such
that 𝜋𝑘(𝑁) ≠ 0, which implies that 𝜋𝑘−2(𝒳) is non-
trivial. By developingmini-max arguments with the Sacks–
Uhlenbeck theory, using the perturbed energy functional,
Micallef and Moore were able to show that this leads to a
non-trivial harmonic map 𝑢 ∶ 𝑆2 → 𝑁 of index at most
𝑘 − 2. (Here the index is the dimension of the space on
which the second variation is strictly negative.) On the
other hand the Levi–Civita connection of𝑁 defines a holo-
morphic structure on the pull-back 𝑢∗(𝑇𝑁 ⊗ 𝐂) of the
complexified tangent bundle. By combining results about
holomorphic bundles over 𝑆2 and aWeitzenbock formula,
in which the curvature tensor of 𝑁 enters, they show that
the index must be at least 1

2dim𝑁 − 3
2 and thus derive a

contradiction.
If the sectional curvature of 𝑁 is “1

4 -pinched” (i.e. lies

between 1
4 and 1 everywhere) then 𝑁 has positive curva-

ture on isotropic 2-planes. Thus the Micallef and Moore
result implies the classical sphere theorem of Berger and
Klingenberg, whose proof was quite different. In turn,
much more recently, Brendle and Schoen [3] proved that a

(simply connected) manifold satisfying this isotropic cur-
vature condition is in fact diffeomorphic to a sphere. Their
proof was again quite different, using Ricci flow.

Gauge Theory in Dimension 4
From the late 1970s, mathematics was enriched by ques-
tions inspired by physics, involving gauge fields and the
Yang-Mills equations. These developments were
many-faceted and here we will focus on aspects related to
variational theory. In this set-up one considers a fixed Rie-
mannian manifold 𝑀 and a 𝐺-bundle 𝑃 → 𝑀 where 𝐺
is a compact Lie group. The distinctive feature, compared
to most previous work in differential geometry, is that 𝑃 is
an auxiliary bundle not directly tied to the geometry of 𝑀.
The basic objects of study are connections on 𝑃. In a local
trivialisation 𝜏 of 𝑃 a connection 𝐴 is given by a Lie(𝐺)-
valued 1-form 𝐴𝜏. For simplicity we take 𝐺 to be a matrix
group, so 𝐴𝜏 is a matrix of 1-forms. The fundamental in-
variant of a connection is its curvature 𝐹(𝐴) which in the
local trivialisation is given by the formula

𝐹𝜏 = 𝑑𝐴𝜏 +𝐴𝜏 ∧𝐴𝜏.
The Yang-Mills functional is

ℱ(𝐴) = ∫
𝑀
|𝐹(𝐴)|2,

and the Euler–Lagrange equation is 𝑑∗
𝐴𝐹 = 0 where 𝑑∗

𝐴 is
an extension of the usual operator 𝑑∗ from 2-forms to 1-
forms, defined using 𝐴. This Yang-Mills equation is a non-
linear generalisation ofMaxwell’s equations of electromag-
netism (which one obtains taking 𝐺 = 𝑈(1) and passing
to Lorentzian signature).

In the early 1980s, Uhlenbeck proved fundamental an-
alytical results which underpin most subsequent work in
this area. Themain case of interest is when themanifold𝑀
has dimension 4 and the problem is then of critical expo-
nent type. In this dimension the Yang-Mills functional is
conformally invariant and there are many analogies with
the harmonic maps of surfaces discussed above. A new
aspect involves gauge invariance, which does not have an
analogy in the harmonic maps setting. That is, the infinite
dimensional group 𝒢 of automorphisms of the bundle 𝑃
acts on the space 𝒜 of connections, preserving the Yang-
Mills functional, so the natural setting for the variational
theory is the quotient space 𝒜/𝒢. Locally we are free to
change a trivialisation 𝜏0 by the action of a𝐺-valued func-
tion 𝑔, which will change the local representation of the
connection to

𝐴𝑔𝜏0 = 𝑔𝑑(𝑔−1) + 𝑔𝐴𝜏0𝑔−1.
While this action of the gauge group 𝒢 may seem un-

usual, within the context of PDEs, it represents a funda-
mental phenomenon in differential geometry. In study-
ing Riemannian metrics, or any other kind of structure, on
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a manifold one has to take account of the action of the
infinite-dimensional group of diffeomorphisms: for exam-
ple the round metric on the sphere is only unique up to
this action. Similarly, the explicit local representation of a
metric depends on a choice of local co-ordinates. In fact
diffeomorphism groups are much more complicated than
the gauge group 𝒢. In another direction one can have in
mind the case of electromagnetism, where the connection
1-form 𝐴𝜏 is equivalent to the classical electric and mag-
netic potentials on space-time. The 𝒢-action corresponds
to the fact that these potentials are not unique.

Two papers of Uhlenbeck [25], [26] addressed both of
these aspects (critical exponent and gauge choice). The pa-
per [25] bears on the choice of an “optimal” local trivialisa-
tion𝜏 of the bundle over a ball 𝐵 ⊂ 𝑀 given a connection
𝐴. The criterion that Uhlenbeck considers is the Coulomb
gauge fixing condition: 𝑑∗𝐴𝜏 = 0, supplemented with
the boundary condition that the pairing of 𝐴𝜏 with the
normal vector vanishes. Taking 𝜏 = 𝑔𝜏0, for some arbi-
trary trivialisation 𝜏0, this becomes an equation for the 𝐺-
valued function 𝑔 which is a variant of the harmonic map
equation, with Neumann boundary conditions. In fact the
equation is the Euler–Lagrange equation associated to the
functional ‖𝐴𝜏‖𝐿2 , on local trivialisations 𝜏. The Yang-
Mills equations in such a Coulomb gauge form an elliptic
system. (Following the remarks in the previous paragraph;
an analogous discussion for Riemannian metrics involves
harmonic local co-ordinates, in which the Einstein equa-
tions, for example, form an elliptic system.)

The result proved by Uhlenbeck in [25] is of “small en-
ergy” type. Specialising to dimension 4 for simplicity, she
shows that there is an 𝜖 > 0 and a constant 𝐶 such that if
‖𝐹‖𝐿2(𝐵) < 𝜖 there is a Coulomb gauge 𝜏 over 𝐵 in which

‖∇𝐴𝜏‖𝐿2 + ‖𝐴𝜏‖𝐿4 ≤ 𝐶‖𝐹‖𝐿2 .

The strategy of proof uses the continuity method, applied
to the family of connections given by restricting to smaller
balls with the same centre, and the key point is to obtain a
priori estimates in this family. The PDE arguments deriving
these estimates have some similarity with those sketched
in Section “Harmonic maps in dimension 2” above. An
important subtlety arises from the critical nature of the
Sobolev exponents involved. If𝜏 = 𝑔𝜏0 then an𝐿2 bound
on ∇𝐴𝜏 gives an 𝐿2 bound on the second derivative of 𝑔
but in dimension 4 this is the borderline exponent where
we do not get control over the continuity of 𝑔. That makes
the nonlinear operations such as 𝑔 ↦ 𝑔−1 problematic.
Uhlenbeck overcomes this problem by working with 𝐿𝑝

for 𝑝 > 2 and using a limiting argument.
In the companion paper [26], Uhlenbeck proves a

renowned “removal of singularities” result. The statement
is that a solution 𝐴 of the Yang-Mills equations over the

punctured ball 𝐵4 \{0} with finite energy (i.e. with curva-
ture 𝐹(𝐴) in 𝐿2) extends smoothly over 0 in a suitable lo-
cal trivialisation. One important application of this is that
finite-energy Yang-Mills connections over𝐑4 extend to the
conformal compactification 𝑆4. We will only attempt to
give the flavour of the proof. Given our finite-energy solu-
tion 𝐴 over the punctured ball let

𝑓(𝑟) = ∫
|𝑥|<𝑟

|𝐹(𝐴)|2,

for 𝑟 < 1. Then the derivative is

𝑑𝑓
𝑑𝑟 = ∫

|𝑥|=𝑟
|𝐹(𝐴)|2.

The strategy is to express 𝑓(𝑟) also as a boundary integral,
plus lower order terms. To give a hint of this, consider
the case of an abelian group𝐺 = 𝑈(1), so the connection
form𝐴𝜏 is an ordinary1-form, the curvature is simply𝐹 =
𝑑𝐴𝜏, and the Yang-Mills equation is 𝑑∗𝐹 = 0. Fix small
𝜖 < 𝑟 and work on the annular region𝑊 where 𝜖 < |𝑥| <
𝑟. We can integrate by parts to write

∫
𝑊
|𝐹|2 = ∫

𝑊
⟨𝑑𝐴𝜏, 𝐹⟩ = ∫

𝑊
⟨𝐴𝜏, 𝑑∗𝐹⟩+∫

𝜕𝑊
𝐴𝜏∧∗𝐹.

Since 𝑑∗𝐹 = 0 the first term on the right hand side van-
ishes. If one can show that the contribution from the inner
boundary |𝑥| = 𝜖 tends to 0 with 𝜖 then one concludes
that

𝑓(𝑟) = ∫
|𝑥|=𝑟

𝐴𝜏 ∧∗𝐹.

In the nonabelian case the same discussion applies up to
the addition of lower-order terms, involving𝐴𝜏∧𝐴𝜏. The
strategy is then to obtain a differential inequality of the
shape

𝑓(𝑟) ≤ 1
4𝑟

𝑑𝑓
𝑑𝑟 + LOT, (4)

by comparing the boundary terms over the 3-sphere. This
differential inequality integrates to give 𝑓(𝑟) ≤ 𝐶𝑟4 and
from there it is relatively straightforward to obtain an 𝐿∞

bound on the curvature and to see that the connection can
be extended over 0. The factor 1

4 in (4) is obtained from
an inequality over the 3-sphere. That is, any closed 2-form
𝜔 on 𝑆3 can be expressed as 𝜔 = 𝑑𝑎 where

‖𝑎‖2
𝐿2(𝑆3) ≤

1
4‖𝜔‖2

𝐿2(𝑆3).
The main work in implementing this strategy is to con-
struct suitable gauges over annuli in which the lower order,
nonlinear terms 𝐴𝜏 ∧𝐴𝜏 are controlled.

These results of Uhlenbeck lead to a Yang-Mills analogue
of the Sacks–Uhlenbeck picture discussed in the previous
section. This was not developed explicitly in Uhlenbeck’s
1983 papers [25], [26] but results along those lines were
obtained by her doctoral student S. Sedlacek [16]. Let 𝑐
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be the infimum of the Yang-Mills functional on connec-
tions on 𝑃 → 𝑋, where 𝑋 is a compact 4-manifold. Let
𝐴𝑖 be a minimising sequence. Then there is a (possibly
different) 𝐺-bundle ̃𝑃 → 𝑋, a Yang-Mills connection 𝐴∞
on ̃𝑃, and a finite set 𝑆 ⊂ 𝑋 such that, after perhaps pass-
ing to a subsequence 𝑖′, the𝐴𝑖′ converge to𝐴∞ over𝑋\𝑆.
(More precisely, this convergence is in 𝐿2

1,loc and implic-
itly involves a sequence of bundle isomorphisms of 𝑃 and
̃𝑃 over 𝑋\𝑆.) If 𝑥 is a point in 𝑆 such that the 𝐴𝑖′ do

not converge to 𝐴∞ over a neighbourhood of 𝑥 then one
obtains a non-trivial solution to the Yang-Mills equations
over 𝑆4 by a rescaling procedure similar to that in the har-
monic map case. Similar statements apply to sequences of
solutions to the Yang-Mills equations over 𝑋 and in par-
ticular to sequences of Yang-Mills “instantons.” These spe-
cial solutions solve the first order equation 𝐹 = ±∗𝐹 and
are closely analogous to the pseudoholomorphic curves in
the harmonic map setting. Uhlenbeck’s analytical results
underpinned the applications of instanton moduli spaces
to 4-manifold topology which were developed vigorously
throughout the 1980s and 1990s—just as for pseudoholo-
morphic curves and symplectic topology. But we will con-
centrate here on the variational aspects.

For simplicity fix the group 𝐺 = 𝑆𝑈(2); the 𝑆𝑈(2)-
bundles 𝑃 over 𝑋 are classified by an integer 𝑘 = 𝑐2(𝑃)
and for each 𝑘 we have a moduli space ℳ𝑘 (possibly
empty) of instantons (where the sign in 𝐹 = ± ∗ 𝐹 de-
pends on the sign of 𝑘). Recall that the natural domain for
the Yang-Mills functional is the infinite-dimensional quo-
tient space 𝒳𝑘 = 𝒜𝑘/𝒢𝑘 of connections modulo equiv-
alence. The moduli space ℳ𝑘 is a subset of 𝒳𝑘 and (if
non-empty) realises the absolute minimum of the Yang-
Mills functional on 𝒳𝑘. In this general setting one could,
optimistically, hope for a variational theory which would
relate:

(1) The topology of the ambient space 𝒳𝑘,
(2) The topology of ℳ𝑘,
(3) The non-minimal critical points: i.e. the solutions

of the Yang-Mills equation which are not instan-
tons.

A serious technical complication here is that the group 𝒢𝑘
does not usually act freely on 𝒜𝑘, so the quotient space
is not a manifold. But we will not go into that further
here and just say that there are suitable homology groups
𝐻𝑖(𝒳𝑘), which can be studied by standard algebraic topol-
ogy techniques and which have a rich and interesting struc-
ture.

Much of the work in this area in the late 1980s was
driven by two specific questions.

• The Atiyah-Jones conjecture [1]. They considered
the manifold 𝑀 = 𝑆4 where (roughly speaking)
the space𝒳𝑘 has the homotopy type of the degree

𝑘 mapping space Maps𝑘(𝑆3, 𝑆3), which is in fact
independent of 𝑘. The conjecture was that the in-
clusion ℳ𝑘 → 𝒳𝑘 induces an isomorphism on
homology groups 𝐻𝑖 for 𝑖 in a range 𝑖 ≤ 𝑖(𝑘),
where 𝑖(𝑘) tends to infinity with 𝑘. One motiva-
tion for this idea came from results of Segal in the
analogous case of rational maps [17].

• Again focusing on 𝑀 = 𝑆4: are there any non-
minimal solutions of the Yang-Mills equations?

A series of papers of Taubes [20], [22] developed a varia-
tional approach to the Atiyah-Jones conjecture (and
generalisations to other 4-manifolds). In [20] Taubes
established a lower bound on the index of any non-
minimal solution over the 4-sphere. If the problem sat-
isfied the Palais–Smale condition this index bound would
imply the Atiyah-Jones conjecture (with 𝑖(𝑘) roughly 2𝑘)
but the whole point is that this condition is not satisfied,
due to the bubbling phenomenon formini-max sequences.
Nevertheless, Taubes was able to obtain many partial re-
sults through a detailed analysis of this bubbling. The
Atiyah-Jones conjecture was confirmed in 1993 by Boyer,
Hurtubise, Mann, and Milgram [2] but their proof worked
with geometric constructions of the instanton moduli
spaces, rather than variational arguments.

The second question was answered, using variational
methods, by Sibner, Sibner, and Uhlenbeck in 1989 [18],
showing that indeed such solutions do exist. In their proof
they considered a standard𝑆1 action on𝑆4 with fixed point
set a 2-sphere, an 𝑆1-equivariant bundle 𝑃 over 𝑆4 and
𝑆1-invariant connections on 𝑃. This invariance forces the
“bubbling points” arising in variational arguments to lie
on the 2-sphere 𝑆2 ⊂ 𝑆4 and there is a dimensional re-
duction of the problem to “monopoles” in 3-dimensions
which has independent interest.

A connection over 𝐑4 which is invariant under the ac-
tion of translations in one direction can be encoded as a
pair (𝐴,𝜙) of a connection 𝐴 over 𝐑3 and an additional
Higgs field 𝜙 which is a section of the adjoint vector bun-
dle ad𝑃whose fibres are copies of Lie(𝐺). The Yang-Mills
functional induces a Yang-Mills-Higgs functional

ℱ(𝐴,𝜙) = ∫
𝐑3

|𝐹(𝐴)|2 + |∇𝐴𝜙|2

on these pairs over 𝐑3. One also fixes an asymptotic con-
dition that |𝜙| tends to 1 at ∞ in 𝐑3. In 3 dimensions
we are below the critical dimension for the functional, but
the noncompactness of 𝐑3 prevents a straightforward ver-
ification of the Palais–Smale condition. Nonetheless, in a
series of papers [19], [21] Taubes developed a far-reaching
variational theory in this setting. By a detailed analysis,
Taubes showed that, roughly speaking, aminimax sequence
can always be chosen to have energy density concentrated
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in a fixed large ball in 𝐑3 and thus obtained the neces-
sary convergence results. In particular, using this analysis,
Taubes established the existence of non-minimal critical
points for the functional ℱ(𝐴,𝜙).

The critical points of the Yang-Mills-Higgs functional on
𝐑3 yield Yang-Mills solutions over 𝐑4, but these do not
have finite energy. However the same ideas can be applied
to the 𝑆1-action. The quotient of 𝑆4 \𝑆2 by the 𝑆1-action
can naturally be identified with the hyperbolic 3-space𝐻3,
and 𝑆1-invariant connections correspond to pairs (𝐴,𝜙)
over𝐻3. There is a crucial parameter 𝐿 in the theory which
from one point of view is the weight of the 𝑆1 action on
the fibres of 𝑃 over 𝑆2. From another point of view the
curvature of the hyperbolic space, after suitable normali-
sation, is −𝐿−2. The fixed set 𝑆2 can be identified with
the sphere at infinity of hyperbolic space and bubbling of
connections over a point in 𝑆2 ⊂ 𝑆4 corresponds, in the
Yang-Mills-Higgs picture, to some contribution to the en-
ergy density of (𝐴,𝜙) moving off to the corresponding
point at infinity.

The key idea of Sibner, Sibner, and Uhlenbeck was to
make the parameter 𝐿 very large. This means that the cur-
vature of the hyperbolic space is very small and, on sets of
fixed diameter, the hyperbolic space is well-approximated
by 𝐑3. Then they show that Taubes’ arguments on 𝐑3 go
over to this setting and are able to produce the desired
non-minimal solution of the Yang-Mills equations over𝑆4.
Later, imposingmore symmetry, other solutionswere found
using comparatively elementary arguments [13], but the
approach of Taubes, Sibner, Sibner, and Uhlenbeck is a
paradigmof theway that variational arguments can be used
“beyond Palais–Smale,” via a delicate analysis of the be-
haviour of minimax sequences.

We conclude this section with a short digression from
the main theme of this article. This brings in other rela-
tions between harmonic mappings of surfaces and
4-dimensional gauge theory, and touches on another very
important line of work by Karen Uhlenbeck, represented
by papers such as [27], [28]. In this setting the target space
𝑁 is a symmetric space and the emphasis is on explicit so-
lutions and connectionswith integrable systems. There is a
huge literature on this subject, stretching back to work of
Calabi and Chern in the 1960s, and distantly connected
with the Weierstrass representation of minimal surfaces in
𝐑3. From around 1980 there were many contributions
from theoretical physicists and any kind of proper treat-
ment would require a separate article, so we just include a
few remarks here.

As we outlined above, the dimension reduction of Yang-
Mills theory on 𝐑4 obtained by imposing
translation-invariance in one variable leads to equations
for a pair (𝐴,𝜙) on 𝐑3. Now reduce further by imposing

translation-invariance in two directions. More precisely,
write 𝐑4 = 𝐑2

1 ×𝐑2
2, fix a simply-connected domain Ω ⊂

𝐑2
1, and consider connections on a bundle over Ω × 𝐑2

2
which are invariant under translations in 𝐑2

2. These corre-
spond to pairs (𝐴,Φ)where𝐴 is a connection on a bundle
𝑃 over Ω and Φ can be viewed as a 1-form on Ω with val-
ues in the bundle ad𝑃. Now 𝐴+ 𝑖Φ is a connection over
Ω for a bundle with structure group the complexification
𝐺𝑐: for example if 𝐺 = 𝑈(𝑟) the complexified group is
𝐺𝑐 = 𝐺𝐿(𝑟,𝐂). The Yang-Mills instanton equations on
𝐑4 imply that𝐴+𝑖Φ is a flat connection. By the fundamen-
tal property of curvature, sinceΩ is simply-connected, this
flat connection can be trivialised. The original data (𝐴,Φ)
is encoded in the reduction of the trivial 𝐺𝑐-bundle to the
subgroup 𝐺, which amounts to a map 𝑢 from Ω to the
non-compact symmetric space 𝐺𝑐/𝐺. For example, when
𝐺 = 𝑈(𝑟) the extra data needed to recover (𝐴,Φ) is a Her-
mitian metric on the fibres of the complex vector bundle,
and 𝐺𝐿(𝑟,𝐂)/𝑈(𝑟) is the space of Hermitian metrics on
𝐂𝑟. The the remaining part of the instanton equations in
four dimensions is precisely the harmonic map equation
for 𝑢. This is one starting point for Hitchin’s theory of “sta-
ble pairs” over compact Riemann surfaces [6].

One is more interested in harmonic maps to compact
symmetric spaces and, asUhlenbeck explained in [28], this
can be achieved by a modification of the set-up above. She
takes 𝐑4 with an indefinite quadratic form of signature
(2, 2) and a splitting 𝐑4 = 𝐑2

1 × 𝐑2
2 into positive and

negative subspaces. Then the invariant instantons corre-
spond to harmonicmaps fromΩ to the compact Lie group
𝐺. Other symmetric spaces can be realised as totally ge-
odesic submanifolds in the Lie group, for example com-
plex Grassmann manifolds in𝑈(𝑟), and the theory can be
specialised to suit. This builds a bridge between the “inte-
grable” nature of the 2-dimensional harmonic map equa-
tions and the Penrose-Ward twistor description of Yang-
Mills instantons over 𝐑4, although as we have indicated
abovemuch of thework on the former predates twistor the-
ory. In her highly influential paper [28], Uhlenbeck found
an action of the loop group on the space of harmonicmaps
fromΩ to𝐺, introduced an integer invariant “uniton num-
ber,” and obtained a complete description of all harmonic
maps from the Riemann sphere to 𝐺.

Higher Dimensions
In a variational theory with a critical dimension 𝜈 certain
characteristic features appear when studying questions in
dimensions greater than 𝜈. In the harmonic mapping the-
ory, for maps 𝑢 ∶ 𝑀 → 𝑁, the dimension in question is
𝑛 = dim 𝑀 and, as we saw above, the critical dimension
is 𝜈 = 2. A breakthrough in the higher dimensional the-
ory was obtained by Schoen and Uhlenbeck in [12]. Sup-
pose for simplicity that 𝑁 is isometrically embedded in
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some Euclidean space 𝐑𝑘 and define 𝐿2
1(𝑀,𝑁) to be the

set of 𝐿2
1 functions on 𝑀 with values in the vector space

𝐑𝑘 which map to 𝑁 almost everywhere on 𝑀. The en-
ergy functionalℱ is defined on 𝐿2

1(𝑀,𝑁) and Schoen and
Uhlenbeck considered an energy minimising map 𝑢 ∈
𝐿2
1(𝑀,𝑁). The main points of the theory are:

• 𝑢 is smooth outside a singular set Σ ⊂ 𝑀 which
has Hausdorff dimension at most 𝑛− 3;

• at each point 𝑥 in the singular set Σ there is a tan-
gent map to 𝑢.

The second item means that there is a sequence of real
numbers 𝜎𝑖 → 0 such that the rescaled maps

𝑢𝑖(𝜉) = 𝑢(exp𝑥(𝜎𝑖𝜉))
converge to a map 𝑣 ∶ 𝐑𝑛 → 𝑁 which is radially invariant,
and hence corresponds to a map from the the sphere 𝑆𝑛−1

to𝑁. (Here exp𝑥 is the Riemannian exponential map and
we have chosen a frame to identify 𝑇𝑀𝑥 with 𝐑𝑛.)

To relate this to the case 𝑛 = 2 discussed above, the
general picture is that a ℱ-minimising sequence in Maps
(𝑀,𝑁) can be taken to converge outside a bubbling set of
dimension at most 𝑛− 2 and the limit extends smoothly
over the (𝑛−2)-dimensional part of the bubbling set. The
new feature in higher dimensions is that the limit can have
a singular set of codimension 3 or more.

Two fundamental facts which underpin these results are
energy monotonicity and 𝜖-regularity. To explain the first,
consider a smooth harmonic map 𝑈 ∶ 𝐵𝑛 → 𝑁, where
𝐵𝑛 is the unit ball in 𝐑𝑛. For 𝑟 < 1 set

𝐸(𝑟) = 1
𝑟𝑛−2 ∫

|𝑥|<𝑟
|∇𝑈|2.

Then one has an identity, for 𝑟1 < 𝑟2:

𝐸(𝑟2) − 𝐸(𝑟1) = 2∫
𝑟1<|𝑥|<𝑟2

|𝑥|2−𝑛|∇𝑟𝑈|2, (5)

where ∇𝑟 is the radial component of the derivative. In
particular, 𝐸 is an increasing function of 𝑟. The point of
this is that 𝐸(𝑟) is a scale-invariant quantity. If we de-
fine 𝑈𝑟(𝑥) = 𝑈(𝑟𝑥) then 𝐸(𝑟) is the energy of the map
𝑈𝑟 on the unit ball. The monotonicity property means
that 𝑈 “looks better” on a small scale, in the sense of this
rescaled energy. The identity (5) follows from a very gen-
eral argument, applying the stationary condition to the in-
finitesimal variation of 𝑈 given by radial dilation. (One
way of expressing this is through the theory of the stress-
energy tensor.) Note that equality 𝐸(𝑟2) = 𝐸(𝑟1) holds
if and only if 𝑈 is radially-invariant in the corresponding
annulus. This is what ultimately leads to the existence of
radially-invariant tangent maps.

The monotonicity identity is a feature of maps from𝐑𝑛,
but a similar result holds for small balls in a general Rie-
mannian 𝑛-manifold 𝑀. For 𝑥 ∈ 𝑀 and small 𝑟 > 0 we

define

𝐸𝑥(𝑟) =
1

𝑟𝑛−2 ∫
𝐵𝑥(𝑟)

|∇𝑈|2,

where 𝐵𝑥(𝑟) is the 𝑟-ball about 𝑥. Then if 𝑈 is a smooth
harmonic map and 𝑥 is fixed the function 𝐸𝑥(𝑟) is increas-
ing in 𝑟, up to harmless lower-order terms.

The 𝜖-regularity theoremof Schoen andUhlenbeck states
that there is an 𝜖 > 0 such that if 𝑢 is an energy minimiser
then 𝑢 is smooth in a neighbourhood of 𝑥 if and only if
𝐸𝑥(𝑟) < 𝜖 for some 𝑟. An easier, related result is that if
𝑢 is known to be smooth then once 𝐸𝑥(𝑟) < 𝜖 one has a
priori estimates (depending on 𝑟) on all derivatives in the
interior ball 𝐵𝑥(𝑟/2). The extension to general minimis-
ingmaps is one of themain technical difficulties overcome
by Schoen and Uhlenbeck.

We turn now to corresponding developments in gauge
theory, where the critical dimension 𝜈 is 4. A prominent
achievement of Uhlenbeck in this direction is her work
with Yau on the existence of Hermitian-Yang-Mills connec-
tions [29]. The setting here involves a rank 𝑟 holomorphic
vector bundle 𝐸 over a compact complex manifold𝑀with
a Kähler metric. Any choice of Hermitian metric ℎ on the
fibres of𝐸 defines a principle𝑈(𝑟) bundle of orthonormal
frames in 𝐸 and a basic lemma in complex differential ge-
ometry asserts that there is a preferred connection on this
bundle, compatible with the holomorphic structure. The
curvature 𝐹 = 𝐹(ℎ) of this connection is a bundle-valued
2-form of type (1, 1)with respect to the complex structure,
andwewriteΛ𝐹 for the inner product with the (1, 1) form
defined by the Kähler metric. Then Λ𝐹 is a section of the
bundle of endomorphisms of 𝐸. The Hermitian-Yang-Mills
equation is a constant multiple of the identity:

Λ𝐹 = 𝜅1𝐸

(where the constant 𝜅 is determined by topology). As the
name suggests, these are special solutions of the Yang-Mills
equations. The result proved by Uhlenbeck and Yau is
that a “stable” holomorphic vector bundle admits such a
Hermitian-Yang-Mills connection. Here stability is a nu-
merical condition on holomorphic sub-bundles, or more
generally sub-sheaves, of 𝐸 which was introduced by alge-
braic geometers studying moduli theory of holomorphic
bundles. The result of Uhlenbeck and Yau confirmed con-
jectures made a few years before by Kobayashi andHitchin.
These extend older results of Narasimhan and Seshadri, for
bundles over Riemann surfaces, and fit into a large devel-
opment over the past 40 years, connecting various stability
conditions in algebraic geometry with differential geome-
try. We will not say more about this background here but
focus on the proof of Uhlenbeck and Yau.

The problem is to solve the equation Λ𝐹(ℎ) = 𝜅1𝐸
for a Hermitian metric ℎ on 𝐸. This boils down to a sec-
ond order, nonlinear, partial differential equation for ℎ.
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While this problemdoes not fit directly into the variational
framework we have emphasised in this article, the same
compactness considerations apply. Uhlenbeck and Yau
use a continuity method, extending to a 1-parameter fam-
ily of equations for 𝑡 ∈ [0, 1] which we write schemati-
cally as Λ𝐹(ℎ𝑡) = 𝐾𝑡, where 𝐾𝑡 is prescribed and 𝐾1 =
𝜅1𝐸. They set this up so that there is a solution ℎ0 for
𝑡 = 0 and the set 𝑇 ⊂ [0, 1] for which a solution ℎ𝑡 ex-
ists is open, by an application of the implicit function the-
orem. The essential problem is to prove that if 𝐸 is a stable
holomorphic bundle then 𝑇 is closed, hence equal to the
whole of [0, 1] and in particular there is a Hermitian-Yang-
Mills connection ℎ1.

The paper of Uhlenbeck and Yau gave two independent
treatments of the core problem, one emphasising complex
analysis and the other gauge theory. We will concentrate
here on the latter. For a sequence 𝑡(𝑖) ∈ 𝑇 we have con-
nections 𝐴𝑖 defined by the hermitian metrics ℎ𝑡(𝑖) and the
question is whether one can take a limit of the 𝐴𝑖. The de-
formation of the equations by the term 𝐾𝑡 is rather harm-
less here so the situation is essentially the same as if the
𝐴𝑖 were Yang-Mills connections. In addition, an integral
identity usingChern-Weil theory shows that the Yang-Mills
energy ‖𝐹(𝐴𝑖)‖2

𝐿2 is bounded. Then Uhlenbeck and Yau
introduced a small energy result, for connections over a
ball 𝐵𝑥(𝑟) ⊂ 𝑀. Since the critical dimension 𝜈 is 4, the
relevant normalised energy in this Yang-Mills setting is

𝐸𝑥(𝑟) =
1

𝑟𝑛−4 ∫
𝐵𝑥(𝑟)

|𝐹|2,

where 𝑛 is the real dimension of 𝑀. If 𝐸𝑥(𝑟) is below a
suitable threshold there are interior bounds on all deriva-
tives of the connection, in a suitable gauge. Then the global
energy bound implies that after perhaps taking a subse-
quence, the 𝐴𝑖 converge outside a closed set 𝑆 ⊂ 𝑀 of
Hausdorff codimension at least 4. Uhlenbeck and Yau
show that if the metrics ℎ𝑡(𝑖) do not converge then a suit-
able rescaled limit produces a holomorphic subbundle of
𝐸 over 𝑀\𝑆. A key technical step is to show that this
subundle corresponds locally to a meromorphic map to
a Grassmann manifold, which implies that the subbundle
extends as a coherent sheaf over all of 𝑀. The differen-
tial geometric representation of the first Chern class of this
subsheaf, via curvature, shows that it violates the stability
hypothesis.

The higher-dimensional discussion in Yang-Mills the-
ory follows the pattern of that for harmonic maps above.
The corresponding monotonicity formula was proved by
Price [10] and a treatment of the small energy result was
given by Nakajima [9]. Some years later, the theory was
developed much further by Tian [23], including the exis-
tence of “tangent cones” at singular points.

This whole circle of ideas and techniques involving the
dimension of singular sets, monotonicity, “small energy”
results, tangent cones, etc. has had a wide-ranging im-
pact in many branches of differential geometry over the
past few decades and forms the focus of much current re-
search activity. Apart from the cases of harmonicmaps and
Yang-Mills fields discussed above, prominent examples are
minimal submanifold theory, where many of the ideas ap-
peared first, and the convergence theory of Riemannian
metrics with Ricci curvature bounds.
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