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AMS EXEMPLARY PROGRAM AWARD
The AMS Award for Exemplary Program or Achievement in a Mathematics Department is presented 
annually to a department that has distinguished itself by undertaking an unusual or particularly 
effective program of value to the mathematics community, internally or in relation to the rest of 
the society. Examples might include a department that runs a notable minority outreach program, 
a department that has instituted an unusually effective industrial mathematics internship program, 
a department that has promoted mathematics so successfully that a large fraction of its university’s 
undergraduate population majors in mathematics, or a department that has made some form of 
innovation in its research support to faculty and/or graduate students, or which has created a special 
and innovative environment for some aspect of mathematics research.

The award amount is $5,000. All departments in North America that offer at least a bachelor’s degree in  
the mathematical sciences are eligible.

The Award Selection Committee requests nominations for this award, which will be announced 
in Spring 2020. Letters of nomination may be submitted by one or more individuals. Nomination 
of the writer’s own institution is permitted. The letter should describe the specific program(s) for 
which the department is being nominated as well as the achievements that make the program(s) 
an outstanding success, and may include any ancillary documents which support the success of the 
program(s). The letter should not exceed two pages, with supporting documentation not to exceed an 
additional three pages.

Further information about AMS prizes can be found at the Prizes and Awards website: www.ams.org/prizes.

Further information and instructions for submitting a nomination can be found at the prize nomination 
website: www.ams.org/nominations.

For questions contact the AMS Secretary at secretary@ams.org. 

Deadline for nominations is September 15, 2019.

Call for Nominations

http://www.ams.org/nominations
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A WORD FROM...
Ken Ono, AMS Vice President
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Dear Members of the American Mathematical Society,

It is a great honor for me to serve as your Vice President. I have greatly benefited from the 
many programs offered by the AMS, and I hope to do my part to help continue its tradition 
of supporting the mathematics profession. 

As the son of a mathematician, I have been aware of the AMS my entire life. Indeed, my 
father subscribed to Mathematical Reviews (replaced by MathSciNet®), and as a kid I mar-
veled at the phone book sized orange volumes that seemed to reproduce and monopolize 
the floor space of our home. These monstrosities even found their way into my bedroom. 
Obviously, from an early age I could not escape the fact that people actually did research 
in mathematics. I simply had no idea what that meant.

Thirty years ago I became an AMS member thanks to the courtesy “nominee” mem-
berships for graduate students. As a junior PhD student, I looked forward to finding the 

latest issues of the Notices and the Bulletin stuffed in my cubbyhole of a mailbox at UCLA. These publications offered me 
thrilling glimpses of cutting edge research (e.g., “One cannot hear the shape of a drum”), as well as a respite from the 
doldrums of preparing for the difficult qualifying exams that petrified me. 

As a new PhD, I was grateful for the professional services that the AMS offered. I made great use of the AMS employ-
ment services. I published some of my first papers in the Proceedings and the Transactions. Many of my first conference 
talks were clumsy efforts at Special Sessions at AMS Sectional Meetings. As I look back now on my career, I find that most 
of its defining moments have somehow involved the AMS.

As a senior mathematician, I now have the important responsibility of paying forward my good fortune. To this end, 
I have enjoyed serving the AMS in a number of important capacities. I have been a member of the Council for over ten 
years, and I have been on a number of committees including the Editorial Board of the Proceedings (serving six years as 
the managing editor). 

With this personal history in mind, I am humbled and honored to have been elected Vice President of this 
wonderful professional Society. I am committed to doing my best to serve the membership and the profession of 
mathematics.

Sincerely,

Ken Ono

Ken Ono is Asa Griggs Candler Professor of Mathematics at Emory University and vice president of the American Mathematical Society. His email 
address is ken.ono@emory.edu.
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A Letter from the AMS Committee 
on Human Rights of Mathematicians

American Mathematical Society Committee 
on Human Rights of Mathematicians Issues Statement 

of Concern about Turkish Mathematicians

The Turkish government has charged the mathematician Professor Ayse Berkman with the 
crime of “making propaganda for a terrorist organization,” based solely on her having 
signed a petition decrying military operations against civilians in Kurdish provinces.  She 
appeared before the Heavy Penalty Court of Istanbul on January 10, 2019; a translation 
of her defense statement is available here https://m.bianet.org/english/freedom-of 
-expression/204414-statement-of-academic-ayse-berkman and the petition she signed 
may be seen here: https://www.barisicinakademisyenler.net/node/63.

Professor Berkman received her PhD at the University of Manchester Institute of Science and 
Technology in1998. She has been teaching mathematics in Turkey since then, currently at 
Mimar Sinana University in Istanbul, and is a member of the American Mathematical Society. 

The Committee on Human Rights of Mathematicians of the American Mathematical Society 
deplores these political charges against Professor Berkman, which are a clear violation of 
human rights and academic freedom. These charges are part of a disturbing pattern: hundreds 
of academics in Turkey have been charged, and scores sentenced, for similar expressions of 
opinion. We decry these assaults on academic freedom and urge the Turkish government to 
respect the political and human rights of Professor Berkman and her colleagues.

Dr. Arthur Ogus 
Univeristy of California at Berkeley 
Committee Chair, AMS Committee on Human 
Rights of Mathematicians

February 8, 2019 

https://m.bianet.org/english/freedom-of-expression/204414-statement-of-academic-ayse-berkman
https://m.bianet.org/english/freedom-of-expression/204414-statement-of-academic-ayse-berkman
https://www.barisicinakademisyenler.net/node/63
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LETTERS TO THE EDITOR
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*We invite readers to submit letters to the editor at
notices-letters@ams.org.

functions of research teams at a time when American 
scientific leadership is challenged by China and other in-
ternational competitors.

Make no mistake: although the shutdown’s effect on 
science will not be as immediately evident as were the long 
airport security lines, flight delays, and missing paychecks 
for federal employees, the effects will be longer lasting and 
more widespread. Major science agencies like the National 
Institutes of Health (NIH), the Centers for Disease Control 
and Prevention (CDC), and the Department of Energy 
(DOE), which already had their funding approved and 
did not shut down, nevertheless felt the effects because 
important connections and collaborations with scientists 
supported by the shuttered agencies were put on hold. 
And scientists at non- government institutions, such as 
universities and research institutes, were impeded by the 
absence of staff at federal agencies that support their work.

Science is essential to our technological society. The de-
velopment of advanced materials and devices, new medical 
treatments, worldwide communication technologies, new 
energy sources, GPS navigation with our smartphones—es-
sentially all the technologies used by modern societies—
were enabled by federal support for fundamental science. 
Future advances will depend on additional programs, 
such as the newly enacted National Quantum Initiative, 
designed to change the landscape of military and commer-
cial capabilities. But during the shutdown much of the new 
quantum research could not even begin, while China and 
Europe continued to develop the new quantum technology 
at full speed. Similarly, while NASA had to suspend some of 
its efforts to explore space, other countries continued their 
programs to plant probes in previously unexplored parts of 
our universe. Of even greater long-term consequence, the 
interruption of the careers of young researchers has likely 
caused some to question their future involvement in our 
national scientific adventure.

We write to you now, at a time when another possible 
government shutdown looms, to draw your attention to the 
detrimental consequences of even short-term suspensions 
of federal funding on the nation’s scientific enterprise. We 
are encouraged by discussions of proposals that would 
protect science, among other critical activities, from the 

OPEN LETTER  TO  THE CONGRESS  AND 
PRESIDENT OF  THE UNITED STATES
Nobel Laureates and Science Community Leaders 
Comment on Harm to American Science from 
the Shutdown

Dear Mr. President and Members of Congress:
As American scientists—researchers, teachers, heads of 

major national scientific societies and institutes, and Nobel 
Laureates—we are writing to call attention to the harm 
done to the US scientific enterprise by the recently ended 
partial shutdown of the federal government. The disrup-
tions caused by the shutdown have consequences that will 
extend well beyond the shutdown, with the potential to 
affect many aspects of our society, including our economy, 
security, health, and international competitiveness.

For decades, the US has led the world in basic scientific 
research. Our strength in fundamental research gave birth 
to the military technology that helped to end World War 
II and continues to safeguard us and our allies. Our past 
global scientific dominance fueled the technological in-
novations that have made our economy the strongest in 
the world. A critical component of that leadership was, 
and continues to be, sustained federal investment in basic 
research.

Today, in a trend starting long before the recent dis-
ruption, our scientific leadership is threatened by other 
countries whose investment in research is growing more 
rapidly than our own. The government shutdown closed 
some of the agencies most crucial to the maintenance of 
our leadership and of the health of American science. The 
National Science Foundation (NSF) funds much of the 
basic research in our universities. The National Oceanic and 
Atmospheric Administration (NOAA), the National Aero-
nautics and Space Administration (NASA), the National 
Institute of Standards and Technology (NIST), and others 
produce fundamental research leading to innovations that 
improve our daily lives, our security, and our economy.

Even the temporary loss of those activities has a pro-
foundly disruptive effect on experimental work and the 

From the AMS: The following letter was sent to members of Congress and to the President of the United States on 
February 11, 2019. It is shared here for our membership.
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Science Community Leaders
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Juliane Baron
Executive Director, Federation of Associations in Behavioral and 
Brain Sciences

Sarah Brookhart
Executive Director, Association for Psychological Science

Mary Sue Coleman
President, Association of American Universities

Thomas M. Connelly Jr.
CEO, American Chemical Society
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CEO, American Association for the Advancement of Science
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ical Engineering

significant disruptions that occur during shutdowns of ap-
preciable length, and we urge the avoidance of such lapses. 
Shutting down parts or all of the federally funded scientific 
enterprise, which enjoys support across the entire political 
spectrum, serves only our foreign competitors. Continued 
strong support for science benefits us all.

Yours respectfully,

Nobel Laureates

Frances H. Arnold
Nobel Laureate, Chemistry 2018

David Baltimore
Nobel Laureate, Physiology or Medicine, 1975

J. Michael Bishop
Nobel Laureate, Physiology or Medicine, 1989

Michael S. Brown
Nobel Laureate, Medicine or Physiology, 1985

Steven Chu
Nobel Laureate, Physics, 1997
President-elect, American Association for the Advancement 
of Science

Robert Curl
Nobel Laureate, Chemistry, 1996

Joseph Goldstein
Nobel Laureate, Physiology or Medicine, 1985

Carol Greider
Nobel Laureate, Physiology or Medicine, 2009

David Gross
Nobel Laureate, Physics, 2004 President, American Physical 
Society

Robert H. Grubbs
Nobel Laureate, Chemistry, 2005

Robert Horvitz
Nobel Laureate, Physiology or Medicine, 2002

Brian Kobilka
Nobel Laureate, Chemistry, 2012

Roger D. Kornberg
Nobel Laureate, Chemistry, 2006

W. E. Moerner
Nobel Laureate, Chemistry, 2014

William D. Phillips
Nobel Laureate, Physics, 1997

Randy Schekman
Nobel Laureate, Physiology or Medicine, 2013

Richard R. Schrock
Nobel Laureate, Chemistry, 2005

Harold E. Varmus
Nobel Laureate, Physiology or Medicine, 1989

David J.Wineland
Nobel Laureate, Physics, 2012
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Awareness Month

Mathematics and Statistics Awareness Month is a program of the Joint Policy Board for Mathematics (JPBM)—a collaborative 
effort of the American Mathematical Society, the American Statistical Association, the Mathematical Association of America, 
and the Society for Industrial and Applied Mathematics.

Find past themes and current resources at

www.mathaware.org

MathAware @MathAware

April marks a time to increase the understanding and appreciation of 
mathematics and statistics. Why? Both subjects play a signifi cant role 
in addressing many real-world problems—climate change, disease, 
sustainability, the data deluge, internet security, and much more. 
Research in these and other areas is ongoing, revealing new results and 
applications every day in fi elds such as medicine, manufacturing, energy, 
biotechnology, and business. Mathematics and statistics are important 
drivers of innovation in our technological world, in which new systems 
and methodologies continue to become more complex.

Organize and host activities in April for Mathematics and Statistics 
Awareness Month! Past activities have included workshops, competitions, 
festivals, lectures, symposia, department open houses, math art exhibits, 
and math poetry readings. Share your activities on social media.
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Geometric Measure Theory
Recent Applications

Tatiana Toro
GMT Introduction
Geometric Measure Theory (GMT) provides a framework
to address questions in very different areas of mathemat-
ics, including calculus of variations, geometric analysis, po-
tential theory, free boundary regularity, harmonic analy-
sis, and theoretical computer science. Progress in different
branches of GMT has led to the emergence of new chal-
lenges, making it a very vibrant area of research. In this
note we will provide a historic background to some of the

Tatiana Toro is the Craig McKibben & Sarah Merner Professor in Mathematics
at the University of Washington. She was partially supported by NSF grant
DMS-1664867. Her email address is toro@uw.edu.

Communicated by Notices Associate Editor Chikako Mese.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti1853

questions that gave rise to the field, briefly mention some
of the milestones, and then focus on some of the recent
developments at the intersection of GMT, potential theory,
and harmonic analysis.

The origins of the field can be traced to the following
question: do the infinitesimal properties of a measure deter-
mine the structure of its support?

In the late 1920s and early ’30s Besicovitch was inter-
ested in understanding the structure of a set 𝐸 ⊂ ℝ2 satis-
fying 0 < ℋ1(𝐸) < ∞ and such that for ℋ1-a.e. 𝑥 ∈ 𝐸,

lim
𝑟→0+

ℋ1(𝐵(𝑥, 𝑟) ∩ 𝐸)
2𝑟 = 1, (1)

where ℋ1 denotes the 1-dimensional Hausdorff measure.
(The formulation above is a modern version of the prob-
lem. Besicovitch, who most likely was unaware of the exis-
tence of the Hausdorff measure, formulated the question

474 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 4



in terms of the linear measure.) For 𝑛 ≥ 1, the 𝑛-dimen-
sional Hausdorff measure ℋ𝑛 in ℝ𝑚 generalizes the no-
tions of length of a curve (𝑛 = 1), surface area (𝑛 =
2), and volume (𝑛 = 3) to subsets of ℝ𝑚. Moreover
ℒ𝑛 ℝ𝑛 = ℋ𝑛 ℝ𝑛

Besicovitch showed that if 𝐸 satisfies the hypothesis (1),
then𝐸 is 1-rectifiable; that is, 𝐸 is contained in a countable
union of Lipschitz images of ℝ union a set of 1-Hausdorff
measure 0 (see [16], [17]). In GMT the notion of rectifia-
bility is used to describe the structure (also the regularity)
of a set or a measure in a way similar to how the degree of
differentiability of charts is used to describe the smooth-
ness of a manifold in differential geometry. A set 𝐸 ⊂ ℝ𝑚

is 𝑛-rectifiable if

𝐸 ⊂
∞
⋃
𝑖=1

𝑓𝑗(ℝ𝑛) ∪ 𝐸0,

where 𝑓𝑗 ∶ ℝ𝑛 → ℝ𝑚 is a Lipschitz map and ℋ𝑛(𝐸0) =
0. Recall that 𝑓𝑗 is Lipschitz if there exists 𝐿𝑗 > 0 s.t. for
𝑥,𝑦 ∈ ℝ𝑛

|𝑓𝑗(𝑥) − 𝑓𝑗(𝑦)| ≤ 𝐿𝑗|𝑥 − 𝑦|.
In 1947, Federer [30] proved a general converse of Besicov-
itch’s theorem: if𝑛 < 𝑚 and𝐸 ⊂ ℝ𝑚 is𝑛-rectifiable, then
for ℋ𝑛-a.e. 𝑥 ∈ 𝐸

lim
𝑟→0+

ℋ𝑛(𝐵(𝑥, 𝑟) ∩ 𝐸)
𝜔𝑛𝑟𝑛 = 1, (2)

where 𝜔𝑛 denotes the Lebesgue measure of the unit ball
in ℝ𝑛.

We introduce some terminology that will help us set
the framework. Let 𝜇 be a Radon measure in ℝ𝑚 (i.e. a
Borel regular measure that is finite on compact sets). The
𝑛-density of 𝜇 at 𝑥

𝜃𝑛(𝜇, 𝑥) ∶= lim
𝑟→0

𝜇(𝐵(𝑥, 𝑟))
𝜔𝑛𝑟𝑛 (3)

exists if the limit exists and 𝜃𝑛(𝜇, 𝑥) ∈ (0,∞)
A locally finite measure 𝜇 on ℝ𝑚 is 𝑛-rectifiable if 𝜇 is

absolutely continuous with respect to ℋ𝑛 (𝜇 ≪ ℋ𝑛, i.e
ℋ𝑛(𝐹) = 0 implies 𝜇(𝐹) = 0) and

𝜇(ℝ𝑚\
∞
⋃
𝑗=1

𝑓𝑗(ℝ𝑛)) = 0,

where each 𝑓𝑗 ∶ ℝ𝑛 → ℝ𝑚 is Lipschitz. Recasting the re-
sults above in this light, we have in the case when 𝑚 = 2
and 𝑛 = 1, that by Besicovitch’s work if 𝐸 ⊂ ℝ𝑚 such that
0 < ℋ𝑛(𝐸) < ∞, and for ℋ𝑛-a.e. 𝑥 ∈ 𝐸 the density of
𝜇 = ℋ𝑛 𝐸 exists and is 1, then 𝐸 is 𝑛-rectifiable. By Fed-
erer’s work the converse in any dimension is true, that is,
if 𝐸 ⊂ ℝ𝑚 is 𝑛-rectifiable then the density of 𝜇 = ℋ𝑛 𝐸
exists and is 1 for ℋ𝑛-a.e. 𝑥 ∈ 𝐸. Two natural questions
arise at this point: 1) does Besicovitch’s result hold for any
𝑛,𝑚 ∈ ℕ with 𝑛 < 𝑚? 2) what happens if we replace

𝜇 = ℋ𝑛 𝐸 by a general Radon measure 𝜇? Initially
progress on these questions was slow.

In 1944, Morse and Randolph [52] proved when 𝑚 =
2 that if 𝜇 is a Radon measure on ℝ𝑚 for which the 1-
density exists𝜇-a.e., then𝜇 is 1-rectifiable. In 1950, Moore
[51] showed that this result holds for any 𝑚. In 1961,
Marstrand [48] showed that if 𝐸 ⊂ ℝ3 and the 2-density
exists for ℋ2 𝐸, ℋ2-a.e 𝑥 ∈ ℝ3, then 𝐸 is 2-rectifiable.
In 1975, Mattila [49] proved that if 𝐸 ⊂ ℝ𝑚 and the 𝑛-
density exists for ℋ𝑛 𝐸, ℋ𝑛-a.e 𝑥 ∈ ℝ𝑚, then 𝐸 is 𝑛-
rectifiable, completing the study of the problem for mea-
sures that were defined as the restriction of Hausdorff mea-
sure to a subset of Euclidean space. This still left open the
case of a general Radon measure.

In 1987, in a true masterpiece, Preiss [56] showed that
if 𝜇 is a Radon measure on ℝ𝑚 for which the 𝑛-density
exists for 𝜇-a.e 𝑥 ∈ ℝ𝑚, then 𝜇 is 𝑛-rectifiable. Preiss
introduced a number of new tools and ideas whose appli-
cations are still being unraveled and play a central role in
the results to be discussed later in this article. The question
of rectifiability of a measure carries information about the
fine structure of its measure-theoretic support. Motivated
by this perspective, Preiss introduced the notion of tangent
measures, which play the role that derivatives do when an-
alyzing the regularity of a function. They are obtained by
a limiting process of rescaled multiples of the initial mea-
sure. Preiss’s argument includes a number of major steps,
some of which have given rise to very interesting questions.
Roughly speaking, a blow up procedure shows that when
the 𝑛-density of 𝜇 exists 𝜇-a.e., then at 𝜇-a.e. point all tan-
gent measures are 𝑛-uniform. A measure 𝜈 is 𝑛-uniform
if there is a constant 𝐶 > 0 so that for 𝑟 > 0 and 𝑥 in
the support Λ = spt𝜈 = {𝑦 ∈ ℝ𝑚 ∶ 𝜈(𝐵(𝑦, 𝑠)) >
0 for every 𝑠 > 0} of 𝜈, we have

𝜈(𝐵(𝑥, 𝑟)) = 𝐶𝑟𝑛. (4)

His argument now requires a detailed understanding of
the structure and geometry of the support of 𝑛-uniform
measures. By work of Kirchheim and Preiss [43], the sup-
port of an𝑛-uniformmeasure𝜈 is an analytic variety. Thus,
using the fact that at 𝜇-a.e point, tangent measures to tan-
gent measures to 𝜇 are tangent measures to 𝜇, he showed
that at 𝜇-a.e. point there is an 𝑛-flat tangent measure; that
is, a measure that is a multiple of the 𝑛-dimensional Haus-
dorff measure restricted to an 𝑛-plane. Then he showed
that either an 𝑛-uniform measure 𝜈 is an 𝑛-flat measure
or its support is very far away from any 𝑛-plane. Using a
deep result about the “cones” of measures, he proves that
necessarily at 𝜇-a.e point all tangent measures are 𝑛-flat.
Then modulo showing that this implies that the measure-
theoretic support of 𝜇 satisfies the hypothesis of the Mar-
strand-Mattila rectifiability criterion, one concludes that 𝜇
is 𝑛-rectifiable.
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Figure 1. Kowalski-Preiss cone

A natural and easy-to-state question derived from this
work is: what does the support of an 𝑛-uniform measure
on ℝ𝑚 really looks like? Clearly the restriction of 𝑛-Haus-
dorff measure to an 𝑛-plane is 𝑛-uniform, but are there
other examples? Work of Preiss [56] shows that if 𝑛 =
1, 2 flatmeasures are the only examples of𝑛-uniformmea-
sures. In 1987 Kowalski and Preiss [44] showed that if
𝑚 = 𝑛+1 and 𝑛 ≥ 3 then, modulo rotation and transla-
tion, Λ the support of an 𝑛-uniform measure 𝜈 is either:
•Λ=ℝ𝑛×{0}
or
•Λ={(𝑥1, 𝑥2, 𝑥3, 𝑥4,⋯, 𝑥𝑛+1)∈ℝ𝑛+1 ∶𝑥2

4=𝑥2
1+𝑥2

2+𝑥2
3}.

See figure above.
Thirty years later Nimer [55] produced the first exam-

ples of 𝑛-uniform measures in higher co-
dimensions. His argument has an important combinato-
rial component and uses Archimedes’ theorem, namely
that, in ℝ3 the surface measure of the intersection of the
unit sphere with a ball of small radius 𝑟 and centered on
the sphere is exactly 𝜋𝑟2. He classifies up to isometry all
conical 3-uniform measures in ℝ5 and produces families
of examples in any co-dimension.

Much time has elapsed between the initial work of Preiss
and collaborators and the next set of examples. This illus-
trates a trend in this area. Indeed for years Preiss’s work
was perceived as somewhat impenetrable. In the early-to-
mid 2000s several successful attempts weremade to under-
stand and apply some segments of the paper (see [25, 39,
46, 57]). De Lellis [28] produced a more comprehensive
version of a special case of the argument, which has made
this work more accessible.

Harmonic Measure
To illustrate how ideas from one field can have a profound
impact in another, we will focus on some of the recent
applications of Preiss’s work to harmonic analysis and po-
tential theory. The harmonic measure is a canonical mea-
sure associated to the Laplacian (see definition below). It
plays a fundamental role in potential theory, constitutes
the main building block for the solutions of the classical
Dirichlet problem, and in non-smooth domains is the ob-
ject that allows us to describe boundary regularity of the so-
lutions to Laplace’s equation. We recall some of the back-
ground. Let Ω ⊂ ℝ𝑛+1 be a bounded domain, let 𝑓 be
a continuous function on the boundary of Ω, i.e. 𝑓 ∈
𝐶(𝜕Ω). The classical Dirichlet problems askswhether there
exists a function 𝑢 ∈ 𝐶(Ω) ∩𝑊1,2(Ω) such that

{ Δ𝑢 = 0 in Ω
𝑢 = 𝑓 on 𝜕Ω. (5)

Here 𝑢 ∈ 𝑊1,2(Ω) means that 𝑢 and its weak deriva-
tives are in 𝐿2(Ω) and Δ𝑢 = 0 is interpreted in the weak
sense; that is, for any 𝜁 ∈ 𝐶1

𝑐 (Ω),

∫⟨∇𝑢,∇𝜁⟩ = 0.

The questions here are whether a solution𝑢 of (5) exists, if
so how regular it is, andwhether there is a formula in terms
of 𝑓 to describe it. We say that Ω is regular if for all 𝑓 ∈
𝐶(𝜕Ω), any solution 𝑢 of(5) is in 𝐶(Ω) ∩ 𝑊1,2(Ω). In
1923 Wiener [60] provided a remarkable characterization
of regular domains using capacity. If Ω is regular, then for
𝑥 ∈ Ω and 𝑓 ∈ 𝐶(𝜕Ω) if 𝑢 ∈ 𝐶(Ω) is the solution to
(5), by the Maximum Principle |𝑢(𝑥)| ≤ max𝜕Ω |𝑓|. Thus
for 𝑥 ∈ Ω, 𝑇𝑥 ∶ 𝐶(𝜕Ω) → ℝ defined by 𝑇𝑥(𝑓) = 𝑢(𝑥)
is a bounded linear operator, with ‖𝑇𝑥‖ ≤ 1. Moreover
𝑇𝑥(1) = 1. Hence, by the Riesz Representation Theorem,
there is a probability measure 𝜔𝑥, the harmonic measure
with pole at 𝑥, satisfying

𝑢(𝑥) = ∫
𝜕Ω

𝑓(𝑞)𝑑𝜔𝑥(𝑞). (6)

If Ω is regular and connected, the Harnack Principle im-
plies that for 𝑥,𝑦 ∈ Ω, 𝜔𝑥 and 𝜔𝑦 are mutually abso-
lutely continuous. Thus we will often drop the pole depen-
dence and simply refer to the harmonic measure 𝜔 rather
than 𝜔𝑥.

The question of whether the behavior of the harmonic
measure on a given domain yields information about the
structure of the boundary of the domain has attracted con-
siderable interest over the last century, with a period of
intense activity over the last two decades. The initial re-
sults in ℝ2 are very satisfactory. For a simply-connected
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domain Ω ⊂ ℝ2, bounded by a Jordan curve, the bound-
ary is a disjoint union, with the following properties:

𝜕Ω = 𝐺∪ 𝑆∪𝑁 (7)

1. In𝐺,𝜔, andℋ1 are mutually absolutely continuous,
which we denote by 𝜔 ≪ ℋ1 ≪ 𝜔,

2. Every point of 𝐺 is the vertex of a cone in Ω. More-
over if 𝐶 denotes the set of “cone points” of 𝜕Ω, then
ℋ1(𝐶\𝐺) = 0 and 𝜔(𝐶\𝐺) = 0.

3. 𝜔(𝑁) = 0 and ℋ1(𝑆) = 0.
4. 𝑆 consists (𝜔 a.e.) of “twist points” (see [31] for the

definition).
5. For 𝜔 a.e. 𝑞 ∈ 𝐺, the 1-density of 𝜔 exists and

𝜃1(𝜔,𝑞) ∈ (0,∞) (see (3)).
6. At 𝜔 a.e. point 𝑞 ∈ 𝑆 we have

limsup
𝑟→0

𝜔(𝐵(𝑞, 𝑟))
𝑟 = +∞,

lim inf
𝑟→0

𝜔(𝐵(𝑞, 𝑟))
𝑟 = 0.

These results are a combination of work of Makarov,
McMillan, Pommerenke, and Choi. See [31] for the pre-
cise references.

Recall that the Hausdorff dimension of 𝜔 (denoted by
ℋ−dim𝜔) is defined by

ℋ−dim𝜔 =inf {𝑘 ∶ there exists 𝐸 ⊂ 𝜕Ω (8)

with ℋ𝑘(𝐸) = 0 and

𝜔(𝐸∩𝐾) = 𝜔(𝜕Ω∩𝐾)
for all compact sets 𝐾 ⊂ ℝ𝑛+1}

Important work of Makarov [47] shows that for simply
connected domains in ℝ2, ℋ−dim𝜔 = 1, establishing
Oksendal’s conjecture (i.e. for what type of domains in
ℝ𝑛+1 is ℋ − dim𝜔 = 𝑛?) in dimension 2. Carleson
[22], and Jones and Wolff [38] proved that, in general,
for domains in ℝ2 with a well defined harmonic measure
𝜔, ℋ − dim𝜔 ≤ 1. Bourgain showed that there exists
𝜖(𝑛) > 0 such that for domains in ℝ𝑛+1 with a well de-
fined harmonic measure𝜔, ℋ−dim𝜔 ≤ 𝑛+1−𝜖(𝑛),
see [21]. Finding the optimal bound for this Hausdorff
dimension is an important open question in the area.

T. Wolff [61] showed, by a deep example, that, for 𝑛 ≥
2, Oksendal’s conjecture (that ℋ − dim𝜔 = 𝑛) fails.
He constructed what are known as “Wolff snowflakes,” do-
mains in ℝ3, for which ℋ − dim𝜔 > 2 and others for
which ℋ − dim𝜔 < 2. In Wolff’s construction, the do-
mains have a certain weak regularity property. They are
non-tangentially accessible domains (NTA) in the sense of
[37]. In fact, they are 2-sided NTA domains (i.e. Ω+ = Ω
and Ω− = int(Ω𝑐) are both NTA) which plays an impor-
tant role in his estimates. NTA domains are open, con-
nected, and Wiener regular in a quantitative way. In [45],

Lewis, Verchota, and Vogel reexamined Wolff’s construc-
tion and were able to produce “Wolff snowflakes” inℝ𝑛+1,
𝑛 ≥ 2 for which either ℋ − dim𝜔± < 𝑛 or ℋ −
dim𝜔± > 𝑛, where 𝜔± denote the harmonic measure
ofΩ±. They also observed, as a consequence of the mono-
tonicity formula in [2], that if 𝜔+ ≪ 𝜔− ≪ 𝜔+, then
ℋ−dim𝜔± ≥ 𝑛.

Returning to the case of 𝑛 = 1, when Ω ⊂ ℝ2 is again
simply connected, and bounded by a Jordan curve, Bishop,
Carleson, Garnett, and Jones [19] showed that if 𝐸 ⊂ 𝜕Ω,
𝜔±(𝐸) > 0, then 𝜔+ and 𝜔− are mutually singular (i.e.
𝜔+ ⟂ 𝜔−) on 𝐸 if and only if ℋ1(𝑇𝑛(𝜕Ω) ∩ 𝐸) = 0,
where 𝑇𝑛(𝜕Ω) ⊂ 𝜕Ω is the set of points in 𝜕Ω where
𝜕Ω has a unique tangent line. Let 𝐸 ⊂ 𝜕Ω be such that
𝜔+ ≪ 𝜔− ≪ 𝜔+ on 𝐸 and 𝜔±(𝐸) > 0. Then, because
of [19], modulo sets of 𝜔± measure 0, 𝐸 ⊂ 𝑇𝑛(𝜕Ω). Us-
ing Beurling’s inequality, i.e., the fact that for 𝑞 ∈ 𝜕Ω and
𝑟 > 0, 𝜔+(𝐵(𝑞, 𝑟))𝜔−(𝐵(𝑞, 𝑟)) ≤ 𝐶𝑟2, and the charac-
terization above where 𝜕Ω = 𝐺±∪𝑆±∪𝑁± (see (7)), we
conclude that𝜔+ ≪ ℋ1 ≪ 𝜔− ≪ 𝜔+ on𝐸. Thus, the
set of mutual absolute continuity of 𝜔−, 𝜔+ is a subset
of 𝐺+ ∩𝐺− and hence of Hausdorff dimension 1.

In [18], motivated by this last result, Bishop asked if
in the case of ℝ𝑛+1, 𝑛 ≥ 2, the fact that 𝜔−,𝜔+ are
mutually absolutely continuous on a set 𝐸 ⊂ 𝜕Ω, with
𝜔±(𝐸) > 0, implies that𝜔± are mutually absolutely con-
tinuous with respect to ℋ𝑛 on 𝐸 and hence dimℋ(𝐸) =
𝑛, where dimℋ denotes the Hausdorff dimension of a set.

Two Phase Case
While in [40] and [41] we had already used some of the
properties of the tangent measures, Bishop’s question plus
the desire to understand the Wolff snowflakes better led
us to dig deep into Preiss’s work [56]. There we found the
necessary tools to start tackling the problem of describing
the boundary in terms of 𝜔±. In [39, Kenig, Preiss and
the author] prove the following result:

Theorem 1 ([39]). For 𝑛 ≥ 3, if Ω ⊂ ℝ𝑛+1 is a 2-sided
NTA domain, then

𝜕Ω = Γ∪ 𝑆∪𝑁, (9)

1. 𝜔+ ⟂ 𝜔− on 𝑆 and 𝜔±(𝑁) = 0.
2. On Γ, 𝜔+ ≪ 𝜔− ≪ 𝜔+, dimℋ Γ ≤ 𝑛.
3. If 𝜔±(Γ) > 0, dimℋ Γ = 𝑛.
4. If ℋ𝑛 𝜕Ω is a Radon measure then Γ is 𝑛-rectifiable,
and 𝜔− ≪ ℋ𝑛 ≪ 𝜔+ ≪ 𝜔− on Γ.

As a consequence there can be no Wolff snowflake for
which 𝜔+, 𝜔− are mutually absolutely continuous. The-
orem 1 answered Bishop’s question under the assumption
that ℋ𝑛 𝜕Ω is a Radon measure. The general case was
left open, and it was clear that a new idea was needed to
deal with the main obstacle, namely the set of points for
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which the 𝑛-density of the harmonic measure is 0. A note-
worthy issue in this branch of GMT is that difficulties often
arise from either a measure that is not locally finite or a
measure whose appropriate density is zero.

The proof of Theorem 1 uses tools from the theory of
non-tangentially accessible domains (NTA) introduced by
Jerison and Kenig [37], the monotonicity formula of Alt,
Caffarelli, and Friedman [2], the theory of tangent mea-
sures introduced by Preiss [56], and the blowup techniques
for harmonic measures at infinity for unbounded NTA do-
mains due to Kenig and Toro [40, 41]. For additional re-
sults along these lines see [11–14,29].

We describe the main steps to emphasize the similari-
ties with the train of thought present in Preiss’s work. To
accomplish our objective, we use the blow-up analysis de-
veloped in [41]. At 𝜔± a.e. point on the set where 𝜔+

and 𝜔− are mutually absolutely continuous, the tangent
measures to 𝜔± (in the sense of [50], [56]) are harmonic
measures associated to the Laplacian on domains where a
harmonic polynomial is either positive or negative. The re-
sulting harmonic measure is supported on the zero set of
this harmonic polynomial. Using the fact that for almost
every point a tangent measure to a tangent measure is a
tangent measure (see [50]) and the fact that the zero set
of a harmonic polynomial in ℝ𝑛+1 is smooth except for a
set of Hausdorff dimension 𝑛 − 1 (see [33]), one shows
that at 𝜔± a.e. point on this set, 𝑛-flat measures always
arise as tangent measures to 𝜔±. They correspond to lin-
ear harmonic polynomials. We then show and this is the
crucial step, that if one tangent measure is flat on the set of
mutual absolute continuity, then all tangent measures are
flat. To accomplish this we use a connectivity argument
similar to the one from [56]. The key point is that if a
tangent measure is not flat, being the harmonic measure
supported on the zero set of a harmonic polynomial of
degree higher than 1, its tangent measure at infinity is far
from flat, and a connectivity argument, as in [56], gives
a contradiction. Modulo a set of 𝜔± measure 0, Γ as in
(10), is the set ofmutual absolute continuity for which one
(and hence all) tangent measures are 𝑛-flat. An easy argu-
ment then shows that dimℋ Γ ≤ 𝑛. To conclude that if
𝜔±(Γ) > 0, dimℋ Γ = 𝑛, one uses the Alt-Caffarelli-
Friedman monotonicity formula of [2] as in [45]. This
yields a version of Beurling’s inequality in higher dimen-
sions. If𝜎 = ℋ𝑛 𝜕Ω, the surface measure to the bound-
ary, is a Radon measure, we show that the 𝑛-density of
𝜎 is 1 a.e., which by Preiss’s theorem ensures that Γ is 𝑛-
rectifiable.

In a remarkable paper, Azzam, Mourgoglou, and Tolsa
[8] answer Bishop’s question completely. Although their
result holds in greater generality, we state it here in the
context of the discussion above for simplicity.

Theorem 2 ([8]). For 𝑛 ≥ 2, if Ω ⊂ ℝ𝑛+1 is a 2-sided NTA
domain, then

𝜕Ω = 𝐺∪𝑆∪𝑁′, (10)

1. 𝜔+ ⟂ 𝜔− on 𝑆 and 𝜔±(𝑁′) = 0.
2. 𝐺 is 𝑛-rectifiable and 𝜔− ≪ ℋ𝑛 ≪ 𝜔+ ≪ 𝜔−.

The main innovation in [8] is the introduction of a new
set of ideas involving the 𝑛-dimensional Riesz transform.
In particular they use a result by Girela-Sarrión and Tolsa
[32] concerning the connection between Riesz transforms
and quantititative rectifiability for general Radonmeasures.
This allows them to deal with the set of points for which
the 𝑛-density of the harmonic measure is 0. The connec-
tion between the Riesz transform and harmonic measure
stems from the fact that the Riesz kernel is the gradient
of the Newtonian potential. The relationship between the
Riesz transform and rectifiability has been an important
component in the development of quantitative geometric
measure theory, a field initiated byDavid and Semmes (see
[26],[27]) in the early 1990s, and embraced by a large com-
munity. Quantitative GMT has developed into a vibrant
area in which several important milestones have been ac-
complished in recent years (e.g. the solution of the David-
Semmes conjecture by Nazarov, Tolsa, and Volberg [53,
54]). In a subsequent paper, Azzam, Mourgoglou, Tolsa,
and Volberg significantly relax the hypothesis on the do-
mains for which Theorem 2 holds [10].

We note that the narrative started with a question from
potential analysis. The initial results were the product of
a successful approach taking a GMT point of view. Once
this work was in place, questions arose that required deep
results in harmonic analysis and quantitative GMT to be
tackled. The final outcome lies in the interface of poten-
tial theory and geometric measure theory. These results
illustrate how the synergy between very distinct areas can
produce truly unique and unexpected results.

One Phase Case
In the Harmonic Measure section, we started by asking
whether the behavior of the harmonic measure of a do-
main yields information about the structure of its bound-
ary (one phase case). The discussion very quickly turned
to the situation where we consider the harmonic measures
of a set and its complement (two phase case). The ratio-
nale was that the two phase case was more clearly related
to GMT. We now return to the one phase case, where both
the quantitative and qualitative questions have sparked an
incredible amount of interest, generating lots of activity
that has culminated in truly optimal results.

In 1916 F. and M. Riesz proved that for a simply con-
nected domain in the complex plane with a rectifiable
boundary, harmonic measure is absolutely continuous
with respect to arc length measure on the boundary [58].
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Bishop and Jones [20] have shown that in this type of do-
main, if only a portion of the boundary is rectifiable, then
harmonic measure is absolutely continuous with respect
to arc length on that portion. They also showed that the
result of [58] may fail in the absence of some topological
hypothesis (e.g., simple connectedness). Examples con-
structed in [62] and [63] show that, in higher dimensions,
some topological restrictions, even stronger than those nee-
ded in the planar case, are required for the absolute conti-
nuity of 𝜔 with respect to surface measure to the bound-
ary.

Higher dimensional analogues of this question have
played a central role in the development of the study of
partial differential equations in non-smooth domains. In
1982 Dahlberg [23] showed the harmonic measure of a
Lipschitz domain and the surface measure to its bound-
ary are mutually absolutely continuous (in a quantitative
scale-invariant way, namely𝜔 ∈ 𝐴∞(𝜎)). Similar results
hold on chord arc domains (these are NTA domains for
which the surface measure to the boundary is Ahlfors reg-
ular; that is, the surface measure of a ball centered on the
boundary and of radius 𝑟 grows like 𝑟𝑛) (see [24], [59]).
The relationship between quantitative absolute continu-
ity properties of harmonic measure with respect to surface
measure and the regularity of the boundary (also expressed
in quantitative terms) is now very well understood, see for
example [3,6,7,15,34–36].

Here we only focus on the optimal qualitative result
that provides a complete answer to Bishop’s question. In a
very interesting piece of work, Azzam, Hofmann, Martell,
Mayboroda, Mourgoglou, Tolsa, and Volberg show a con-
verse to the results in [20,58] in all dimensions. See [4,5]

Theorem 3 ([4], [5]). Let Ω ⊂ ℝ𝑛+1 be an open connected
set and let 𝜔 be the harmonic measure in Ω. Let 𝐸 ⊂ 𝜕Ω
with Hausdorff measure ℋ𝑛(𝐸) < ∞.

• If 𝜔 is absolutely continuous with respect to ℋ𝑛 on
𝐸, then 𝜔 restricted to 𝐸 is an 𝑛-rectifiable measure.

• If ℋ𝑛 is absolutely continuous with respect to 𝜔 on
𝐸, then 𝐸 is an 𝑛-recitfiable set.

This theorem can be understood as a free boundary reg-
ularity problem for the harmonicmeasure (an initial exam-
ple of this type of question appears in [42]) where the goal
is to obtain regularity of the boundary. The authors appeal
to the magic of the Riesz transform, which for a measure 𝜇
in ℝ𝑛+1 is defined as follows:

ℛ𝜇(𝑥) = ∫ 𝑥− 𝑦
|𝑥 − 𝑦|𝑛+1 𝑑𝜇(𝑦). (11)

Theymanage to exploit the absolute continuity hypothesis
to obtain a series of estimates on the harmonic measure
and the corresponding Green function that allow them to
show that the Riesz transform is a bounded operator. Then
they appeal the work of Nazarov, Tolsa, and Volberg [53,

54] where the authors prove the David-Semmes conjecture
in co-dimension 1; that is, they show that the bounded-
ness of the Riesz transform of a measure implies its rectifi-
ability.

Note that the description above of the results in the
area does not include a qualitative version of the F. and M.
Riesz type result in higher dimensions. At this stage, works
of [1, 9, 15] indicate that obtaining an optimal condition
on a domain to ensure that rectifiability of the boundary
implies absolute continuity of harmonic measure with re-
spect to the surface measure is challenging.

This field has been evolving in several interesting new
directions. They all fit under the umbrella of understand-
ing the structure of the support of a measure associated to
a differential operator in a canonical way. One direction
concerns understanding questions similar to those discuss-
ed in the three previous sections for the elliptic measure
of a uniformly elliptic second order divergence form op-
erator. Another one looks at the problems analogous to
those appearing in the Harmonic Measure and One Phase
Case sections for the elliptic measure corresponding to a
degenerate elliptic operator on a domain in ℝ𝑛+1 whose
boundary has dimension strictly less than 𝑛. The unifying
trait is the beautiful cross-pollination between geometric
measure theory, potential theory, harmonic analysis, and
partial differential equation. The expectation is that this
synergy will continue to uncover unsuspected connections,
leading to the development of the field in ways that are
only possible thanks to the contributions from a diverse
group of analysts.
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The Mirror’s Magic Sights: An
Update on Mirror Symmetry

Timothy Perutz
But in her web she still delights
To weave the mirror’s magic sights

Tennyson, The Lady of Shalott

The Mirror Symmetry Mystery
Origins. The 1980s and ’90s saw an astonishing entangle-
ment of research in geometry and mathematical physics.
String theorists, developing their candidate for a quantum
theory incorporating gravity, not only drew on state-of-
the-art mathematics, but introduced mathematical ideas
of great power and prescience: none more so than mirror
symmetry.
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In a 1989 paper [13], Lerche, Vafa, and Warner studied
the algebraic structure of 2-dimensional 𝑁 = 2 supersym-
metric conformal field theories (SCFT). I will not define a 2-
dimensional 𝑁 = 2 SCFT, but only note that it is a type
of quantum field theory—as such, involving operators on
Hilbert spaces—in which the operators are associated with
Riemann surfaces. The authors knew that a Calabi–Yau
manifold gives rise to an 𝑁 = 2 SCFT, the Riemann sur-
faces being traced out by the motions and interactions of
closed strings, i.e., loops, inside the manifold. In such a
theory, they wrote,

there are four types of rings arising from the var-
ious combinations of chiral and anti-chiral, and
left and right. We will denote these rings by (𝑎, 𝑐),
(𝑎, 𝑎), (𝑐, 𝑎), (𝑎, 𝑐). ... There is a non-trivial re-
lationship between (𝑐, 𝑐) and (𝑎, 𝑐). ... For su-
perconformal models coming from compactifica-
tion on Calabi-Yau manifolds, the (𝑐, 𝑐) ring be-
comes isomorphic to the structure of the cohomol-
ogy ring of the manifold in the large radius limit.
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Figure 1. Mirrored Hodge diamonds for mirror pairs of CY 3-folds.

... One possibility might be that [the Poincaré se-
ries for the (𝑎, 𝑐) ring] is the Poincaré series for (a
deformation of) the cohomology ring of another
manifold. If so, there must be another manifold
𝑀̃ for which the Betti numbers satisfy𝑏𝑀

𝑝,𝑞 = 𝑏𝑀̃
𝑑−𝑝,𝑞.

The possibility tentatively put forward in this passage1 was
soon enunciated with greater precision and certitude, and
named mirror symmetry [9,19].

Basic explanations: A Kähler manifold (𝑀,𝜔) is a com-
plex manifold 𝑀, together with a Kähler form 𝜔: a 𝐶∞

real 2-form—i.e., a skew-symmetric bilinear form on the
tangent bundle 𝑇𝑀—which is closed (𝖽𝜔 = 0), invari-
ant under the complex structure, and positive on complex
lines in 𝑇𝑀. Being closed and non-degenerate, a Kähler
form is an example of a symplectic form. Complex projec-
tive space ℙ𝑁 has a unique Kähler form (up to a positive
scalar factor) that is invariant under the transitive action
of the projective unitary group of ℂ𝑁+1; an embedding of
𝑀 into ℙ𝑁 determines a Kähler form on 𝑀 by restriction.

ACalabi–Yau (CY)manifold (𝑀,𝜔,Ω) is a compact Käh-
ler manifold (𝑀,𝜔) endowed with a holomorphic volume
form Ω. In local holomorphic coordinates (𝑧1,… , 𝑧𝑑),
Ω = 𝑓(𝑧)𝖽𝑧1 ∧ ⋯ ∧ 𝖽𝑧𝑑, where 𝑓 is holomorphic and
nowhere-vanishing. Examples:

• When 𝑑 = 1, the only CY manifolds are elliptic
curves ℂ/𝗅𝖺𝗍𝗍𝗂𝖼𝖾; one can take 𝜔 = 𝑖𝖽𝑧 ∧ 𝖽 ̄𝑧
and Ω = 𝖽𝑧.

• CY hypersurfaces 𝑀 ⊂ ℙ𝑑+1, cut out from projec-
tive space by a homogeneous polynomial of de-
gree 𝑑+ 2. Elliptic curves arise as cubics in ℙ2.

• Complex tori ℂ𝑑/𝗅𝖺𝗍𝗍𝗂𝖼𝖾.
The ‘Betti numbers’ 𝑏𝑀

𝑝,𝑞 in the quotation are really the
Hodge numbers, 𝑏𝑀

𝑝,𝑞 = ℎ𝑝,𝑞(𝑀) ∶= dimℂ 𝐻𝑞(𝑀,Ω𝑝
𝑀):

ℎ𝑝,𝑞 is the vector-space dimension of the 𝑞th cohomology
of the sheaf Ω𝑝

𝑀 of holomorphic 𝑝-forms. The Betti num-
ber 𝑏𝑖 = dimℂ 𝐻𝑖(𝑀;ℂ), the dimension of the 𝑖th sin-
gular cohomology, is the sum of the ℎ𝑝,𝑞 where 𝑝 + 𝑞 =
1L. Dixon reportedly also put forward this idea.

𝑖. The ‘Poincaré series’ 𝑃(𝑡) of a graded ring is the gen-
erating function for the dimensions of its homogeneous
parts, so for 𝐻∗(𝑀;ℂ) the Poincaré series is the polyno-
mial 𝑃(𝑡) = ∑𝑏𝑖(𝑀)𝑡𝑖.

The term ‘mirror symmetry’ refers to a literal mirroring
of Hodge diamonds expressed by the relation ℎ𝑝,𝑞(𝑀) =
ℎ𝑑−𝑝,𝑞(𝑀̃)—the Hodge diamond is the conventional vi-
sualization of the array of Hodge numbers ℎ𝑝,𝑞 (Figure 1).
But in retrospect, it seems mistaken to view that as a pri-
mary manifestation of mirror symmetry. I prefer to think
of the term as a metaphor for the reciprocal relationship
of 𝑀 to 𝑀̃—the mirror of the mirror is the original.

The 𝑁 = 2 SCFT which, string theorists argue, can be
associated with a CY manifold 𝑀 is a type of sigma model:
it is based on maps Σ → 𝑀 where Σ is a Riemann sur-
face. There are two topological twists of the sigma model
which are 2-dimensional topological field theories, called the
A-model and the B-model. Formally they are on an equal
footing, but their physical observables have quite differ-
ent geometrical meanings, relating to holomorphic maps
from Riemann surfaces to the CY in the A-model, and to
period integrals of differential forms in the B-model. A
statement of mirror symmetry, arising from string theory
but congenial to mathematicians, is the following:

Mirror symmetry determines an isomorphism of 2-
dimensional topological field theories between the A-
model of 𝑀 and the B-model of 𝑀̃, and vice versa.2

Readers familiar with topological field theory will know
that the state space attached to the circle is a ring: these are
the rings that appear in the quoted passage from [13].

Today, there is an ocean of literature on holomorphic
maps from Riemann surfaces to Kähler, or more gener-
ally, symplectic manifolds, including Gromov–Witten in-
variants (the ‘closed string’ part of the story). The theory
of Fukaya categories (the ‘open string’ part) is proceeding
rapidly with respect to foundations and the development
of tools. Laying down completemathematical foundations

2‘Topological field theory should be understood in an ‘extended’ or ‘open-closed’ sense; cf.
[5].
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for the A-model topological field theory appears to bewith-
in reach. We also have a good formulation of the parts
of the B-model where Σ has genus 0, incorporating de-
rived categories and variations of Hodge structure, and an
emerging understanding of the higher genus part [5,14].
Counting curves. It seems that the germinal ideas of mir-
ror symmetry elicited littlemore than skeptical shrugs from
geometers. But in 1991, Candelas, de la Ossa, Greene, and
Parkes [4] made a prediction which geometers could not
ignore, for it seemed magical yet the evidence was com-
pelling.

Taking the example of a quintic 3-fold 𝑋 ⊂ ℙ4, and
a mirror consisting of a certain holomorphic 1-parameter
family 𝑋̌𝑞 of CY 3-folds (the parameter 𝑞 varies in a punc-
tured disc Δ∗ = {𝑞 ∈ ℂ ∶ 0 < |𝑞| < 1}) they studied
a facet of SCFT visible in the topologically twisted A- and
B-models and expected to match under mirror symmetry:
the 3-point Yukawa couplings. For the A-model of 𝑋, the
Yukawa coupling was identified as a generating function

𝖸𝐴(𝑋) = 5+
∞
∑
𝑑=1

𝑛𝑑 𝑑3𝑞𝑑(1 + 𝑞𝑑 +𝑞2𝑑 +…), (1)

where 𝑛𝑑 counts rational curves—the images of holomor-
phic maps ℙ1 → 𝑋—meeting a hyperplane 𝐻 ⊂ ℙ4 with
total multiplicity 𝑑. On the B-side, the Yukawa couplings
are period integrals for the family {𝑋̌𝑞}. Precisely, 𝖸𝐵(𝑋̌)
is the Laurent series expansion of the holomorphic func-
tion on Δ∗

𝑞 ↦ ∫
𝑋̌𝑞

Ω̌ ∧ (𝑞 𝑑
𝑑𝑞)

3

Ω̌,

where Ω̌ is a holomorphic 3-form on the total space of the
family, defining a volume form Ω̌𝑞 on each fiber 𝑋̌𝑞; it has
to be correctly normalized as a function of 𝑞. Candelas et
al. computed that

𝖸𝐵(𝑋̌) = 5
(1 + 55𝑥)

1
𝑦(𝑥)2 (𝑞

𝑥
𝑑𝑥
𝑑𝑞)

3

,

where

𝑦(𝑥) = ∑
𝑛≥0

(5𝑛)!
(𝑛! )5 (−1)𝑛𝑥𝑛, 𝑥(𝑞) = −𝑞+770𝑞2+….

The crucial change of coordinates 𝑥 = 𝑥(𝑞), which they
computed to all orders, is called the mirror map. Their pre-
diction, then, was that

𝖸𝐴(𝑋) = 𝖸𝐵(𝑋̌). (2)

They wrote:

It is gratifying that [assuming (2)] we find that𝑛1 =
2875 which is indeed the number of lines (ra-
tional curves of degree one) and 𝑛2 = 609250
which is known to be the number of conics (ratio-
nal curves of degree 2).

Mathematicians soon proposed a precise definition for the
coefficients 𝑁𝑑 of the series

𝖸𝐴(𝑋) = ∑𝑁𝑑𝑞𝑑

(so 𝑁0 = 5, 𝑁1 = 𝑛1, 𝑁2 = 8𝑛2 +𝑛1, etc.).
It is rooted in Gromov’s notion of pseudo-holomorphic
curves in symplectic manifolds. One defines𝑁𝑑 as a genus-
zero Gromov–Witten invariant, a homological ‘count’ of holo-
morphic maps 𝑢∶ ℙ1 → 𝑋 of degree 𝑑, mapping three
specified points 𝑧𝑗 ∈ ℙ1 (𝑗 = 0, 1, 2) to 𝐻𝑗 ∩𝑋, where
𝐻𝑗 ⊂ ℙ4 is a specified hyperplane (Figure 2).

Figure 2. The A-side 3-point Yukawa coupling is a GW
invariant enumerating holomorphic maps 𝑢.

GW invariants do not ultimately depend on the com-
plex structure used on𝑋 used to define them, so any smooth
quintic 3-fold will serve. Such maps 𝑢 may factor through
branched coveringsℙ1 → ℙ1, and there is a qualified sense
in which the 𝑛𝑑 in (1) count the images, in 𝑋, of the maps
𝑢.
Principles. The intense activity inspired by the work of
Candelas et al. made certain principles clear:

• The A-model of (𝑋,𝜔,Ω) concerns the symplectic
geometry of (𝑋,𝜔).

Gromov–Witten invariants—signed, weighted counts of
holomorphic maps from Riemann surfaces into 𝑋 invoke
a complex structure on 𝑇𝑋, but this should be viewed as
an auxiliary choice not affecting the outcome.

• The mirror to a CY manifold is not a single CY
manifold, but a family of CY manifolds. The B-
model concerns the complex analytic geometry of
this family.3

The next principle is that one cannot expect mirror sym-
metry to arise from a single CY manifold 𝑋, nor from an
arbitrary family. Rather,

• 𝑋 has a mirror when it undergoes a maximal de-
generation to a singular variety, such as the degen-
eration of an elliptic curve to three projective lines
(a degenerate cubic, Figure 3).4

3And, when these CY manifolds are projective varieties, their complex analytic geometry is
interpretable as algebraic geometry.
4A maximal degeneration, parametrized by a small disc in ℂ, is one with maximally unipo-
tent monodromy.
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Figure 3. Plane cubic curves 𝑥𝑦(𝑥 + 𝑦− 1) = 𝜖 degenerating
to three lines as 𝜖 → 0.

Finally, there is Kontsevich’s eagle-eyed conjecture from
1994 [11], today called homological mirror symmetry (HMS),
connecting Lagrangian submanifolds of 𝑋 to coherent
sheaves on 𝑋̌. There are ‘open string’ topological field the-
ories, governed by categorical structures called 𝐴∞-
categories. In the A-model, one has the Fukaya𝐴∞-category
F(𝑋,𝜔) of the symplectic manifold (𝑋,𝜔)—its objects
are Lagrangian submanifolds of 𝑋—and in the B-model,
the bounded derived category 𝐷(𝑋̌), whose objects are
those complexes of sheaves ℰ• of 𝒪𝑋̌-modules whose co-
homology sheaves ℋ𝑘(ℰ) are coherent and of bounded
degree 𝑘.5

We pause to define two of the terms:
Lagrangian submanifolds: A subspace Λ of a vector space

𝑉 with a symplectic pairing 𝜔𝑉 is called Lagrangian if, for
each 𝑣 ∈ Λ, the linear form 𝜔𝑉(𝑣, ⋅) vanishes precisely
onΛ; this implies dim𝑉 = 2dimΛ. A submanifold 𝐿 ⊂
𝑀 in a symplectic manifold (𝑀,𝜔) is one whose tangent
spaces 𝑇𝑥𝐿 are Lagrangian in 𝑇𝑥𝑀.

Coherence of sheaves: In algebraic geometry, and simi-
larly in the rigid analytic geometry we shall discuss later,
an algebraic variety 𝑍 comes with a sheaf of rings 𝒪𝑍, the
structure sheaf, assigning a commutative ring𝒪𝑍(𝑈) to each
open set 𝑈 ⊂ 𝑍. A sheaf of 𝒪𝑍-modules ℰ assigns an
𝒪𝑍(𝑈)-module ℰ(𝑈) to each open 𝑈. Assuming for sim-
plicity that𝒪𝑍(𝑈) is a Noetherian ring for small neighbor-
hoods 𝑈 of an arbitrary point 𝑧 ∈ 𝑍, we say ℰ is coherent
if each point of 𝑍 has an open neighborhood 𝑈 such that
(i) the𝒪𝑍(𝑈)-moduleℰ(𝑈) is finitely generated; and (ii),
for all open sets 𝑉 ⊂ 𝑈, the map 𝒪𝑍(𝑉)⊗𝒪𝑍(𝑈) ℰ(𝑈) →
ℰ(𝑉), 𝑓 ⊗ 𝑠 ↦ 𝑓 ⋅ 𝑠|𝑉, is an isomorphism.

• HMS: There is a functor F(𝑋,𝜔) → 𝐷(𝑋̌)—
mapping Lagrangian submanifolds of 𝑋 to coher-
ent complexes of sheaves on 𝑋̌—which is, in a cer-
tain sense, a categorical equivalence.6

5The derived category should here be treated not as a triangulated category, but its enhance-
ment to a differential-graded (hence 𝐴∞) category.
6Namely, it induces a quasi-equivalence of the associated 𝐴∞-categories of right modules.
It may appear that HMS is incompatible with the notion that the mirror is a family. When
HMS is formulated more precisely, this apparent disconnect proves illusory.

Kontsevich foresaw that HMS should be an organizing prin-
ciple; that it should imply the isomorphism of topological
field theories 𝐴(𝑋) and 𝐵(𝑋̌), and thereby enumerative
statements such as the prediction (2).
Verification, explanation. Someofmirror symmetry’s pre-
dictionswere soon verified. Candidatemirror partners were
found for many CY manifolds. The Yukawa couplings
𝖸𝐴(𝑋) were computed for a class of CY manifolds 𝑋 in-
cluding the quintic 3-fold [7] by showing that they satisfy
the same differential equations as their B-side counterparts
𝖸𝐵(𝑋̌). Such work bore witness to the mirror symmetry
phenomenon, but did not explain it.

Explanations gradually emerged [5,12,17]. The Gross–
Siebert program [10] is a systematic and sophisticated con-
struction of mirror pairs, for which several of the predic-
tions of mirror symmetry have been proven. HMS has
recently become tractable as basic tools for working with
Fukaya categories have been developed. We now know [8]
that HMS is an indeed an organizing principle, implying
statements such as (essentially) (2). We know that HMS is
true for (on the A-side) the quintic 3-fold [16], andwe have
a prototype for a truly explanatory proof of HMS [1,2].

The Key Questions
(a) How do we construct a mirror 𝑋̌ to a CY manifold

𝑋?
(b) How can the symplectic geometry of 𝑋 be read as

analytic geometry of 𝑋̌—or vice versa?
(c) Why is HMS true?
(d) Why is mirror symmetry involutory?—Why is 𝑋 the

mirror of its mirror 𝑋̌?

The germ of the answer to (a) and (d) was proposed by
Strominger–Yau–Zaslow (SYZ) in 1996 [17]. The point is
to find a smooth, surjective map

𝑓∶ 𝑋2𝑛 → 𝑄𝑛

to a middle-dimensional base 𝑄 such that the subspace
ker𝐷𝑥𝑓 ⊂ 𝑇𝑥𝑋 is Lagrangian for all regular points 𝑥; so
the regular fibers are Lagrangian submanifolds of 𝑋.

The regular fibers 𝐹𝑞 ∶= 𝑓−1(𝑞) are necessarily tori:
each fiber 𝐹𝑞 has the structure of an 𝑛-dimensional affine
vector space𝐴modulo the action of a lattice 𝐿 in its vector
space 𝑉 of translations. One then obtains the mirror 𝑋̌ by
replacing the non-singular fibers of that family by the dual
tori ̌𝐹𝑞 ∶= 𝐻1(𝐹𝑞; ℝ/ℤ) ≅ 𝑉∗/𝐿∗, the quotients of the
dual vector spaces by the dual lattices. Provided one can
find a way to handle the singular fibers, one obtains in this
way a space 𝑋̌ and a map ̌𝑓 ∶ 𝑋̌ → 𝑄 with fibers ̌𝐹𝑞.

A CY manifold 𝑋 admits an ‘optimal’ pair (𝜔,Ω), one
for which Ω is covariantly constant with respect to the
Kähler metric: this is a famous theorem of S.-T. Yau. A
Lagrangian 𝐿 ⊂ 𝑋 is called special with respect to a CY
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Figure 4. A schematic of 𝑇∗𝑆1; the top and bottom are glued
together to form (𝑇∗𝑆1)/(𝑇∗𝑆1)ℤ. The red lines are the
cotangent fibers, which become circles in the quotient.

metric if the imaginary part of Ω vanishes on Λ𝑛𝑇𝐿. SYZ
proposed that the fibers 𝐹𝑞 should be special Lagrangian.
Orientable special Lagrangians admit phase functions 𝜙:
there is a non-vanishing section 𝑣𝐿 of Λ𝑛𝑇𝐿 such that
argΩ(𝑣𝐿)∶ 𝑋 → 𝑆1 admits a continuous logarithm 𝜙,
called a phase function. Lagrangians with phase functions
will suffice for our needs in this article, and special La-
grangians will not reappear.

The basic model for the SYZ mirror—disregarding
specialness—is as follows:

Let 𝑄 be an integral affine 𝑛-manifold, that is, an
𝑛-manifold with an atlas of charts whose transition
functions are affine transformations between open sub-
sets of ℝ𝑛, of shape 𝑥 ↦ 𝐴𝑥 + 𝑏 with 𝑏 ∈ ℝ𝑛 and
𝐴 ∈ 𝐺𝐿𝑛(ℤ). The cotangent bundle 𝑇∗𝑄 is natu-
rally a symplectic manifold, and there is a natural in-
teger lattice (𝑇∗

𝑞 𝑄)ℤ in each cotangent space 𝑇∗
𝑞 𝑄.

Let 𝑋 = (𝑇∗𝑄)/(𝑇∗
ℤ 𝑄) be the quotient of 𝑇∗𝑄

by fiberwise-translations by lattice-vectors (Figure 4).
Then 𝑋 is symplectic, and is a bundle of Lagrangian
𝑛-tori over 𝑄. The tangent bundle 𝑇𝑄 contains a
lattice dual to the one in 𝑇∗𝑄, and the quotient man-
ifold 𝑋̌ = 𝑇𝑄/𝑇ℤ𝑄 is naturally complex. Then 𝑋
and 𝑋̌ are mirrors.

SYZ’s idea is at the heart of our current understanding
of mirror symmetry, but the version I will outline in the
section on rigid analytic mirrors is purely symplectic rather
than Riemannian in nature, and, unlike the basic model
just presented, it makes 𝑋̌ a complex 1-parameter family.

Prototypes: Fourier Transforms, Classical and
Geometric
Pontryagin duality. The most basic model for a duality
such as mirror symmetry is the passage from a finite-
dimensional vector space to its dual. A more instructive
example is Pontryagin duality. The characters of a locally
compact, abelian topological group 𝐺 are the continuous
homomorphisms 𝐺 → 𝕋 to the circle-group 𝕋 = ℝ/ℤ. In
Fourier analysis, one takes 𝐺 = ℝ or 𝕋, so that the respec-
tive characters are the maps 𝑥 ↦ 𝑒2𝜋𝑖𝑡𝑥 for 𝑡 ∈ ℝ or 𝑡 ∈ ℤ.
The set ̂𝐺 of characters is again a locally compact topo-
logical group, the Pontryagin dual of 𝐺. There is a ‘uni-
versal character’, which is the evaluation pairing 𝜒∶ ̂𝐺 ×
𝐺 → 𝕋, 𝜒(𝜉, 𝑥) = 𝜉(𝑥). A complex-valued function 𝑓
on 𝐺 has a Fourier transform ̂𝑓, a function on ̂𝐺: ̂𝑓(𝜉) =
∫𝐺 𝜒(𝜉, 𝑥) 𝑓(𝑥)𝜇𝐺,where𝜇𝐺 is a suitably-normalized left-
invariant measure defined on the open sets.

The construction is a duality inasmuch as the evaluation

map 𝖾𝗏∶ ̂̂𝐺 → 𝐺 is an isomorphism, and ̂̂𝑓 = 𝑓∘𝗂𝗇𝗏∘𝖾𝗏
(where 𝗂𝗇𝗏∶ 𝐺 → 𝐺 is inversion).

Mirror symmetry, based on the SYZ idea, is roughly
analogous to the formation of the Pontryagin dual group,
with the Fourier transform a prototype for HMS.

Fourier–Mukai transforms for K3 surfaces. Fourier–Mukai
transforms [15] bring us closer to mirror symmetry proper.
Consider a simply connected, compact CY complex sur-
face (𝑆,𝜔,Ω) embedded in a projective space: a projec-
tive K3 surface.

Holomorphic vector bundles, or more generally, coher-
ent sheaves F, over 𝑆, have a discrete invariant, the Chern
character, which is best packaged as the Mukai vector
𝑣(F) = 𝑣0+𝑣2+𝑣4 ∈ 𝐻0(𝑆; ℤ)⊕𝐻2(𝑆; ℤ)⊕𝐻4(𝑆; ℤ).7
There is a moduli space𝑀𝑆,𝑣, parametrizing isomorphism
classes of ‘stable’ coherent sheaves F, with fixed Mukai vec-
tor 𝑣; under assumptions that go unstated here, it is a
compact complex manifold, projective, of dimension 2 +
(𝑣,𝑣), where (𝑣, 𝑣) = ∫𝑆 (−2𝑣0𝑣4 +𝑣2

2). In the isotropic
case (𝑣, 𝑣) = 0, 𝑀𝑆,𝑣 is again a surface, and is again CY.8

In the case that 𝑣 = 1 ∈ 𝐻0(𝑆; ℤ), one has 𝑀𝑆,𝑣 = 𝑆,
the points of 𝑀𝑆,𝑣 being merely the ideal sheaves for the
points 𝑠 ∈ 𝑆. But for other choices of Mukai vector, 𝑀𝑆,𝑣
is a new K3 surface, and we can recover𝑆 as amoduli space
of sheaves of 𝑀𝑆,𝑣:

𝑀𝑆,𝑣 ≅ 𝑀𝑀(𝑆,𝑣),𝑣′

for a certainMukai vector𝑣′ for𝑀𝑆,𝑣. Thus amoduli space
of geometric objects on a K3 surface gives rise to a new K3
surface, in a reciprocal relationship with the original.

7The Mukai vector is 𝖼𝗁(F) ∧ (1 + 𝜂), where 𝖼𝗁 is the Chern character and 𝜂 is the
generator for 𝐻4(𝑆; ℤ).
8The holomorphic volume form is the Serre duality pairing on 𝑇F𝑀𝑆,𝑣 = 𝖤𝗑𝗍1𝒪𝑆 (F,F).
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There is a distinguished sheaf on 𝑆 × 𝑀𝑆,𝑣, the univer-
sal sheaf E𝗎𝗇𝗂𝗏, whose restriction to the slice 𝑆× {F} = 𝑆
is isomorphic to F.9 The Fourier–Mukai transform now in-
puts coherent sheaves E on 𝑆, and outputs (complexes of)
coherent sheaves on 𝑀𝑆,𝑣:

F ↦ ̂F = (𝗉𝗋2)∗(E𝗎𝗇𝗂𝗏 ⊗𝗉𝗋∗1 F).
The Fourier–Mukai transform has a categorical mani-
festation, which is strongest when (𝑣, 𝑣) = 0: it then
defines an equivalence of derived categories of coherent
sheaves on 𝑆 and on𝑀𝑆,𝑣. This is the model for HMS.

Rigid Analytic Mirrors
The Novikov field and rigid analytic geometry. Fix a field
𝐹. The vector space 𝐹ℝ of all functions 𝜆∶ ℝ → 𝐹 has a
subspace Λ𝐹 of Novikov series: functions 𝜆 whose support
is discrete and bounded below. One can multiply Novikov
series, by convolution; thus we usually write Novikov se-
ries as formal series

𝜆 =
∞
∑
𝑗=1

𝜆𝑗𝑞𝑟𝑗 , 𝜆𝑗 ∈ 𝐹,

𝑟𝑗 ∈ ℝ, 𝑟1 < 𝑟2 < …, 𝑟𝑗 → ∞.
(This series represents the function supported on {𝑟1,
𝑟2,…} given by 𝑟𝑗 ↦ 𝑎𝑗.) In this way Λ𝐹 becomes a field;
the complex Novikov field Λℂ is algebraically closed.

The most important feature of Λ𝐹 is that it comes with
a complete valuation

𝗏𝖺𝗅(𝜆) ∶= min supp𝜆. (3)

A valuation on a field 𝐾 is a map 𝗏𝖺𝗅∶ 𝐾× → ℝ (extended
to 𝐾 by setting 𝗏𝖺𝗅(0) = +∞) such that 𝗏𝖺𝗅(𝑥 + 𝑦) ≥
min(𝗏𝖺𝗅(𝑥), 𝗏𝖺𝗅(𝑦)) and 𝗏𝖺𝗅(𝑥𝑦) = 𝗏𝖺𝗅(𝑥) + 𝗏𝖺𝗅(𝑦).
There is an associated absolute value, |𝑥| = exp(−𝗏𝖺𝗅(𝑥)),
and a metric 𝑑(𝑥,𝑦) = |𝑥− 𝑦|. The valuation is complete
if 𝑑-Cauchy sequences converge.

Rigid analytic geometry [18] is a variant of algebraic ge-
ometry, applicable over a complete valued field (𝐾, 𝗏𝖺𝗅):
it builds in the internal geometry of the valuation.

In algebraic geometry over a field𝐾—which, for brevity,
we here assume algebraically closed—the basic objects are
polynomial algebras𝐾[𝑧1,… , 𝑧𝑛]. Maximal ideals therein
correspond to points 𝑥 ∈ 𝐾𝑛, as they take the form (𝑧1 −
𝑥1,… , 𝑧𝑛 − 𝑥𝑛). In rigid analytic geometry, one instead
studies the Tate algebra 𝑇𝑛 = 𝐾⟨𝑧1,… , 𝑧𝑛⟩, the algebra
of power series 𝑓(𝑧) = ∑𝑓𝐼𝑧𝐼, a sum over multi-indices

(𝑖1,… , 𝑖𝑛) ∈ (ℤ≥0)𝑛, with 𝑓𝐼 ∈ 𝐾 and 𝑧𝐼 = ∏𝑧𝑖𝑗
𝑗 ,

such that |𝑓𝐼| → 0 as ‖𝐼‖ → ∞, where ‖𝐼‖ = ∑𝑗 𝑖𝑗. If
one has a point 𝑥 = (𝑥1,… , 𝑥𝑛) in the ‘unit polydisk’
𝔻𝑛 ⊂ 𝐾𝑛, meaning |𝑥𝑗| ≤ 1 for all 𝑗, it defines a max-
imal ideal 𝔪𝑥 = (𝑧1 − 𝑥1,… , 𝑧𝑛 − 𝑥𝑛) ⊂ 𝑇𝑛: there is

9Mukai develops ‘quasi-universal sheaves’ in cases where automorphisms preclude a univer-
sal sheaf.

an isomorphism 𝑇𝑛/𝔪𝑥 → 𝐾, given by [𝑓] ↦ 𝑓(𝑥) =
∑𝑗≥0 ∑‖𝐼‖=𝑗 𝑓𝐼𝑥𝐼 (convergent series). This construction
accounts for all maximal ideals of 𝑇𝑛, and so one thinks
of 𝑇𝑛 geometrically as the polydisk 𝔻𝑛.

A quotient 𝐴 = 𝐾[𝑧1,… , 𝑧𝑛]/(𝑓1,… , 𝑓𝑚) determines
a topological space 𝑋 = 𝖲𝗉𝖾𝖼𝐴. The points of 𝑋 are the
prime ideals of 𝐴; 𝑋 has its Zariski topology, in which the
maximal ideals are the closed points. One thinks of the
closed points of𝑋 as the zero-set 𝑓1(𝑥) = ⋯ = 𝑓𝑚(𝑥) = 0
inside𝐾𝑛. There is a𝐾-algebra of ‘functions’𝒪𝑋 on𝑋, the
maps 𝑥 ↦ 𝑎(𝑥) ∈ 𝐴/𝔪𝑥 where 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝑋 labels
a maximal ideal 𝔪𝑥. But actually, 𝒪𝑋 ≅ 𝐴.

Likewise, a quotient 𝐴 = 𝑇𝑛/(𝑓1,… , 𝑓𝑚) determines a
space 𝑋 = 𝖲𝗉𝐴 of maximal ideals, called an affinoid space.
As before, it determines 𝐴 as its ring of functions 𝒪𝑋.

Certain subsets 𝑈 ⊂ 𝑋 inside an affinoid space 𝑋 =
𝖲𝗉𝐴 are called affinoid domains. Take a (suitable) norm
‖ ⋅ ‖ on 𝐴, and the induced norms ‖ ⋅ ‖𝑥 on its quotients
𝐴/𝔪𝑥: ‖𝑎‖𝑥 = inf{‖𝑏‖ ∶ 𝑏−𝑎 ∈ 𝔪𝑥}. Then, for 𝑓 ∈ 𝐴
and 𝑐 ∈ ℝ, the set 𝑋(𝑓, 𝑐) = {𝑥 ∈ 𝑋 ∶ ‖𝑓(𝑥)‖𝑥 ≤
𝑐} is an affinoid domain. So too is a finite intersection
⋂𝑋(𝑓𝑗, 𝑐𝑗).

In algebraic geometry, spectra of 𝐾-algebras can be
‘glued’ together to form a global object, a𝐾-scheme, which
is a topological space 𝑍 equipped with a sheaf 𝒪𝑍 of 𝐾-
algebras, locally the spectrum of a 𝐾-algebra. Tate showed
how affinoid subdomains of affinoid spaces can be glued
together to form a global object—a space 𝑍 with a sheaf of
𝐾-algebras 𝒪𝑍, which is locally the algebra of functions of an
affinoid domain.

Rigid analytic mirrors. Suppose we have a compact, con-
vex polytope 𝑃 ⊂ ℝ𝑛. To this we attach the set

𝑋̌𝑃 = {𝑥 ∈ (Λ×
ℂ )𝑛 ∶ (𝗏𝖺𝗅(𝑥1),… , 𝗏𝖺𝗅(𝑥𝑛)) ∈ 𝑃}

(Figure 5). This subset is actually an affinoid subdomain
of an affinoid space over the Novikov field Λℂ. First, we
can realize the annular domain {𝑥 ∈ Λ𝑛

ℂ ∶ 𝜖 ≤ |𝑥𝑗| ≤
𝜖−1, 𝑗 = 1,… ,𝑛} as an affinoid space 𝐴𝑛

𝜖 . The polytope
𝑃 is cut out from ℝ𝑛 by a finite list of inequalities, each
of shape 𝜆 ⋅ 𝑥 ≥ 𝑐, where 𝜆 ∈ ℤ𝑛 and 𝑐 ∈ ℝ. And 𝑋̌𝑃
is cut out, inside 𝐴𝑛

𝜖 for a suitably small 𝜖, by inequalities
|𝑥𝜆1

1 ⋯𝑥𝜆𝑛𝑛 | ≤ 𝑒−𝑐; this identifies it as an affinoid subdo-
main of 𝐴𝑛

𝜖 .

X̌P P
val

Figure 5. The values of the coordinates of the affinoid domain
𝑋̌𝑃 form the polytope 𝑃.
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Suppose now that one has an 𝑛-manifold 𝑄 which is
not merely smooth, but integral affine (cf. ’The Key Ques-
tions’)—such as the base of a fibering of a symplectic man-
ifold 𝑋 by Lagrangian submanifolds {𝐹𝑞}𝑞∈𝑄. ‘Triangu-
late’𝑄 by a collection of integral affine polytopes𝑃𝛼. Each
of them defines an affinoid domain 𝑋̌𝑃𝛼 , and these glue to-
gether to form a rigid analytic space 𝑋̌ overΛℂ, which does
not change when one subdivides the triangulation.

P1 P2

P3P4

P5

Figure 6. Fragment of a triangulation of 𝑄, as it appears in an
integral affine chart.

The set underlying 𝑋̌ is the space of pairs (𝑞, 𝜂), where
𝑞 ∈ 𝑄 and 𝜂 ∈ 𝐻1(𝐹𝑞;𝑈(Λ)). Here 𝑈(Λ) =
{𝜆 ∈ Λ× ∶ |𝜆| = 1}: so the mirror is a space of
pairs of a torus-fiber 𝐹𝑞 and a homomorphism from
the first homology group 𝐻1(𝐹𝑞) ≅ ℤ𝑛 to the group of
unit-norm Novikov series—made into a rigid analytic
space.

For example, if 𝑄 = ℝ/ℤ is the circle—the base of
a Lagrangian fibration on the 2-torus ℝ2/ℤ2 viewed as a
symplectic manifold—its affine integral structure is inher-
ited from ℝ, and we can triangulate it by intervals [𝑎, 𝑏].
The affinoid domain associated with an interval is an ‘an-
nulus’ {𝑧 ∈ Λ× ∶ 𝑒−𝑏 ≤ |𝑧| ≤ 𝑒−𝑎}, and these glue
together to form an elliptic curve over Λ, the Tate curve
𝐸𝑇𝑎𝑡𝑒 = Λ×/𝑞ℤ.
Pseudo-holomorphic curves. Why should rigid analytic
geometry over the Novikov field have anything whatsoever
to do with symplectic topology? The brief answer is: Gro-
mov compactness.

Symplectic topologists probe symplectic manifolds
(𝑋,𝜔) using pseudo-holomorphic curves: maps 𝑢∶ Σ → 𝑋
from a Riemann surface Σ to 𝑋 such that, for some speci-
fied complex structure 𝐽 on 𝑇𝑋, the derivative 𝐷𝑢 is com-
plex linear. Thus, if 𝑗 is the complex structure on 𝑇Σ, one
has the ‘Cauchy–Riemann equation’ 𝐽 ∘ 𝐷𝑢 = 𝐷𝑢 ∘ 𝑗.
In the presence of a Lagrangian submanifold 𝐿 ⊂ 𝑋, one

may suppose that Σ has boundary, and impose the bound-
ary condition that 𝜕𝑢 (the restriction of 𝑢 to the boundary
𝜕Σ) maps 𝜕Σ to 𝐿.

Once one pins down the smooth surface underlying Σ,
and the Lagrangian boundary conditions, there is amoduli
space ℳ of pseudo-holomorphic curves in 𝑋, which one
should think of as a smooth manifold. One can also al-
low pseudo-holomorphic curves with nodal domains, and
from these one can construct a larger moduli space ℳ.
Gromov compactness says that the subspace ℳ≤𝑐, where
the energy 𝐸(𝑢) = ∫Σ 𝑢∗𝜔 is at most 𝑐, is compact.

One typically imposes conditions on 𝑢 so as to cut ℳ
down to a zero-dimensional manifold 𝑁. Then the com-
pact sub-level sets 𝑁≤𝑐 for the energy function 𝐸 are finite.
Once one has a recipe for orienting 𝑁, one can ‘count’
its points with signs, and the result is a Novikov series,
#𝑁 ∶= ∑𝑢∈𝑁 𝗌𝗂𝗀𝗇(𝑢)𝑞𝐸(𝑢) ∈ Λℂ.
From Lagrangians to coherent sheaves. Suppose that we
have a compact CY manifold (𝑋2𝑛,𝜔,Ω) and a non-
singular fibering 𝑓∶ 𝑋2𝑛 → 𝑄𝑛 by Lagrangian
submanifolds—necessarily tori—which admit phase func-
tions. Then 𝑄 acquires an integral affine structure. Sup-
pose also that we have identified a section𝜎∶ 𝑄 → 𝑋 of 𝑓
whose image is Lagrangian; then 𝑋 = 𝑇∗𝑄/(𝑇∗𝑄)ℤ. As
we discussed in the section on rigid analytic mirrors , we
can use the integral affine structure of 𝑄 to define a rigid
analyticΛ-space 𝑋̌ = 𝑋̌𝑟𝑖𝑔𝑖𝑑. This is ourmirror.10 It comes
with a naturalmap ̌𝑓 ∶ 𝑋̌ → 𝑄, and the fiber ̌𝑓−1(𝑞) can be
identified with 𝐻1(𝐹𝑞;𝑈Λ), where 𝑈Λ = 𝗏𝖺𝗅−1(0) ⊂ Λ×

is the group of unit-norm Novikov series.
Now we come to the ‘Fourier transform’ underlying

HMS, the process by which Lagrangians are converted into
coherent sheaves on the mirror. Suppose 𝐿 ⊂ 𝑋 is a com-
pact Lagrangian submanifold, equipped with a phase func-
tion. One then defines sheaves ℋ𝑘(ℰ𝐿) of 𝒪𝑋̌-modules
on 𝑋̌: Cover 𝑄 by integral polytopes 𝑃𝛼, and let 𝑞𝛼 ∈ 𝑃𝛼
be a reference point. For each𝛼, we can perturb 𝐿 to a new
Lagrangian 𝐿𝛼 such that 𝐿𝛼 ∩ 𝐹𝑞 is a transverse intersec-
tion for every 𝑞 ∈ 𝑃𝛼. We define a module ℰ𝐿,𝛼 over the
ring of functions 𝒪𝛼 ∶= 𝒪𝑋̌𝑃𝛼

of 𝑋̌𝑃𝛼 by

ℰ𝐿,𝛼 = (𝒪𝛼)𝐿𝛼∩𝐹𝑞𝛼 ∶
the freemodule on the set of intersection points. Themod-
ule ℰ𝐿,𝛼 has a grading, defined via phase functions, and
a differential 𝛿—a square-zero endomorphism which in-
creases the grading by 1. The construction of 𝛿 uses family
Floer cohomology. It involves pseudo-holomorphic bigons,
discs Δ → 𝑋, with a boundary condition that requires the
upper half of 𝜕Δ to map to 𝐿𝛼, and the lower half to 𝐹𝑞

10An important and delicate issue is whether there are holomorphic discs in 𝑋 whose
boundary lies on a fiber of 𝑓, and if so, how properly to account for them in the construc-
tion of the mirror. For present purposes, assume there are none. This assumption is a major
simplification of what is typically true.
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for some 𝑞 ∈ 𝑃𝛼. For present purposes, we assume an ab-
sence of holomorphic discs whose entire boundary lies on
𝐹𝑞 or 𝐿𝛼. This is vital; to make things work in generality,
one will need to prove their absence rather than assuming
it. The fact that 𝛿 makes sense expresses a compatibility
between pseudo-holomorphic curves and rigid analytic ge-
ometry [2,6].

We then pass to the cohomology module

𝐻∗(ℰ𝐿,𝛼) = ker𝛿/ im𝛿.

This is a finitely generated 𝒪𝛼-module. While patterns of
intersections change under perturbations of Lagrangians,
𝐻∗(ℰ𝐿,𝛼) does not depend on the perturbation 𝐿 ⇝ 𝐿𝛼.
One can use that fact to assemble the modules 𝐻∗(ℰ𝐿,𝛼)
into a sheaf ℋ∗(ℰ𝐿) of 𝒪𝑋̌-modules. Locally, it is the
sheaf associated with a finitely generated module over a
Noetherian ring—so it is coherent.

The mapping 𝐿 ↦ ℋ∗(ℰ𝐿), sending a Lagrangian
to a coherent sheaf on the rigid analytic mirror, is the
‘Fourier transform’ which explains HMS [2].

Mirror Symmetry as an Operation on Holomor-
phic Families
We have just seen that the symplectic geometry of fami-
lies of Lagrangian submanifolds, fibering 𝑋, gives rise to a
rigid analytic mirror 𝑋̌𝑟𝑖𝑔𝑖𝑑 over the complex Novikov field
Λ, and that other Lagrangians in 𝑋 then produce coher-
ent analytic sheaves on 𝑋̌𝑟𝑖𝑔𝑖𝑑. But a rigid analytic space
is not a symplectic manifold, so this cannot be an involu-
tory process like Pontryagin duality or the Fourier–Mukai
transform.

I want to outline, via an example, how the formation of
rigid analytic mirrors should feed into an involutory pro-
cedure, not yet fully understood, the construction of the
mirror partner to a degenerating 1-parameter families of CY
manifolds, whereby the mirror of the mirror is the original.

The first point is that degenerations should give rise to La-
grangian torus fibrations. Start with projective spaceℙ𝑑. This
has a Lagrangian torus fibration ℙ𝑑 → Σ𝑑, of sorts, whose
fibers are ‘Clifford tori,’ the points (𝑧0 ∶ ⋯ ∶ 𝑧𝑑) with
∑|𝑧𝑘|2 = 1 and |𝑧𝑗| = 𝑐𝑗 (constant) for each 𝑗. The
base Σ𝑑 is a 𝑑-dimensional simplex. Some of the Clifford
tori, those lying over the boundary of the simplex, are not
Lagrangian, because they are tori of dimension less than
𝑑.

Now consider the ‘totally degenerate CY hypersurface’
𝑋0 = {𝑧0 ⋯𝑧𝑑 = 0} ⊂ ℙ𝑑+1. It is a union of 𝑑 + 1
projective hyperplanes 𝑥𝑘 = 0, and the Lagrangian torus
fibrations over these hyperplanes assemble to give a map
𝜇∶ 𝑋0 → 𝑃 to a 𝑑-dimensional polyhedron formed by
gluing the 𝑑+ 1 simplices along faces (𝑃 actually just the
boundary of a (𝑑 + 1)-dimensional simplex). The fibers

of 𝜇 are Lagrangian tori over the interiors of the faces of 𝑃,
and are lower-dimensional tori elsewhere (Figure 7).

X0 = {x0x1x2x3 = 0} µ

{x0 = 0} {x1 = 0}

Figure 7. The map 𝜇∶ 𝑋0 → 𝑃 in the case 𝑑 = 2.

Next, consider the family of CY hypersurfaces

𝑋𝑡 = {(𝑡, 𝑧) ∈ ℂ×ℙ𝑑+1 ∶ 𝑡𝐹(𝑧) + 𝑧0 ⋯𝑧𝑑 = 0},

where𝐹 is a (generic) homogeneous polynomial of degree
𝑑 + 1. Thus 𝑋1 is a CY manifold, while 𝑋0 is our singu-
lar, totally degenerate CY hypersurface. One can use the
symplectic geometry of the family (with a Kähler form in-
herited from ℂ × ℙ𝑑+1) to produce a map 𝜌∶ 𝑋1 → 𝑋0
which is a symplectomorphism over the smooth locus in

𝑋0. The composite 𝑓∶ 𝑋1
𝜌−→ 𝑋0

𝜇−→ 𝑃 is then our candi-
date for a Lagrangian torus fibration. Over the interiors of
the simplices of 𝑃,𝜇 has Lagrangian fibers and 𝜌 is a dif-
feomorphism; over a codimension 𝑘 facet of 𝑃, the fibers
of𝜇 have dimension 𝑑−𝑘, but those of𝜌 have dimension
𝑘, so 𝑓 has fibers of dimension 𝑑, as we want. However,
there is a ‘bad’ locus 𝐵 ⊂ 𝑋0 where the total space of the
family is singular, and the mechanism breaks down; that is
the source of singularities in the fibers of 𝑓 (Figure 8).

Xt X0
μ

P
ρ μ(B)

Figure 8. The map 𝑓∶ 𝑋𝑡 → 𝑃 in the case 𝑑 = 2, showing
some of its fibers in red. The 24 dots on the edges of the
tetrahedron 𝑃 are the images of the singular locus of the total
space of the family.

490 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 4



This example illustrates a mechanism whereby toric de-
generations of CY manifolds—roughly, degenerations to va-
rieties each of whose irreducible components is a toric
variety—should give rise to Lagrangian torus fibrations.11

The fiber 𝑋1 comes with a symplectic automorphism
𝑚, the monodromy around the unit circle, which—in a
model situation, at any rate—preserves the fibers of 𝑓, and
acts as translation of each of the non-singular fibers. This
automorphism corresponds to extra structure on the mir-
ror, a line bundle over 𝑋̌𝑟𝑖𝑔𝑖𝑑. One expects that this line
bundle is ample, and therefore defines an embedding of
𝑋̌𝑟𝑖𝑔𝑖𝑑 into rigid analytic projective space. Just as in com-
plex analytic geometry, the image of an embedding into
projective space is in fact cut out algebraically by
polynomials—so the 𝑋̌𝑟𝑖𝑔𝑖𝑑 becomes an algebraic scheme
𝑋̌𝑎𝑙𝑔 over Λℂ.

Pause for a moment to observe that if we have a family
𝑍𝑡 of complex projective varieties, whose defining equa-
tions depend holomorphically on 𝑡 ∈ Δ∗ (the punctured
disc), we can take the Laurent expansions of these equa-
tions to get a family Z over the field ℂ((𝑡)) of finite-tailed
Laurent series, and therefore, by extending scalars, a vari-
ety over Λℂ. One can ask whether 𝑋̌𝑎𝑙𝑔 arises in this way,
from a family 𝑋̌𝑡 of complex projective varieties. This is
not the place to get into the details, but there are geomet-
ric reasons to expect that to be true. In this way, we end
up with a new family {𝑋̌𝑡} of complex projective CY man-
ifolds, mirror to the original family.

While the general picture described here has large gaps
still to be filled, an algebro-geometric analogue of the com-
posite process has been fully worked out by Gross–Siebert
[10]. Their works centers on a part of the story called wall-
crossing that I have not even hinted at.

Example. If one takes a degenerating family of elliptic
curves X → Δ∗, given as cubic curves in ℙ2, the generic
fiber 𝑋 is (symplectically) the 2-torus ℝ2/ℤ2 and it has
the Lagrangian fibration given by projection 𝑓∶ ℝ2/ℤ2 →
ℝ/ℤ. After choosing a section of 𝑓, one obtains the Tate
curve as rigid analytic mirror, with a degree 1 line bundle
over it. Section of powers of this line bundle define an
embedding of the Tate curve into ℙ2(Λ) as a cubic curve

𝑦2 + 𝑥𝑦 = 𝑥3 +𝑎4(𝑞)𝑥 + 𝑎6(𝑞),

where 𝑎4 and 𝑎6 are certain power series in 𝑞. In particu-
lar, this curve is defined over ℂ((𝑞)). Since 𝑎4 and 𝑎6 are
convergent in the unit disc |𝑞| < 1, it can also be viewed as
a holomorphic family overΔ∗—the mirror to the original
family.

11This mechanism was first explored by W.-D. Ruan in 1999, but was recently revisited in
R. Guadagni’s 2017 University of Texas Ph.D. thesis.

Looking Ahead
From this symplectic geometer’s perspective, the most im-
portant task ahead is to fill the gaps in the picture just
outlined—precisely how to construct Lagrangian fibrations
with singularities from degenerations, and then, crucially,
how to construct their analytic mirrors. The chief difficulty
is with Floer theory for singular Lagrangians. The Gross–
Siebert program provides an algebro-geometric solution,
at the cost of losing the direct connection to symplectic
topology and the natural construction of HMS as a Fourier
transform. I hope and suspect that Gross–Siebert’s work
will be precisely linked to symplectic topology, perhaps
even in the absence of a full understanding of the singular
Lagrangians, and that a proof of HMS, valid in vastly more
generality than we can currently manage, will thereby
emerge.

I especially look forward to the weaving together of dif-
ferent threads of mirror symmetry, integrating the
symplectic-analytic-algebraic picture with the Riemannian
geometry of special Lagrangians; and the topological
field theory of the A- and B-models with rigorous ap-
proaches to a quantum field theory on 𝑋̌ [3, 14]. In this
account I have not even touched on mirror symmetry for
Fano manifolds—which is just as remarkable as for CY
manifolds—nor on wall-crossing, applications of mirror
symmetry in symplectic topology, or connections to the
Langlands program. Formathematicians fascinated by hid-
den connections, mirror symmetry is a dazzling phenom-
enon.
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Dundas and Skau: Professor Langlands, firstly we want to 
congratulate you on being awarded the Abel Prize for 2018. 
You will receive the prize tomorrow from His Majesty the King 
of Norway.

We would to like to start by asking you a question about aes-
thetics and beauty in mathematics. You gave a talk in 2010 at the 
University of Notre Dame in the US with the intriguing title: Is 
there beauty in mathematical theories? The audience consisted 
mainly of philosophers—so non-mathematicians. The question 
can be expanded upon: Does one have to be a mathematician 
to appreciate the beauty of the proof of a major theorem or to 

Figure 1. Robert Langlands (left) receives the Abel Prize from H. M. King Harald.

Robert P. Langlands is the recipient of the 2018 Abel Prize of the Norwegian Academy of Science and Letters.1 The 
following interview originally appeared in the September 2018 issue of the Newsletter of the European Mathematical 
Society2 and is reprinted here with permission of the EMS. 
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Langlands: You presumably mean when suddenly 
things fit together? This is not quite like looking at clouds 
or looking at the sea, or looking at a child. It is something 
else; it just works! It works and it didn’t work before; it is 
very pleasant. The theories have to be structural and there 
has to be some sort of appealing structure in the theory.

But, you know, beauty…women are beautiful, men are 
beautiful, children are beautiful, dogs are beautiful, forests 
are beautiful and skies are beautiful; but numbers on the 
page or diagrams on the page? Beauty is not quite the right 
word. It is satisfying—it is intellectually satisfying—that 
things fit together, but beauty? I say it’s a pleasure when 
things fit together.

As I said in the article, I avoided the word beauty because 
I don’t know what it means to say that a mathematical theo-
rem is beautiful. It is elegant, it is great, it is surprising—that 
I can understand, but beauty?! 

Dundas and Skau: But we can at least agree that Frenkel’s 
book was a valiant effort to explain to the layman what beauty in 
mathematics is and, in particular, that the Langlands programme 
is a beautiful thing. 

Langlands: Well, yes, I would wish that Frenkel were 
here so I could present my views and he could present his. 
I have studied Frenkel because he explained the geometric 
theory but I wasn’t interested that much in the beauty. I 
wanted to read his description of the geometric theory 
and I got quite a bit from it but I also had the feeling that 
it wasn’t quite right. So, if I wanted to say more, I would 
want to say it in front of him so he could contradict me. 

Dundas and Skau: You have an intriguing background from 
British Columbia in Canada. As we understand it, at school you 
had an almost total lack of academic ambition—at least, you say 
so. Unlike very many other Abel Laureates, mathematics meant 
nothing to you as a child? 

Langlands: Well, except for the fact that I could add, 
subtract and multiply very quickly. There was an interview 
in Vancouver—actually, I was in New Jersey but the inter-
viewer, he was in Vancouver—and he asked me a question 
along those lines and I answered rather frivolously. All the 
experience I had with mathematics was with arithmetic, 
apart from elementary school and so on, and I liked to 
count.

I worked in my father’s lumberyard and those were the 
days when you piled everything on truck by hand and tal-
lied it. And you counted the number of two by fours—is 
that a concept here? Two by fours: 10 feet, 12 feet, 8 feet, 
16 feet…and then you multiply that and add it up with 
the number of 10s and multiply by 10, plus the number of 
12-foot-lengths and multiply by 12, and so on and so forth 
and you get the number; convert it to board feet and you 
know how much it is worth. I would be loading the truck 
with some elderly carpenter or some elderly farmer from 
the vicinity. He would have one of these small carpenter 
pencils and he would very painfully be marking one, two, 
three, four, five; one, two, three, four, five; and so on. And 

admire the edifice erected by mathematicians over thousands of 
years? What are your thoughts on this?

Langlands: Well, that’s a difficult question. At the level 
of Euclid, why not? A non-mathematician could appreciate 
that. 

I should say that the article was in a collection of essays 
on beauty. You will notice that I avoided that word; in the 
very first line, I said: “Basically, I do not know what beauty 
is!” I went on to other topics and I discussed the difference 
between theories and theorems.

I think my response to this is the same today. Beauty is 
not so clear for me; it is not so clear when you speak about 
beauty and mathematics at the same time. Mathematics 
is an attraction. If you want to call it beauty, that’s fine. 
Even if you say you want to compare with the beauty of 
architecture. I think that architectural beauty is different 
from mathematical beauty. Unfortunately, as I said, I just 
avoided the question in the article and, if you forgive me, 
I will avoid it today. 

Dundas and Skau: One other reason we ask this question 
is that, as you are well aware, Edward Frenkel, who you have 
worked with and who is going to give one of the Abel Lectures 
later this week about aspects of the Langlands programme, wrote 
a best-seller with the title Love and Mathematics and the subti-
tle The Heart of Hidden Symmetry. The Langlands programme 
features prominently in that book. He makes a valiant effort to 
try to explain to the layman what the Langlands programme is 
all about. We were very intrigued by the preface, where Frenkel 
writes: “There is a secret world out there, a hidden parallel uni-
verse of beauty and elegance, intricately intertwined with ours. 
It is the world of mathematics. And it is invisible to most of us.” 
You have probably read the book. Do you have any comments? 

Langlands: I have skimmed through the book but I 
have never read it. I am going to say something that is 
probably not relevant to your question. We are scientists: 
we ask about, we think about, we listen, at least, to what 
scientists say, in particular about the history of the Earth, 
the history of the creatures on it and the history of the 
Universe. And we even discuss sometimes the beginning 
of the Universe. Then, the question arises, something that 
puzzles me although I’ve seldom thought about it, except 
perhaps when I am taking a walk—how did it get started 
at all? It doesn’t make any sense. Either something came 
out of nothing or there always was something. It seems to 
me that if I were a philosopher or you were a philosopher, 
we’d have to ask ourselves: how is it that something can 
be there? It’s complicated; it’s not irrelevant that the world 
is very complicated but the enigma is simply the fact that 
it is there. How did something come out of nothing? You 
may say with numbers it can happen but beyond that I 
don’t know. 

Dundas and Skau: You have your creative moments, where 
all of a sudden you have a revelation. Hasn’t that been a feeling 
of intense beauty for you? 
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scientists from the 1600s, 1700s, 1800s, etc.) and he gave 
it to me. He himself had a childhood with basically no 
education and he learned to read aged about 37, during 
the Depression when the Labour parties were recruiting 
unemployed people. So, he learned to read but never very 
well and I think he never really could write. He always had 
a good memory so he remembered a number of things 
and he also had a library and, in particular, he had this 
book, which was very popular in the pre-war period. So, 
I began to read this book. My wife—my future wife—had 
a better idea of what one might do as an adult than I did 
and she influenced me. And I had this book, where I read 
about outstanding people like Darwin and so on, and that 
influenced me a little in the sense that it gave some ideas 
of what one might do.

And there was also the accident that I always wanted to 
leave school and hitch-hike across the country, but when I 
turned 15, which was the legal age when you can stop going 
to school—I had only one year left—my mother made a 
great effort and persuaded me to stay another year. During 
that last year, things were changing for various reasons, e.g. 
the lecture of that teacher and an introduction to one or 
two books, so I decided to go to university. 

Dundas and Skau: You go on to obtain a Master’s thesis at 
the University of British Columbia, you marry and then you go 
to Yale and start a PhD in mathematics. It is quite a journey 
that you were on there. How did you choose the thesis topic for 
your PhD at Yale? 

Langlands: First of all, Hille had this book—you may 
know it—on semi-groups and I was an avid reader of that 
book, and I took a course from Felix Browder on differen-
tial equations. You may not know but Felix Browder was 
an abysmal lecturer and so you had to spend about two or 
three hours after each lecture sorting things out. He knew 
what he was talking about but it took him a long time to get 
to the point or to remember this or that detail of a proof. I 
went home and I wrote out everything he had talked about.

So, I had this background in partial differential equa-
tions from his course and I had read all of Hille’s book on 
semi-groups and I just put the two together. I really liked 
to think about these things. 

Dundas and Skau: In other words, you found your own 
PhD topic? 

Langlands: Yes, I found my own PhD topic.
Dundas and Skau: But from there on, after your thesis, we 

have what we like to think of as a journey toward a discovery. 
Your work on Eisenstein series and your study of the theory of 
Harish-Chandra are crucial ingredients here. Would you care to 
explain to us what the background was that led to the Langlands 
programme? 

Langlands: There was a Hungarian fellow, S. Gaal, who 
had immigrated to the US after the difficulties in Hungary 
and that was in the middle of the 1950s. The Norwegian 
mathematician Atle Selberg was a member of the Institute 
of Advanced Study (IAS) in Princeton. Selberg’s wife was 

then you would have to add it all up. And me, I was 12, 13 
or 14 and I could have told him the answer even before he 
started. But I waited patiently when he did that.

So, that was my only experience with mathematics ex-
cept for one or two things, one or two tricks my father used 
when building window frames to guarantee that the angles 
are right angles and so on, but that was just a trick, right? 
The diagonals have to be of equal length if the rectangle is 
going to be right-angled. 

Dundas and Skau: Then, why did you move toward math-
ematics? Why not languages or other things that you studied? 

Langlands: Actually, when I went to university in the 
almost immediate post-World War II period, it was still 
regarded as necessary for mathematicians to learn several 
languages: French, English, Russian or maybe even Ital-
ian. Now, that fascinated me. The instruction of French in 
English-speaking Canada was rather formal; nobody paid 
too much attention to it. But learning languages rather 
fascinated me and the fascination has been with me all my 
life (but that was incidental to mathematics). 

Dundas and Skau: Why did you start at university at all? 
Langlands: Why did I start…? Here is my conjecture. 

There are two things 
(I will come back 
to the second thing 
in just a minute). I 
went to high school. 
There were children 
from the neighbour-
hood and from the 
surrounding country 
side, and they tested 
us. I was indifferent, 
you know. I didn’t 
pay too much atten-
tion but they also 
used IQ tests and 
my conjecture has 
always been that I 
probably had an 
unusually high IQ—
quite an unusually 

high IQ—I don’t know. It didn’t mean much to me then 
but that is my conjecture in retrospect. Many of our teach-
ers were just former members of the army in World War II, 
who were given positions as teachers more as a gratitude 
for their service in the army. This fellow—he was young, 
he probably had a university degree and he took an hour 
of class time to say that I absolutely must go to university. 
So, I noticed that.

And there was another reason: I had acquired a mild 
interest in science because I had a book or, rather, my future 
father-in-law had a book (it was rather a leftist book about 
eminent scientists; of course, Marx was included, Darwin 
was included, Einstein was included and so on—various 

Figure 2. Robert P. Langlands, 
The Abel Prize Laureate 2018
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seminar that was arranged by these disappointed students 
but it wasn’t such a good seminar, so I was quite ignorant. 
But Bochner said: “You are to give a course in class field 
theory.” And I said: “How can I do it? I don’t know anything 
about it and there is only one week left.” But he insisted 
so I gave a course on class field theory from Chevalley’s 
paper, which is the more modern view, and I got through 
it. There were three or four students, who said they learned 
something from it.

So, with that, I began to think about the fact that there 
was no non-abelian class field theory yet. Some people, like 
Artin, didn’t expect there to be any. So, I was just aware of 
it, that’s all. We are now in August of 1963 or something. 

Dundas and Skau: You already had a position at Princeton 
University at the time? 

Langlands: I had a comfortable position at the univer-
sity and I went up the ladder reasonably rapidly. I think by 
1967, I was an associate professor or something like that. 
Thanks to Selberg, I was at the IAS for a year, and I was at 
Berkeley, California, for a year. So, I was away two times.

Dundas and Skau: And all this while you were contemplating 
the trace formula, is that correct? 

Langlands: Well, let me go back. I have forgotten some-
thing. I was concerned with the trace formula and I wanted 
to apply it. The obvious thing you want the trace formula 
for is to calculate the dimension of the space of automor-
phic forms; that is the simplest thing. So I wanted to do it. 
And, so, you plug in a matrix coefficient—as I understood 
it; it doesn’t look like a matrix coefficient—of an infinite 
dimensional representation into the trace formula and 
you calculate.

I didn’t quite know what to do with this and then I 
spoke to David Lowdenslager—he died very young—and 
he said: “Well, people are saying that this is really some-
thing you can find in Harish-Chandra.” So, I started to read 
Harish-Chandra and what I observed very quickly, because 
of reading Harish-Chandra, was that the integral that was 
appearing in the trace formula was an orbital integral of a 
matrix coefficient. And that orbital integral of a matrix co-
efficient, we know from representations of finite groups, is 
a character and, basically, you learn from Harish-Chandra’s 
paper that this is indeed the case. So, that meant that I had 
to start to read Harish-Chandra—as I did.

And once you start to read Harish-Chandra, of course, it 
goes on and on; but that was the crucial stage: this observa-
tion of Lowdenslager that people were beginning to think 
that Harish-Chandra was relevant. So, there we are, we have 
it all. And then I began to think about these things, slowly; 
and sometimes it worked out, and sometimes it didn’t. I 
could actually apply the trace formula successfully.

In 1962, Gelfand gave a talk at the ICM in Stockholm 
and a year later his talk was circulating. Now, Gelfand gave 
his views of the matter. The point was that he introduced 
the notion of cusp forms explicitly. The cusp form is a crit-
ical notion and it is a notion that I think appears in rather 

Romanian and spoke Hungarian and I think Gaal (he and 
his wife and maybe their children too) was invited to the 
IAS by Selberg. He had come to the US sponsored more or 
less by Selberg and he was giving a graduate course at Yale, 
where he talked about Selberg’s paper, basically at the time 
of Selberg’s second so-called “Indian paper,” a Tata publi-
cation from 1960. Selberg didn’t write that many papers at 
the time but I think there were two and Gaal talked about 
that. Also, I have to mention that there was an important 
seminar on convexity in the theory of functions of several 
complex variables.

So, you hear about Selberg and you hear about Eisen-
stein series, and this theory about convexity, and then you 
want to prove things and you move more or less instantly 
to an analytic continuation of Eisenstein series in several 
variables. So, I had already thought about that but I thought 
about them in a rather restricted context—no algebraic 
numbers, for example.

And then I got a position at Princeton University, not 
because of anything I had done about Eisenstein series but 
because of my work on one-parameter semi-groups. So, I 
gave a lecture in one seminar; Bochner didn’t run it but he 
kept an eye on it. I think he was impressed simply because 
I was talking about something that wasn’t in my thesis. I 
talked about this work with Eisenstein series and I think 
he was impressed by me. Now, Bochner’s family was from 
Berlin. He wasn’t born there but he lived there as a child. 
He went to German universities and he had connections 
with Emmy Noether and Hasse, for example. So, he took an 
interest in anything that had to do with algebraic number 
theory and he encouraged me to think about Eisenstein 
theory in a more general context, not just for groups over 
rational numbers but also for groups over algebraic num-
ber fields. 

Dundas and Skau: So Bochner was almost like a mentor 
for you for a while? 

Langlands: Not a mentor but he was like a foster father, 
if you like. He encouraged me—more than an encourage-
ment; he pushed me. Bochner encouraged me to work over 
algebraic number fields rather than just over the rational 
number field. Algebraic number fields I basically learned 
from Hecke and I read papers by Carl Ludwig Siegel (be-
cause there are ways to handle analytic continuation of 
series, which you can take from Siegel’s papers). I started 
to read a little in the literature of these two, Hecke and 
Siegel, and I wrote about Eisenstein series basically using 
their very classical methods.

In any case, one year—just about a week before the 
classes were to start—I was going to give a course in class 
field theory. Emil Artin had been in Princeton and was the 
expert on class field theory; he had gone back to Germany 
in 1958 and there were one or two disappointed students 
who had come to Princeton to learn a little bit of class field 
theory. There was no real information on class field theory 
to be obtained from the courses offered. I had attended a 
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uation of Eisenstein series. I approached him when I had 
done it in this or that case and he’d say: “Well, we don’t care 
about this or that case. We want to do the general theory.” 
So he didn’t listen to me. While we were colleagues and 
our offices were basically side by side, we’d say hello but 
that’s about it. 

Dundas and Skau: So you spent many years together in 
virtually adjacent offices at the IAS and you never really talked 
mathematics?

Langlands: No. Selberg, you must know, didn’t speak 
with very many people about mathematics. He spoke 
with one or two, I think, but not many. I am not sure how 
much he thought about mathematics in his later years. I 
just don’t know. 

Dundas and Skau: But even so, your work on Eisenstein 
series really had some consequences in hindsight, didn’t it? 

Langlands: Yes, it was critical in hindsight, right? So, that 
took me about a whole year and I think I was exhausted 
after that—it was one of the cases where you think you 
have it and then it slips away. There was, for example, an 
induction proof. In induction proofs, you have to know 
what to assume: if you assume too much it is not true and 
if you assume too little it doesn’t work.

In fact, there was a problem; things were happening that 
I didn’t recognise. In other words, it could be a second-or-
der pole where you naturally assume that there is only a 
first-order pole. And it took me a long time to reach that 
stage. Specifically, it is the exceptional group G2 of the Car-
tan classification. You think this is going to work; and you 
try and it doesn’t work—it doesn’t work in general. Then 
you think about what and where it can really go wrong 
and it turns out that it only goes wrong for G2. Then you 
make a calculation with G2 and what do you see? You see 
this second-order pole or a new kind of first-order pole 
and that changes the game: you have a different kind of 
automorphic form.

It eventually worked; it was an exhausting year but it 
did eventually work. 

Dundas and Skau: And in the Autumn of 1964, you went 
to Berkeley, is that correct? 

Langlands: And then I went to Berkeley, pretty much 
exhausted by that particular adventure. 

Dundas and Skau: Were you really so exhausted that you 
thought about quitting mathematics? 

Langlands: Well, look, quitting mathematics is a 
rather strong statement. But I did decide to spend a year 
in Berkeley and got some things done in retrospect. I did 
more than I thought I had done. I was too demanding, 
you know. When you are younger, you are a little more 
demanding than when you are older. So, the next year I 
was really trying, I think, to do something with class field 
theory and I didn’t see anything. I had a whole year where 
I don’t feel I got anything done. In retrospect, in Berkeley, 
I did something but the year afterwards I didn’t at first do 
anything and I was growing discouraged.

obscure papers by Harish-Chandra and Godement. But it is 
hard; you have to look for it. But with Gelfand it was clear 
why that was so fundamental. Now, an incidental question: 
I don’t think Selberg ever really grasped the notion of a cusp 
form. Selberg, of course, didn’t read other people’s papers 
and I don’t think he ever grasped the notion of a cusp form. 
I think that was an obstacle that he never overcame.

But as soon as you read Gelfand, you can do it—you 
can prove the general theory about Eisenstein series. You 
have to know something. In other words, you have to be 
someone who knows something about unbounded oper-
ators on Hilbert spaces. You have to be someone with this 
background or it doesn’t mean anything to you. But if you 
had that background then you saw immediately what was 
to be done: take what Selberg had done in rank one to the 
general case.

Let me go back a little. I only talked mathematics with 
Selberg once in my life. That was in 1961, before I came 
to the Institute (IAS). It was at Bochner’s instigation, I am 
sure. Selberg invited me over and he explained to me the 
proof of the analytic continuation in rank one. Now, of 
course, the proof of the analytic continuation in rank one 
is like Hermann Weyl’s theory on differential equations of 
second-order on a half-line. I had read Coddington and 
Levinson’s book Theory of Ordinary Differential Equations not 
too long before, so I could just sit there and listen to Sel-
berg—listen to the kind of things he knew very well—and 
he explained it to me. Whether he regretted that afterwards I 
cannot say but he explained to me how it works in rank one. 

Dundas and Skau: Were you impressed by his presentation? 
Langlands: I had never spoken mathematics with a 

mathematician on that level before in my life. I had really 
never spoken mathematics with Bochner and he is the one 
that came closest. 

Dundas and Skau: Even so, you didn’t have further conver-
sations with Selberg afterwards.

Langlands: No, he wasn’t a talkative man. Well, I did 
have occasional conversations because then I was still 
continuing to try to prove the fundamental analytic contin-

Figure 3. Robert P. Langlands giving a lecture.
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Langlands: I gave up both, even the Russian class where 
the teacher was this sweet woman; I think she liked me 
since I was an industrious student. She was very angry and 
wouldn’t talk to me. 

Dundas and Skau: Is it fair to say, then, that your discovery 
comes out of…well, you were extremely exhausted, you let your 
shoulders down, you play, you have some evidence and you make 
a major discovery? 

Langlands: I think that’s an apt description.
Dundas and Skau: When did you have this epiphany, if you 

like, where you saw the connection with the Artin conjecture 
about the analytic continuation to the whole complex plane of 
the Artin L-functions? 

Langlands: It was during the Christmas vacation of 
1966. Although I have forgotten the date the idea came to 
me, I still have a vivid recollection of the place. In the old 
Fine Hall at Princeton University, there was a small seminar 
room on the ground floor directly to the east of the en-
trance. The building itself, I recall, was of a Gothic style with 
leaded casement windows. I was looking through them into 
the ivy and the pines and across to the fence surrounding 
the gardens of the President’s residency when I realised that 
the conjecture I was in the course of formulating implied, 
on taking G = {1}, the Artin conjecture. It was one of the 
major moments in my mathematical career.3 

Dundas and Skau: Was this a so-called Poincaré moment for 
you? You know the story about Poincaré getting on a bus when 
all of a sudden he saw the solution to a problem he had been 
thinking about for months and then put aside.

Langlands: Except that somehow I was not searching. 
I had no idea I would stumble across a non-abelian class 
field theory. 

Dundas and Skau: And this was right before you sent the 
17-page, handwritten letter to André Weil outlining your theory? 

Langlands: Yes. The letter to André Weil is somehow an 
accident. The point is, I went to a lecture by Chern. Weil 
went to the same lecture and we both arrived early. I knew 
him but not particularly well. We both arrived early and the 
door was closed so we couldn’t go in. So, he was standing 
there in front of the door and I was standing there in front 
of the door. He wasn’t saying anything so I thought I should 
say something. I started to talk about this business. And 
then he didn’t understand anything, of course, and he prob-
ably behaved as you’d behave under those circumstances; I 
was this fellow talking to him and I just assumed he would 
walk away but he said “write me a letter.” I wrote him a 
letter. He never read the letter so far as I know. 

Dundas and Skau: He had your letter typed and distributed, 
didn’t he? 

Langlands: Yes, that’s right. 

So, I decided on a little bit of foreign adventure. I pretty 
much decided that the time was right. I should just go away 
and maybe think of doing something else. I had a Turkish 
friend and he explained to me the possibility of going to 
Turkey. So, I decided to do that and, once I had decided 
to go to Turkey, there were various things to do; I wanted 
to learn some Turkish and then I went back to studying 
Russian. I had a very nice teacher. But I still had a little time 
to spare and I didn’t know quite what to do and I began to 
calculate the constant terms of Eisenstein series. 

Dundas and Skau: Just for the fun of it? 
Langlands: Just for having something to do. And so 

I calculated them. I just calculated it for various groups 
and then I noticed that it was basically always of the form 
f (x)/f (x+1) or something like that. But if you could con-
tinue the Eisenstein series you could continue the constant 
term and instead of f (x)/f (x+1), you could continue f(x). 
And these things are Euler products, so you have new Euler 
products. Of course, analytic number theorists just love 
Euler products. So you had it! You had something brand 
new: they had an analytic continuation and a functional 
equation. And you could basically do it for a lot of groups.

Dundas and Skau: You could even do it for reductive groups? 
Langlands: You basically did it for split groups, i.e. those 

reductive groups with a split maximal torus, and then you 
have the classification. So, you had a whole bunch and, if 
you looked at them, you could see that somehow they were 
related to representations of Eisenstein series associated 
to parabolic groups of rank one. And they were somehow 
related to a representation; you have a parabolic group and 
you take the reductive subgroup—it is of rank one and you 
throw away the rank one part so you basically have some 
kind of L-function associated to the automorphic form on 
this reductive subgroup.

All right, so you have Euler products that are attached to 
a representation of a group. Euler products are Dirichlet se-
ries that number theorists love—and that is what you want. 
You have a large list of groups. And that already suggests 
something. You can formulate this—you can see somehow 
where this is coming from. You can see how to formulate 
it as a representation associated to an automorphic form 
and a particular representation of what I call the L-group, 
for L-series.

And there you are: you start to make a guess and you 
have this in general! For a particular reductive group, you 
have an Euler product with an analytic continuation, 
associated to a representation. But you think it works in 
general. So, once you have that—once you have something 
that might work in general—you have to think of how you 
are going to prove it in general. 

Dundas and Skau: This must have been extremely exciting? 
Langlands: Well, it was! 
Dundas and Skau: Incidentally, did you continue with your 

classes in Russian or Turkish? 

3Langlands (2005): The genesis and gestation of functoriality.  
publications.ias.edu/sites/default/files 
/TheGenesis.pdf

http://publications.ias.edu/sites/default/files/TheGenesis.pdf
cav
Rectangle

cav
Rectangle



500    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 4

representations of GLn (that is the theorem by Jacquet and 
Godement from 1972). But, in the end, you need to do 
two things that are more or less mixed, namely, for an au-
tomorphic form associated with a general group, you need 
to show that that automorphic form really sits on GLn; you 
push it toward GLn and then you define the L-function. So, 
it is not just an automorphic form but it is an automorphic 
form that can be pushed toward GLn.

Now, that will make you think that somehow an auto-
morphic form is associated to a representation of a group, 
which has to be defined. In other words, there is a structure 
in the connection of all automorphic forms. You can pass 
it from one associated with G. (It is not true that if you 
associate it with G, you can pass it to another group G’ if 
G goes to G’.) 

This is the so-called L-group and you have to push it 
forward. If you have this motion and you can push, you 
could say you have the automorphic form here equal to one 
over there, and so the L-function is the same. 

If the one you take over here is GLn then you know, by 
Jacquet-Godement, that you can handle it. So, if you have 
a way of passing—whenever you have the form on one 
group—to other groups in the appropriate formalism then 
you can handle analytic continuation. 

Dundas and Skau: This is what you call functoriality? 
Langlands: Yes, this passing like that. So, this means 

that you can describe it by representations of a group. So, 
this is the same thing; something similar is happening over 
on the algebraic/geometric side. And there it is another 
group; it is the group defined in a similar way and that is 
the group of Grothendieck and its motive. And when you 
have the two, you can do all the analytic continuation you 
want and what you get is, of course, something for your 
great-grandchildren to discover. 

Dundas and Skau: It seems like a very naive question, and 
it is, but let’s ask it anyway. Why is it so crucial to analytically 
or meromorphically continue the L-functions? 

Langlands: Why is that so crucial? That is a good ques-
tion. Why is it so crucial to know anything about the ze-
ta-function? Where do you go? In other words, you go for 
an estimate of the number of solutions and things like that. 
What do you do with the information you have about the 
zeta-function? And what would you do if you have all the 
possible information? Do you have an answer? 

Dundas and Skau: No, we don’t. 
Langlands: Neither do I but I think, in both cases, it is 

that we haven’t worked with it in the right area. 
Dundas and Skau: Of course, we know that the classical 

zeta-function tells us something about prime numbers and their 
distribution. And Dirichlet’s L-functions tell us something about 
prime numbers in arithmetic progressions.

Langlands: So, you get that kind of information but…
It is clear that it is what people are hoping for. But you 

can ask: why do they want it? Only God knows. So, you’re 

Dundas and Skau: This is not the only moment you describe 
where you are making a discovery while not sitting behind your 
desk and working. On another occasion, you tell of how you are 
walking from here to there and suddenly you see something. Is 
that a pattern of yours? Is that how you find things? 

Langlands: I have certainly seen these things very seldom 
in my life so I don’t think one can speak about a pattern. 

Dundas and Skau: Perhaps it is time that you actually tell 
us about what the Langlands programme is all about? Just in 
broad brush strokes. 

Langlands: Okay, we sort of know what the quadratic 
reciprocity law is, right? There, two things that appear to be 
quite different are the same. Now, we also know that, after 
Weil, we can define zeta-functions (or L-functions would 
probably be better). You can define them over finite fields 
and you can also define them if you have a global field and 
you take the product of the ones over finite fields and you 
get some kind of an L-function associated to a variety or 
even, if you like, to a particular degree of the cohomology 
of that variety. 

A basic problem in arithmetic for any kind of estimation 
of the number of solutions of Diophantine equations is 
reflected in the L-functions that you can formally associ-
ate—and you are in the half-plane—to the cohomology of 
the given degree of any kind of curve over a number field. 
They are there. 

Presumably, if you can deal with these then you can, 
somehow or other, do more things about the estimation 
of the number of solutions and the nature of solutions. 
I think no one has a clear idea about this, except in very 
specific cases, i.e. what you can do with the knowledge of 
these global L-functions. But they are there, and you want 
to prove that they have analytic continuation. The only 
reasonable way, on the basis of evidence, is that they will 
be equal to automorphic L-functions. 

Now, from the point of view of the variety and the coho-
mology of the variety, you have the Grothendieck formula. 
I don’t know to what extent he actually had a complete 
theory—I don’t think he had—but he had the notion of a 
motive, and a motive has certain multiplicative properties. 
So, you had a whole family of functions that behaved in a 
natural functorial manner. And you wanted to prove that 
they could be analytically continued. But he managed to 
associate a group; in other words, these motives were asso-
ciated to representations of a group, whose nature had to 
be established. On the other hand, the group is there: you 
may never know its nature but you should be able to find 
out its relations to other groups. 

Now, on the other hand, what you would like, normally, 
in order to establish the analytic properties of these things 
that are defined algebraically/geometrically is to associate 
them to something that is defined analytically because 
automorphic L-functions basically have analytic continu-
ations. There are some questions about it, right, because 
you can do it if they are associated to GLn and the standard 
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of it doesn’t have much to do with things and it is just 
there. You just take the difference of the characters rather 
than the sum.

If you are going to use the trace formula, you have to un-
derstand the part you don’t really want. And there is some 
mysterious endoscopy. What is the so-called Fundamental 
Lemma? It is a fundamental lemma in the context of the 
specialised theory that was introduced for this special fea-
ture where things that should be the same could sometimes 
differ. What you do is that you treat them all as if they were 
the same and put them together and then you take the 
difference. You have to treat those differences separately 
so they look like something coming from the torus itself, 
the circle group that is sitting in there. So, it is a technical 
necessity; if you want to compare the representations of 
two groups you use the trace formula, but this stuff, this 
extra stuff, you have to get it out, put it aside and treat it 
separately, so you can compare what is left. And then what 
matters is just to understand what you can compare on its 
own. That means that you have to understand the differ-
ences—you have to look at just the circle group, which is 
all that matters, and for that you need the Fundamental 
Lemma, and that’s all. The Fundamental Lemma is the fun-
damental lemma for these technical properties. It’s a whole 
theory for this; it’s rather complex but it takes care of that. 

Dundas and Skau: Functoriality is the most important part 
of the Langlands programme. And to make progress on functo-
riality you have said you think that the crucial tool is going to 
be the Selberg–Arthur trace formula. Why is the trace formula 
going to be so important? 

Langlands: Well, what do you want to show? You want 
to show that you can transfer everything to GLn, basically. 
Let’s put this somewhat differently. You want to show 
that you can move automorphic forms from one group 
to another. This is something you want to use the trace 
formula for: you compare the two trace formulae, right?

You want to move things from the group G to the group 
G’. You want to be able, in particular, to handle the L-func-
tion, so you want to be able to move to GLn. These things 
work at the level of the L-group but let’s just work with 
GLn, so we don’t have to worry about that. So, how are we 
going to do it?

You say here is this group; every time I have a homomor-
phism of the group—really of the L-group—from one to 
the other then I have a transfer representation. This means 
that every representation is obtained by transfer; it is a nat-
ural transfer. You can see this if you see the distribution of 
conjugacy classes. So, what would you do? There is, so to 
speak, a smallest place, a smallest group where it sits and 
then it propagates to the other groups.

For example, say, you have one group G that you want 
to understand. So, you say here is the smaller group, so it 
has to be the contribution of those things that sort of sit 
inside the bigger groups in that smaller group, so one-away, 
one-away you do it all along, moving from the larger to the 

pushed by preconceptions and you’re trapped in the way 
you think mathematics should work.

Dundas and Skau: In 2009, the so-called Fundamental 
Lemma, conjectured by you in 1983, was proved by Ngô. He 
was awarded the Fields Medal in 2010 for this. Time Magazine 
selected Ngô’s proof as one of the Top Ten Scientific Discoveries 
of 2009.

Langlands: You can cancel your subscription to Time 
Magazine! 

Dundas and Skau: In a joint paper from 2010 titled “For-
mule des traces et fonctorialité,” the authors being you, Ngô and  
Frenkel, the very first sentence—translated into English—reads: 
“One of us, Langlands, encouraged by the work of one of us, Ngô, 
on the Fundamental Lemma, whose lack of proof during more 
than two decades was an obstacle for a number of reasons for 
making serious progress on the analytic theory of automorphic 
forms, has sketched a programme to establish functoriality—one 
of the two principal objects of this theory.” Any comments?

Langlands: The Fundamental Lemma is needed to deal 
with a specific kind of technical question. Let’s see if I can 
make it clear. This is not a good example but I’ll try to ex-
plain something. Say you have something such as the group 
SLn and you have SUn. You know by Weyl’s theory about 
the representations of SUn. Those are basically the standard 
finite dimensional representations of this group. Now, look 
at the SLn situation; SLn has more representations than SUn. 
SLn is a non-compact group; it has a lot of representations. 
But, in particular, it has some things that are very much 
like those of SUn; the characters are basically the same. For 
example, you know the characters of SU2.

Now, lets go to SL2. By Harish-Chandra’s theory—actu-
ally, SL2 is prior to Harish-Chandra—you have correspond-
ing representations. In this whole theory of representations 
of semi-simple groups or reductive groups, and therefore 
the theory of automorphic forms, and therefore the whole 
theory, what happens for SL2, for example—those things 
where there is only one? I mean, you know SU2, where there 
is only one representation in each dimension. Each one has 
basically something corresponding for SL2, the so-called 
discrete series, and at each end, it has two. It is just this 
one place where this unitary group becomes two for SL2. 

These two are, for all practical purposes, the same; they’re 
just two pieces. Now, considering the Fundamental Lemma 
and what you have to do if you are worrying about the trace 
formula: you want some part that is really useful for, say, 
SL2 and that’s the part where you put these two together 
so they look like SU2. Then, there is a supplementary part 
where you have to take into account the fact that they don’t 
occur with the same multiplicity so you have this extra stuff. 
So, if you want to handle the trace formula, you have to see 
what you want to compare. You have to say that SU2 is more 
or less like SL2. So, you can compare the trace formula of 
the two but the extra bit over here is causing you trouble. 
And the reason is that somehow the one representation 
here breaks up into two representations there, and some 
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an obstacle but it is also very difficult to understand, in part 
because very few people, perhaps no one, understands the 
connection with Yang–Mills as in the paper of Atiyah–Bott. 
I might be able to help you with further questions but I have 
had difficulties with one Russian speaker who, in spite of 
encouragement, still does not understand the basic idea of 
the paper. He is a well-regarded mathematician. So it ap-
pears that the paper is difficult. I am nonetheless confident 
that it is correct. You might ask around!

Dundas and Skau: That is a recent paper of yours that we 
can read? 

Langlands: It can be found on the web.4 
Dundas and Skau: In 1872, Felix Klein launched his famous 

Erlangen programme. To every geometry he associated an un-
derlying group of symmetries. Klein stated in his autobiography 
that the Erlangen programme remained the greatest guiding 
principle, or “leitmotiv,” for his subsequent research. Do you see 
any analogy with the Langlands programme?

Langlands: I would hesitate to use the word programme 
but I think probably that leitmotiv is right. In other words, 
you have these two somewhat surprising structures on both 
sides: groups moving from one side to another. You have 
one side that is arithmetic and the other side that is analytic 
(or geometric, depending upon your view). So, you move 
around and you know that everything can go to GLn, and 
with GLn you have this one example of an Euler-product 
that you can analytically continue. These things give you 
a very clear focus—or leitmotiv if you like—on what one 
should try to achieve. 

Dundas and Skau: In 2016, we interviewed Andrew Wiles, 
who was awarded the Abel Prize for his proof of the modularity 
theorem for semistable elliptic curves, from which the Fermat 
theorem follows. The modularity theorem fits into the Langlands 
programme and Wiles expressed the sentiment that its central 
importance in mathematics lent him courage: one simply could 
not ignore it—it would have to be solved!

You propose a theory of mathematics that is rather encom-
passing: it is not a particular thing; it is a structural thing. What 
are your comments on this?

Langlands: I think what one is looking for is a struc-
tural thing. All of the particular instances are of interest. 
Or something like that. There is so much you just can’t do 
that I hesitate to answer really. But, if you like, you have 
this one structure on the one side, the Diophantine equa-
tion, which is sort of embedded in one of the automorphic 
forms. Automorphic forms have a lot of intricate structure 
on their own, so you have a lot of information about the 
L-functions there that moves back here, i.e. to the Diophan-
tine side, and that is usually what you want. But I am not 
a specialist in those things. 

smaller. You look at the trace formula here and you look 
at the trace formula there, and they cancel. In other words, 
you come from one place and you look to see what it can-
cels—it cancels something—and you go along and along 
and along and you know you understand it. Ultimately, the 
real building blocks are those things in the big group that 
come from the trivial group. So, the last stage is to analyse 
those. I take the small group and I want to send it to the 
big group and I just have to look: I take the trace formula 
up here and it cancels everything I know from this. It just 
cancels everything; I said it should be made up by pieces 
and each should come from smaller groups and this just 
comes from the smaller group, and this comes from the 
smaller group, and this comes from the smaller group, and 
then I have to be careful because it can come from a bigger 
group and from a smaller group, and I have to be careful 
so I don’t count it twice. So, I say they should be equal. I 
have to have a clear view of the combinatorics. Everything 
comes from a smaller group and some of it comes from two 
smaller groups and some is coming from three and so on. 
This depends on the image group. So, to show that this is 
really true, I just show that somehow the trace formula gives 
the same up here as it does for something in the selection 
of the various groups. This is pretty vague but in principle 
it is not so bad. And this is how it works but up until now 
at a very low level. 

Dundas and Skau: So, that is at the forefront of your in-
vestigation? 

Langlands: I mean, that is at the forefront of Arthur’s 
investigation. I think if you want to hear what is available 
along these lines, you have to ask Arthur. 

Dundas and Skau: We understand you are currently thinking 
in more differential geometric terms? 

Langlands: I was thinking about the geometric theory 
and the geometric theory is not the trace formula, right? 
The geometric theory is basically Yang–Mills theory.

There are two papers—a brief one in English was pre-
mature and not entirely reliable. The other, which is longer 
and—so far as I know—reliable, is in Russian. This is already 4publications.ias.edu/rpl/section/2659

Figure 4. From left to right: Bjørn Ian Dundas, 
Christian Skau, and Robert P. Langlands.
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academic establishments, it is clear from the preceding 
remarks that I am indebted in a serious way to specific 
individuals who were attached to them.

Dundas and Skau: Perhaps before we conclude the inter-
view, it might be interesting to hear whether you have private, 
non-mathematical passions or interests of some sort, e.g. music, 
literature, language or poetry? 

Langlands: Passions? I don’t have any passions. But, you 
know, it is true that you want to take a look at other things, 
you know. History is fascinating: modern history, ancient 
history, the Earth’s history, the Universe’s history—these 
things are all fascinating. It is a shame to go through life and 
not have spent some time contemplating on that—certainly 
not everything of course but just to think about it a little bit.

Dundas and Skau: On behalf of the Norwegian Mathemat-
ical Society and the European Mathematical Society, and the 
two of us, we would like to thank you for this very interesting 
interview, and again congratulations on the Abel Prize. 

Langlands: Thanks for inviting me. 
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Figure 2 ©Randall Hagadorn/Institute for Advanced Study.
Figure 3 ©Institute for Advanced Study/Dan Komoda.
Figure 4 ©Anne-Marie Astad / The Norwegian Academy
 of Science and Letters.
Photo of Bjørn Ian Dundas is by Halvard Fausk. 
Photo of Christian Skau is courtesy of Christian Skau.

Dundas and Skau: Both Harish-Chandra and Grothend-
ieck—two mathematicians we know you admired—were en-
gaged in constructing theories, not being satisfied with partial 
insights and partial solutions. Do you feel a strong affinity with 
their attitude?

Langlands: I greatly admired both of them and, inci-
dentally, do not feel that I am at their level. Their impulses 
were, however, different. Grothendieck himself has de-
scribed his own impulses. Harish-Chandra never did. He 
just went where the material led him. He abandoned the 
mathematics of his youth, as a student in India, on which 
he wrote many papers, and turned to the topic of his thesis 
with Dirac: representation theory, a theory that was gaining 
in popularity and depth when he came to the IAS with his 
advisor Dirac. He just went where it led him. In retrospect, 
he just went where his strength and ambition took him. 
Incidentally, his thesis was, in contrast to what followed, 
not very impressive.

Dundas and Skau: To what extent has it been important 
to you to be around people and in an environment where new 
ideas circulate?

Langlands: There were two people who made an ab-
solute difference to my mathematical life. The first was 
Edward Nelson, whom I met basically by accident as a 
graduate student—I had come as a graduate student with 
a friend, who was an instructor at Yale, to the IAS to visit 
some of my friend’s friends from his graduate-student days 
at Chicago, one of whom was Nelson. An incidental conse-
quence of an informal conversation that day, during which 
we discussed mathematical matters of common interest, 
was that Nelson suggested to the Princeton mathematics 
department, where he was to begin teaching the following 
year, that I be offered a position as an instructor—no ap-
plication, no documents, nothing.

The second is Salomon Bochner, who, after hearing me 
talk in an informal Princeton seminar, urged me to move 
from the rational number field to arbitrary number fields 
and to study the work of Hecke. He also recommended 
me to Selberg. As a consequence, I had my one and only 
mathematical conversation with Selberg. It was, of course, 
he who talked.

Harish-Chandra, too, made an enormous difference, 
principally because of his papers (these I read on my own 
initiative, many years before meeting him) but also because 
my appointment to the IAS was made—I suspect—at his 
initiative. I should also observe that it was a young Princ-
eton colleague (although they were older than me) who 
directed me to Harish-Chandra’s papers. So the answer 
to your question is certainly ‘yes.’ I owe a great deal to my 
education at UBC, where a very innocent young man, a boy 
if you like, was introduced to intellectual possibilities to 
which he has been attached all his life, and to Yale, where 
for two years he followed his own whims and where there 
were mathematicians who supported his independence. 
Whatever reservations I have about Princeton and its two 

Bjørn Ian Dundas Christian Skau
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The Early Career Section is a new community project, featured here in the Notices. This column will provide  
information and suggestions for graduate students, job seekers, junior academics of all types, and those who mentor 
them. Angela Gibney serves as the editor of this section. 

This month’s theme is jobs in Business, Industry, and Government. Next month's theme will be Plan for a productive 
summmer.

Mathematicians are not always well understood by hiring 
managers within industry, particularly within Silicon Valley 
technology companies. Once you’ve made the decision to 
make the transition from academia to industry, here are a 
few things to keep in mind.

First, identify the types of positions for which  
to apply. 
Within many technology companies, roles with titles such 
as “data analyst” or “data scientist” are a good place to 
start. People in these positions analyze data and produce 
recommendations. The techniques used in analyzing data 
can range from simple analysis of patterns and statistical 
tests of proportions, to non-linear optimization and neural 
networks. The recommendations can run the gamut from 
changing the color of a button on a webpage, to imple-
menting an artificial intelligence algorithm that returns 
translated text in near real time. 

The skills required for these roles vary from Excel 
macro building and SQL programming, to writing produc-
tion-ready code that is ready for implementation in Python, 
R, or Java. Having a strong mathematical background facili-
tates quickly picking up new coding languages and domain 
knowledge. The vast majority of employers prefer that you 
have these skills in hand at the time of application; a few 
hiring managers may train you on the job, typically only 
for entry-level positions. 

There are many types of problems that data analysts and 
data scientists work on. At a typical Silicon Valley company 
there is often a website and a product to sell to customers. 

 • Marketing analysts model the effectiveness of different 
marketing channels, e.g., direct mail or Facebook ads, 
in attracting paying customers. Optimizing digital 
marketing spending on social media platforms such as 
Facebook is a difficult and evolving problem to solve.   

Transitioning from Academia to 
Industry? Here is some advice.

Carol E. Fan 

Carol E. Fan is Director of Data Science at Stellar Labs. Her email address 
is cefan_2000@gmail.com. 

For permission to reprint this article, please contact: reprint 
-permission@ams.org.

DOI: http://dx.doi.org/10.1090/noti1863
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Finally, network, network, network.
If you are making a transition, you are less likely to have 
connections in your new chosen area. Take advantage of 
alumni networks, friends of friends, and meet-ups—social 
networks such as LinkedIn and Facebook can introduce 
you to new contacts. Ask for an informational interview, or 
take someone to coffee. You just need one person to take a 
chance on you; it is up to you to find that person.

Credits
Author photo is courtesy of Carol E. Fan.

 • Product analysts improve a company’s website or mobile 
app to ensure that customers can easily and intuitively 
purchase its product. The most effective companies 
are continually testing their website to make minor  
improvements in what is called an “agile” workflow.

 • Operational analysts improve a company’s ability to fulfill 
customer orders in a timely and cost-effective manner, 
often using operations research techniques such as  
optimization, queuing, network analysis, and inventory 
theory. 

 • Business intelligence (BI) analysts curate the source of 
truth for data and provide company-wide reporting for 
the purposes of better decision making. Their work is 
typically seen at the highest levels of the company.

Second, signal to employers that you are the best 
person for the job.
A typical job interview will consist of a technical test of 
coding skills. Sometimes “homework” will be assigned 
with a time limit. Then there will be several interviews with 
potential coworkers to assess whether or not your experi-
ence and skill set are a good match for the open position.

From the employer's point of view, there are two poten-
tial drawbacks to hiring academic mathematicians: lack of 
urgency and lack of business sense. 

The stereotype of academics is that they will provide you 
with a solution to a problem only after they have thought 
through all of the possibilities, which could take weeks or 
months. Most businesses cannot wait that long. Make sure 
that you can provide examples of where you were able to 
complete an assignment in a short period of time and can 
explain what short cuts or trade-offs you would have taken 
if the deadline were one day versus one week away.

The more troublesome stereotype to dispel is the lack 
of business sense. At a business, all problems are seen 
through the lens of return on investment. How much 
effort is required to achieve the estimated benefit? If the 
decision is a minor one, a machine learning algorithm 
requiring months to validate and implement is unlikely 
to be necessary. Make sure that you can explain why you 
would choose one technique over another, given the time 
frame and potential benefit. 

Aside from these two points, employers are typically 
looking for someone who can communicate. The person 
who can explain their methodology and findings to stake-
holders from marketing to engineering, from the CEO to 
the warehouse worker, is highly valued.

Carol E. Fan



APRIL 2019  NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY   507

EARLY CAREER

Introduction
For almost a year, I sat in Washington DC’s National Airport 
every Sunday waiting for my flight to Houston. I was 22 
years old with an undergraduate degree in mathematics, 
now working in consulting for IBM. I followed physicians 
in area hospitals each week collecting data. In the evenings, 
I taught myself R, the statistical programming language, in 
order to organize and analyze the data so we could build 
models to predict the flow of patients through the hospital 
system. Each week, I found that the theories of mathematics 
I learned in school were insufficient to address all of the 
tasks I was assigned. My work involved structuring datasets, 
making our code run faster, and understanding the specific 
details of how hospitals function. Data constructed from 
the social interactions was anything but straightforward.

I decided I needed to learn more and headed to Yale 
University for a PhD in statistics. I chose the program 
because I wanted to develop my mathematics background 
while blending it with computational statistics. My doctoral 
dissertation concerned the computational challenges of 
applying a certain class of statistical models to estimate 
forms of structural dependence in datasets with a large 
number of variables. As a result of this study, toward the 
end of my time in graduate school I became broadly in-
terested in how methods from exploratory data analysis, 
data visualization, and statistical learning could be applied 
to very large datasets. My mentors in graduate school pro-
vided me with fundamental skills in statistical computing 

Industrial Research 
in Applied Statistics

Taylor Arnold 

for structuring and writing efficient code. I felt, however, 
a substantial disconnect between the data and problems I 
was working with in an academic setting and the data that 
statisticians typically work with in industry applications. 
Most of the work in academic statistics concerns the prob-
abilistic modeling of data, with a particular focus on the 
estimation of unknown population parameters. In practice, 
often much more time is spent acquiring, structuring, and 
visualizing data.

With a desire to learn about the real challenges of apply-
ing computational statistics to large, messy data sets, I took 
a position as a research statistician at Travelers Insurance. 
In that role I applied machine learning algorithms to the 
task of predicting fraud and the price of future insurance 
claims. Two years later, I became a senior member of the 
technical staff at AT&T Labs Research in New York City 
where I focused on location analytics using cell-phone 
telemetry data.

In the sections that follow, I explain some of the re-
search questions I worked on during my time in these two 
positions and how the skills I learned in graduate school 
prepared me to address them. I focus on what made these 
questions—and experiences in general—particularly in-
teresting. I also include a discussion of some critical draw-
backs of working in an industry lab. I conclude with my 
own vision for mutually beneficial partnerships between 
industry labs and academic researchers.

Travelers Research and Development
My first job out of graduate school was on the Travelers’ 
research and development team responsible for personal 
automobile insurance. The large number of messy data 
sets and unsolved problems that required new innovative 
approaches made the position especially appealing to me. 
I found building models within the insurance industry 

Taylor Arnold is assistant professor of statistics at the University of Rich-
mond. His email address is tarnold2@richmond.edu.

Communicated by Notices Associate Editor Noah Simon.

For permission to reprint this article, please contact: reprint 
-permission@ams.org.

DOI: http://dx.doi.org/10.1090/noti1855
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particularly rewarding. I built predictive algorithms that 
Travelers actually used to make real decisions about what 
policies to write and how much to charge for them.

While I worked on a number of interesting problems, 
the majority of my time was spent constructing pure pre-
mium models. These models predict, using historic data, 
the expected amount of money that would be paid out on 
a particular automobile policy. Actuarial and sales teams 
incorporate overhead and market-based adjustments to 
pure premium models in order to arrive at the final rates 
that are actually charged to consumers for an insurance pol-
icy. Several machine learning competitions have featured 
anonymized datasets with the goal of predicting pure pre-
mium values [1, 11]. These competitions, however, obscure 
the most interesting features of building pricing models. 
Here, I describe three particularly challenging research 
questions that underly the construction of premium mod-
els within the insurance industry.

The distribution of observed pure premiums makes it 
difficult to apply many standard statistical techniques with-
out some modifications. Most policies do not receive any 
claims and have an observed pure premium cost of zero. 
When claims are made, the amount of money requested has 
a property known in statistics as a “heavy tail”: a small num-
ber of insurance claims require an extremely large payout. 
These large costs primarily come from extensive medical 
expenses as a result of automobile accidents. The general 
distribution of premiums, therefore, should be modeled 
by a mixed distribution with a discrete mass at zero and a 
continuous distribution on the positive real numbers. It is 
possible to split a premium model into separate frequency 
(the discrete part, predicting whether the policy will have 
a claim) and severity (the continuous part, predicting how 
large a claim will be) components. However, splitting the 
model this way ignores important correlations between fre-
quency and severity. A better alternative is to use a Tweedie 
distribution, which arises from assuming that the number 
of claims made on a policy follows a Poisson distribution 
and the amount of any given claim is distributed with a 
gamma distribution [12]. Software exists for fitting a gen-
eralized linear model where the dependent variable has 
a Tweedie distribution. (Figure 1 shows simulated values 
from three Tweedie models with varying dispersion param-
eters [6].) Interesting research questions arose whenever 
we wanted to use a new approach or statistical method 
in our pure premium models. For example, we wanted 
to incorporate constraints into our models to reduce the 
number of variables used in the final output. Implement-
ing constrained models required new mathematical deri-
vations and software implementations. Since estimating 
parameters in the Tweedie model can become numerically 
unstable, in addition to demanding a significant amount 
of computational power, these implementations required 
careful thought and nontrivial extensions of currently 
available algorithms.

Automobile pure premium models are typically con-
structed to estimate the cost of insuring a particular auto-
mobile. Variables used in this calculation may come from 
features of the automobile itself (e.g., cost, make, age, and 
safety features) or from details of the specific policy (e.g., 
zip code, deductibles, miles driven per year). Some partic-
ularly powerful features are also associated directly with 
the individual drivers on a policy. Examples of predictive 
driver-level features include credit histories, ages, number 
of prior claims, and the number of prior traffic violations. 
The challenge becomes how to summarize driver-level 
variables at the level of a particular automobile. Should we 
construct a variable equal to the average age of all drivers? 
Could we create variables for the minimum and maximum 
age of all drivers on a policy? Or should we count the 
number of drivers below some age threshold? Any of these 
new features could be computed for a policy and used in 
the pricing algorithm. A choice of how to create these ag-
gregated features must be made for dozens of driver-level 
variables, with the typical trade-offs between variance and 
bias when including too many or too few correlated vari-
ables into a single model. The challenge of summarizing 
predictive variables at the level of an observed response, 
a particular example of feature engineering, is a frequent 
challenge in industry applications. I believe this is one of 
the single biggest challenges in applied machine learning 
that is largely overlooked within academic research.

Another important challenge in deriving pure premium 
models is ensuring that models conform to various gov-
ernment regulations. In the United States, automobile 
insurance is regulated at the state level, and each of the 
fifty states has its own set of rules. Credit information, for 
example, is not an allowed predictor variable for pricing 
policies in Massachusetts. In New Jersey, only a limited 
number of geographic regions can be defined for pricing 
and discount purposes. Many states allow insurers to use 
the age of drivers in pricing models but require that aging 
can only decrease prices and never increase them. Building 
models that follow these regulations, while retaining most 
of their predictive properties, was a constant challenge 
within the research and development group at Travelers.

The research problems I encountered at Travelers point 
to two takeaways about graduate education in statistics. We 
need more statisticians in industry who have the training 
and interest to conduct original, open-ended research. 
Many of the most interesting and beneficial projects could 
not be solved with off-the-shelf statistics tools. They require 
experience with graduate-level statistical theory as well as 
general skills in conducting original research. At the same 
time, we need graduate programs in statistics to include 
more training in computer science and the empirical social 
sciences. Computer science and engineering courses can 
provide skills for writing efficient code to deal with larger 
datasets, understanding how to implement new estimation 
algorithms, and knowing the principles of building data-
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lular voice call, a text message, or the transferring of generic 
data. With the widespread coverage of 4G networks and the 
proliferation of cellphone applications, most cellphones 
today are involved in a nearly constant stream of CDRs that 
cover the majority of the day [9]. By associating each cell 
tower in a CDR with its location, these records make it pos-
sible to determine approximately where a device is at any 
given moment in time (see Figure 2 for an example) [13]. 
This data has been widely used as legal evidence and was 
recently employed to assist aid workers helping with the 
West African Ebola virus epidemic from 2013–2016 [14].

The location analytics data that I worked with was so 
large that it needed to be distributed over hundreds of 
machines. Overall, the data I had access to amounted to 
several petabytes (1000 terabytes) and took days to process 
even over our large cluster. Given my expertise, I was tasked 
with building a data pipeline from scratch that ingested the 
raw CDR records and produced a normalized database of 
each observed device’s location—a daunting but exciting 
challenge. In order to work with data stored over a large 
distributed system, I had to learn two new frameworks 
(Hadoop and HBase) and learn how to write code for 
them in a programming language I was not very familiar 
with (Java). Because data arrived hourly and needed to be 
processed immediately, my data pipeline needed to auto-
matically run throughout the day. In applied statistics we 
are often reminded and taught how to interactively check 
whether there are potential issues in a data source. With 
the system I was building, it was important to build in au-
tomated tests that would check new data as it came in. This 
was necessary because there were frequent upstream data 
issues with the raw CDR files that were being delivered. For 
example, all of the data from a particular city for six hours 
in a day might go missing due to an internal networking 

bases, and experience writing and testing code that may 
be used in production. Social science applications give 
experience with the techniques and challenges of using 
data and models to understand human behavior. They also 
are more likely to explain the political and legal challenges 
that may underly the collection of data or deployment of 
empirically trained models.

AT&T Labs Research
In April 2014, I transitioned to the statistics department 
at AT&T Labs Research. The group has a long history of 
exceptional work in the field of applied and computational 
statistics and traces its roots back to the original Bell Labs 
[7]. Rick Becker was one of the three original authors of the 
S language, the precursor to the popular R programming 
language for statistical computing, which was developed 
at AT&T in the 1980s [4]. Simon Urbanek is one of the 
small set of core developers of the current R-Project. Chris 
Volinski and Robert Bell were both on the winning team 
for the million-dollar Netflix movie recommendation 
competition [5]. A large draw for my move to AT&T was 
the chance to work with these and other fantastic scholars 
in the field of computational statistics.

Another motivation for my interest in working at AT&T 
was the desire to work with extremely large datasets, a 
continuation of my graduate school research. My world-
class colleagues at the labs in a range of fields gave me 
the opportunity to work collaboratively on new research 
questions and to keep learning about new areas. My group 
focused on cellphone location analytics, which required 
working with large data sources. Our primary dataset was 
built from observations known as call detail records, or 
CDRs. A CDR is generated whenever there is an interaction 
between a cellphone and cell tower. CDRs can include a cel-

Figure 1. A histogram of simulated random draws from a  Tweedie distribution for three different dispersion 
parameters. When modelling insurance premiums, high dispersion values are used to describe policies that 
incur claims on only a small percentage of policies.
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the computational details of working at scale with large 
distributed datasets [2]. I also worked on integrating a new 
spatio-temporal visualization algorithm known as nano-
cubes into an R package [10]. This allowed our researchers 
at AT&T Labs to easily explore small subsets of our data 
within their browsers.

During my time at AT&T Labs, I had the chance to de-
velop new software and study approaches for working with 
extremely large datasets. Doing research at the Labs gave 
me expertise in the modeling and management of large 
datasets at a scale that would have been nearly impossible 
to work with in academia. My experience in an industry lab, 
in short, offered educational opportunities beyond what 
was available within a formal graduate program.

Drawbacks
Positions in industry labs are not without their own 
unique issues. For example, in an industry position there 
is a complete lack of personal ownership over ideas, work, 
and software. Projects that take months or years of work 

issue. Or the format of a field would occasionally change 
and cause some of the code to break. The completed data 
pipeline opened up many research questions for our team. 
Quick access to small selections of the corpus (through 
the distributed database) allowed for exploratory analysis 
that allowed us to start thinking critically about what the 
data was able to show. For example, we found that using 
the location data was great for detecting movement along 
highways and public transit routes. It was less useful, how-
ever, in the accurate detection of static devices.

Once the location data was cleaned and stored on our 
research servers, we created tools for modeling and visu-
alizing the data. Mike Kane, Simon Urbanek, and I built a 
set of tools in R for working with large distributed datasets 
[3]. These functions focused on being able to process a 
fixed number of lines of data, allowing for chunk-wise 
operations on large datasets. Using these tools, we de-
veloped a distributed algorithm that allows for applying 
penalized regression to arbitrarily large datasets. Our work 
on this problem eventually led to a textbook focused on 

Figure 2. Maps show registered cell phone towers (solid dots) in the vicinity of Rochester, New Hampshire. 
Each path describes an artificial collection of towers that sequentially handle cell phone traffic for a fictional 
driver commuting from Madbury to Rochester. In the left panel, the driver takes a sequence of smaller roads—
Littleworth, Calef Highway, and Gonic Road. The right shows an alternative path that travels by Route 16 (thick 
grey line). 
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me reflect on how to turn my individual applied projects 
into larger-scale methodological frameworks. Similarly, 
watching students use and struggle with existing software 
libraries helps me to understand the shortcomings in avail-
able tools and how they can be addressed.

One challenge of leaving industry labs has been finding 
ways to continue my scholarship in large-scale statistical 
computing without access to industrial datasets. Currently, 
I have solved this problem by finding publicly available 
datasets that share common traits with those seen in in-
dustrial applications. For example, I have a current project 
that involves working with the entire corpus of page his-
tories from Wikipedia, which amounts to several terabytes 
of textual data. The size of the corpus and complexities of 
dealing with the data address many of the same challenges 
I faced working with CDRs at AT&T Labs. I am involved in 
another project that uses computer vision techniques to 
extract features from video files. While the raw features are 
associated with individual frames, the predictive modeling 
tasks I am interested in—such as scene detection and char-
acter movement—require building models for sequences of 
images. The challenges here mirror the issues of aggregating 
driver-level data to a particular automobile that I faced at 
Travelers.

My experience in industry has impacted my own teach-
ing philosophy. Across all of my classes, my ultimate goal is 
to help students develop the skills needed to engage in the 
ethical and insightful analysis of data. For me this means 
that I need to teach the entire pipeline of working with data 
instead of focusing only on probabilistic modeling. In my 
introductory courses we spend a lot of time talking about 
how to correctly structure data in a spreadsheet. We also 
spend several weeks working on how to interpret statisti-
cal visualizations in both written and oral formats. In my 
courses on data science, students learn how to fetch data 
through APIs and spend several weeks building interactive 
websites with Javascript. These experiences improve their 
ability to present useful data visualizations as well as make 
them comfortable working in new programming languages 
and approaching tasks outside their typical comfort zone.

I found my experiences in industrial research labs both 
rewarding and generally enjoyable. At the same time, I also 
understand the difficulties of life in an industry lab and 
appreciate the relative freedoms afforded by a position 
in academia. Some of the most influential scholars in my 
own work have had similar histories that intersect between 
industry and academic positions, including John Tukey 
(who split his time between Princeton and AT&T Labs), 
danah boyd (a researcher at Microsoft with an ongoing 
position at NYU), Yann LeCun (a computer science pro-
fessor at NYU and director of research at Facebook), and 
Hadley Wickham (RStudio and Rice University). These 
scholars have produced some of the most important work 
in applied statistics. Hadley Wickham’s triptych of papers 
and associated software for applied data analysis—“A 

often result in no tangible outcomes that are seen outside 
of the company. Business concerns may force researchers 
to abandon interesting lines of work in favor of other tasks.

I engaged in a wide array of interesting research projects 
at Travelers and AT&T. Unfortunately, almost none of this 
work is publicly available. Industry labs typically forbid 
the publishing of research that uses internal data; without 
the datasets as examples, most of the methodological 
innovations made in my work were hard to motivate or 
even explain.1 At Travelers we were not even allowed to 
publish software that we had built. AT&T Labs, with its 
long tradition in computing, was more willing to allow 
the publication of software. The two papers I have from my 
time there both focus on specific software libraries we built. 
However, even this type of publication is increasingly rare.

Another concern I had while employed within an in-
dustry research lab was whether my work was being used 
in ethical and appropriate ways. Take, for example, the 
cellphone location analytics projects. All of the applications 
I directly worked on were either banal internal studies, 
such as testing network dead spots, or external consulting 
projects that made use of highly aggregated tabulations to 
show the general movement of people through space for 
urban planning purposes. However, there was no way for 
me to stop, or to even be aware of, my code being used for 
more objectionable applications. These concerns may also 
extend to all publicly available research. When publishing 
method papers or open source software, there is also no way 
to ensure that derivative work is being used responsibly. 
But, at least in the publicly available case, the research is not 
being internally motivated or funded by these applications. 
Also, I believe that the net benefit of publicly available 
research generally outweighs the concerns of misuse. The 
potential for abuse is harder to justify with research that is 
never made externally available.

After two and half years at AT&T, I left to join the fac-
ulty at the University of Richmond. The year prior to my 
departure, I taught two courses as a part-time lecturer at 
Yale University. This experience reignited my passion for 
teaching and convinced me that I wanted to make that a 
permanent part of my work. I also wanted the opportunity 
to make more of my research public in order to get external 
feedback and to see my methods and code made usable in 
other domains.

Academia and Future Directions
As I have transitioned back into academia, my experience 
in industry continues to shape my approach to research 
and teaching. For example, I no longer see a sharp divide 
between my work as a researcher and an educator. Teaching 
students how to work with messy, unstructured data makes 

1Prior to my time at AT&T there were more opportunities to publish da-
ta-driven research. See the paper [8] by my colleagues for a great example 
that illustrates the nature of the internal projects we worked on.
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Figure1 is courtesy of the author.
Figure 2 map tiles by Stamen Design, under CC BY 3.0.
Photo of Taylor Arnold is courtesy of the author.

layered grammar of graphics” [15], “Tidy Data” [17], 
and “The split-apply-combine strategy for data analysis”  
[16]—have been highly influential, for example, in my 
own work. I hope to see more direct partnerships where 
academic faculty can participate in research with industry 
labs. These exchanges have the benefit of bringing to light 
many understudied problems in applied statistics. It also 
provides an external source for critically reviewing the ways 
data are being used in industry and its potential effects on 
society as a whole.
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It’s common for math majors and professors to be aware of 
possible careers outside of teaching, especially jobs like data 
science, finance, actuarial science, and some government 
agencies. But from my experience talking with undergrad-
uates, graduate students, and professors in mathematics, 
careers at National Laboratories are not as well known. It’s 
my goal in this article to give you some background and 
history of the national lab system, a glimpse into the work 
mathematicians do, and, finally, some insight into getting 
a job at a national lab.

The national lab system grew out of a large invest-
ment by the US Government in scientific research during 
World War II. One of the more prominent efforts was the  
Manhattan Project, which established sites in Los Alamos 
(New Mexico), Oak Ridge (Tennessee), and Hanford  
(Washington), with the purpose of research and develop-
ment for nuclear material and weapons manufacturing. 
These three sites ultimately led to the creation of Los 
Alamos National Laboratory and Sandia National Labo-
ratory in New Mexico, Oak Ridge National Laboratory in 
Tennessee, and Pacific Northwest National Laboratory in 
Washington. Additional research in the Chicago, Illinois 
area in reactor technologies led to the creation of Argonne 
National Laboratory, and a push for competition created 
Lawrence Livermore National Laboratory in Livermore 
(California). There are now seventeen Department of En-
ergy National Laboratories all across the country engaging 
in multidisciplinary research relevant to today’s scientific 
challenges. At Pacific Northwest National Laboratory 
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(PNNL), for example, we focus on earth and biological 
science, physical and computational science, energy and 
environment, and national security.

There is not just one role for a mathematician in the na-
tional lab system. We do theoretical math research in areas 
like category theory, differential equations, graph theory, 
optimization, and operations research tackling applications 
in scalable algorithm development, sensor design, biology, 
chemistry, cyber security, power grid, machine learning, 
and more. We have the ability to participate in the full 
project life cycle, from proposal development, project plan-
ning, and execution all the way to software development 
and deployment. If that all sounds very overwhelming, 
don’t worry, it’s not like that from day one. As an early-
career mathematician, you would be brought in on one or 
two projects and be expected to utilize your specific skills 
to contribute to project deliverables. As time goes on and 
your network develops, those skills will be recognized by 
others. You may be asked to join other projects, help write 
sections of proposals, and get more responsibility as you 
gain experience.

If a career at a national lab sounds interesting, there are 
some things you can do while still in school in order to be 
more successful. Because a lot of work at a lab deals with 
real data and iƒmplementation of algorithms, courses in 
statistics, data science, and programming are very helpful. 
Additionally, given that all of our research ultimately is 
applied, it’s good to have a breadth of knowledge beyond 
mathematics. Take classes like physics, chemistry, biology, 
or economics in order to build up knowledge and vocabu-
lary outside of math. Most of our teams are interdisciplin-
ary and rely on communication with non-mathematician 
colleagues, including management. Classes in technical 
writing and presentation skills can give you a head start in 
these areas. Finally, the best way to really know what it’s 
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like to work at a national lab is to do an internship. Each 
lab has its own internship programs, which can typically 
be found in the jobs section on its website. For a com-
plete listing of the national labs with links to their home 
pages, see https://www.energy.gov/national 
-laboratories. 

Credits
Author photo is courtesy of PNNL.
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trators, and thought leaders, fellows make valuable contacts 
and broaden their career paths. The goals of the program 
are two-fold: (1) to provide hands-on professional devel-
opment to fellows that shows them how policy works and 
how their scientific (mathematical) training can be used 
in the federal sector, and (2) to provide more analytical/
scientific expertise to the government.

Across the federal government, fellows work on many 
issues and contribute in numerous ways. It is almost im-
possible to outline a typical fellowship experience. Karen 
Saxe, AMS Associate Executive Director, was a 2013–2014 
AMS Congressional Fellow. She interviewed several fellows 
who served in the executive branch, highlighting how their 
math backgrounds were instrumental to their fellowships. 
Read about mathematicians from the STPF 2017–18 class—
Tyler Kloefkorn (National Science Foundation), Kyle Novak 
(US Agency for International Development), Jessica M. 
Libertini (Department of Defense), and Chris Leary (US 
Agency for International Development)—at https://
bit.ly/2C9Yrej.

Policy fellows with the STPF program, running strong 
since 1973, benefit greatly from the considerable exper-
tise of its staff. These AAAS staff understand the needs of 
host offices, solicit position descriptions from agencies, 
find placements for fellows, and help manage fellows’ 
relationships with their host offices. Applicants develop 
a personal statement describing their interests, and then 
finalists go through a matching process where placements 
are determined by mutual agreement between the fellow, 
agency host, and AAAS staff.

One Year in Washington 
Opens up a Whole New 

World of Possibility
Jennifer Pearl 
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Like most sectors, the federal government needs good 
mathematicians. Mathematicians and statisticians are in 
high demand in Washington—now more than ever.

I speak from experience: I am a mathematician who 
heads the AAAS Science & Technology Policy Fellowships 
(STPF) program and was a fellow myself. Mathematicians 
like us understand the difference between causation and 
correlation, and we bring a skeptic’s mindset to the table, 
which helps ensure a sound basis for policy decisions.

The STPF program is the perfect opportunity for mathe-
maticians to be on the front line of vital issues that impact 
society with fellowship assignments in federal agencies, 
on Capitol Hill, and in the judicial branch. Fellows are 
outstanding mathematicians, statisticians, scientists, and 
engineers at any career stage—from newly minted PhDs 
to seasoned professionals—who learn first-hand about 
policymaking while contributing their STEM mindset to 
American government.

The yearlong fellowship runs annually from September 
through August with a class of more than 250 fellows who 
represent a broad range of backgrounds and disciplines. 
AMS is among more than 30 partner scientific societies that 
sponsor fellowship placements in Congress. AAAS sponsors 
numerous placements in more than 18 executive branch 
agencies each year. Engaging with policymakers, adminis-
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The fellowship was an eye-opening pivot point in my 
career. It’s one of the few things that will allow you to fully 
grasp and enter into the wide breadth of work that is done 
at the federal level.

After the fellowship, fellows become members of a 
strong corps of 3,000+ alumni who are policy-savvy STEM 
leaders in academia, government, industry, and the non-
profit arena. STPF alumni with a mathematics background 
have leveraged their fellowship experience in many ways. 
Margaret Callahan, an applied mathematician, served as 
an AMS Congressional Fellow and is now an executive 
branch fellow at the Department of State. In an article in 
the January 2019 Notices, she stated, “Before starting the 
fellowship, in part because of the current political climate, 
many people expressed skepticism about the experience I 
was likely to have and what I would be able to realistically 
contribute. However, through this experience—in particu-
lar, in working with some of the smartest, most dedicated 
and hardworking people in my Senate office—I have be-
come, if anything, less cynical about the work that is done 
on Capitol Hill. Most people I have met here are motivated 
by an honest desire to serve their country and to improve 
peoples’ lives. The experience has been humbling and in-
spiring and I have learned more than I ever dared hope.”

Other STPF mathematician alumni include Karoline 
Pershell, who directs strategy and evaluation at a tech 
company and is Executive Director of the Association 
for Women in Mathematics; Carla Cotwright-Williams, 
who is a scientist at the US Department of Defense; and 
Edgar Fuller, who recently took a position at the Florida 
International University as the associate director of the 
STEM Transformation Institute. Another STPF alumnus is 
D. J. Patil, a mathematician who went on to positions in 
academics and in industry and was appointed the nation’s 
first-ever chief data scientist in 2015.

I can’t think of another career move that you can make 
that parallels the depth and breadth of benefits you can gain 
from one short year as a AAAS policy fellow. Interested in 
jumpstarting your career? Want to contribute to the mak-
ing of good policy? Learn more about STPF fellowships at 
https://bit.ly/2Ahkop9. Watch a video series on how 
to apply at https://bit.ly/2LDB9zs.

Credits
Author photo is courtesy of Kat Song, AAAS.
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on a single family of jobs, a family that looks very narrow 
when viewed from outside.

In the private sector, there is an unlimited variety of jobs, 
team/company dynamics, and career paths. Even the same 
job title at two different companies can mean vastly differ-
ent things. Recognizing all the ways that jobs and careers 
can vary gives you the opportunity to evaluate what you 
really want, and recognize that what you want can change 
over time. What balance between work and personal/
family time do you want? Do you want to be able to do 
more focused technical work or to influence the high-level 
direction of a team? How directly do you want to control 
the external impact of your work?

Questions like these are good to ask yourself regularly. 
There’s flexibility along all these axes within an academic 
career, but the narrow range makes it easier to assess and 
compare different options. To do a comparable assess-
ment outside of academia, you would need to investigate 
an order of magnitude more options. But coming from 
academic math where you’re used to thinking about a 
narrow family of jobs, it’s easy to think you’ve explored 
all the relevant options before you get to the one that best 
suits you. So while you can never explore all the options 
outside academia, it’s important to be intentional about 
widening your search as much as possible before you begin 
to narrow it down.

Three degrees of separation
It is an exaggeration to say that everyone in academic math-
ematics knows everyone else, but only a slight exaggeration. 
By the time you’ve been working in a field for a few years, 
you will have met many of the mathematicians in that field 
at conferences, and read papers by most of the rest. There’s 
probably someone in your own department who knows 
someone at any other university in the country, and their 
acquaintance will know all of the faculty and most of the 
graduate students there. So even if you have a high Erdős 
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Throughout undergraduate and graduate school, a postdoc, 
and my first few years in a tenure track position, I had 
never considered anything other than a career in academic 
mathematics. The reasons for my eventual decision to join 
Google as a software engineer are complex, but the process 
taught me a great deal about both the professional world 
outside academia and by contrast about the quirks of ac-
ademia that were biasing how I approached it. Academia 
is a small world, and when you spend all your time in a 
small world, it’s easy to ignore or forget just how big a big 
world can be. There are a number of things that are easy 
and seamless in a small world that you need to be much 
more intentional about in a big world. In this essay, I want 
to describe three particular ways in which academic math 
is a small world and how non-academic job seekers need 
to adjust to compensate for the larger world.

There’s only one job in academic math
When I’ve talked to grad students and postdocs who are 
looking at non-academic careers, the biggest trap I’ve seen 
them fall into is to fixate on the first interesting-sounding 
direction, or the job that one friend does and seems happy 
doing. In academic math we don’t think much about 
different career tracks because there’s essentially just one 
track with different amounts of energy devoted to teach-
ing, research, and service. There are differences between 
teaching at a community college, a liberal arts college, or a 
research university. There are differences between being a 
grad student, a lecturer, a postdoc, or a tenure-track profes-
sor. There are differences in how faculty members interact 
within different departments and varying degrees of func-
tion or disfunction. But these differences are all variations 
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number, if you go by who knows whom you can probably 
get to any other academic mathematician in three jumps.

Many people inside and outside of academia find the 
idea of networking distasteful because they think of it as 
trading favors with people you only pretend to like. But it 
really means making personal connections that make it 
easier to communicate. Whenever you meet other mathe-
maticians and tell them about your latest theorem, you’re 
networking. All the lemmas you hear that haven’t been 
published yet, the vague but valuable intuition that never 
will be published, come from networking. The academic 
math community is such a dense network that we barely 
recognize it as one.

Outside academia, social networks are similarly the most 
effective means of learning information that hasn’t been or 
never will be written down. People outside academia enjoy 
sharing what they know just as much as we mathematicians 
do, particularly if they know it’s helping someone else. 
The best way to learn about a particular career is to talk to 
someone doing it. The best way to learn about a company 
is to ask someone who works there. The best way to make 
a decision you’ve never faced before is to ask advice from 
someone who has. What you’ll learn isn’t secrets; it’s in-
formation that large-scale communication is not suited to.

Social networks outside academia are large and sparse, 
which makes it harder to find the people with the informa-
tion you need. In academic math, the very nature of doing 
mathematics puts you in contact with the people who know 
what you will need to learn. And the ones you haven’t met 
have their email addresses on easily findable department 
web pages. Outside of such a tightly knit network, you have 
to be much more intentional about meeting and keeping 
in touch with people who can share the information you’ll 
need, or connect you to others who can. That’s why non-ac-
ademics carry business cards and send Linkedin invitations.

One factor that has been identified as contributing to a 
lack of diversity in many fields is that people tend to de-
fault to networking with others with similar backgrounds. 
Because these networks affect the flow of information about 
careers and job opportunities, as well as occasional favors, 
they reinforce disproportionate representation. By being 
intentional about how you network, you can fight these 
tendencies and look for more diverse connections.

It may feel odd asking an acquaintance to introduce you 
to someone they know, then asking that person to answer 
some questions about their experience. But outside aca-
demia those sorts of requests are not uncommon, because 
it’s the best way to share and spread information. And as 
you gain experience, you can do the same for others.

In academia, you are your expertise
Academic departments typically hire for one or a small 
number of positions at a time, which means explicitly 
comparing applicants against one another. So to get an 
academic job, particularly a tenure-track job, it isn’t enough 

to be a competent, qualified mathematician; you need to 
stand out compared to all the other applicants based on 
your expertise in research and/or teaching. And because 
faculty jobs often have implicit or explicit restrictions on 
research field, the subject of your research can have as much 
or more impact than the quality of your papers.

This emphasis on expertise and direct competition 
makes it difficult to distinguish your work from yourself, 
which in turn makes work/life balance much harder to 
maintain. Outside academia there are some jobs that have 
similar dynamics, but there are also many that don’t. In 
software engineering and data science, for example, the 
number of open positions typically far outpaces the num-
ber of applicants that meet the minimum bar that compa-
nies are looking for. This minimum bar is very high, but 
competing against even a high bar is very different from 
competing against other applicants.

Many non-academic jobs involve working on a team in 
which responsibilities rotate between multiple people who 
are all capable of doing the work. Anyone on the team can 
take a sick day or go on parental leave without shutting 
everything down, and being the sole expert on something 
isn’t necessary, or even desired.

If you’re switching to a non-academic job, you won’t 
initially be an expert in that job since you’ve never done 
it before. Just like when you started graduate school, start-
ing a non-academic job means being overwhelmed with 
a seemingly endless body of information that you need to 
learn in a hurry. Employers want to know that you’re ready 
for this, so the ability to learn and adapt will be much more 
important than knowledge you already have.

This is one area where having gone to graduate school 
in any field is an advantage; it shows that you can handle 
the situation. However, you also have to fight your instinct 
to play the expert. You can’t learn something new until you 
admit you don’t know it, and you won’t get hired if the 
employer thinks you haven’t figured this out. You should 
learn as much as you can about a job before you apply, 
but there will always be things you can only learn from 
experience. Because you’re competing against a bar rather 
than other applicants, you’ll often be judged by your po-
tential to learn rather than what you know today. So when 
you’re applying for a non-academic job, it’s important to 
be completely transparent about what you don’t know, and 
how interested you are to learn.
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Ursula Gritsch (UG) and Melissa Yeung (MY) are Quanti-
tative Researchers on BlackRock’s Systematic Active Equity 
team, which boasts a more than 30-year track record of 
combining human expertise and innovative technology 
in pursuit of broad market diversification and consistent, 
differentiated returns. 

How did you end up in finance? 
UG: After moving to Berkeley, California with my family, 

I decided that the loneliness of academic mathematics was 
not for me. I taught math courses at Cal for a year, then 
found a job at a tiny financial software company. It was 
hard at first. I had never really programmed, and suddenly, 
I was writing and maintaining professional code and im-
plementing Black-Scholes style options pricing software. 
But I fell in love with writing high-quality mathematical 
software; it wasn’t good enough that the code be right most 
of the time: it had to be right all the time because clients 
were making trades based on my calculations. I also had 
truly smart coworkers! 

I eventually ended up at Barclays Global Investors, which 
is now a part of BlackRock. I have stayed at BlackRock for 
over ten years because BlackRock is first and foremost a 
fiduciary to our clients. Every math problem solved, and 
coding challenge surmounted helps us make better invest-
ment decisions for our clients. BlackRock also has a true 

From Research Mathematician 
to Quantitative Researcher

Ursula Gritsch and Melissa Yeung 

Ursula Gritsch is a Quantitative Researcher on BlackRock’s Knowledge 
Discovery team within the Systematic Active Equity business unit. Her 
email address is ursula.gritsch@blackrock.com. 

Melissa Yeung is a Quantitative Researcher and Portfolio Manager 
on BlackRock’s Systematic Active Equity team. Her email address is  
melissa.yeung@blackrock.com.

For permission to reprint this article, please contact: reprint 
-permission@ams.org.

DOI: http://dx.doi.org/10.1090/noti1842

commitment to diversity and inclusion, which results in 
the variety of perspectives needed to be truly innovative. 

MY: With the blessing of my graduate school advisor, on 
a whim, I spent a summer as a research intern on a trading 
and execution research team at a financial firm in Santa 
Monica. I was very fortunate; I found that I really enjoyed 
the work—I loved thinking about interesting, complex 
problems—I met wonderful mentors and sponsors who are 
very supportive and generous with their time and expertise, 
and I realized that I would be able to make a far greater 
impact in industry than I would in academia. 

What kind of math do you do now? 
UG: The first few years of my career, I priced energy 

derivatives and credit instruments using stochastic calcu-
lus. Now, I mostly work on numerical optimization and 
portfolio construction. Even though I don’t prove theorems 
anymore, I am still guided by rigorous thinking and strive 
to understand whether a certain hypothesis or conjecture 
is backed by real world data. 

MY: I don’t prove theorems anymore either, but I still get 
to do all the things I love about math—rigorous problem 
solving, spirited collaboration, and wading through large, 
complex data to build a deeper understanding of our world. 
There’s a richness, a complexity to the problems, and there’s 
the same joy of discovery. 

What does a day in the life look like? 
MY: I have a hybrid researcher/portfolio manager role 

and devote about 75% of my time to research and 25% of 
my time to managing our Asia-Pacific portfolios. 

The first 1–2 hours of most days are spent in research 
seminars or reading groups, where people share new work 
and receive feedback or discuss the latest academic research. 
After that, I work on research projects with my collabora-
tors. Jointly, we draw on our backgrounds in mathematics, 
statistics, machine learning, computer science, economics, 
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and finance as we seek to uncover novel insights and 
advance our understanding of financial markets. In the 
afternoon, I sometimes try to slip away for a quick workout 
before preparing for Asia’s market open. 

We manage portfolios collaboratively. When it is my 
week on the rotation, I work with our traders and a num-
ber of other teams at BlackRock to execute our investment 
strategies. 

UG: Since part of our team is in London, I try to be in 
the office by 8:00 am so that we can meet via video con-
ference before the London folks go home. Outside of team 
meetings, I mostly work on our optimization software or 
on individual research projects. These days, I exclusively 
code in Python. But earlier in my career, I wrote code in 
C++, Java, MATLAB, SAS—you name it! 

Occasionally, I also attend company-wide events, such 
as talks or panel discussions organized by various business 
groups or employee networks, such as the women’s network 
and the LGBT+ & allies network. 

These days, I go home around 6:00 pm and have dinner 
with my family. When my kids were younger, I typically left 
the office at 5:00 pm, sharp. But now my kids are in high 
school, so I have a lot more flexibility. 

What’s some advice that you have found especially helpful? 
MY: Cultivate a personal board of directors comprised of 

people whose counsel you respect and who have diverse ex-
periences, values, and beliefs. Lean on them; let them help 
you navigate difficult decisions and challenging situations. 

Do you have advice for young people who are interested 
in finance careers? 

UG: Make sure this is your passion! You will be much 
more successful and willing to go above and beyond if you 
are truly passionate about what you are doing. Also make 
sure you can code well; knowing statistics and applied 
mathematics also helps. You may be valued for your quan-
titative skills, but you should be able to convince people 
that you are interested in investing! 

MY: There are so many different kinds of careers in quan-
titative finance, and there are so many different paths to 
each one. You will encounter opportunities you never could 
have imagined as a student. Be open to those. Invest in 
yourself; build a strong quantitative foundation (math, sta-
tistics, machine learning, and computer science), develop 
unparalleled expertise in and become exceptional at what 
you are working on right now, hone your communication 
skills, and keep learning. 

Credits
Photo of Ursula Gritsch is courtesy of BlackRock.
Photo of Melissa Yeung is courtesy of the DOE Computation-

al Science Graduate Fellowship Program.
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It seems all areas of human activity are becoming increas-
ingly mathematized, and the financial industry is no excep-
tion. In fact, finance has been very mathematical ever since 
investment banks started hiring so-called rocket scientists 
in the early 1980s.

According to the New York saying, “If they say it’s not 
about the money, it’s the money!” Whilst a career in the 
financial industry has many rewards, it is universally under-
stood that the money is good, with starting salaries in the 
range of $85–125K. As far as other benefits are concerned, 
you will find yourself in a fast-paced environment where 
your ideas are valued and have immediate impact, and your 
colleagues are very smart. Moreover, the finance industry is 
so closely linked with academia that some academics seem 
more like industry practitioners and some practitioners 
more like academics. Mathematical and technological 
innovation are often motivated by financial applications.

An incomplete list of potential employers would include 
investment and commercial banks on the so-called sell side 
and hedge funds and asset managers on the so-called buy 
side. PhDs in quantitative subjects are also increasingly 
being sought after for fintech (financial technology) and 
consulting roles.

There are a number of roles for quantitative PhD can-
didates. A quantitative researcher might work on topics 
ranging from option pricing to risk assessment to the 
identification of profitable trading opportunities. A desk 
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quant (short for “quantitative analyst” in finance industry 
jargon) helps the trading desk analyze trading problems, 
performing a function that is typically more tactical than 
that of the quantitative researcher. Traders trade (obvi-
ously), but the distinction between trader and desk quant 
is increasingly blurred. Indeed, nowadays most traders are 
quantitative and can code. In the case of algorithmic trad-
ing, all traders are programmers. A risk manager analyzes 
the risk of trading desk and/or firm positions, advising 
both traders and senior management. A model validator 
assesses the validity and correctness of models and strat-
egies developed by quantitative researchers, desk quants, 
and traders. A data scientist specializes in extracting useful 
information from data, particularly large datasets using 
machine learning techniques. Finally, a consultant can be 
hired to provide external advice on any of the above aspects 
of the operations of a financial firm.

How does one get started? As a PhD in a mathematical 
subject from a school where Wall Street firms do regular 
recruiting, you may be attractive to a number of employers 
in the finance industry, notably hedge funds. If your PhD 
is from a non-target school, you may wish to consider 
obtaining a professional masters degree from a financial 
engineering program with an established pipeline for plac-
ing graduates in the financial industry.

Whereas the areas of technical expertise required ob-
viously depend on the precise role, a well-rounded can-
didate will know stochastic calculus, time series analysis, 
and numerical methods. Programming skills are essential. 
Strong C++ is a prerequisite for many employers. On the 
other hand, Python appears to be the current language of 
choice for daily research, and thus strong Python skills can 
also be regarded as very important.

The ability to communicate well with others who do 
not necessarily share your technical background is of 
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paramount importance. This includes the ability to read 
cues of all sorts—including nonverbal ones. If you have 
the ability to handle ambiguity, you will bring something 
valuable to the table, as assignments will typically not be 
as well defined as a typical mathematical problem. That is 
of course in the nature of the real world, and there is real 
pleasure to be had from formulating a vague observation 
or desire in such a way that the resulting problem may be 
solved mathematically.

For banks and large hedge funds, the time-honored route 
to obtaining permanent employment is to do a summer 
internship one or two years before completing your degree. 
This represents a “try before you buy” opportunity for both 
the employer and you. You can apply for such opportuni-
ties directly on company websites, typically in August or 
September. For smaller firms, personal referrals are often 
the preferred route.

While an in-depth knowledge of finance would be 
ideal, it is by no means a requirement for starting out in 
the financial industry. The kind of quantitative skills one 
obtains while working towards a PhD in mathematics, and 
innate personal talents, mean a great deal in this a career. 
As in any other field, an interest and passion for the work 
itself carries a lot of value for employers. It also makes it 
possible to thrive in an environment where the hours can 
be long and pressure can be high.

Jim Gatheral Dan Stefanica
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So what are BIG careers? Business and industry roles for a 
mathematics graduate might range from business-oriented 
analytical and data science problem solving to industry-ori-
ented technical R&D problems, with a vast range in between 
including policy analysis work at consulting firms and 
think tanks. By government careers, we means jobs at local, 
state, and federal agencies such as national laboratories, the 
defense department, and medical research organizations.

How can students prepare for BIG careers? Inspirational 
stories and practical advice can be found at the BIG Math 
Network website (https://bigmathnetwork.org). The 
Network is an independent partnership that launched at the 
2016 Joint Mathematics Meetings and is supported by the 
American Mathematical Society, the American Statistical 
Association, the Institute for Operations Research and the 
Management Sciences, the Mathematical Association of 
America, the MathWorks Math Modeling Challenge, and 
the Society for Industrial and Applied Mathematics.

The BIG Math Network website includes:
 • Career transition stories by mathematical scientists who 

went on to BIG careers
 • Links to resources for students and faculty
 • Practical advice about seeking jobs

For further in-depth advice and career preparation strat-
egies we recommend our recent book, the BIG Jobs Guide: 
Business, Industry, and Government Careers for Mathematical 
Scientists, Statisticians, and Operations Researchers, available 
from the online SIAM and AMS bookstores. The BIG Jobs 
Guide offers students and postdocs a practical how-to guide 
on topics such as: 

 • What skills can I offer employers?
 • How do I write a high-impact résumé?
 • Where can I find a rewarding internship? 
 • What kinds of jobs are out there for me? 
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Graduate training in mathematics prepares excellent teach-
ers and researchers. Students and postdocs thus may infer 
from their training that they are qualified only for jobs at 
colleges and universities, when their career opportunities 
actually are much broader. Options are a good thing, be-
cause while academic life has its attractions, it does not 
suit everyone. In addition, vastly increased PhD production 
nationwide means that the majority of new graduates in 
the mathematical sciences will spend their careers working 
in business, industry, or government (BIG).1

The lack of exposure during graduate school to careers 
outside of academia leads many PhD graduates to take 
multiple short-term academic jobs, whereas a purposeful 
leap into BIG could be more rewarding both financially 
and personally. Graduate training in mathematics provides 
a solid foundation for that career move, once students and 
departments take some modest steps in advance. This arti-
cle provides resources to help students prepare for BIG ca-
reers, and outlines steps faculty members and departments 
can take to open up career opportunities for graduates.

https://bigmathnetwork.org
cav
Rectangle
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The Guide helps students plan ahead for career pathways, 
right from the undergraduate years, through the early years 
in graduate school, to the final years and the job search, 
while being useful also for postdocs wanting to make a 
career transition.

Faculty members and department administrators are an-
other audience for the Guide, with a chapter on low-cost ac-
tivities by which departments can help students learn about 
and prepare for BIG jobs, and ways faculty members can 
build institutional relationships with internship mentors. 

What comes next? Inspired by the vision of Philippe 
Tondeur, former director of mathematical sciences at NSF, 
the BIG Math Network aims to bring together the broad 
mathematical sciences community to:

 • Communicate the value of mathematical sciences train-
ing to students, faculty members, and employers in BIG

 • Facilitate connections between students, faculty mem-
bers, and BIG employers

 • Share knowledge on how to prepare for BIG internships 
and jobs

 • Curate and create best practices and training material 
for preparing students for BIG jobs

 • Collaborate with professional societies and BIG in con-
necting job opportunities with talent
Phillippe and Claire-Lise Tondeur have generously given 

over $300,000 to further these goals. The AMS, MAA, and 
SIAM will use these funds in collaboration with the BIG 
Math Network to create new activities and programming 
over the coming three years. Please keep your eyes open for 
activities at MAA section meetings and at MAA MathFest, 
AMS sectional meetings, SIAM conferences, and the annual 
Joint Mathematics Meetings. Other efforts will take the 
form of products, services, and studies to help departments 
connect effectively with BIG employers and help students 
navigate the BIG job market.

If you are a faculty member, graduate director, or depart-
ment chair, we hope you will actively encourage students 
to pursue careers in industry and government. The BIG Jobs 
Guide provides ideas for how to do it. If you are a student 
or postdoc, we hope you will explore all the career oppor-
tunities open to you. The BIG Math Network and BIG Jobs 
Guide explain how to prepare yourself, get an internship, 
and choose a career you find challenging and rewarding. 
Good luck on the journey.

Credits
Photo of Richard Laugesen is by Darrell Hoemann.
Photo of Rachel Levy is courtesy of Harvey Mudd College.
Photo of Fadil Santosa is courtesy of University of Min-
nesota.
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Vladimir Voevodsky
Charles Weibel

Themathematical community lost one of its brightest stars
recently, when Vladimir Voevodsky passed away at the age
of 51. In addition to being awarded the Fields Medal in
2002, he created two new areas of mathematics: motivic
homotopy theory (a cross between topology and algebraic
geometry), and an axiomatic formalization of mathemat-
ics, called univalent foundations.

The citation for his 2002 Fields Medal states that it was
for his proof of the Milnor Conjectures, and for his con-
comitant development of motivic cohomology and mo-
tivic homotopy theory. He was also a member of the Eu-
ropean Academy of Sciences, since 2003.

Vladimir Voevodsky (1966–2017).

His Life
Vladimir Alexandrovich Voevodskywas born in Moscow
on June 4, 1966 and died in Princeton on September 30,

Charles Weibel is professor at Rutgers University. His email address is 
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2017, at the age of 51. For the next two pages, I will con-
centrate on his (colorful) early career.

Voevodsky ’s parents were both scientists. His father,
Alexander, directed a laboratory in experimental physics at
the Russian Academy of Sciences; his mother, Tatyana Vo-
evodskaya, was a chemistry professor at Moscow Univer-
sity. As a youth, Vladimir was kicked out of high school
three times, once for disagreeing with his teacher’s asser-
tion that the author Dostoyevsky, who died in 1881, was
pro-Communist.

In 1983, at the age of 17, he enrolled at Moscow State
University. He soon became bored by his classes and stopped
attending them several times, taking what one might call
several “gap semesters.” Finally, in 1989, he was expelled
for what he called “academic failure.”

As was common, Voevodsky had a day job: working
at the Lycee of Informational Technologies, as a techni-
cian responsible for running and fixing the printers at the
Computer Center. There he met Professor George Shabat,
who was also working in the Computer Center. When Vo-
evodsky asked to be unofficially mentored by him, Sha-
bat assigned a difficult problem in order to rid himself
of what appeared to be just another student. After a few
days, Voevodsky returned with a solution—and several ex-
amples worked out on the computer. This led to a collabo-
ration [ShV,ShV1] about aspects of Grothendieck’s Dessins
d’enfants, with the English version of [ShV1] entitled “Draw-
ing Curves over Number Fields.” While still officially a stu-
dent, Voevodskywrote three more papers [V90,V91,V91a]
in this vein.

Another collaboration sprung up during Voevodsky ’s
undergraduate days, with Mikhael Kapranov. This resulted
in the papers [KV1,KV2,KV3,KV4] on homotopy types and
what Ronnie Brown called “∞-categories,” structures de-
fined using multi-simplicial sets.

At the same time, the Soviet Union was slowly collaps-
ing. Gorbachev had introduced perestroika (the restructur-
ing of the Soviet political and economic system) and glas-
nost (openness). The Berlin Wall fell in November 1989,
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Voevodsky with his family (2001).

and the Soviet Union itself was in its last days. Travel abroad
was becoming possible; in 1978, Margulis was not allowed
to go to Helsinki to receive his Fields medal, but by 1989 it
had become possible for Russians to enroll in a university
abroad.

At this point, Voevodskywanted to go to graduate school
at the University of Wales, to work on category theory with
Ronnie Brown. As an alternative, his friends Alexander
Beilinson and Mikhail Kapranov arranged for him to be
accepted at another university, one named Harvard, which
Voevodsky had never heard of. After some persuasion, they
convinced him to travel to the United States and attend
Harvard.

Thus it was that Voevodsky became a graduate student
at Harvard University in 1990, without a high school or
college degree, and without even formally applying. Un-
surprisingly, he had difficulty adjusting to life in Boston,
and was even robbed at one point, so he temporarily went
back to Russia. Upon returning, he lived in his office for a
time. Nevertheless, he received his doctorate in 1992, un-
der David Kazhdan. It is worth noting that this PhD was
the only academic degree Voevodsky ever received!

In 1990, Vladimir met Nadia Shalaby, his life-long part-
ner, at Harvard. They married in 1995 and had two chil-
dren, Natalia Dalia Shalaby and Diana Yasmine Voevod-
sky, both of whom are now in college. Although the mar-
riage ended in divorce in 2008, Vladimir and Nadia re-
mained close friends all his life.

Upon graduating, Voevodsky spent a year at the Insti-
tute of Advanced Study (IAS), before returning to Harvard

He loved walking in the woods and taking photographs of
nature.

in 1993–96 as a junior fellow in the Harvard Society of Fel-
lows. According to Eric Friedlander, Voevodsky complained
about having to go to dinner occasionally as a junior fel-
low at Harvard, as it took time away from his research.

After a year at theMax–Planck Institute, Voevodsky joined
the faculty at Northwestern University in 1997. Although
he was a gifted teacher, he did not enjoy teaching—again
for the reason that it kept him from his research. In 1998,
he accepted a position as a long-term member at IAS, be-
coming a Professor (permanent member) of IAS in 2002.
When he was appointed to the IAS, he said with relief that
he wouldn’t have to teach any more!

He remained a Professor at the Institute of Advanced
Study for the rest of his life. On September 30, 2017, af-
ter Nadia Shalaby had failed to reach him by telephone,
friends foundhim in his Princeton home, having collapsed
in his home from a sudden aneurysm.

The Institute for Advanced Study held a Memorial Ser-
vice for him a week later (on October 8), and a funeral ser-
vice was held for him in Moscow on December 27, 2017,
followed by a Memorial Mathematical Conference on De-
cember 28, 2017 at the Steklov Mathematical Institute of
the Russian Academy of Sciences.

A year later, two memorial conferences were held simul-
taneously. One was held September 11-14, 2018, at the In-
stitute for Advanced Study in Princeton; the other was held
September 10–14, 2018 at the Euler International Mathe-
matical Institute in St. Petersburg, Russia.
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Voevodsky ’s Mathematics
I now turn to Voevodsky ’smathematical accomplishments.
They are organized around several of his revolutionary
ideas.
Motivic cohomology (1992–1995). Voevodsky ’s 1992
thesis, published as [V96], constructed a triangulated
category 𝐷𝑀(𝑆) for any noetherian base 𝑆, as an approxi-
mation to the hypothetical abelian category of “mixed mo-
tives” envisioned by Grothendieck, Deligne, Beilinson,
Lichtenbaum, and others. Any scheme 𝑋 over 𝑆 is rep-
resented by an object ℤ(𝑋) in 𝐷𝑀(𝑆), and the motivic
cohomology of 𝑋 with coefficients in 𝐹 is defined as the
Ext-groups 𝐻𝑛(𝑋,𝐹) = Ext𝑛(ℤ(𝑋), 𝐹).

When 𝑆 is the scheme associated to a field, the category
𝐷𝑀(𝑆) in his thesis differs only in sophistication from
the subcategory of effective motives in the category 𝐷𝑀
that Voevodskywould use later; see [V00b]. Competing
constructions were made by M. Hanaumra and M. Levine
at about the same time.

The paper [V96] contained three revolutionary ideas,
ideaswhich Voevodskywould continue to develop over the
next few years. Onewas to divide the problemof construct-
ing a category of motives into two parts: (a) constructing
a triangulated category 𝐷𝑀 satisfying some basic proper-
ties, and (b) showing that 𝐷𝑀 is the derived category of
an abelian one. (He accomplished (a), but (b) remains an
open problem.)

Another new idea was to work with sheaves on schemes
over 𝑆 with respect to two new Grothendieck topologies:
the ℎ-topology and the quasi-finite ℎ-topology (or 𝑞𝑓ℎ-
topology). As Voevodsky remarked in [V96], the usual
topologies (Zariski, étale, ...) “do not satisfy the proper-
ties we would expect from the ‘theory of motives’.”

A third idea was to construct 𝐷𝑀 from a derived cat-
egory of sheaves 𝐷 with respect to the thick subcategory
generated by the “contractible” objects𝐹⊗𝔸1 → 𝐹, where
(in this application) 𝔸1 is the affine line.

Almost immediately, he beganworkingwith Andrei Sus-
lin in developing these ideas. In 1992, they used the 𝑞𝑓ℎ
topology to construct a homology theory for schemes over
an arbitrary field which, overℂ and with finite coefficients,
agrees with the singular homology of the underlying topo-
logical space. This was published in 1996, as [SV96].

In 1994, Voevodsky released a series of foundational pa-
pers onmotivic cohomology with Suslin and Eric Friedlan-
der: [V00a, V00b, FV, SV00a, S00]. These were later pub-
lished in book form in 2000 [VSF]. Around this time, Suslin
showed that motivic cohomology agrees with the higher
Chow groups defined by Bloch in [B86] in characteristic 0;
see [MVW]; the characteristic 0 assumption was later re-
moved in [V02a].

In 1995, he wrote a related paper [V95] about corre-
spondences between smooth projective varieties. The ra-
tional equivalence classes of such correspondences form
the morphisms in Grothendieck’s category of Chow mo-
tives. Generalizing the observation that a correspondence
from 𝑋 to itself that is algebraically equivalent to 0 is a
nilpotent endomorphism of 𝑋, he formulated the notion
of a correspondence 𝑓 ∶ 𝑋 → 𝑌 being smash nilpotent:
some 𝑓⊗𝑛 ∶ 𝑋⊗𝑛 → 𝑌⊗𝑛 is trivial. Then he stated the
Nilpotence conjecture: A correspondence 𝑓 ∶ 𝑋 → 𝑌 is
smash nilpotent if and only if it is numerically equivalent
to zero (that is, conjecturally, homologous to zero).

By 1995, Voevodskywas essentially finished with the
framework ofmotivic cohomology. In 1999–2000, he gave
a course on the subject at the Institute for Advanced Study,
which my student Carlo Mazza and I attended. At the end
of the course, Carlo and I were asked to write up the lec-
ture notes. Whenever Carlo and I could not reconstruct an
argument (often a proof that consisted of the word “obvi-
ous”), we would come to Voevodsky ’s office and he would
explain it to us. This process uncovered a mistake in a key
lemma [V00a, 4.23], which was corrected in [MVW, 22.10].
Thomas Geisser was also very helpful with some points. By
2004 we were finished, and the book [MVW] appeared in
2006.
𝔸1-homotopy theory (1996–2000). The notion of an𝔸1-
homotopy theory for rings arose around 1970, largely due
to the work of Steve Gersten [G]. The naive idea was that
polynomials in 𝑡 should be regarded as homotopies be-
tween 𝑡 = 0 and 𝑡 = 1. Thus if 𝐹 is a functor from
rings to sets, such as 𝐺𝐿𝑛, two maps 𝑓0, 𝑓1 ∶ 𝐹(𝑅) →
𝐹(𝑆) are considered “homotopic” if there is a map 𝑓 ∶
𝐹(𝑅) → 𝐹(𝑆[𝑡]) so that 𝑓𝑖 is the composite of 𝑓 with the
map 𝐹(𝑆[𝑡]) → 𝐹(𝑆) induced by 𝑡 ↦ 𝑖. Any 𝐹 has a
universal homotopy invariant quotient: the coequalizer of
𝑡 = 0, 1 ∶ 𝐹(𝑅[𝑡]) ⇉ 𝐹(𝑅). However, it was quickly dis-
covered that this naive definition of homotopy theory was
useful only in very limited contexts, and did not generalize
well from rings to varieties.

In September 1995, Voevodsky heard about the work
of Fabien Morel, who was just finishing his Habilitation
in Paris, and was trying to define a natural homotopy the-
ory on algebraic varieties using Quillen’s model categories.
Having had similar ideas, Voevodsky began an email cor-
respondence with Morel. In May 1996, they met in per-
son and Voevodsky proposed that they “shouldwrite a bit.”
The result was their joint paper𝔸1-homotopy theory of schemes
[MV], released in 1998, which laid the foundations for
what is (not surprisingly) called “𝔸1-homotopy theory.”
A few months later, Voevodsky gave a beautiful address at
the 1998 Berlin ICM [V98], laying out the foundations of
stable 𝔸1-homotopy theory and motivic spectra.
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In 2000, Voevodsky defined the slice filtration on the sta-
blemotivic homotopy category defined in [V98]. The slices
𝑠𝑛𝐸 of a motivic spectrum 𝐸 are again motivic spectra, and
they form the motivic analogue of the Postnikov tower
in classical stable homotopy theory. This tower yields a
“slice” spectral sequence

𝐸𝑝,𝑞
2 = 𝐻𝑝(𝑋, 𝑠𝑝+𝑞,𝑛

−𝑞 𝐸) ⇒ 𝐸𝑝+𝑞,𝑛(𝑋).

Voevodsky discussed several aspects of this filtration
in [V02b], ending with a list of open conjectures. Voevod-
sky settled one in [V04], proving that the 0𝑡ℎ slice of the
motivic sphere spectrum 𝐸 = 𝕊 is the object 𝐻ℤ that rep-
resents motivic cohomology. All of the other conjectures
have since been confirmed over fields of characteristic 0,
but many remain open in finite characteristic.

The paper [V02c] studies the case when 𝐸 is the motivic
spectrum𝐾𝐺𝐿 representing algebraic K-theory. The result-
ing spectral sequence has 𝐸𝑝,𝑞

2 = 𝐻𝑝−𝑞,−𝑞(𝑋,ℤ) and con-
verges to 𝐾−𝑝−𝑞(𝑋). Suslin later showed that this spectral
sequence may be identified with a spectral sequence first
formulated by Bloch and Lichtenbaum.

A good introduction to stable 𝔸1-homotopy theory, in-
cluding the slice filtration, is given by Voevodsky ’s notes
[VRØ], based on a short course Voevodsky gave in 2002.

In 2000–1, Voevodsky gave a full-year course at IAS on
equivariant motivic homotopy theory. The main applica-
tion was in the action of the symmetric group Σ𝑛 on the
product 𝑋𝑛, and its resulting equivariant motive. This ma-
terial was later used to analyze symmetric powers Sym𝑛𝑋
of a variety 𝑋, which occur in the proof of the Bloch–Kato
conjecture. Each week, Deligne would give Voevodsky his
notes on the lecture, and Voevodsky typed it up. The result
was published as [D].
The Milnor conjectures (1995–2000). Let 𝑝 be a prime,
and let 𝐹 be a field of characteristic not 𝑝, containing the
𝑝𝑡ℎ roots of unity for simplicity. Around 1969, Tate con-
structed the norm residuemap from𝐾2(𝐹) to𝐻2

et(𝐹, ℤ/𝑝),
andMilnor defined abelian groups𝐾𝑀

𝑛 (𝐹) so that the norm
residue map generalized to a map 𝐾𝑀

𝑛 (𝐹)/𝑝 → 𝐻𝑛
et

(𝐹, ℤ/𝑝). (Milnor’s 𝐾𝑀
2 (𝐹) agrees with 𝐾2(𝐹), which is

defined using the Steinberg group.) In 1970, focusing on
the case 𝑝 = 2, Milnor stated, “I do not know of any ex-
amples for which the [norm residue] homomorphism fails
to be bijective.” [M70, p. 340]. The assertion that it is al-
ways an isomorphism became known as the Milnor Con-
jecture. It was established around 1982 by Merkurjev and
Suslin in their celebrated paper [MS82] when 𝑛 = 2, for
all 𝑝. Some results for 𝑛 = 3 were later established by
Rost, Levine, and Merkurjev–Suslin.

In March 1996, Voevodsky announced a proof of the
Milnor Conjecture; his preprint followed that December.

The following summer, he gave lectures on the proof at an
AMS Summer Research Conference in Seattle. I was tasked
with writing up the lecture notes, and they appeared in
1998 as [V99]. Preparing these notes let me really get to
know Volodia, as he was very generous with his time in ex-
paining the various aspects of the proof to me. The official
proof, published in 2003 [V03a], differed in several places
from the original preprint because Voevodsky had found a
shorter method of proof.

In the same 1996 lecture that he announced a proof of
the Milnor conjecture, Voevodsky also announced that he,
Orlov, and Vishik had proven “Milnor’s conjecture for qua-
dratic forms.” Formulated as “Question 4.3” in [M70], it
asked if a certain map 𝑠𝑛 ∶ 𝐾𝑀

𝑛 (𝐹)/2 → 𝐼𝑛/𝐼𝑛+1 is an
isomorphism for all 𝑛 and 𝐹. Here 𝐼 is the augmentation
ideal of the Witt ring 𝑊(𝑘) of quadratic forms over a field
𝐹. Milnor showed that 𝑠2 was an isomorphism; 𝑠3 and 𝑠4
were shown to be isomorphisms in the late 1980s by Rost
andMerkurjev–Suslin, but the general case remained open
until the preprint based on this announcement appeared
in 1997; Vishik was Voevodsky’s student and the preprint
is cited in his thesis [Vsh]. The paper [OVV] was published
in 2007.
The Bloch–Kato and Beilinson–Lichtenbaum conjectures.
The analogue of theMilnor conjecture when𝑝 is odd, dub-
bed the Bloch–Kato conjecture by Suslin, was first clearly for-
mulated in 1980 by Kazuya Kato in [Kato, p. 608]:

Conjecture. The [norm residue] homomorphism is bijective
for any field 𝑘 and any integer 𝑝 which is invertible in 𝑘.
Spencer Bloch’s version was: “I wonder whether the whole
cohomology algebra ⊕𝑟𝐻𝑟

et(𝐹,𝜇⊗𝑟
𝑝𝜈 ) might not be gener-

ated by 𝐻1” [B80, p. 5.12].
In a 1995 preprint, Suslin and Voevodsky showed that

the Bloch–Kato conjecture is equivalent to a conjecture
originally made by Lichtenbaum and modified by Beilin-
son to connect motivic cohomology groups to étale coho-
mology. More precisely, if 𝜋 is the usual morphism from
the étale site to the Zariski site, the Beilinson–Lichtenbaum
conjecture was that the motivic complex ℤ/𝑝(𝑛) should
be quasi-isomorphic to the truncated complex 𝜏≤𝑛𝑅𝜋∗
(𝜇⊗𝑟

𝑝 ). It is notable for its introduction and use of the 𝑐𝑑ℎ
topology. After substantial rewriting, this result appeared
in 2000 as [SV00b].

In 1998, Voevodsky announced a proof of the Bloch–
Kato conjecture, assuming the existence of what we now
call a Rost variety. Rost produced such a variety that same
year, in [Ro], but the complete proof that Rost’s variety had
the properties required by Voevodsky did not appear until
2007. An outline of Voevodsky ’s proof appeared in a 2003
preprint, modulo the assumption that Rost varieties exist
and two other assertions. The second assertion, that every
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mod-𝑝 motivic cohomology operation is a polynomial in
the 𝑃𝑎, turned out to be wrong.

In 2006–7, I was asked to run a seminar at IAS, explain-
ing the state of affairs of the Bloch–Kato conjecture. Vo-
evodsky generously shared his source files with me, and I
spent a lot of time talking to him about them. Although
his second assertion was false, I saw that it was not re-
ally needed, and patched his proof by using the notion
of scalar weights for cohomology operations [W09]. This
re-engaged Voevodsky in the project and he produced the
final part of the proof in 2008. The next few years saw
a flurry of long-delayed publications appear: [V10a, V10b,
V10c,V10d,V10e,V10f] and the final piece of the puzzle in
[V11]. The complete proof will be published soon in the
book [HW].
Other interests. Voevodskywas briefly involved in several
other projects. For example, in 1997 he spent several
months thinking about artificial intelligence in robotic lo-
comotion.

In 2001–2, Voevodsky gave a full-year course at IAS on
the formalism of the two adjoint pairs of functors (𝑓∗, 𝑓∗)
and (𝑓!, 𝑓!) associated to a morphism 𝑓 of schemes. To-
gether with the adjunction of ⊗ and Hom, this amounts
to a generalization of Grothendieck’s “six-functor formal-
ism.” Although Voevodsky never published his results,
Joseph Ayoub figured out the details and published them
as [Ayb].

In 2003–2008, Voevodsky became interested in inferring
genetic history from current data. At each time 𝑡 ≥ −𝑇,
there is a set of (male) genomes 𝑋𝑡. As 𝑡 varies we get a
graph: it is a forest of valence 3, vertices being births and
deaths. If one assumes a constant birth rate, we would
like to know the most likely values of𝑋−𝑇 and death rates

which would produce a given population 𝑋0 at time 0. Bi-
ologists refer to this process as “the coalescent.” As he ex-
plained it to me, Voevodsky had the idea that births and
deaths could be described by a Markov branching process.
Since time is totally ordered, we may regard it as a cate-
gory, and one regards 𝑋 as a stochastic category fibered
over time. When he felt he was ready, he gave a lecture on
this at Ohio State’s Math Biosciences Institute; the lecture
was not well received. Looking back in 2013, he said, “I
wasted two years, because I totally failed.” (See [Reh].)

In 2005–2006, Voevodskywas excited by what he called
“homotopy 𝜆-calculus” as a generalization of Church’s 𝜆-
calculus of types. Working in the homotopy category of
topological spaces (in a fixed universe), he inductively de-
fined a nested sequence of “levels.” Reindexing, 𝑋 has
level 0 if it is contractible, level 1 if it is either the empty
set or a contractible space, and 𝑋 has level 2 if it is homo-
topy equivalent to a discrete set; 𝑋 has level 𝑛 + 1 if the
path spaces 𝑃(𝑋, 𝑥, 𝑥′) have level 𝑛 for all pairs 𝑥, 𝑥′ in
𝑋. Homotopy 𝜆-calculus would later evolve into homotopy
type theory, and the levels in homotopy 𝜆-calculus were the
prototypes of the “ℎ-levels” in the Univalent Foundations.
Type theory. The inadvertent mistake in [V00a], men-
tioned above, led Voevodsky to become interested in using
computers to verify proofs. Much later, in a public lecture
in 2014, he would state the truism that “a technical argu-
ment by a trusted author, which is hard to check and looks
similar to arguments known to be correct, is hardly ever
checked in detail.”

Starting in 2004, he gradually focused on Per Martin-
Löf’s formal language of “types” (and their elements) as a
way to ensure grammatical correctness. The word type is
an undefined term, much as the word set is an undefined
term in Zermelo–Fraenkel set theory. One feature of this
language is that if 𝑥, 𝑥′ are elements of the same type then
there is a new type: the type of “identifications” of 𝑥 and
𝑥′. This led Awody and Bauer to define a proposition as
a type whose elements are (pairwise) equal (see [AwB]);
informally, all of its proofs are indistinguishable.

At this point, he started learning about “proof assistant”
programs such as Coq. To learn how to use Coq, Voevod-
sky took an undergraduate course at Princeton in Fall 2009,
fromAndrewAppel, called “Programming Languages.” The
course usedCoq for doingmachine-checked proofs in logic,
with application to the semantics of programming lan-
guages, type systems, and verifying the correctness of algo-
rithms and programs. Voevodsky completed the midterm
exam, which was verification of the correctness of the “Bi-
nomial Queues” data structure. A few years later, he told
Appel that the exam “convinced him thatmachine-checked
proof in Coq could be a practical way to do mathematics.”
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Voevodsky integrated the computer into the process of
doing his own research, describing it in a 2013 interview
[Reh] as a bit like a video game. “You tell the computer,
‘Try,’ and it tries, and it gives you back the result of its ac-
tions... Sometimes it’s unexpected what comes out of it.
It’s fun.”

At this point he embarked on an enormous project to
create proof-checking software so powerful and convenient
that mathematicians could someday use it as part of their
ordinary work and create a library of rock-solid mathemat-
ical knowledge that anyone in the world could access. This
library, called Foundations, is described in [V15b].
The Univalence axiom. Already in 2006, Voevodsky had
the notion that there were special maps which he called
“univalent.” In late 2009, he wrote to Grayson that his
ideas about a univalent homotopy-theoretic model of type
systems had developed enough to “survive the verification
stage, and I am in the process of writing things up.” Vo-
evodsky announced his new axiom for type theory, the uni-
valence axiom, in a lecture he gave at Carnegie Mellon, early
in 2010. Since then, this axiom has had a dramatic impact
on both mathematics and computer science.

The univalence axiom states that

(𝑋 = 𝑌) ≅⟶ (𝑋 ≅ 𝑌)

This needs a little explanation. The notation 𝑓 ∶ 𝑋 ≅⟶ 𝑌
(read as “𝑓 is an equivalence”) refers to a function such that
for each 𝑦 in 𝑌 the fiber 𝑓−1(𝑦) is exactly one point. The
notation 𝑋 ≅ 𝑌 refers to the type 𝑇 of all equivalences
between 𝑋 and 𝑌. So the axiom refers to the natural func-
tion from the type 𝑆 of all equalities to the type 𝑇 of all
equivalences.

There is a notion of ℎ-level in univalent theory, which is
the analogue of truncation level in homotopy theory, and
is similar to the levels of homotopy 𝜆-calculus. A type has
ℎ-level 0 if it has exactly one element; ℎ-level 1 means that
the type has at most one element, and is called a proposi-
tion. Informally, a proposition is a type which is “false” if
it is empty, and “true” if it has one element, but this as-
sumes the Law of the Excluded Middle; in an intuitionistic
framework, a proposition need not be true or false. Induc-
tively, a type 𝑋 has ℎ-level 𝑛 + 1 if the type 𝑥 = 𝑥′ in
𝑋 has ℎ-level 𝑛 for all 𝑥, 𝑥′ in 𝑋. Thus 𝑋 has ℎ-level 2 if
the types 𝑥 = 𝑥′ in 𝑋 are propositions for all 𝑥, 𝑥′ in 𝑋;
informally, a type of ℎ-level 2 may be thought of as a (dis-
crete) set, since 𝑥 = 𝑥′ is either true or false for all 𝑥, 𝑥′

in 𝑋—at least, assuming the Law of the Excluded Middle.
The reader may enjoy interpreting ℎ-levels of 3 or more.

In 2012–13, there was a special year at IAS on Univa-
lent Foundations and type theory. This led to a resurgence
in Voevodsky ’s work, in which many results have been
formalized in Coq using the UniMath library; see [V15b].

Voevodsky in 2013.

We mention two examples of papers using this technique.
One is the paper [PVW], which formally constructs the 𝑝-
adic numbers using a univalent approach, usingCoq to ver-
ify the proof.

A second is the paper [ALV], where the authors compare
three of the many algebraic structures that have been used
for modeling type theory: categories with families, split
type-categories, and representable maps of presheaves. If
one assumes the univalence axiom, these notions can be
meaningfully compared on the level of types; this contrasts
with the situation in set theory, where one would need to
resort to a comparison on the level of categories.

After 2013, Voevodskyworked primarilywith contextual
categories (also known as 𝐶-systems); the articles [V15,
V16a,V16b,V17a,V17b] all deal with𝐶-systems. One con-
jectures that𝐶-systems can also be comparedwith the above
structures.

When he passed away, Voevodsky left about 8 more pre-
prints in various stages of completion, which begin to set
up a formal framework in which one can prove the sound-
ness of his univalent approach. Univalent foundations is
now a subject in its own right, and Voevodsky ’s creation
of this subject is a monumental achievement.
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[V90] Voevodskiĭ V. Étale topologies of schemes over fields of
finite type overℚ. (Russian) Izv. Akad. Nauk SSSR Ser. Mat.
(54): 1155–1167, 1990. MR1098621
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employment opportunities and their interactions with 
governmental agencies. At the residential schools students 
experienced isolation by being separated from their parents 
and siblings (boys were usually separated from girls), and 
they were forbidden to speak their language. Upon arrival, 
children were stripped of their traditional clothes, given 
uniforms and Christian names. Boys hair was cut. At some 
schools students were forced to work, and many suffered 
from starvation due to the lack of funds to feed them. There 
were many cases where students were psychologically, phys-
ically, and sexually abused, and more than 6,000 students 
(incomplete records) died; their parents were never given 
an explanation as to how or why, or told where their chil-
dren were buried. The residential schools ran for over 100 
years and the last one closed in 1996 [4, 5].

The impact of the residential schools extended beyond 
the individuals who attended these schools; it also affected 
their families, communities, and culture. In general, mem-
bers of Indigenous communities may feel that their lives 
are a constant battle against a system that does not work for 
them. There exists a justifiable distrust towards government 
agencies and towards the kind of education their children 
currently receive at schools. They feel that they are receiving 
an unequal educational experience, given that teachers usu-
ally have low expectations for them,  which is translated in 
their practice [11]. There is also a lack of cultural support in 
that most children do not see themselves and their culture 
reflected in the curriculum. For example, in the province of 
British Columbia, Indigenous content only appears briefly 
in the history curriculum at the end of grade 10. There exists 

Government practices of discrimination and assimilation 
towards the Indigenous population in Canada have had 
lasting effects. In particular, the implementation of residen-
tial schools created by the federal government and mainly 
operated by Christian churches with the goal of educating 
and assimilating Indigenous children into Canadian soci-
ety shaped people’s whole life experience, including their 
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and exciting ways to learn mathematics seeking to address 
these issues. Our goal is to be able to provide Indigenous 
students with the tools they need to make career decisions 
of their choice, including a career in science. 

The hypothesis that guides these outreach programs is 
that if we are able to teach students and provide them with 
a stronger academic background, they will feel more confi-
dent in school, and this confidence will empower them to 
feel better about themselves. However, real empowerment 
comes from within, and this change from within does not 
happen in one day; it is a long process where the educator 
can only provide the learner with opportunities. Until the 
students take them as their own, change will not happen 
[6].

Our first step has been to build partnerships with schools 
run by Indigenous communities, as well as with urban pub-
lic schools with a high concentration of at-risk students. 
With their input and support, the PIMS outreach team has 
implemented a variety of programs, some of which are 
described in detail below. These activities have been funded 
by private donors, universities in the PIMS consortium; the 
Actuarial Foundation of Canada, the Vancouver Founda-
tion, the government of Canada, and the governments of 
Alberta, British Columbia, and Saskatchewan.

High school summer camps for Indigenous students 
in Vancouver: These camps run for five weeks and are 
designed for students in grades 9 to 12. Each year thirty 
or so students are selected to participate in these summer 
programs. Students take ninety minutes of both math 
and English every day from a master teacher. They also 
participate in an internship program where they will work 
for a professor at the university for three afternoons a 
week. They participate in a variety of academic activities 
throughout the internship and are also given the option 
to complete an independent study elective. Students also 
engage in a special topics series that include cultural activ-
ities and college access and success discussions. The math 

a well-documented educational achievement gap between 
Indigenous and non-Indigenous Canadians [9].

The self-identified Indigenous population grew from 
1.17 million in 2006 to 1.67 million in 2016, which 
represents an increase of 42.5% and a rate of growth four 
times faster than the rest of the Canadian population (Stat 
Canada). Within a few years, provinces such as Saskatch-
ewan and Manitoba are expected to have more than 20% 
of their population self-identify as Indigenous.2 Given the 
rapid growth of the Indigenous population, it is increas-
ingly apparent that Canada must urgently address the 
great disparity in educational achievement; otherwise, the 
repercussions will be disastrous as Indigenous youth will 
not have equitable access to jobs and economic prosperity.

In order to positively narrow the educational gap be-
tween the Indigenous communities and the rest of the 
population, there needs to be a continuous and long-term 
intervention for change. In the case of schooling, we should 
be working with the Indigenous communities to look at 
a long-term continuum of choices and to present oppor-
tunities and positive interventions that provide students 
with a more affirmative outlook for life. What is required 
is a long-term commitment on behalf of the educational 
system to provide marginalized students with very much 
needed comprehensive support [3, 7].

Mathematics seems to be an excellent way to start this 
change as research has shown that taking advanced and 
rigorous math courses positively affects several other ed-
ucational outcomes, including standardized test scores, 
high school completion, college performance, and post-
secondary degree completion, as well as having an impact 
on earnings in adulthood [1, 8].

The Pacific Institute for the Mathematical Sciences 
(PIMS) is a research institute closely associated with math-
ematical science departments at universities and colleges 
across Western Canada. PIMS has recognized the challenges 
many students face if they lack the necessary prerequisites 
in math and science to pursue post-secondary studies 
(especially in STEM fields), specifically when it comes to 
Indigenous students and other students at risk. By leaving 
behind the philosophy of reduced expectations, mathemat-
ical scientists and educators associated with PIMS have in-
troduced a variety of interesting and challenging programs 
2 First Nations, Inuit, and Métis are the groups that constitute the Indig-
enous people in Canada. First Nations are diverse bands of Indigenous 
peoples in Canada who are neither Inuit nor Métis. The Métis are people 
who descended from marriages between Europeans (mainly French) and 
First Nations/Inuit people going all the way back to the 17th century. Ac-
cording to anthropologists, the Inuit are the descendants of Thule culture, 
which originated in Alaska around 1,000 CE and later on spread towards 
the east through the Artic. The 2016 census counted a total of 1,673,785 
Indigenous people in Canada, about 4.9% of the national population, 
consisting of 977,230 First Nations people, 587,545 Métis, and 65,025 
Inuit. There are more than 600 recognized First Nations governments or 
bands with distinctive cultures, languages, art, and music.

High School Summer Camps: Having fun.



EDUCATION

536    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 4

from elementary school to high school.4 The transition 
from elementary to high school is a difficult one for many 
children, but for Indigenous students it seems to be partic-
ularly harsh. As a group, far too many Indigenous students 
are put into courses with low academic expectations, and 
as a result they often conclude that their coursework will 
not lead to a career path where academic knowledge is re-
quired. By grade 10 most students have stopped attending 
school on a regular basis. The goal of these camps is to 
provide a strong academic background as well as a sense 
of pride in the Indigenous cultures. Students who started 
high school with strong skills in mathematics and English 
showed a difference in their confidence, not only in their 
math classes, but also in other core science subjects. These 
summer camps take place at the high school most of the 
participants will be attending, allowing them to feel more 
comfortable as they start this new stage of their education.

Maria attended the first Transitional Summer Camp in 
2008. She did well during the camp, though she was not at 
the top of the class. During her first year in high school, was 
unreliable with her attendance and she constantly tested 
the commitment of our support, but she always mentioned 
to us that what she had learned at the transitional camp 
helped her to feel that she had a chance. As time went by 
she realized the importance of consistent work and being 
able to ask for help when she needed it and how our pro-
gram could help her maintain that consistency and provide 
the support she needed. She finished grade 10 with a good 
mark in math.

Later on, she attended the high school summer camp 
where she told us,

program addresses the particular mathematical needs of 
each student with the goal of enhancing their learning for 
the upcoming school year. The English program is designed 
to strengthen skills that they will use across all coursework. 
Students who choose to complete the independent study 
project earn elective credit that can be used to meet high 
school graduation requirements. The internship provides 
an opportunity for students to explore academic areas of 
interest and possible career options while learning trans-
ferrable employment skills. Students come to the university 
campus to attend this camp, with the primary rationale 
being to expose them to a post-secondary environment.

The main objectives are to provide students with strong 
academic support skills in mathematics and writing, to ex-
plore the STEM fields through the internship and academic 
activities, to remove access barriers to a post-secondary 
education, and to develop relationships between partici-
pants and university faculty and student mentors. We also 
aim to create a sense of pride in the Indigenous culture by 
offering a variety of activities and lectures led by members 
of Indigenous communities. The original camp started in 
2007, and it has been a source of inspiration for camps not 
only in Canada but also in the United States. The camp ran 
first at University of British Columbia (UBC) under my 
supervision, then at Simon Fraser University (GSU) under 
the supervision of Veselin Jungic, and it will be running next 
year at Langara College in partnership with UBC under the 
supervision of Richard Ouellet and myself. Our goal is to 
create paths for outreach where we connect universities to 
local schools and colleges and also bring in local industry 
to expose Indigenous high school students to careers, pro-
fessions, and technical trade opportunities and help them 
find out how mathematics can open up opportunities in 
traditional and nontraditional careers.

Alex3 attended this high school summer camp and, as an 
intern. he was able to do original research with professors 
in the chemistry department. This is what he thought of 
the camp:

I think it’s the best summer school you can ever 
go to, and I highly recommend it for other stu-
dents… My teacher is pretty cool, is kind of fun, 
a little challenging because I have to do a lot of 
things I haven’t done before in the lab. I work 
with a couple of professors. The staff is kind, 
friendly, and helpful. They are hardworking 
people who I really respect and who are willing 
to take the time... Urban Aboriginal kids need 
an education for a really great future.

Alex is currently an undergraduate student at the UBC. 
He wants to become a teacher.

PIMS has also run Transitional Summer Camps (with 
a similar structure) for Indigenous children transitioning 
3 Students’ names have been changed to protect their privacy.

4 In Canada, elementary school covers grades 1–7 and high school grades 
8–12.

Internship Jobs: Chemistry lab.
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and this was revealed to the youth they worked 
with. From this opportunity one of our Math 
Mentors was requested to be a guest speaker for 
the All Nations Room at the school he mentored 
at. He often spoke proudly of his Metis ancestry 
and talked about his ability to speak the Michif 
language. The classroom teacher was thrilled 
about his ability to connect with the students 
on a personal level while supporting them with 
their studies.

First Nations Math Education Workshops held at the 
Banff International Research Station (BIRS) have brought 
together a group of Elders, mathematicians, and math 
educators and teachers, with the goal of improving mathe-
matics education among Aboriginals while at the same time 
acknowledging the importance of traditional culture. Mem-
bers of this group worked together in creating resources to 
honour the spirit of each student as an individual and as 
part of a community. This way of thinking is an integral 
part of many aboriginal cultures as well as a successful 
way of learning mathematics in any culture. The reality is 
that most of the “Aboriginal resources in mathematics” 
are very simplistic and do not honour the similarities, 
differences, depth, and richness of First Nations cultures. 
One of the ideas developed by members from this group 
(Veselin Jungic from SFU, and Mark Maclean from UBC, 
together with the elder Rena Sinclair of the Siksika Nation), 
was the story and the movie of “Small Number counts to 
100,” with more stories that followed (www.math.sfu.ca 
/~vjungic/smaller.mov). This project has grown 
quite considerably thanks to the tireless and talented ef-
forts of Jungic and MacLean, who have developed a slew of 
mathematics materials in Indigenous contexts.

So far, we have held five of these meetings, and, in doing 
so, BIRS and PIMS have shown their leadership in bringing 
various people, resources, and institutions together in work-
ing towards the improvement of Indigenous mathematics 
education.

I get to experience studying the rat brain and 
fetal alcohol syndrome… I’m getting ahead for 
my next year math and English and I get to study 
stuff that I wouldn’t even learn in high school. 
It will be good for my future, especially because 
I want to be a nurse. I think this will give me a 
head start on everything.

Our goal for her was to finish high school with precalcu-
lus 12, and she surprised us when in her last year she took 
not only precalculus but also calculus. She has blossomed 
into a wonderful, feisty woman, full of confidence. She told 
us that being able to do well in math, by working very hard 
and with our support and confidence in her skills, made her 
realize that she has talents. She was one of the two students 
in the cohort who attended the first Transitional Summer 
Camp who were accepted at a top Canadian university but 
she chose to enroll at a college with a more personalized 
program.

Peer-mentorship program: PIMS recruits high-per-
forming Indigenous students at a high school to become 
peer-mentors to four or five of their classmates. We provide 
the mentors with a stipend and academic support. This 
program was implemented at several schools in British 
Columbia with great success. Here is the testimonial from 
one of the teachers,

Wow, the second year of the Peer-Mentorship 
Program has come and gone in a flash. The 
organizational piece came together flawlessly 
and you could see that the three Aboriginal high 
school students truly enjoyed the opportunity 
they were given. This year we had two grade 12 
students (one female, one male) and one grade 
11 student (female). This opportunity gave 
them a chance to push their personal bound-
aries (show assertiveness, kindness, and other 
leadership skills) but also gave them a chance 
to demonstrate their math skills to younger 
Aboriginal and non-Aboriginal youth. These 
students are proud of their Aboriginal ancestry, 

Transitional Summer Camp.

End of Camps Celebration. 

http://www.math.sfu.ca/~vjungic/smaller.mov
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Other activities organized by PIMS that have an impact 
on the Indigenous population include the following:

 • A comprehensive teacher professional development 
upgrade program. This targeted initiative helps upgrade 
our teachers’ mathematical knowledge and pedagogical 
skills as well as support their ability to help students 
see the relevance and connections of mathematics and 
science with a variety of career opportunities. 

 • Mentoring programs where we team undergraduate stu-
dents from local universities/colleges with local teachers 
to support their students.

 • PIMS has been providing assistance in choosing and 
implementing mathematics curricula at First Nations 
Schools.  

 • Math Mania and Parents Night. We bring a variety of 
hands-on math outreach activities such as puzzles and 
games at local schools and community centres with the 
participation of students, teachers, and parents.

 • Working with Elders in order to emphasize the impor-
tance of storytelling as a traditional way of teaching, 
and to use it to teach mathematics and other subjects. 

 • Funding and facilitating the organization of a variety 
of month-long summer camps at First Nations schools. 
These camps can be full-day camps or half-day camps 
where math instruction is provided every day as well as 
instruction in other subjects.  There is some flexibility 
in how these camps run given that we take into account 
specific community needs and resources.

Conclusions
The problem of providing equitable opportunities for 

Indigenous students is a daunting one and will require the 
ongoing, active involvement of mathematical scientists and 
educators. In this article we have summarized a variety of 
activities and programs organized by the PIMS community 
that have had an impact on the mathematical opportunities 
for students and teachers. These should be considered pilot 
programs that have the potential for broad implementation 
given the required funding and support. We are happy to 
share the outcomes of our efforts and experiences, and we 
invite you to contact us.

First Nations Math Education, November 2009, at the 
Banff International Research Station (BIRS) 
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To say that US Native Americans are underrepresented in 
mathematics is itself an understatement.

In 2010 the census recorded 5.2 million people in the 
United States who identified as American Indian or Alaskan 
Native, either alone or in combination with one or more 
other races. Of those, a mere twelve hold a mathematics 
PhD.1

Compare this with Hungary, which has almost twice 
the population—9.8 million. From 1993 to the present, 
460 mathematics PhDs were awarded there.2 (We looked 

for the total number of living people with PhDs, but these 
data were not available.)

Kazakhstan has just over three times the population, 
17.8 million, with people in rural and remote areas. Four 
hundred Kazakhstanis hold PhDs in mathematics.3 Were 
we to regard the US Native American/Alaskan Native pop-
ulation as a nation, Hungary and Kazakhstan suggest that 
we would expect to see between 160 and 244 mathematics 
PhD holders in that nation. We clearly have a long road to 
go to match Hungary or Kazakhstan.

But why does this comparison matter? When a distinct 
group of people, in this case marked by their identification 
as American Indians or Alaskan Natives, do not partici-
pate in mathematics, the question that arises naturally is, 
“Why?” Biological explanations are both racist and scientif-
ically unsupported, though science took some centuries to 
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Shiprock looms large over the New Mexico desert, 
not far from the site of the AIMC at Navajo Prep 
Summer Math Camp.

3Personal correspondence with Dr. Askar Dzhumadildayev, a Kazakh math-
ematician, doctor of physics and mathematics, professor, and Full Member 
of the Kazakhstan National Academy of Science. He was also member 
Supreme Council of Kazakh SSR and Republic of Kazakhstan.
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mathematics. It represents the purest subject for expanding 
the human mind’s capacity for critical thinking and prob-
lem solving. As such, mathematics prepares people with 
tools, mindsets, and techniques to fashion a successful 
and fulfilling life regardless of professional occupation.5

The Alliance of Indigenous Math Circles (AIMC 
https://aimathcircles.org) is devoted to bring-
ing mathematicians and math professionals into direct 
contact with indigenous students and teachers throughout 
the United States and abroad in order to improve and 
strengthen their grasp of and attitude toward mathematics. 
And AIMC promotes the culture of problem solving within 
the framework of the indigenous culture, to both promote 
that culture in its own right and to bring more indigenous 
people into STEM fields.6

The AIMC is an initiative that grew out of the Navajo 
Nation Math Circles project (NNMC, launched in 2012). 
NNMC historically has included a number of components 
including mathematicians visiting schools and running 
math circle sessions for students, professional development 
workshops for teachers, and a summer math camp at Diné 
College in Tsaile, AZ. This work has demonstrated that 
math circles and summer math camps combining mathe-
matics and indigenous culture led students who were not 
otherwise considering it to attend a college or university, 
many pursuing STEM-related degrees. Moreover, five years 
of the project gave ample opportunity to refine the model, 
confirming some elements as productive (e.g., mathemati-
cian visits to schools, summer camps) and others as more 
problematic (e.g., school-year pen-pal programs between 
mathematicians and K–12 students). In 2017, a group 
of directors from the NNMC project recognized that the 
model could be shared more broadly, requiring a new 
direction and adopting a new name that was more inclu-
sive and representative of the mission. Thus, the Alliance 
of Indigenous Math Circles was born with the purpose of 
sharing the model with other indigenous communities and 
to provide a network of support for sustaining the work 
within and by those communities.

get there.4 Cultural explanations would require assuming 
some key commonality to all American Indian or Alaskan 
Native peoples that contraindicated participation in math-
ematics. Alternatively, one could ask whether or not there 
exists a “culture of mathematics” that embodies certain 
norms that constitute a barrier for a group of people. Such 
questions are beyond the scope of this paper, though the 
related issue of how people construct their identity rela-
tive to tradition, affiliation, and intellectual pursuits and 
practices is not only relevant, but it informs our model for 
engaging indigenous communities and mathematicians in 
mathematical problem solving.

A further important question concerns the issue of 
whether or not mathematics itself should be an essential 
part of everyone’s education and which outcomes in par-
ticular matter most to the education of all. Readers of the 
Notices probably need little convincing of the importance 
of mathematics but ought to consider the outcomes and 
methods of a “school mathematics” (thought of here as 
typical K–12 curriculum in the United States) versus what 
they value most when thinking of mathematics. What we, 
the authors, see as “beautiful mathematics” seems largely to 
be absent from the encyclopedic techniques and formulas 
that constitute mathematics curricula in K–16 settings. To 
us, the “school mathematics,” necessary to some extent, is 
not only an insufficient exposure to mathematics, but by 
itself paints for the general populace a picture of mathe-
matics incongruent with the beauty and joy that we find 
in it. As students shape their identities relative to abilities 
and affinities toward subjects, we want them to value 
mathematics as beautiful, intriguing, and powerful, and 
to see themselves as capable and creative practitioners of 
mathematics.

The Alliance of Indigenous Math Circles (AIMC) helps 
indigenous communities to provide experiences and infra-
structure for students and teachers to realize the beauty and 
power of mathematics, recognizing that this involves the 
concomitant valuing of their budding mathematical and 
indigenous identities (not to mention other identities). By 
combining work with professional mathematicians and 
tribal elders, we covalue mathematics and culture so that 
an indigenous student sees no disjunction between being 
“indigenous” and a “mathematician”—we are working 
within culture and identity to try to stimulate a robust next 
generation of “indigenous mathematicians.”

Targeting mathematics has broad implications given the 
extent to which the “M” supports the “STE” of STEM. While 
it is true that mathematics is the basis for all STEM fields, it 
is arguably the most significant prerequisite for success in 
the world of post-secondary opportunities. And mathemat-
ics is far more than the checklist set of skills found in school 

4See, for instance, Gould, Steven J. The Mismeasure of Man. New York: 
W.W. Norton & Co., 1991.

5Two excellent examples of this more general power of mathematics can be 
found in Avoid Hard Work! … and Other Encouraging Problem-Solv-
ing Tips for the Young, the Very Young, and the Young at Heart, 
(Droujkova M, Tanton J, McManaman Y, Natural Math, 2016) and The 
5 Elements of Effective Thinking (Burger E, Starbird M, Princeton 
University Press, 2012).
6While our immediate focus is on indigenous peoples living within the 
national boundaries of the United States, AIMC staff have also worked 
with indigenous peoples abroad. Available demographics use the terms 
“American Indian/Alaskan Native” (as in the case of the US Census) and 
sometimes “Native Americans” to refer to indigenous people living within 
US boundaries. We recognize that the term “American” is itself contested 
and is seen by many as broadly applicable to people living throughout North, 
Central, and South America. For this reason, and after conversation with 
our indigenous colleagues in the project, we favor the term “indigenous” 
and further specify “in the US” where applicable.

https://aimathcircles.org
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tribes. Among the facilitators of math sessions was Fred-
erick Peck (University of Montana, Missoula). Fred has 
been a team member of the Montana Math Teachers’ Cir-
cle Network, a group that members of AIMC supported 
during their startup. Peck and colleagues are working with 
Montana tribal educators and community members to start 
math circles programs. This process involves patience and 
a respectful approach. We operate on a strict principle of 
only working where we are invited and recognizing that 
true and productive partnerships, while the longer-term 
goal, come only after the sequence of

Invitation Cooperation Collaboration Partnership.

Given the historical traumas endured by generations 
of tribal members, it takes patience to build the trust and 
understanding that leads to the initial Invitation stage. As 
such, expanding the AIMC model requires patience, pur-
pose, and a commitment to ongoing presence. Too often 
in these communities, initiatives have come and gone, gen-
erating the perception of “one-and-done” interventions—
feel-good opportunities that ultimately make the work of 
developing trust and lasting relationships more difficult. 
Meaningful partnerships take time, commitment, and ac-
knowledgment that partners come to the table as equals.

Recently, and in reflecting on this principle of Invitation 
outlined above, we recognized the potential of making the 
first invitation instead of waiting for an invitation. Rather 
than waiting to be invited into a community only to hope 
to share examples of math circles, we instead identify a 
Champion within a community showing potential interest 
in AIMC partnership. We invite that Champion to an AIMC 
event like the successful AIMC Summer Math Camp, and 
invite them to contribute as they like, to reflect, and to 
engage after hours in ongoing conversations about the ap-
proach and the “goodness of fit” of the AIMC model to the 
Champion’s community. It is an opportunity not unlike a 
working retreat to engage in conversations with the Cham-

To date, the AIMC has had student and teacher partici-
pants representing Diné (Navajo), Hopi, and Apache tribes, 
as well as members of the nineteen Pueblo Tribes of New 
Mexico. We have had the guidance, support, and participa-
tion of elders from the Diné, Hopi, Chickasaw, Choctaw, 
and Pomo tribes/nations as well as the elders of the Amer-
ican Indian Science and Engineering Society (AISES). The 
AIMC is therefore a “circle” in its own right, a gathering 
of those who work to make the discipline and practice of 
mathematics as diverse and inclusive as possible.7

The contributions of mathematicians have been gener-
ous, and their impact significant. For instance, in March 
and April 2018, AIMC sponsored three mathematicians—
Adnan Sabuwala and Maria Nogin of California State 
University, Fresno, and Tatiana Shubin of San Jose State 
University—to run a series of math circle sessions on Diné 
and Hopi reservations, at two Indian boarding schools 
(Navajo Preparatory School in Farmington, NM, and Santa 
Fe Indian School) as well as some rural schools in northern 
New Mexico. We visited sixteen schools, running two to 
four sessions in each. Altogether more than 500 students 
and forty-four teachers attended these sessions and en-
joyed the beauty and challenge of doing math circle-style 
mathematics.

Besides school visits, Tatiana Shubin and Donna Fer-
nandez, a Navajo Prep School math teacher serving as an 
AIMC Regional Coordinator, ran a workshop for teachers 
at Tuba City High School (AZ). We also helped to run Julia 
Robinson Math Festivals at Tuba City Boarding School 
and Many Farms Community Schools (AZ); hundreds of 
students from grades 1–8 visited these festivals and had 
fun sharing the joy of problem solving with one another. 
Other regional coordinators such as Craig Young (Diné 
reservation) and LaVerne Lomakema (Hopi reservation) are 
working within their communities to plan events.

For two years in a row, in 2017 and 2018, the AIMC Math 
Camp at Navajo Prep School has been attracting talented 
kids from the Four Corners states to participate in a resi-
dential camp for students nominated by their grades 7–12 
teachers. The camp combines extensive and challenging 
math sessions and Native American cultural activities as 
well as various STEM and physical activities. This year, 
students enjoyed a field trip to the mine of a local Navajo- 
owned and operated company, the Navajo Transitional 
Energy Company (NTEC). In both years, the number of 
applications exceeded our capacity, and we have had to be 
selective and purposeful in building our summer cohorts.

Most of the thirty-five students at the camp were Diné 
(Navajo), but we also had students from Hopi and Apache 

7A colleague recently shared the important distinction between diversity 
and inclusion: Diversity is being invited to the party, whereas inclusion 
is being asked to dance. Those who love and promote mathematics ought to 
be mindful of this distinction, to be sure that we are working beyond simple 
models of “outreach” toward true “engagement.”

AIMC Summer Math Campers display their results on 
a probability problem.
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professionals and is not a formal nonprofit. We have 
been grateful for the financial support of the Carnegie 
Corporation of New York, and the administrative support 
of the Mathematical Sciences Research Institute, and we 
are excited to announce that, beginning in 2019, we will 
have the administrative support of the American Institute 
of Mathematics.
Future activity for the AIMC includes the following:

 • Sustaining our flagship AIMC Math Camp at Navajo 
Preparatory School, inviting teams of Champions from 
up to three new sites to observe the camp each year. We 
anticipate having each team include a mathematics pro-

fessional to serve as a facilita-
tor,8 one student camper, and 
one adult (a teacher, a parent, 
or a good organizer/adminis-
trator from the community). 
This is an ideal composition 
for a team of Champions, but 
even one highly motivated 
Champion from a site would 
be welcome.

 • Sending mathematicians 
as visitors to various sites al-
ready in operation (e.g., Diné 
and Hopi schools) as well as 
prospective sites (e.g., Alaska 
or Oklahoma). Visitors run 
math circle sessions for kids 
and teachers, PD workshops 
for teachers, and math fes-
tivals for students or entire 
communities. AIMC helps 
to coordinate and support 
the visits and collects visitor 
information.

 • Getting the word out 
and finding Champions. This 
requires active participation 
in a number of meetings, in-

cluding annual meetings of both AISES and SACNAS, 
running sessions, and distributing informational ma-
terials. (We have a great success rate with AISES meet-
ings—when Bob attended in 2016, he met and recruited 
Donna; in 2017 Tatiana recruited the Montana team.)

 • Providing limited financial support, as available, for 
up to three years to each new site. After the initial three 
years we will continue our support through Regional 
Coordinators—experienced math circle leaders who en-

pion and to determine if there is a workable path forward 
to an initial Invitation, hopefully leading to Partnership. 
In Summer 2018, one such Champion from Alaska was 
Ann Cherrier, a math teacher interested in building math 
circles within her community and with a focus on schools 
and teachers who primarily serve Alaskan Native students. 

Yet another part of our vision for changing the culture 
of mathematics recognizes that there is important work 
to be done in the mentoring relationship between stu-
dent participants (usually quite young) and math circle 
facilitators (often older in years though equally young 
at heart). Moreover, we recognized that the change we 
wanted to support within the 
mathematics community re-
quired engaging undergradu-
ate students of mathematics 
directly. To address this gap, 
we have taken to including 
talented undergraduate stu-
dents from universities across 
the United States to serve as 
Junior Mentors. Their job is 
to interact with the student 
participants and to share with 
them their love and enthu-
siasm for mathematics. Si-
erra Knavel, an undergradu-
ate mathematics major from 
Ohio University and 2017 
Junior Mentor, commented 
that “Being a peer mentor at 
the AIMC Math Camp shaped 
the way I see how accessibility 
of mathematics outside of 
school affects the amount of 
people who study it later on. 
Specifically, it reminded me 
of the critical moments in 
my youth where math was 
fun, exciting, and puzzling 
enough to retain my interest as I grew older. Even though 
undergraduate math is frustrating at times, the AIMC Math 
Camp reminded me of the positive reasons why I choose 
to continue with mathematics!”

At the 2018 AIMC Math Camp this role was played by 
Henry Austin, whose father David Austin is one of the 
handful of Native Americans holding PhDs in mathemat-
ics. Henry’s description of his role in the camp is featured 
below in the “Perspectives.” David himself served as our 
Guest of Honor and delivered a final talk at the camp; his 
perspective. is similarly included below.

With the help and support of the entire mathematical 
community, AIMC will continue the work we have started. 
The AIMC represents a collection of interested and engaged 

Junior Mentor Sierra Knavel works with a camper on 
a problem.

8A PhD mathematician is not always available in some of the remote 
communities in which we work, though scientists, engineers, and others 
having significant background and training in mathematics content can 
often serve this purpose.
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by using the contact information included in the footnotes 
about the authors.

PERSPECTIVES
Henry Austin (Junior Mentor. High School Student, 
Allendale, MI):

I found it quite remarkable to watch students’ 
eyes light up when they arrived at a solution 
as it was clear that they were truly interested 
and engaged in what they were learning. I have 
taken math for my entire school career…but the 
math that the students at AIMC learn is much 
different than a traditional classroom. Students 
are able to use math as a reasoning tool and 
understand its application in the natural world, 
rather than simply arriving at an answer. Upon 
completion of the camp, I found myself asking, 
“Why isn’t this math taught in school?” 

Ann Cherrier (Champion. Middle School Math Teacher, 
Anchorage, AK):

I witnessed a group of young people from dif-
ferent communities [bound] together by their 
heritage and culture and mathematics blossom 
from scarcely speaking a single word to one 
another to problem-solving, sharing their think-
ing, trying new strategies, critiquing each other’s 
solutions, and getting excited about getting that 
much closer to a solution. Best of all was seeing 
all this occur with smiles, synergistic energy, and 
excitement about mathematics.

What I experienced has motivated me to 
begin a similar program here in Anchorage, 
Alaska. Starting on a smaller scale, I am plan-
ning to establish an indigenous math circle af-
ter-school program at two Title I middle schools 
in the Anchorage School District. Mathematical 
literacy is a powerful weapon in the fight against 
poverty and in promoting healthy families and 
good paying jobs.

Craig Young (Regional Coordinator. Middle School Math 
Teacher, Tuba City, AZ):

Currently, I am the Regional Coordinator for 
AIMC West, covering the Western Navajo Na-
tion, roughly half the size of the state of West 
Virginia. I have been involved with the Navajo 
Math Circles Project as a college student and 
later as an educator. I run a Math Circle Program 
at Tuba City Boarding School in Tuba City, 
Arizona. Our Navajo youth needed a program 
that empowered them in a traditional holistic 
approach that complimented their way of life 
and way of thinking. All indigenous communi-
ties have a history of complex mathematics and 

gage within the AIMC directly to help promote, extend, 
and support our efforts across regions. Beyond paying 
Regional Coordinators, AIMC cannot at this point pro-
vide monetary support after the initial three years. Each 
local Indigenous Math Circles (IMC) program would 
have to seek its own funding, and AIMC will support that 
effort as we are able, pointing out grant opportunities 
and helping to shape proposals.

 • Maintaining a website with news, materials from the 
AIMC Math Camp at Navajo Preparatory School, and 
links to local IMCs. Moreover, starting in 2019, we will 
have a means for individuals to make financial contri-
butions through the website, supporting our expansion 
efforts.

 • Engaging a Board comprising national leaders with 
skills and accomplishments in relevant areas such as 
mathematics, education, indigenous issues, marketing, 
business, and STEM disciplines. The type of Board and 
model for meetings/membership was the subject of the 
meeting, “Founding Board,” which met at the 2018 an-
nual AISES meeting in Oklahoma City to help establish 
a path for the AIMC’s future.
Short of seeing the camp, the school classroom visits, 

the teacher professional development workshops, or the 
festivals, we know of few better ways of understanding the 
impact of our approach than to hear directly from those 
who are engaged in this work. What follows is a series of 
perspectives, and they offer the reader a chance to listen to 
people’s experiences, to value their stories, and to under-
stand that our stories and our efforts grow out of making 
meaningful connections with one another. Our hope is 
that their words motivate you, the reader, to think about 
your story and how it might connect to our efforts outlined 
here—to build a diverse and inclusive community of math-
ematical practice. Both authors invite you to share with us 
your story, your questions, or your interest in participating 

Collaboration is key at Summer Math Camp. 
Participants huddle to debate a solution.
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Natanii Yazzie (Participant. High School Student, Gal-
lup, NM):

I have been a participant of the AIMC and 
NNMC for four years and recently I’ve been a 
team captain for three years representing my 
group and providing feedback for the math 
camp competition presentations. Through the 
years of attending the math circles, I’ve de-
veloped a passion for mathematics that truly 
changed my academic path and ignited an 
ambition I never knew I had inside of me. I’ve 
gained many valuable friendships and connec-
tions with professors across the nation with 
whom I could learn from to better prepare for 
college. It has been an absolutely eye opening 
and life changing experience for me, and I wish 
for other Native groups to attend this amazing 
program. I found the program to be effective at 
growing critical thinking skills essential for suc-
cess in college, and for thriving in both modern 
and traditional Native worlds. 

David Austin (Facilitator and Keynote Speaker. Professor, 
Grand Valley State University, MI):

For many members of underrepresented groups, 
education can appear to be a path leading away 
from one’s family and culture and into some 
new and strange place. Particularly for indige-
nous students in the American southwest, who 
frequently deal with poverty, geographic iso-
lation, and limited educational opportunities, 
education and the opportunities that come with 
it can often separate families physically or by 
experience and values.

The past two summers, I have had the plea-
sure of participating in summer math camps for 
indigenous 6–12th graders. The camps are struc-
tured to support students in their own culture. 
First, a group of mathematicians travels to their 
land, and, while some students may travel many 
hours to reach the camp, they share a common 
background with their fellow campers. Families, 
particularly parents, are welcomed into the 
camp as well and participate in the opening and 
closing ceremonies. Traditional meals served by 
tribal elders are sometimes on the menu. Every 
day includes cultural activities, led by Native 
mentors, that are both fun and authentic. All of 
this conveys a message to the campers and their 
families that they belong and are safe.

The mathematical content of these camps 
is similarly rich. In a typical day, students 
collaboratively explore problems that require 
little mathematical prerequisite knowledge; all 

sciences through their cultures, and the Math 
Circles help our indigenous youth. Our students 
rediscover themselves and are confident after 
going through our program.

LaVerne Lomakema (Regional Coordinator. High School 
Math Teacher, Keams Canyon, AZ):

As a Native teacher on a Native American reser-
vation, I see the crucial need to stress the impor-
tance of the mathematical field in our education 
system. Most Native communities are already 
economically disadvantaged, this creates a huge 
stress on many communities. If students could 
understand the role of mathematics in their 
communities and within mainstream society, 
their opportunities would be endless. The key 
is to get the kids excited about math and realize 
the many doors it could open for them in the 
future. The math circles model is a great oppor-
tunity for Native children to look at the field of 
mathematics in a different context. It gives the 
students a chance to explore and understand 
mathematical models. Math circles would be a 
great opportunity for any Native school.

Donna Fernandez (Regional Coordinator. IB Coordina-
tor, Navajo Preparatory School, Farmington, NM):

I coordinate the four Corners Math Teachers' 
Circle (4CMTC) for the tribal communities. The 
teachers are in K–12 and primarily serve Native 
American students. Being a part of the Math 
Teachers’ Circle has given me a renewed sense 
of the joy of math and built my confidence in 
problem solving. I get so excited to work with 
other teachers/professionals talking about the 
multiple ways to solve a problem. The camps 
and student circles show me how, when we 
give students open-problems and allow them 
to collaborate, they dig deep for patterns and 
understanding.

AIMC Math Circles values [my students’] 
intuitive nature of looking at patterns in our 
world for understanding. It allows students 
and teachers the opportunity to think about the 
math and not just computational and memory 
skills. Native American communities benefit 
from this model; teachers and students feel 
empowered by collaborating and struggling. 
Dr. Henry Fowler tells students at each camp 
that our Native communities need leaders and 
the best way to be a leader is to have a strong 
educational foundation, and math is the base 
of the foundation. It makes you feel confident 
to be that leader.
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bring to mathematical problem solving and post-secondary 
participation in STEM fields. Many of these students are 
bilingual, speaking their indigenous languages at home 
and English outside of the home. Bilingual children have 
been shown to acquire third and fourth languages with 
easier facility than monolinguals. In our experience, the 
flexibility of mind required to approach new grammars and 
vocabularies constitutes a true asset in terms of learning 
mathematics. Moreover, many indigenous languages reflect 
embedded philosophies that are radically different from the 
Western philosophies embedded in English. Being fluent 
in English and an indigenous language therefore magnifies 
that flexibility of mind, fostering the kind of creativity that 
leads to great mathematical discoveries.

Indigenous peoples are bicultural (and often multicul-
tural) by geography and history, navigating every day the 
norms, traditions, and world views of those cultures. We 
posit that with two cultures, they have not just average abil-
ities, but extraordinary gifts for learning third and fourth 
cultures. Mathematics is just such a culture that they can 
absorb nimbly. The Alliance of Indigenous Math Circles is 
an effort to bring together many beautiful cultures, know-
ing that a culture of mathematics, as Craig Young says in 
his perspective above, always has been part of indigenous 
culture, and that as cultures mix, they change.

Credits
Article photos are by Bob Klein.
Photo of Bob Klein is by Ben Siegel.
Photo of Tatiana Shubin is by George Csicsery.

students, from grades 6 through 12, are able to 
work on the same problems. At the same time, 
these problems are often open-ended and nat-
urally lend themselves to further exploration in 
considerable depth. At the end of the camp, stu-
dents participate in a “math wrangle,” a friendly 
competition in which teams of students present 
their work to the entire group and are assessed 
on the quality of their presentation.

What’s more, the AIMC hosts workshops for 
teachers in schools with a large Native popula-
tion and provides support to teachers leading 
math circles for students in their schools. In 
short, the goal of the AIMC is to embed mean-
ingful mathematics within indigenous culture 
and provide support so that it can flourish on 
its own.

As a member of the Choctaw nation who 
grew up in Oklahoma, my experiences don’t 
perfectly overlap with those of the campers, but 
I do know the challenge of working to become 
a professional mathematician while feeling 
like “home” is far away. This is something that 
I’m able to share with the students, and I hope 
they hear in my story a message that it is pos-
sible to learn to live in two worlds at the same 
time, that there is great meaning to be found 
in accepting that challenge, and that there are 
resources to help.

On the final day of the camp, I gave a pre-
sentation to students and their families about 
sunflower seeds and continued fractions. What 
was particularly pleasing to me was that par-
ents responded to questions that I asked as 
frequently as students and often with a look of 
surprise that they were able to contribute. I hope 
that this gave parents and families an under-
standing of what the students experienced at the 
camp and a taste of where they may be headed. 
While there are more opportunities to expand 
this work into other indigenous communities, 
these ideas may be useful as mathematicians 
reach out to welcome other groups into our 
discipline.

Perspectives such as these motivate our work and remind 
us of how much we, the authors and directors of AIMC, are 
learning as we engage in this effort. One important conclu-
sion we have come to after working with indigenous youths 
for a number of years is that, while it is easy to look at the 
statistics on poverty, academic success, STEM participation, 
and the like, and to construct a model that casts “indige-
nous” as a deficit, this superficial approach fails to recognize 
the inherent assets or affordances that indigenous students 

Bob Klein Tatiana Shubin
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Not only is this situation real, it’s a problem that we as 
mathematicians should be concerned about. Some reasons 
are obvious: As technology advances, mathematical skills, 
interpreted broadly, become ever more important in the 
workplace, and we need to help foster a productive work-
force of the future. With the AMS Annual Survey showing 
the fraction of PhDs awarded to Americans flat at slightly 
under 50%, should the rate of foreign students leaving 
the country after graduate school rise, there could even 
be a problem replacing our profession’s own ranks. Other 
reasons may be more indirect, but nevertheless warrant 
concern: Can we assume a reliable supply of public or 
even private funding from a society that fails to appreciate 
or even understand what mathematicians do? Most of 
us are in this profession because of the thrill and beauty 
of mathematical discovery; isn’t there intrinsic value in 
sharing what we can of those experiences to as broad a 
population as possible?

Hence, there’s a need for institutions dedicated to im-
proving the public perception of mathematics. The image 
problems aren’t going to solve themselves. Certainly, the 
commercial success of technology and financial firms based 
on their use of mathematics provides some good raw mate-
rial for improving the status of mathematics, but someone 
has to be advocating on behalf of mathematics using that 
material. And I’m specifically interested in outreach di-
rectly to general audiences. Ideally, high-quality, engaging 
but demanding public education in mathematics would 
solve much of the problem. Working toward that goal is 
of course a good idea, and there exist many fine efforts 
in that direction, but there are entrenched reasons why 
public-education reform alone is unlikely to fix perception 

As I think anyone reading these Notices is aware, mathe-
matics suffers from a tremendous image problem in this 
country. For large segments of the population, math is the 
subject we love to hate. People proclaim almost proudly 
that they “are terrible at math,” something they would 
never do concerning other topics like reading or American 
history. We know the stereotypes: people who like math 
are out of touch, maladjusted, or just plain weird. People 
outside our profession are also confused about what mathe-
maticians do; maybe work out the solutions to really tough 
calculus exercises?

The problem isn’t only anecdotal. Just to scratch the 
surface of quantitative investigation into attitudes toward 
mathematics, I’ll mention a couple of recent publications. 
In a 2017 national survey of teenagers by the Thomas B. 
Fordham Institute [3], one question asked respondents to 
choose their least favorite subject in school. Mathematics 
was the overwhelmingly most common answer, with 34% 
of the respondents selecting it. A 2016 survey article by 
Dowker, Sarkar, and Looi [1] cites several studies that sug-
gest “attitudes to mathematics tend to deteriorate with age 
during childhood and adolescence,” as well as other stud-
ies that indicate that math anxiety affects variously some 
fraction of students ranging from 6% to 68% (depending 
on the definition of “math anxiety” and the population 
under consideration).

Broadening  
Math Outreach

Glen Whitney 
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as “mathematics.” All too often, visitors to math exhibits 
respond along the lines that “this is just a playground with 
numbers thrown in,” not really mathematics.

Even when someone does connect an activity or program 
with “math,” we need to provide more compelling narra-
tives about those mathematical topics to win the hearts 
and minds of participants. We need to do a better job of 
connecting mathematics to peoples’ lives and the world 
around them, while continuing to celebrate the value and 
beauty of pursuing mathematical ideas for their own sake. 
We need to show ways that mathematics has improved 
the human condition, and highlight its role in other ac-
complishments of our civilization. And to broaden the 
audience that we can connect with, we need to do a better 
job of humanizing mathematics and mathematicians. The 
stories of a wide range of mathematicians, especially con-
temporary practitioners, with whom diverse audiences can 
identify and whose passions they can come to understand, 
can be a powerful tool for engagement with mathematics.

So what are some elements of a broader effort to 
solve mathematics’ image problem? First, we need more 
institutions dedicated to the effort. Some of these are or 
will be existing organizations. There’s not space here to 
mention all of the existing institutions and programs I’m 
aware of, and I know there are many others that I’ve yet 
to have the pleasure of learning about. To help strengthen 
the network of math outreach efforts in this country, 
and avoid fragmentation of the community involved in 
such efforts, I have established a list of such programs (at 
studioinfinity.org/outreach). If you know of or 
participate in a program not mentioned here, please visit 
and submit your program to the list!

So, what are some notable efforts out there already? 
The Mathematical Sciences Research Institute (MSRI) is 
strengthening its outreach activities: In Spring 2019, it is 
organizing the third National Math Festival. Modeled after 
the collection of science festivals that arose in the US in the 
past decade, this festival in Washington, DC, will consist 
of a day of public speakers, temporary exhibits, and group 
activities celebrating the beauty and diversity of mathe-
matics. MSRI also established the National Association of 
Math Circles, which fosters groups of interested students 
who meet periodically to creatively explore wide-ranging 
mathematical topics with the guidance of math profession-
als. The American Institute of Mathematics administers the 
Julia Robinson Mathematics Festivals, instigated by Nancy 
Blachman. These JRM Festivals occur in many sites around 
the country each year, and present a buffet of facilitated 
tabletop math activities carefully chosen for their power 
to engage a broad audience. The Association of Women 
in Mathematics organizes and sponsors Sonia Kovalevsky 
days, consisting of “a program of workshops, talks, and 
problem-solving competitions for female high school and 
middle school students and their teachers, both women 
and men.”

problems plaguing mathematics in at least the short-to-me-
dium term. These reasons include the limitations imposed 
by the elementary and secondary canon of math topics, 
the nature of standardized testing, generally less stringent 
math-background requirements for elementary educators, 
and the economic interests of businesses involved in school 
education.

In the early 2000s, well before I had contemplated most 
of the above issues consciously, I had the opportunity to 
visit the Goudreau Museum of Mathematics in Art and 
Science. (At the time, to visit at all, the Goudreau required 
at least ten people to come there together, and the visit 
had to be by appointment.) Whatever the popular image 
of mathematics might be, here was a place where math 
was thoroughly celebrated, played with, and enjoyed. The 
museum consisted of just two converted classrooms in a 
Herricks, Long Island junior-high-turned-community-cen-
ter, densely packed with games and puzzles; its ceilings 
burgeoned with a stunning array of polyhedral models. I 
remember thinking when leaving, “What a great country 
this is – there can be a museum about anything, even math-
ematics!” Tacitly, I was acknowledging to myself the fringe 
status of mathematics in American culture. In the following 
years, however, I became the “coach” of the after-school 
mathematics club at my local elementary school, and I 
began to reflect more consciously on math’s social status.

Thus in 2008, when I learned of the closure of the Gou-
dreau Museum, I conceived of a new math museum project 
on a larger scale and with an explicit mission to improve the 
public perception of mathematics. By mid-2009, the project 
dubbed “MoMath” had opened a traveling exhibtion, the 
Math Midway, and kicked off a capital campaign to fund the 
opening of a physical museum. In late 2012, that museum 
opened its doors in New York City. Along the way, MoMath 
organized or co-organized a long-running series of public 
lectures on mathematical topics, Math Encounters, a bian-
nual conference on recreational mathematics, MOVES, and 
a biannual conference on math outreach, MATRIX (so far 
held just in Europe). My connection with MoMath ended 
in the fall of 2017, shortly before it celebrated its fifth an-
niversary open to the public. Despite its accomplishments 
and milestones, MoMath is not enough to resolve or even 
adequately address math’s public perception problems. 
This is a big country, so naturally these are big problems, 
beyond the scope of any one institution.

So, what could improve math outreach further? There are 
numerous math blogs and video channels that undoubt-
edly reach a larger audience than it’s possible for a single 
physical museum to do, so stronger ties and mutual support 
between those forms of communication and organizations 
focusing on math outreach could amplify the effectiveness 
of their efforts. Careful investigation of the impact of ex-
hibits and programs, and creative experimentation with 
how they are presented, could help strengthen the link 
between what’s presented and what the audience recognizes 
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Third, we need additional types of activities and delivery 
methods, to broaden the audience. Participants need to see 
people they identify with as role models presenting the 
material; they need to see peers excited about mathematics. 
Demographic studies show that visitors to science muse-
ums are significantly less racially and economically diverse 
than the general population. So we need to take math 
outreach to places where we can reach those who are not 
coming to science centers: to visit schools and after-school 
programs, or even to stadiums, malls, or basketball courts. 
(Certainly there already exist programs designed to reach 
diverse populations. One example is the Art of Problem 
Solving’s Bridge to Enter Advanced Mathematics headed 
by Dan Zaharopol, which identifies groups of promising 
middle schoolers from underrepresented populations in 
New York and Los Angeles and provides summer programs 
highlighting the thrill of problem-solving and the breadth 
of mathematics, along with ongoing support through 
college applications. But more programs that expand the 
population who can become engaged with mathematics 
are needed. It’s also important to broaden the age range we 
reach; for example, the Bedtime Math enterprise started by 
Laura Overdeck provides books, math club kits, and other 
materials that can foster positive attitudes toward math 
for 3–8 year olds. There’s definitely room for programs 
tailored to older Americans as well. And finally, we need 
effective methods to measure the impact of all these efforts; 
it’s nearly impossible to optimize what you can’t measure 
(or aren’t measuring).

All of these enterprises need the involvement of pro-
fessional mathematicians. The science festival movement 
mentioned above provides many opportunities for prac-
ticing scientists to meet with general audiences and talk 
about or show off what they do. But in my conversations 
with science festival staff, they express disappointment at 
the number of mathematicians who respond to calls for 
participation, as compared to biologists, chemists, physi-
cists, etc. Partly as a result, most science festivals have little 
mathematics content. And presuming that we can increase 
the number of math museums and other math-outreach 
organizations, all of those institutions will need advisors, 
idea generators and contributors, and fact-checkers. (Let’s 
make sure to get the math right when we’re using it for 
outreach!) So keep your eyes open for opportunities to 
help with math outreach and get involved—you’ll find, as 
I have, that it’s an exciting, challenging, and fundamentally 
rewarding pursuit.

The US also needs more mathematics museums; if Ger-
many can support ten, certainly there should be more than 
one in this country. Fortunately, some efforts are already 
underway. Frederic Mahieu is organizing a Math Cultural 
Center of Chicago (info@mathculturalcenter.org). 
His vision is to “approach math through its culture, history 
and applications and share fascinating stories about math,” 
but also to give visitors ample opportunities for “exploring 
all aspects of what math is: doing, thinking, observing, cre-
ating.” There is another math museum project in Boston at 
an even earlier stage in development, and plenty of room 
for more such efforts around the country.

Second, we need to strengthen the math outreach activ-
ities at related institutions. Just based on membership in 
the Association of Science and Technology Centers, there 
are over 600 science museums in the country. Currently, 
only a small percentage mount significant mathematics 
exhibitions or have robust permanent exhibits celebrating 
mathematics in its own right. (Notable contributors to pub-
lic math content include the Oregon Museum of Science 
and Industry, the Science Museum of Minnesota, the Bos-
ton Museum of Science, the New York Hall of Science, and 
the North Carolina Museum of Life and Science, among 
others.) Providing attractive, low-cost, high-visitor-engage-
ment exhibit and programming options, and advocating 
for their use at science centers, would go a long way toward 
geographically broadening math outreach.

Also, American universities, colleges, and math depart-
ments could do more. Numerous universities in the United 
Kingdom have offices and/or directors of mathematics 
outreach (just try searching the phrase “UK university di-
rector of math outreach”); imagine the impact if a similar 
percentage of American higher educational institutions 
followed suit. (In fact, as White and Pantano pointed out 
a couple of years ago in these Notices [4], there’s a great 
deal that the US could learn from—and contribute to—in-
ternational math outreach, and certainly I applaud efforts 
toward such interchange.) There are already some efforts 
at US institutions along these lines: The STEAM Factory 
at OSU, organized by Jim Fowler and others, has created 
an interdisciplinary network that works together to make 
math and science accessible to general audiences in the 
Columbus, OH, area. The Arizona Math Road Show by 
Bruce Bayly et al. at the University of Arizona has brought 
an entertaining and participatory performance-based math 
program to numerous schools and other venues, literally 
driving it across the country in a reconditioned school bus. 
Dwyer and Schovanec report on a variety of math outreach 
initiatives at Texas Tech in their 2013 Notices article [3]. I 
know there are others, and I hope you’ll add them to the de-
veloping list on-line. But more such initiatives are needed, 
and they can make the “broader impact” efforts required 
by many granting agencies significantly more meaningful 
and effective.
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This is a chance for us to reimagine the JMM to ensure a continued rich 
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WHAT IS…

Falconer’s Conjecture?
Alex Iosevich

The Statement of the Problem
Many problems in mathematics take the following form.
Suppose that 𝑋,𝑌 are sets and 𝑓 ∶ 𝑋 → 𝑌 is a function.
Suppose that 𝑋 is sufficiently large and 𝑓 is suitably non-
trivial. Then 𝑓(𝑋) takes up a substantial portion of 𝑌. A
classical example of this phenomenon is Picard’s Little The-
orem, which says that any entire analytic function whose
range omits two points must be a constant function.

Let 𝑋 = 𝐸 × 𝐸, 𝑌 = ℝ, and 𝑓(𝑥, 𝑦) = |𝑥 − 𝑦|,
where 𝐸 is a compact subset of ℝ𝑑, 𝑑 ≥ 2, and |𝑥| =
√𝑥

2
1 + 𝑥2

2 +⋯+ 𝑥2
𝑑. The Falconer distance problem asks

how large does the Hausdorff dimension of 𝐸 needs to be
to ensure that the Lebesgue measure of the distance set

Δ(𝐸) = {|𝑥 − 𝑦| ∶ 𝑥, 𝑦 ∈ 𝐸}
is positive.

In this context, it is sufficient to think of Hausdorff di-
mension of a compact set 𝐸, denoted by 𝑑𝑖𝑚ℋ(𝐸), in the
following way. There exists a Borel measure supported on
𝐸 such that for every𝛼 < 𝑑𝑖𝑚ℋ(𝐸), the𝛼-energy integral

𝐼𝛼(𝜇) = ∫∫|𝑥 − 𝑦|−𝛼𝑑𝜇(𝑥)𝑑𝜇(𝑦) < ∞. (1)

The background and the details pertaining to the Haus-
dorff dimension and energy integrals are beautifully de-
scribed in Falconer’s “Geometry of Fractal Sets” ([5]),
andMattila’s “Fourier Analysis andHausdorff Dimensions”
([12]).

This problem can be viewed as amore delicate variant of
the celebrated Steinhaus Theorem, which says that if 𝐸 ⊂
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ℝ𝑑 is of positive Lebesgue measure, then 𝐸 − 𝐸 = {𝑥 −
𝑦 ∶ 𝑥 ∈ 𝐸,𝑦 ∈ 𝐸} contains an open ball centered at the
origin.

The Falconer Distance Conjecture says that if the Haus-
dorff dimension of 𝐸 ⊂ ℝ𝑑, 𝑑 ≥ 2, is greater than 𝑑

2 , then
the Lebesgue measure of Δ(𝐸) is positive. This problem
was formulated by Falconer in 1985 ([6]).

Connections with the Erdős Distance Problem
The Falconer Distance Conjecture is a continuous analog
of the Erdős Distance Conjecture, which says that if 𝑃 ⊂
ℝ𝑑, 𝑑 ≥ 2, is a finite set, then for every 𝜖 > 0 there exists
𝐶𝜖 > 0 such that

#Δ(𝑃) ≥ 𝐶𝜖(#𝑃)
2
𝑑−𝜖.

This problem was introduced by Erdős in 1945, and af-
ter 66 years of efforts by many of the most prominent ex-
perts in combinatorics and related fields, the problem was
finally solved in two dimensions by Guth and Katz ([9]).
In higher dimensions, the problem is still open, with the
best exponents due to Jozsef Solymosi, Cszaba Toth, and
Van Vu (see [15]).

Sharpness of the Erdős/Falconer Exponents
It is important to note that the conjectured exponent 𝑑

2
in the Falconer distance problem and the exponent 2

𝑑 in
the Erdős distance problem are strongly linked. Let 𝑃𝑞 =
ℤ𝑑∩[0,𝑞]𝑑. Then #𝑃𝑞 ≈ 𝑞𝑑. The size ofΔ(𝑃𝑞) does not
exceed the number of values of the quadratic form 𝑥2

1 +
𝑥2
2+⋯+𝑥2

𝑑, 𝑥𝑗 ∈ [0, 𝑞],which is bounded by 𝑞2+𝑞2+
⋯ + 𝑞2 = 𝑑𝑞2. Setting 𝑛 = 𝑞𝑑, we see that #Δ(𝑃𝑞) ≤
𝑑𝑛 2

𝑑 , and the sharpness of the 2
𝑑 exponent in the Erdős

distance problem is established.
In order to establish the sharpness of the 𝑑

2 exponent
in the Falconer distance conjecture, we bootstrap off the
Erdős distance problem example above. Let𝑞1=2,𝑞𝑖+1=
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𝑞𝑖
𝑖 . Let 𝐸𝑠

𝑖 , 𝑠 ∈ (𝑑
2 , 𝑑) denote the 𝑞− 𝑑

𝑠
𝑖 -neighborhood of

1
𝑞𝑖 𝑃𝑞𝑖 . A result in Falconer’s book ([5]), Chapter 8, shows
that the Hausdorff dimension of 𝐸𝑠 = ∩𝑖𝐸𝑠

𝑖 is equal to 𝑠.
On the other hand,

|Δ(𝐸𝑠
𝑖 )| ≤ 𝐶𝑞− 𝑑

𝑠
𝑖 ⋅ #Δ(𝑃𝑞𝑖) ≤ 𝐶′𝑞2− 𝑑

𝑠
𝑖 ,

from which it follows that |Δ(𝐸𝑠)|, the Lebesgue measure
of 𝐸𝑠, may be 0 if 𝑠 < 𝑑

2 , thus establishing the sharpness
of the 𝑑

2 exponent up to the endpoint.

The 𝐿∞ Theory
In order to understand how many distances a set 𝐸 ⊂ ℝ𝑑,
𝑑 ≥ 2, determines, one cannot avoid studying the inci-
dence function that counts how often a fixed distance oc-
curs. In the discrete case this is simply amatter of counting
the number of pairs of elements from 𝐸 whose pairwise
distance equals a given value. In the continuous case one
must proceed a bit more carefully. Let 𝜎𝑡 denote the sur-
face measure on the sphere of radius 𝑡 > 0 centered at
the origin. Let 𝜌 be a smooth cut-off, ≡ 1 in the unit ball
and vanishing outside a slightly larger ball. Let 𝜌𝜖(𝑥) =
𝜖−𝑑𝜌(𝑥

𝜖), and define 𝜎𝜖
𝑡 (𝑥) = 𝜎𝑡 ∗𝜌𝜖(𝑥). Let

𝜈𝜖(𝑡) = ∫∫𝜎𝜖
𝑡 (𝑥 − 𝑦)𝑑𝜇(𝑥)𝑑𝜇(𝑦),

where 𝜇 is a Borel measure supported on 𝐸. One should
think of this quantity as the 𝜖-approximation of the inci-
dence function on Δ(𝐸), which counts pairs of points in
𝐸 separated by the distance 𝑡. Also, at least heuristically
and this can be made quite precise, lim𝜖→0+ 𝜈𝜖(𝑡) is the
distance measure 𝜈 defined by the relation

∫𝑓(𝑡)𝑑𝜈(𝑡) = ∫∫𝑓(|𝑥 − 𝑦|)𝑑𝜇(𝑥)𝑑𝜇(𝑦). (2)

Falconer observed by a simple covering argument that
if one can show that 𝜈𝜖(𝑡) is uniformly bounded, then
the Lebesgue measure of Δ(𝐸) is positive. More precisely,
cover Δ(𝐸) by the collection {(𝑡𝑖 − 𝜖𝑖, 𝑡𝑖 + 𝜖𝑖)}. The fol-
lowing is a formal argument that can be made precise with
a tiny bit of work. We have 1 = 𝜇× 𝜇(𝐸× 𝐸)

≤ ∑
𝑖
𝜇× 𝜇{(𝑥, 𝑦) ∶ 𝑡𝑖 − 𝜖𝑖 ≤ |𝑥 − 𝑦| ≤ 𝑡𝑖 + 𝜖𝑖}

≤ 𝐶∑
𝑖
𝜖𝑖𝜈𝜖𝑖(𝑡𝑖)

= 𝐶∑
𝑖
𝜖𝑖 ∫∫𝜎𝜖𝑖

𝑡𝑖 (𝑥 − 𝑦)𝑑𝜇(𝑥)𝑑𝜇(𝑦)

= 𝐶∑
𝑖
𝜖𝑖 ∫|𝜇̂(𝜉)|2𝜎̂𝜖𝑖

𝑡𝑖 (𝜉)𝑑𝜉.

Using the method of stationary phase (see e.g. [14]), it
is not difficult to see that

|𝜖𝑖𝜎̂𝜖𝑖
𝑡𝑖 (𝜉)| ≤ 𝐶|𝜉|− 𝑑−1

2 ⋅ min{|𝜉|−1, 𝜖𝑖}. (3)

Plugging the estimate (3) back in and tracing the in-
equalities backwards, we see that this quantity is bounded
by ∑𝑖 𝜖𝑖 ⋅ ∫ |𝜉|−

𝑑−1
2 |𝜇̂(𝜉)|2𝑑𝜉.

By a simple Plancherel style argument, this expression
equals

∑
𝑖
𝜖𝑖 ⋅ ∫∫ |𝑥 − 𝑦|− 𝑑+1

2 𝑑𝜇(𝑥)𝑑𝜇(𝑦)

= 𝐼𝑑+1
2
(𝜇) ⋅∑

𝑖
𝜖𝑖 ≤ 𝐶∑

𝑖
𝜖𝑖

if the Hausdorff dimension of 𝐸 is greater than 𝑑+1
2 , as we

explain in the paragraph preceding the formula (1). It fol-
lows that∑𝑖 𝜖𝑖 ≥ 1

𝐶 > 0, which implies that the Lebesgue
measure of Δ(𝐸) is positive.

The 𝐿2 Theory: Setup
In the previous section we obtained a good exponent for
the Falconer Distance Problem by obtaining an 𝐿∞ esti-
mate for the smoothed out measure on the distance set.
In order to improve the exponent, we are going to describe
the method that only relies on 𝐿2 bounds for the distance
measure 𝜈. Observe that if 𝜈 ∈ 𝐿2, then

1 = (∫𝑑𝜈(𝑡))
2
≤ |Δ(𝐸)|∫𝜈2(𝑡)𝑑𝑡 ≤ 𝐶|Δ(𝐸)|,

which would imply that |Δ(𝐸)| ≥ 1
𝐶 > 0.

The advantage of this point of view is two-fold. First, it
is typically far easier to prove that something is in 𝐿2 than
to show that it is in 𝐿∞. Second, it turns out that the 𝐿∞

bound on𝜈𝜖, independent of 𝜖, is not even true in general
if the Hausdorff dimension of the underlying set is < 𝑑+1

2 .
This was shown by Mattila in two dimensions ([11]) and
by the author and Senger ([10]) in three dimensions. In
higher dimensions the question is still open, but the au-
thor and Senger ([10]) showed that 𝜈𝜖 is not in 𝐿∞ with
constants independent of 𝜖 in dimensions four and higher
if the Euclidean distance is replaced by a suitable variant
of the parabolic metric.

Another advantage of𝐿2 norms is that Plancherel comes
into play. Mattila proved that if the Hausdorff dimension
of a compact set 𝐸 ⊂ ℝ𝑑 is > 𝑑

2 , 𝜇 is a Borel measure
supported on 𝐸 and

ℳ(𝜇) = ∫(∫
𝑆𝑑−1

|𝜇̂(𝑟𝜔)|2𝑑𝜔)
2
𝑟𝑑−1𝑑𝑟 < ∞, (4)

then the distance measure 𝜈 introduced above has an 𝐿2

density, and thus |Δ(𝐸)| > 0.
Mattila derived this result using the method of station-

ary phase and properties of Bessel functions. We are go-
ing to sketch a geometric derivation obtained by Greenleaf,
the author, Liu, and Palsson ([7]) wheremore complicated
geometric configurations are also studied.

Recalling the definition of the distancemeasure𝜈 in (2),
we see that in order to compute ∫𝜈2(𝑡)𝑑𝑡 we must come
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to grips with quadruplets 𝑥,𝑦, 𝑥′, 𝑦′ ∈ 𝐸4 such that |𝑥 −
𝑦| = |𝑥′ − 𝑦′|. In reality we must consider quadruplets
where distances are close to equal and then devise a careful
limiting process, but let’s keep going. If |𝑥−𝑦| = |𝑥′−𝑦′|,
then there exists 𝑔 ∈ 𝑂𝑑(ℝ) (the orthogonal group) such
that 𝑥 − 𝑦 = 𝑔(𝑥′ −𝑦′).

In the plane this 𝑔 is unique. In higher dimensions,
one must consider the appropriate stabilizer. Rewriting
the equation we obtain 𝑥 − 𝑔𝑥′ = 𝑦 − 𝑔𝑦′ and this has
the 𝐿2 norm of the natural measure on 𝐸 − 𝑔𝐸 written
all over it. More precisely, define the measure 𝜈𝑔 by the
relation

∫𝑔(𝑧)𝑑𝜈𝑔(𝑧) = ∫∫𝑔(𝑢− 𝑔𝑣)𝑑𝜇(𝑢)𝑑𝜇(𝑣). (5)

Arguing in this way we can show that

∫𝜈2(𝑡)𝑑𝑡 = ∫∫𝜈2
𝑔(𝑧)𝑑𝑧𝑑𝑔,

where 𝑑𝑔 is the Haar measure on 𝑂𝑑(ℝ), provided that
both sides make sense. The Fourier transform of 𝜈𝑔 is easy
to compute using the formula (5). By Plancherel we con-
clude that

∫∫𝜈2
𝑔(𝑧)𝑑𝑧𝑑𝑔 = ∫{∫|𝜇̂(𝑔𝜉)|2𝑑𝑔} |𝜇̂(𝜉)|2𝑑𝜉

= 𝑐∫(∫
𝑆𝑑−1

|𝜇̂(𝑟𝜔)|2𝑑𝜔)
2
𝑟𝑑−1𝑑𝑟 ≡ ℳ(𝜇).

𝐿2-theory: Wolff–Erdogan
Until very recently, the best known results on the Falconer
distance problem were due to Wolff ([16]) in the plane
and Erdogan (IMRN, 2006) in higher dimensions. They
proved that the Lebesguemeasure of the distance set is pos-
itive, provided that the Hausdorff dimension of the under-
lying set is> 𝑑

2+ 1
3 . We shall briefly comment on themore

recent efforts, but for now let us describe the 𝑑
2 + 1

3 theory
that laid the foundation for further progress. The key esti-
mate established by Wolff and Erdogan is the following.

∫
𝑆𝑑−1

|𝜇̂(𝑡𝜔)|2𝑑𝜔 ≤ 𝐶(𝑑, 𝑠, 𝜖)𝑡𝜖−( 𝑑+2𝑠−2
4 )𝐼𝑠(𝜇), (6)

where 𝐼𝑠(𝜇) = ∫∫ |𝑥 − 𝑦|−𝑠𝑑𝜇(𝑥)𝑑𝜇(𝑦) is the energy
integral of 𝜇. Plugging this back into (4) yields

ℳ(𝜇) ≤ 𝐶∫∫|𝜇̂(𝑡𝜔)|2𝑡𝑑−1𝑡𝜖−( 𝑑+2𝑠−2
4 )𝐼𝑠(𝜇)𝑑𝜔𝑑𝑡

= 𝐶∫|𝜇̂(𝜉)|2|𝜉|𝜖−( 𝑑+2𝑠−2
4 )𝐼𝑠(𝜇)𝑑𝜉

= 𝐶′𝐼𝜖+ 3𝑑−2𝑠+2
4

(𝜇)𝐼𝑠(𝜇),

which is bounded if 𝑑𝑖𝑚ℋ(𝐸)> 𝑑
2 + 1

3 .

Recent Advances
After a long hiatus, the advances on the Falconer distance
conjecture started coming again in recent months. X. Du,

L. Guth, H. Wang, B. Wilson, and R. Zhang ([2]) obtained
the dimensional threshold 9

5 inℝ3 and improved the thresh-
old for 𝑑 ≥ 4 as well. Their higher dimensional threshold
for 𝑑 ≥ 4 was further improved by X. Du and R. Zhang
([3]) to 𝑑2

2𝑑−1 = 𝑑
2 + 1

4 + 1
8𝑑−4 .

What is behind all this activity? Several key recent ad-
vances in harmonic analysis come into play and perhaps
the most important of these is the connection with the
Schrodinger operator. Du and Zhang deduced their 𝑑2

2𝑑−1
threshold from the following Schrödinger estimate. Let
𝑛 ≥ 1, 𝛼 ∈ (0,𝑛 + 1] and 𝜇 a compactly supported
Borel measure such that 𝜇(𝐵(𝑥, 𝑟)) ≤ 𝐶𝑟𝛼. Then

||𝑒𝑖𝑡Δ𝑓||𝐿2(𝐵(0⃗,𝑅);𝑑𝜇𝑅(𝑥,𝑡) ⪅ 𝑅 𝛼
2(𝑛+1) ||𝑓||2,

from which they deduced a good bound for the spherical
average in (6).

In two dimensions, Guth, Iosevich, Ou, and Wang ([8])
improved the dimensional threshold to 5

4 , proved a pinned
version of the result, and extended it to a variety of smooth
metrics. In this setting, a completely new approach needed
to be developed because the authors proved that for any
𝛼< 4

3 there exists a planar set of Hausdorff dimension 𝛼
such that (4) is infinite. They solved this problem by con-
sidering 𝐸1, 𝐸2 ⊂ 𝐸 separated by distance ∼ 1, and let-
ting 𝜇1 and 𝜇2 be Frostman measures on 𝐸1, 𝐸2. They di-
vided𝜇1 into𝜇1 = 𝜇1,𝑔𝑜𝑜𝑑+𝜇1,𝑏𝑎𝑑, where𝜇1,𝑏𝑎𝑑, roughly
speaking, comes from the example where the 𝐿2 norm of
the distance measure is infinite. They showed that the 𝐿1

norm of 𝜇1,𝑏𝑎𝑑 is not too large using a beautiful projec-
tion estimate due toOrponen ([13]). This reducedmatters
to obtaining an upper bound for the 𝐿2 norm of 𝜇2,𝑏𝑎𝑑,
which was accomplished via a suitable Schrödinger type
estimate partly based on the decoupling theorem of Bour-
gain and Demeter ([1]).
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theoretic viewpoint on Erdős-Falconer problems and the

554 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 4

http://www.ams.org/mathscinet-getitem?mr=3374964
cav
Rectangle

http://www.arXiv.org/abs/1805.02775
cav
Rectangle

http://www.ams.org/mathscinet-getitem?mr=867284
cav
Rectangle

http://www.ams.org/mathscinet-getitem?mr=834490
cav
Rectangle

http://www.arXiv.org/abs/1802.10186
cav
Rectangle



Mattila integral, Revista Mat. Iberamericana 31 (2015), no.
3, 799–810. MR3420476

[8] Guth L, Iosevich A, Ou Y, Wang H. On Falconer distance
set problem in the plane, (submitted for publication),
(https://arxiv.org/pdf/1808.09346.pdf)
(2018).

[9] Guth L, Katz N. On the Erdős distinct distances problem
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BOOK REVIEW

Only Human
A review by Bjørn Kjos-Hanssen

The Turing Guide
Jack Copeland, Jonathan
Bowen, Mark Sprevak, Robin
Wilson, and others
Oxford University Press, 2017
ISBN 978-0-19-874783-3

Introduction
A victorious yet tragic hero. A
genius but ominously an au-
gur of the end of human domi-
nance. Such characterizations

come to mind regarding Alan Mathison Turing (1912–
1954) after reading the The Turing Guide.

It is a 500-page compilation of articles bymany authors,
written for “general readers,” which strikes a balance be-
tween focusing on Turing himself and on the collection
of topics he was involved in. The driving force behind
the book is philosopher Jack Copeland, who has written
many books and articles about Turing and participates in
sixteen of the forty-two chapters of the Guide. Officially,
the author list is Copeland, Bowen, Sprevak, Wilson, “and
others.”1 The chapters are lightly cross-referenced but are
largely independent. The book is solidly proofread: I got
to page 55 before finding the first error (“during the did
decades”).

Turing’s appeal in the popular imagination may stem
from checking several boxes: he is viewed as a genius and

Bjørn Kjos-Hanssen is a professor of mathematics at University of Hawaii at
Manoa. His email address is bjoern.kjos-hanssen@hawaii.edu.
Communicated by Notices Associate Editor Stephan Ramon Garcia.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti1844
1Amusingly, as of March 8, 2018, MathSciNet gives “and others” the author ID 1227985
and reports that this book is his or her only publication so far.

a hero, perhaps even a tragic hero. In support of the genius
label, he defined amathematical notion of “computer” that
turned out to be the right one, proved some fundamental
results (existence of the universal computer, unsolvability
of its halting problem), and arguably founded mathemati-
cal biology (see Biological Growth below). As for heroism,
he worked on cryptography during World War II and led a
large team. However, the claim in the Preface that

It is no overstatement to say that, without Turing,
the war [...] might even have been won by the
Nazis.

is, in Chapter 9, modified to indicate that perhaps his work
helped ensure that thewar ended in 1945 rather than 1946.
As for tragedy, he was convicted of homosexuality, ordered
into female hormone therapy, and may have committed
suicide.

Turing earned the standing to present to us all his
thoughts on human and machine intelligence and, as dis-
cussed below, those thoughts now seem prophetic.

The Guide is divided into eight parts, each worth a sec-
tion of this review.

Biography
In this part we learn many interesting facts about Turing.
He thought that intellectual activitymainly consists of vari-
ous search algorithms and that we should expect machines
to take control. This is a possible counterpoint to the label
of hero: perhaps he hastened the day of the “singularity”
when machines take over and render humans irrelevant.

It is argued that he took his court-ordered female hor-
mone therapy with an impressively resilient attitude, treat-
ing it almost as a case of freshman hazing. If true, that
tends to make him less a tragic hero and more a simply
mysterious hero. Turing died in a manner that involved
cyanide and a lab next to his bedroom, but the jury is still
out on whether it was suicide or some kind of experiment
gone awry.

556 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 4



Book Review

Figure 1. Enigma encryption machine.

His work on morphogenesis [17] is here described as
“even deeper” than the discovery of DNA molecules.

The Universal Machine and Beyond
Copeland writes about the move from electromagnetically
controlled relays to blindingly fast digital electronics, first
used for breakingGerman codes. These new devices would
latermesh stunningly with the notion of a universal Turing
machine. Turing’s Automatic Computing Engine (ACE)
ran at 1 MHz, which outperformed the competition at the
time (von Neumann’s design for a computer was less fo-
cused on speed). Turing’s device was essentially a Reduced
Instruction Set Computer (RISC). Copeland gives us the
impression that Turing was an engineer (-ing professor)
as much as a mathematician (mathematics professor). It
seems that Turing looked at Turing machines as idealized
machines perhaps more than as purely mathematical con-
cepts.

Codebreaker
Copeland argues convincingly, to me, that Turing’s contri-
butions did not sway the outcome of World War II from
the Axis powers to the Allies. On the other hand, it may
have saved on the order of 10 million lives by helping to
shorten the war.

We get a very detailed description of how the Germans’
secure communications machine “Enigma” worked (Fig-
ure 1). For a mathematician a more mathematical treat-
ment would have been preferable; the given description of
how some wheels are attached to others in certain ways
and triples of letters associated with others was a bit bewil-
dering.

Breaking theGermans’ codeswas not amatter of solving
a well-defined math problem but rather of thinking of lots
of aspects of what the Germans were doing and finding a
series of weak links: something to hack. Again we perhaps

see Turing’s engineering essence above his mathematical
one.

We also learn about Turing’s cryptologic work. To de-
code German messages, one had to basically search
through a huge space for some input whose output would
be a recognizable German language message. Various heu-
ristics and methods to reduce this search space were con-
sidered. Turingmade extensive use of probability and used
phrases like “cross” and “direct” while other less mathe-
matically serious colleagues used “starfish” and “beetle.”

TheBombeswere electromagnetic devices created to carry
out the search that remained to be done after all heuristics
and mathematical simplifications had been applied. Tur-
ing played a leading role in adapting these from Polish
cryptanalysts’ Bombas (see page 560).

The Enigma encryption scheme is an elaboration of Vi-
genère ciphers, which themselves are elaborations of the
simple Caesar ciphers. Turing wrote a manuscript on their
decryption using the Bayes theorem; this was recently re-
leased on ArXiv [13].

Banburismus was a purely mechanical (not even electro-
mechanical) means of reducing the search space before
starting a Bombe run. It involved punch cards inspired
by the loom industry (as also Lovelace and Babbage had
been). It is explained that people of intermediate skill
were not needed for the endeavor: there were the manual
card-punchers and measurers, there were the cryptanalysts,
who had a much more enjoyable job, and then there were
Turing and his ilk, who designed the algorithms the crypt-
analysts carried out. Sometimes the attempts to explain
mathematical ideas in plain language become too vague
(p. 139):

A two-letter sequence such as ‘en’ occurs more fre-
quently in English than the combination of ‘e’ and
‘n’ counted separately.

A more advanced machine, Tunny, took over from Enig-
ma, and we learn about the methods and computers
(Colossus) used to decode Tunny messages. Encryption
by vector addition modulo 2 is well explained. Doing it
twice recovers the original message by associativity since

(𝐴+ 𝐵) + 𝐵 = 𝐴.

Special tricks included waiting for Germans to send the
same message again, but with some minor variation, be-
cause they thought the first message did not go through.
Two similar messages could be more easily broken, and
this is explained in some detail. The Colossus computer
used electronic valves. These had at the time a status simi-
lar to that of quantum bits now. They were believed to be
too unreliable to be used en masse; that is, to have many of
them in one computer. It is claimed that hadmanyColossi
not been destroyed after the war, things like the Internet
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and social networking might have happened a decade ear-
lier than they did. (The idea of Facebook starting as early
as 1994 may not be universally viewed as a positive, how-
ever.)

A chapter by Eleanor Ireland details the secrecy and te-
dium of working on the Colossusmachines. Global events
during World War II and their relation to Bletchley Park
are detailed. We hear what a large industrial-scale cyber-
warfare operation it was. Turing, however, was “flicking
the walls with his fingers as he walked,” an image that
may feel familiar to mathematicians and children alike.
We learn that when two messages are “in depth,” mean-
ing encrypted by adding the same vector, we can add the
encrypted versions

(𝐴+ 𝐵) + (𝐶+ 𝐵) = 𝐴+𝐶

and cancel out the encrypting vector 𝐵. Next, we think of a
piece of German phrase and add that to some consecutive
entries of the vector 𝐴 + 𝐶. If our German phrase was
in 𝐴 or 𝐶, we would be left with a fragment of 𝐶 or 𝐴,
respectively. Intimate knowledge of the German language,
as it was used by the Tunny operators, was key.

Brian Randell writes about the revelation of some classi-
fied information about Ultra, the codename for the British
efforts against German cryptography, in the 1970s. It re-
minds me that Turing via his Bletchley Park work becomes
an almost unbelievable incarnation of the “nerd’s super-
hero”: someonewho throughmathematical work becomes
a leader among thousands of regular people engaged in the
largest war of all time.

Turing visited theUnited States to helpwith their Bombe
making, and worked on a speech encryption device. Much
work has been done to preserve Bletchley Park’s historical
WWII buildings by increasing the public and funders’ in-
terest with books, TV reports, special events, and publica-
tions.

Computers After the War
Baby, the first stored-program computer, was built in Man-
chester, England, but with inspiration from Princeton. In-
terestingly, von Neumann (at Princeton) pushed the idea
of a CPU with an accumulator (familiar to those who have
studiedmachine/assembly language), whereas Turing liked
a more decentralized design.

Turing developed the ACE computer that rivaled Baby.
It was fast but ultimately obsolete compared to compet-
ing designs. At the time, random-access memory had not
been developed. Instead of scanning through memory un-
til the desired memory location arrived, Turing’s design
used something called “optimumprogramming” to lay out
instructions in memory so that the desired information in
memory tended to arrive quickly or, rather, at the exactly
right time. Such programming suited Turing quite well, as

the architecture was similar to that of his own Turing ma-
chines.

Turing had a great deal of foresight with regard to the de-
sign of machine language. Brian E. Carpenter and Robert
W. Doran give a beautifully simple description of recur-
sion: a computer must keep track of where it is, so a stack
is needed.

Copeland and composer Jason Long describe how Tur-
ing and colleagues made computer music. For someone
growing up with Commodore machines in the 1980s, the
similarity is striking and appealing.

We are also taken on a trip back to the time of Charles
Babbage. Babbage was focused on arithmetic and algebra.
He acknowledged that Ada Lovelace saw further and en-
visioned a machine that could make music and replicate
the brain. The situation is summarized by saying that Bab-
bage was focused on hardware (and algebra), Lovelace on
applications, and Turing on theory (as he developed math-
ematical theory of what was needed to achieve Lovelace’s
vision).

Artificial Intelligence and the Mind
Perhaps the most famous idea named after Turing is the
Turing test. Turing proposed that to test whether a ma-
chine had achieved intelligence, it should be asked to try
to fool a human into thinking it was human. More pre-
cisely, a human judge gets to interrogate both another hu-
man and the machine (via a neutral interface such as com-
puter chat window) and is then asked to guess which is the
human.

Turing hypothesized that around our current time, ma-
chines would be able to fool some people some of the time
and that in another 50 years or so machines would be able
to fully pass the Turing test. So far, so good for these predic-
tions: for instance, Google’s artificial intelligence is able to
play the role of someone booking an appointment with a
hair stylist in such a way as to not be detected as amachine.

In this part we learn that Turing wanted to define intelli-
gence subjectively, as behavior that we findmysterious and
admirable but do not fully understand [16]. This way the
judge in the Turing test becomes an important participant.
Diane Proudfoot gives a delightful discussion of some of
my favorite topics including consciousness zombies and
solipsism. Turing imagined child machines that learned, a
precursor to today’s machine learning. Proudfoot’s chap-
ter includes an unnerving observation: robots must look
like humans in order to build rapport with humans, in or-
der to learn from humans.

The chapter on computer chess discusses heuristic search
algorithms. Rather than searching through possiblemoves,
one uses guiding rules such as “a rook is worth five points.”
With machine learning one could even discover that it is
better to value a rook at, say, 4.9 points. As in some other
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chapters, however, there is a bit of historic trivia of little in-
terest, such as who first lost a game of chess to a computer,
who first won, and so forth. There is also some material
that perhaps is of interest to lay-persons, such as a com-
plete transcript of the first game of chess between a human
and Turing acting as a computer. Some fascinating tidbits
such as Mozart Musikalische Würfelspiel (randomly gener-
ated Mozart music) are also included.

The book does have a smattering of strange matters to
a mathematician.

• The standard normal distribution is described as
havingmean 0, standard deviation 1, and also height
1 at the mean.

• The proof of the undecidability of the halting prob-
lem (pp. 410–411) seems to make no use of the
crucial negation stepwhereby a computation halts
if and only if it does not.

• The distinction between countable sets and com-
putably enumerable sets is missing in Chapter 37.
(Very nice though is that chapter’s display of an ex-
plicit polynomial over ℤ that produces the primes
and no other positive integers.)

A chapter on WWII coding methods reads a bit tedious
at times (imagine going through a detailed computation
with repeated Bayes theorem usage in prose rather than
equations), but there are some interesting things for me
such as the use of the score log𝑝 of a probability 𝑝 to
simplify hand calculations so that the clerks at Bletchley
Park could use addition rather than multiplication.

Extra-sensory perception (ESP)was credible tomany sci-
entists at Turing’s time. He apparently worried that ESP
used by the judge in the Turing test would lead the judge
to falsely fail to attribute intelligence to themachine. Thus,
Turing seems to sympathize, in theory, with intelligent ma-
chines.

Sprevak’s chapter on cognitive science includes a discus-
sion of the appropriateness of modeling the behavior of
a human computation clerk by a Turing machine. Here
it would be instructive to also compare clerks to finite au-
tomata, studied early on in cognitive science by McCulloch
and Pitts [6]. Like a finite automaton but unlike a Turing
machine, a human does not have unlimited memory.

There is a sense in which the language

(01)∗ = {∅,01, 0101, 010101,…}

is understandable by humans and

{0𝑛1𝑛 ∶ 𝑛 ≥ 0}
= {∅,01, 0011, 000111, 00001111,…}

is not. For the former, we just have to scan the whole input,
rejecting if we see 00 or 11. Only our lifespan or fatigue
limits us in this regard. For the latter, we have to keep a

counter, and for large 𝑛 that is beyond our memory capa-
bilities whether in our brain or in hardware or paper.

Biological Growth
This interesting part introduces morphogenesis via the tale
of the sweating grasshoppers and the fire. The basic idea is
pretty clear even in the absence of any differential equa-
tions. While it is not mentioned in the Guide, Turing’s
work is related (see [2,3]) to Schelling’s [11] work on segre-
gation. If individuals tend to prefer to live close to similar
individuals, how do segregated neighborhoods form? In
terms of a tolerance parameter, higher tolerance may lead
individuals to be less likely to move, which can actually
lead to more segregation: once individuals land in a rather
homogeneous area they are likely to stay. Here, the neigh-
borhoods (in economics) are analogous to the stripes on
a zebra (in biology).

The chapter about radiolaria is amazing: suffice it to say
that it concerns single-cell organisms shaped like Platonic
solids with spikes!

Mathematics
Here we learn that Turing worked on the central limit the-
orem and on the Riemann 𝜁-function [15, 18]. Conve-
niently for this book, Turing worked on many fundamen-
tal topics.

Turing’s work [14] on the Entscheidungsproblem (the de-
cision problem for validity in first-order logic) is discussed
in several chapters in the book. One chaptermakes it seem
like Turing did the most and Gödel a relatively minor
amount, but Rod Downey’s chapter gives the view that
the Entscheidungsproblem had arguably already been solved
before Turing. In any case, Gödel showed that any com-
putable axiom system gives an incomplete set of theorems.
Absent a procedure to determinewhich new axioms to add,
it is clear that there can be no algorithm to decide which
results are true and which are false in arithmetic.

Downey also discusses randomness and Turing’s work
on absolutely normal numbers and how they correspond
to finite-state random sequences. He adds that it is not
clear whether one can physically generate true randomness.
One might add that it is not clear what that even means.
Cornout argued that we need a principle, namely

events of very low probability simply do not hap-
pen,

in order to give a noncircular explanation of what proba-
bility is [12].

Finale
To me this was the most interesting part of the book. It
deals with various arguments for how the time evolution
of our physical universemay not be computable. Of course,
if the universe is finite and discrete, then in some sense it
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Figure 2. The impact of Turing’s work on popular culture [20].

is computable. Since the universe is very large, however,
it is conceivable that it is not well modeled as being com-
putable but is better thought of as containing some ran-
dom or noncomputable aspects.

Early thinking on this topic may have been motivated
by the idea that, surely, human minds can do things that
Turing machines cannot. In Renewing Philosophy [9], Hi-
lary Putnam argues that artificial intelligence is impossi-
ble on the basis of the work of Pour-El and Richards [8]
on noncomputability in classical physics. Next, there was
the thought that physics, with its marvelous use of higher
mathematics, may contain undecidability [4]. That argu-
ment has lost some of its shimmer [5]. Finally, at present
it seems that a technological solution for achieving non-
computability is all we are left to imagine. Now it seems
that while perhaps technology based on physical systems can
carry out non-Turing machine computations, that seems
unlikely to mean human minds can do the same (see Fig-
ure 2).

Andréka, Németi, and Székely [1] work on using time
travel (closed timelike curves) to compensate for the lack
of space (and time). In the so-called Malament–Hogarth
(MH) spacetimes one can compute forever and thus solve
the halting problem. Hogarth worked on this in the 1990s,
andWelch [21] showed that even a larger class of problems
than those solvable using the halting problem (all hyper-
arithmetic problems) can be solved in MH-spacetimes.

Interestingly for our times, hypercomputation using
closed timelike curves (CTCs) is a technological solution.
Thus, researchers no longer claim that nature itself and
certainly not humans are super Turing machines. For an-
other example, consider Christina Perri’s song “Human”
[7] with the eerie lyrics,

But I’m only human
And I bleed when I fall down

I’m only human
And I crash and I break down

Could these words have been sung a century ago?

Polish Contribution
A good test of a biographical and historical book is how
it holds up in light of new information. Sir Dermot Tur-
ing, Turing’s nephew and author of a chapter of The Turing
Guide, in 2018 published the book𝑋,𝑌 &𝑍 [19] in which
he argues that Polish mathematicians, including Marian
Rejewski andHenryk Zygalski, should get more credit, and
that they have not gotten it because of an exaggerated “Tur-
ing cult” [10]. To The Turing Guide’s credit, it is indeedmen-
tioned in the book that the Polish mathematicians had ad-
dressed the Enigma problem more as a pure math prob-
lem than the British by the time the two groups compared
notes. In particular, the Polish had the idea of using ma-
chinery to decrypt machine-produced codes, using what
they called bomba (as opposed to Turing’s Bombe). In my
draft of this review, written before the article [10] appeared,
I had already noted

The Polish were ahead of the British for a while, as
the former realized right away that the code break-
ing was fundamentally a mathematical problem.

Conclusion
Overall, I found this to be delightful book—it was even
inspiring with, for instance, the mentions of seminar top-
ics that turned into new research directions. Mathemati-
cians should find a mixture of things they already knew,
things they are glad to learn, and a couple of things they
disagree with. I imagine a general well-educated audience,
especially scientists and engineers who do not specialize
in mathematics, may enjoy the book the most.
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Unsolved! The History and Mystery of the 
World's Greatest Ciphers from Ancient Egypt 
to Online Secret Societies  

by Craig P. Bauer (Princeton, 2017, 
624 pages).

This hefty book with an imposing 
title covers exactly what it claims 
to and does it with style and sub-
stance. Unsolved! is accessible to a 
wide audience. The most difficult 
mathematics discussed is the RSA 
algorithm, which appears toward 
the end of the book. A motivated 

high-school student would find the material in this book 
both appropriate and interesting.

Well-known examples such as the Voynich manuscript, 
the Zodiac letters, and the Beale ciphers are discussed in 
great detail. Although these famous enigmas are frequently 
touched upon in other texts, Bauer delves deeply into each 
one. For example, he includes information about statisti-
cal analyses of the data, educated speculation about the 
encryption methods used, and a run-down of attempted 
decipherments. Even those who are familiar with some of 
the more sensational examples will learn something new.  

Unsolved! provides enough detail and references to the 
code-breaking literature that motivated readers could plau-
sibly begin their own attempts at cracking these codes. Rel-
evant links to the actual data are often included and many 
dozens of illustrations and photographs grace this book.

The book particularly shines in its coverage of dozens 
of lesser-known ciphers, most of which have not received 
near the same level of attention as their more sensational 
cousins. Each of these tales is fascinating, and the coverage 
is deep. Many of these relate to unsolved murders, buried 
treasure, enigmatic manuscripts, espionage, and secret 
societies. There are even a few internet-era challenges that 
receive a robust treatment. This blend of intrigue and mys-
tery makes for a surprisingly thrilling read.

Students and professional mathematicians alike will 
delight at the dozens of mysteries presented by the author. 
Even most instructors who regularly teach cryptography 
will pick up many anecdotes with which to spice up their 
classes.

What is Real? The Unfinished Quest for 
the Meaning of Quantum Physics  

by Adam Becker (Basic Books, 2018, 
384 pages).

Quantum mechanics is one of 
the most accurate and successful 
scientific theories ever discovered. 
However, deep questions about its 
implications and meaning have 
loomed over the theory since its 
inception. Where is the boundary 
between the quantum and classical 
worlds? Why does the observer 

seem to enjoy a privileged status? What is the role of 
consciousness in observation? What does a wave function 
actually represent? Why does it collapse upon observation? 
Is quantum mechanics complete, or are there “hidden 
variables” that might explain away some of the apparent 
paradoxes?

In this book, Becker provides a nontechnical and highly 
readable account of some of the basic conundrums in the 
foundations of physics. He pays particular attention to the 
highly charged human dimension of the story. There were 
decades of political jousting and relentless posturing. Ca-
reers could be ruined for merely suggesting alternatives to 
the Copenhagen interpretation, the dominant paradigm. 
Papers could languish in obscurity or be suppressed for 
presenting novel ideas. The bitter conflict between Bohr 
and Einstein, the influence of the towering von Neumann, 
and the challenges faced by Bohm, Everett, and Bell all 
leap off the page. Mathematicians familiar with quantum 
mechanics from a theoretical perspective will find Becker’s 
historical and character-driven approach enlightening and 
engaging.  
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Finding Ellipses
What Blaschke Products, Poncelet’s
Theorem, and the Numerical Range
Know about Each Other
Ulrich Daepp, Pamela Gorkin,
Andrew Shaffer, Karl Voss

Finding Ellipses is the newest
volume in the MAA’s Carus
Mathematical Monograph se-
ries. These books are intended
to give tantalizing invitations
to unfamiliar areas for profes-

sional non-specialists. This particular volume explores
a surprising collection of connections between complex
analysis, projective geometry and linear algebra. The com-
plex analysis begins with the fact that every automorphism
of the unit disk in the complex plane is of the form:

𝑓(𝑧) = 𝜇 𝑧− 𝑎
1− 𝑎𝑧,

where 𝑎 is a point inside the disk and 𝜇 has norm one.
So, up to an arbitrary rotation, the automorphism is com-
pletely determined by which point maps to zero. More is
true, any map analytic on an open neighborhood of the
closed disk that maps the disk to itself (and the boundary
to the boundary) is a finite product of factors of this form.
So, specify the pre-images of zero you want and, up to ro-
tation, there is a unique analytic map with those zeroes
that preserves the unit disk. These maps are called finite
Blaschke products. They have many beautiful properties.

To take one, particularly apposite, example of such a
property imagine an arbitrary Blaschke product of degree
three, 𝐵, with zeroes at 0, 𝑎, and 𝑏. It is, of course, a three-
to-one map of the unit disk to itself. For each point 𝑤
on the unit circle construct the triangle 𝑧1, 𝑧2, 𝑧3 where
𝐵(𝑧1) = 𝐵(𝑧2) = 𝐵(𝑧3) = 𝑤. The envelope of this
collection of line segments is an ellipse with foci at 𝑎 and

The AMS Bookshelf is prepared bimonthly by AMS Acquisitions Special-
ist for MAA Press titles Stephen Kennedy. His email address is kennedy
.maapress@ams.org.

𝑏 and common distance |1 − 𝑎𝑏|. It’s called a Blaschke
ellipse.

Suppose, to change the subject for a minute, that you
have two nondegenerate, nonintersecting conics, 𝐶1 and
𝐶2, in the plane. Suppose further that there exists a trian-
gle with vertices on 𝐶1 all of whose sides are tangent to
𝐶2. Then every point on 𝐶1 is a vertex of such a triangle.
This is Poncelet’s Theorem. In the case that 𝐶1 is the unit
circle we’ll call an ellipse that can be an associated 𝐶2 a
Poncelet ellipse. It is natural to wonder which ellipses can
be Poncelet ellipses.

The surprising fact is that every Poncelet ellipse is a
Blaschke ellipse, and vice versa. The connection is medi-
ated by linear algebra, specifically by the numerical range of
an 𝑛 × 𝑛 matrix, 𝐴, with complex entries. The numerical
range of 𝐴 is defined as:

𝑊(𝐴) = {⟨𝐴𝑥, 𝑥⟩ | 𝑥 ∈ ℂ𝑛, ||𝑥|| = 1}.
First defined byOtto Toeplitz, the numerical range is a gen-
eralization, of a sort, of the set of eigenvalues. The triangles
circumscribing a Blaschke ellipse are each the numerical
range of a member of a certain family of related matrices.
(The family consists of the unitary 1-dilations of a 2 × 2
matrix of a specific form.) And it’s all constructive, given
the ellipse, it is possible to construct the Blaschke product
and the matrix. Given the matrix, one can construct the
Blaschke product and the ellipse.

Finding Ellipses by Daepp, Gorkin, Shaffer, and Voss is
full of one surprise after another. The connections are
thoroughly and completed explored, of course. But there’s
more: There is a connection to dynamical systems and an-
other to, of all things, Benford’s Law. The middle part of
the book extends the investigation to questions involving
Blaschke products of degree higher than three. Poncelet-
like properties are discovered and explored alongwith deep
function-theoretic properties of Blaschke products.

The exposition throughout is crystalline, packed with
illuminating examples and accessible. Reading it would
be make for a great capstone project for an undergraduate.
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sure on this set. Let us call random triangulation of size n a 
random planar triangulation with 2n triangles. A random 
triangulation can be thought of as a disorganized analogue 
of the triangular lattice. In fact, an important conjecture 
called KPZ equation relates the critical exponents of statis-
tical mechanics models on the regular lattice to the same 
exponents for the disorganized lattice.

The site-percolation model on a triangulation is a random 
assignment of color (either black or white) to each vertex 
of the triangulation. Figure 1 shows a percolation config-
uration. In the critical setting each vertex is colored black 
with probability 1/2 (independently of the other vertices). 
The clusters are the connected components of the unicolor 
subgraphs. The percolation loops are the set of closed curves 
on the sphere that separate the black clusters from the white 
clusters. Natural questions about the percolation model 
concern the size of the clusters and the distribution of the 
percolation interfaces.

A bijective tool. In [1] we establish a bijection which 
is key for our study of the percolation model on random 
triangulations. This bijection is represented in Figure 2 (see 
facing page). It relates (loopless) planar triangulations with 
2n triangles endowed with a site-percolation configuration 
to lattice paths in PN2 that start and end at (0,0) and are 
made of 3n steps from the set {(0,1),(1,0),(–1,–1)}. This 
bijection is used to obtain the limiting distribution of sev-
eral important observables of the percolation model (per-
colation loops, exploration tree, pivotal points measure).

Random surfaces and random curves. As discussed 
above, it is straightforward to define the notion of random 

Olivier Bernardi is an associate professor of mathematics at Brandeis Uni-
versity. His email address is bernardi@brandeis.edu.
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Percolation on 
Triangulations, and a 
Bijective Path to Liouville 
Quantum Gravity
Olivier Bernardi

This talk will attempt to achieve several goals:
1. Discuss the site-percolation model on random planar 

triangulations.
2. Provide an informal introduction to several probabilistic 

objects coming from theoretical physics: the Gaussian 
free field, Schramm-Loewner evolutions, and the Brownian 
map.

3. Present a bijective encoding of percolated triangulations, 
and explain its role in establishing exact relations be-
tween the above-mentioned random objects.
The results we will present are based on a collaboration 

between Nina Holden, Xin Sun, and me [1]. They build 
on a large body of work, among which a construction of 
Duplantier, Miller, and Sheffield [2] plays a particularly 
important role.

Random triangulations and site-percolation. A planar 
triangulation is a planar graph embedded in the sphere in 
such a way that each face is a triangle. A planar triangula-
tion is represented in Figure 1. Triangulations are consid-
ered up to continuous deformation of the sphere, and are 
uniquely determined by the incidence relation between 
faces. Planar triangulations with n triangles are therefore 
obtained by taking a set of n triangles and “gluing” their 
edges in pairs, in such a way that the resulting surface has 
spherical topology.

Since the set of planar triangulations with n triangles 
is finite, one can consider the uniform probability mea-

Figure 1. A planar triangulation endowed with a site-
percolation configuration. The percolation interfaces 
are indicated by dashed lines.

ABSTRACT. We report on recent progress toward relating 
two notions of random surfaces introduced in theoreti-
cal physics. The first notion of random surface is Liouville 
quantum gravity, whose definition involves the Gaussian 
free field. The second notion is obtained by considering 
the scaling limit of random triangulations of the sphere. 
A key ingredient in proving an exact relation between 
these two notions is a bijective encoding of percolated 
triangulations by certain lattice paths.
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triangulation of size n. This gives rise to an interesting 
notion of random metric space by considering the set of 
vertices of the triangulation endowed with the graph distance 
between them. In a major achievement, the scaling limit of 
this random metric space (when the number of triangles 
goes to infinity and their size goes to 0 at the appropriate 
rate) has been characterized in [5, 6]. It is a random metric 
space with spherical topology called the Brownian map, and 
it is a legitimate 2D analogue of the Brownian motion.

The Gaussian free field (GFF) is another 2D analogue of 
the Brownian motion, which is obtained by a completely 
different approach [8]. The GFF is a random distribution 
in (a domain of) the complex plane PC. The GFF can be 
used to define a random surface called Liouville quantum 
gravity (LQG) which was originally introduced by Polyakov 
[7] as a model for the random surface corresponding to 
the space-time evolution of a string. Heuristically, LQGγ is 
a random surface which, when projected conformally on 
C, gives rise to a density of area measure eγh, where h is the 
GFF and γ is a positive number.

The Brownian map and LQG have long been conjectured 
to be in some way related (although the proper definition 
of these objects and their possible relation is fairly recent). 
The proof of such a relation is under completion in a 
series of articles starting with [1] and culminating with 
[3]. Roughly speaking it is shown that, under a specific 
embedding of the random triangulations, the continuous 
limit of the vertex distribution has the law of the √8/3-LQG 
area measure, while the continuous limit of the percolation 
interfaces has the law of the conformal loop ensemble CLE6 
(an infinite collection of random loops closely related to 
Schramm–Loewner evolutions [9]).

Figure 2. The bijection Φ between percolated 
triangulations and lattice walks.

Φ
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Eigenvalues of Random
Matrices in the General
Linear Group in the
Large-𝑁 Limit

Brian C. Hall
Random Matrices and the Circular Law
Random matrix theory was introduced by Eugene Wigner
[3] in a 1955 paper modeling energy levels in atomic nu-
clei. The subject has now blossomed into a large industry
with deep connections to physics. For my talk the most rel-
evant sort of random matrix is the Ginibre ensemble. Here
we consider 𝑁 × 𝑁 matrices with the entries chosen in-
dependently. Each entry 𝑋𝑗𝑘 is chosen to be a complex
number, with the real and imaginary parts being indepen-
dent normal random variables with mean zero and vari-
ance 1/(2𝑁).Wenow consider the eigenvalues of this ran-
dom matrix; these form a random collection of 𝑁 points
in the complex plane.

Eigenvalues of a random matrix from the Ginibre ensemble,
with 𝑁 = 2,000

Brian C. Hall is a professor of mathematics at the University of Notre Dame.
His email address is bhall@nd.edu.
For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti/1847

Ginibre found that when 𝑁 is large, these eigenvalues
follow the circular law: with high probability, almost all
of the eigenvalues lie in the unit disk and they are almost
uniformly distributed there. This assertion exemplifies a
general property of random matrices, that the bulk prop-
erties of the eigenvalues of randomly chosen 𝑁 × 𝑁 ma-
trices tend to become nonrandom when 𝑁 is large. Fig-
ure 1 shows a simulation of the Ginibre ensemble with
𝑁 = 2,000.

Brownian Motion in the General Linear Group
I will discuss another random matrix model which is a de-
formation of the Ginibre ensemble. Let 𝐺𝐿(𝑁;ℂ) denote
the general linear group, that is, the group of all 𝑁 × 𝑁
invertible matrices. Then consider Brownian motion 𝑏𝑁

𝑡
in 𝐺𝐿(𝑁;ℂ), starting from the identity. In a general Rie-
mannian manifold, Brownian motion is a random path
that can be obtained as the limit of random walks with
very small step sizes. In the case of 𝐺𝐿(𝑁;ℂ), we should
construct the approximating randomwalksmultiplicatively;
that is, at each stage, we multiply the current position by a
matrix close to the identity.

A simulation of the eigenvalues of 𝑏𝑁
𝑡 with 𝑁 = 2,000 and

𝑡 = 3.9 shown on a plot of the domain Σ𝑡

Themotivation for considering Brownianmotion is this.
If we consider Brownian motion in the space of all 𝑁 ×
𝑁 matrices—but constructing the approximating random
walks additively—the distribution at any time 𝑡 is just the
Ginibre ensemble scaled by a factor of√𝑡. Thus, the distri-
bution of Brownian motion in 𝐺𝐿(𝑁;ℂ) is a multiplica-
tive analogue of the Ginibre ensemble.
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In my talk, I will discuss results with Bruce Driver and
Todd Kemp concerning the distribution of the eigenvalues
of 𝑏𝑁

𝑡 in the large-𝑁 limit. Our first result [2] is that the
eigenvalues cluster as 𝑁 → ∞ into a certain domain Σ𝑡 in
the plane identified by Biane [1]. We then have work in
progress indicating a remarkably simple structure to the
limiting distribution of eigenvalues within this domain.
Figure 2 shows a simulation of the eigenvalues with 𝑡 =
3.9 and 𝑁 = 2,000.
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SPRING EASTERN SECTIONAL SAMPLER
Compactness Theorems
for Sequences of
Riemannian Manifolds

Christina Sormani
Given a sequence of Riemannianmanifolds, onemay hope
that there is a subsequence which converges to a possibly
singular limit space. One may have sequences of spheres
developing conical singularities (as in Figure 1), or thin
deep wells (as in Figure 2), or perhaps even increasingly
many wells (as in Figure 3). One may have a sequence
of Riemannian manifolds which are not diffeomorphic to
one another (as in Figure 4). Note that we consider se-
quences of distinct Riemannianmanifolds that are not sub-
manifolds of Euclidean space. In what sense might they
converge? What are their limits?

Figure 1. Developing a cone tip

Figure 2. Thinner and thinner wells

Figure 3. Increasingly many wells

Figure 4. Increasing genus

In order to define a notion of convergence for distinct
Riemannian manifolds, Gromov decided to view each Rie-
mannian manifold, (𝑀𝑖, 𝑔𝑖), as a metric space, (𝑋𝑖, 𝑑𝑖).
To define a distance between a pair of them, he embedded
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For permission to reprint this article, please contact:
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them into a common metric space, 𝑍, via distance preserv-
ing maps, 𝜑𝑖 ∶ 𝑋𝑖 → 𝑍:

𝑑𝑍(𝜑𝑖(𝑝),𝜑𝑖(𝑞)) = 𝑑𝑖(𝑝, 𝑞) ∀𝑝,𝑞 ∈ 𝑋𝑖.
He then took the Hausdorff distance, 𝑑𝑍

𝐻, between their
images,𝑆𝑖 = 𝜑𝑖(𝑋𝑖), as in Figure 5. Recall that𝑑𝑍

𝐻(𝑆1, 𝑆2)
is the smallest radius 𝑟 such that

∀𝑧𝑖 ∈ 𝑆𝑖 ∃𝑧𝑗 ∈ 𝑆𝑗 such that 𝑑𝑍(𝑧𝑖, 𝑧𝑗) ≤ 𝑟.

Figure 5. The Hausdorff distance between the black curves is
the length of the red line.

More precisely theGromov–Hausdorff distance between
two metric spaces, 𝑀𝑖 = (𝑋𝑖, 𝑑𝑖), is

𝑑𝐺𝐻(𝑀1,𝑀2) = inf {𝑑𝑍
𝐻 (𝜑1(𝑋1),𝜑2(𝑋2))}

where the infimum is over all compact metric spaces 𝑍
and all distance preserving maps, 𝜑𝑖 ∶ 𝑋𝑖 → 𝑍. Gromov
proved that 𝑑𝐺𝐻(𝑀1,𝑀2) = 0 iff 𝑀1 and 𝑀2 are isomet-
ric.

The sequence in Figure 1 converges in the GH sense to a
sphere with a conical singularity. The sequence in Figure 2
converges to a sphere with a line segment attached to it.
In general GH limits are metric spaces with geodesics, but
they have no smooth structure.

Gromov’s compactness theorem states that any sequence
of metric spaces which have a uniform upper bound on
diameter, 𝐷, and a uniform maximal number, 𝑁(𝑟), of
disjoint balls of radius 𝑟 has a subsequence which con-
verges in the GH sense. The sequence of manifolds with
increasingly many wells in Figure 3 fails the hypothesis of
Gromov’s compactness theorem. The number of balls cen-
tered at the tips is increasing to infinity. In fact it has no
subsequence converging in the GH sense. Ilmanen pre-
sented this example as a sequence that ought to converge
to a sphere under some weak notion of convergence and
asked what the notion could be.

In joint work with Wenger, we solved Ilmanen’s ques-
tion by introducing the intrinsic flat (ℱ) convergence. We
viewed the oriented Riemannian manifolds as integral cur-
rent spaces: metric spaces with oriented weighted biLips-
chitz charts, 𝑀𝑖 = (𝑋𝑖, 𝑑𝑖, 𝑇𝑖). We defined the intrinsic
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flat distance between two integral current spaces to be:

𝑑ℱ(𝑀1,𝑀2) = inf {𝑑𝑍
𝐹 (𝜑1#(𝑇1),𝜑2#(𝑇2))} (1)

where the infimum is over all complete metric spaces 𝑍
and all distance preserving maps, 𝜑𝑖 ∶ 𝑋𝑖 → 𝑍. Yet in-
stead of taking the Hausdorff distance between the images
we took the flat distance, 𝑑𝑍

𝐹 , between them.
The flat distance was first defined by Whitney and

Federer–Fleming on 𝑍 = 𝔼𝑁 as the infimum of the
weighted volumes:

𝑑𝑍
𝐹 (𝑆1, 𝑆2) = inf{𝑀(𝐴) +𝑀(𝐵) ∶ 𝐴+ 𝜕𝐵 = 𝑆1 −𝑆2}

where the infimum is over all generalized submanifolds,
𝐴𝑚 and 𝐵𝑚+1 as in Figure 6:

∫
𝑆1
𝜔−∫

𝑆2
𝜔 = ∫

𝜕𝐵
𝜔+∫

𝐴
𝜔 = ∫

𝐵
𝑑𝜔+∫

𝐴
𝜔.

Figure 6. The flat distance between the black curves is the
area of the yellow region plus the sum of the lengths of the
blue curves.

We applied work of Ambrosio–Kirchheim to make this rig-
orous and prove that 𝑑ℱ(𝑀1,𝑀2) = 0 iff there is an ori-
entation preserving isometry from 𝑀1 to 𝑀2.

Intuitively the ℱ distance measures the filling volume
between the Riemannian manifolds. The sequence in Fig-
ure 3 converges in theℱ sense to a standard sphere exactly
as Ilmanen required. More generally, Wenger and I proved
the limit spaces are metric spaces covered almost every-
where by biLipschitz charts that define an orientation and
a weight (so they are rectifiable). We proved that whenever
a sequence of manifolds has a GH limit, and a uniform
upper bound on volume, then it has an ℱ limit which is
a subset of the GH limit. For example, the ℱ limit of the
sequence depicted in Figure 2 is only the sphere while the
GH limit also has a line segment. See Figure 7.

Wenger’s compactness theorem states that a sequence
of oriented Riemannian manifolds with a uniform upper
bound on volume and diameter has a subsequence con-
verging in the ℱ sense. However it is possible that the
limit space is just the 𝟎 space. This happens for example if
the sequence of manifolds has volume converging to 0.

Figure 7. The intrinsic flat limits of our sequences.

Ideally one can show the GH and ℱ limits agree, thus
proving the GH limit is rectifiable and the ℱ limit is not
𝟎. For example the sequence in Figure 4 converges in the
GH and ℱ sense to the same rectifiable limit space with
infinitely many holes.

The Tetrahedral Compactness Theorem states that if a
sequence of manifolds satisfies a uniform noncollapsing
condition on tetrahedra lying in the spaces, then a subse-
quence converges in the GH and ℱ sense to the same rec-
tifiable limit space. This theorem was proven jointly with
Portegies, and improved by Nuñez-Zimbrón and Perales.
This theorem and many more examples will be presented
in the lecture.

Christina Sormani 

Credits
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from March 30, 2018 to January 21, 2019. This show is now 
on a national tour, first to Cincinnati and then to Oakland. 

Vision
Our sculpture, titled Unfolding Humanity, calls attention to 
unsolved problems in mathematics and physics. On one 
hand, it echoes the renaissance printmaker Albrecht Dürer’s 
explorations nearly 500 years ago on polyhedral nets, provid-
ing the earliest known examples of polyhedra unfolded to 
lie flat for printing. Motivated by this, G. Shephard [9] asks: 
can every convex polyhedron be cut along some of its edges 
so that it unfolds into one flat piece without overlap? It is 
not too difficult to construct nonconvex polyhedra that offer 
counterexamples: negative (discrete Gaussian) curvature at 
certain vertices can obstruct the unfolding without overlap 
[1, Chapter 22].

For the convex case, however, this problem remains 
enticingly open. Ghomi recently showed that a convex 
polyhedron can be unfolded once it undergoes an affine 
transformation [3]. Horiyama and Shoji show that every 

Introduction
In August 2018, a two-ton metal, wood, and acrylic inter-
active sculpture showcasing unsolved problems of math-
ematics came to life in the middle of the Nevada desert. 
Rising 12 feet tall with an 18-foot wingspan, the unfolding 
dodecahedron was externally skinned with black panels 
containing 2240 acrylic windows, illuminated by more 
than 16,000 LEDs that were driven by 20 programmed 
controllers. The interior, large enough to hold 15 people, 
was fully lined with a massive mirror over each of the twelve 
pentagonal faces. With an estimated 6500 person-hours 
invested and over $40,000 in grants and donations raised, 
the resulting artwork was displayed at Black Rock City, the 
desert location of Burning Man. This article outlines our 
journey, two mathematicians embracing the role of ama-
teur sculpture artists.

Burning Man is an arts gathering, founded by Larry 
Harvey and Jerry James in 1986 on Baker Beach near San 
Francisco. The rapidly growing event moved to the Nevada 
desert in 1990, and now attracts more than 70,000 peo-
ple. Its home is Black Rock City, a temporary metropolis 
that exists only during the week leading up to Labor Day. 
Today, this event has become the gold standard for large-
scale sculpture exhibitions, with much of Silicon Valley in 
attendance to contemplate the cutting-edge technical and 
engineering feats [4]. A gathering once viewed as fringe is 
becoming a well-respected cultural phenomenon. Indeed, 
the Smithsonian devoted its entire Renwick Gallery to the 
exhibition No Spectators: The Art of Burning Man, which ran 

Unfolding Humanity: 
Mathematics at Burning Man
Satyan L. Devadoss and Diane Hoffoss 
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Figure 1. Unfolding Humanity at sunrise in Burning 
Man 2018, with LED animation along the edges and 
faces.
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participants to enter a small finite universe, to witness the 
complex beauty where light folds back upon itself.

Origins
The past twenty years have brought about a strong intersec-
tion between mathematics and the visual arts. Venues for 
mathematically inspired art have included international 
conferences (such as Bridges), journals (such as MIT’s 
Leonardo), gallery showcases (including those at the Joint 
Mathematics Meetings), and more. Although a tremendous 
amount of art has been based on mathematical ideas that 
are centuries old, a current trend has many contemporary 
mathematical artworks and exhibits striving to highlight 
recent and open mathematics. And so, our motivating ques-
tion asks, what could it look like for vibrant and unsolved 
mathematics to be made embodied and physical, to engage 
the general public?

With Hoffoss’s 2017 experience as a Burning Man instal-
lation lighting artist, our answer was to take the form of 
a large-scale sculpture. Fortunately, Devadoss was offering 
an upper-level mathematics geometry elective in Fall 2017 
at the University of San Diego (USD), focusing on discrete 
and computational geometry. For the course’s culminating 

edge-unfolding of the Platonic solids yields a valid net [5]. 
In particular, all 43,380 distinct edge-unfoldings of the 
dodecahedron lay flat. Our sculpture allows participants 
to unfold eight of the pentagonal panels of the dodecahe-
dron (though not fully flat) to illustrate one such possible 
configuration.

On the other hand, the sculpture asks the observer to 
contemplate the shape of our universe. In 2003, data from 
WMAP, a satellite that measured cosmic microwave back-
ground radiation, revealed that the known universe might 
be modeled by the Poincaré dodecahedral space [7], ob-
tained by identifying antipodal faces of the dodecahedron 
with a twist. The inside of our dodecahedron is covered 
with seven-foot-tall mirrors, becoming an illuminated 
mirrored room designed to allude to this space. While final 
refinements in 2012 of the WMAP data seem likely to fit 
with a Euclidean universe (with curvature within 0.4% of 
flat), Luminet claims that the data remains consistent with 
the Poincaré dodecahedral space as well as other finite 
topological spaces [7]. Of course, the reflections of the 
mirrors provide a vastly different geometry than the rota-
tional twists needed for Poincaré space, but yet they allow 

Figure 2. Standing inside the dust-covered Unfolding Humanity with LED animation along the edges.
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to handle enthusiastic interactivity from the Burning Man 
community. Added to this are the brutal desert conditions, 
with high heat, pervasive dust, and sustained winds of up 
to 100 mph.

The artistic features of the project were created at San 
Diego CoLab, a collaborative work-space that provided a 
dedicated build space, the use of many production quality 
tools and machinery, and access to skilled builders who 
offered expertise and advice. Although we orchestrated it, 
nearly all the work performed at CoLab was done by com-
munity drop-in volunteers. Each of the pentagonal faces 
were CNC routed, with 224 precisely spaced windows cut 

out to hold illuminated char-
acters (which themselves were 
individual acrylic panes laser 
cut and etched on a large laser 
bed with one of 72 different 
characters). The faces were 
painted, acrylic panes glued, 
wiring installed, and LED 
strips cut from long spools 
and soldered into 235 special 
lengths strips. Microcontrol-
lers were soldered with appro-
priate connectors, and then 
programmed to communicate 
with one another and to drive 
the LED animations on the 
faces and the edges.

The construction work did 
not end in San Diego, however. A team of 18 volunteer 
builders was recruited to travel to Burning Man to unload, 
assemble, test, troubleshoot, support, disassemble, and re-
pack the structure into a moving truck. During the week of 
Burning Man, considerable volunteer hours were invested 
in maintaining the sculpture, including troubleshooting 
and repairing the (three repeatedly failing) generators for 
the project, refueling the generators, cleaning and clearing 
the interactive chain hoists, replacing and repairing dam-
aged LED strips, and cleaning mirrors of dust.

In all, the sculpture was conceived, designed, and built 
by more than 80 volunteers: five faculty members, 20 
students and alums, and more than 55 members of the 
San Diego and Bay Area communities. An estimated total 
of 6500 person-hours was invested in this project by our 
volunteers. The cost for the project was over $40,000, with 
$10,000 from the San Diego Collaborative Arts Project, 
$5000 from USD Humanities Center, and $15,000 from 
the Fletcher Jones Applied Mathematics endowment. Most 
notably, community members donated more than $10,000.

Conclusion
At Burning Man, outside of the hottest parts of the days, 
there was a constant stream of visitors to the artwork. Most 

project, student teams submitted conceptual large-scale 
sculpture proposals satisfying the following constraints:
1. Make it interactive for participants.
2. Address an unsolved question in geometry.
3. Design around the 2018 Burning Man theme of Asimov’s 

I, Robot.
Out of five team project proposals, we chose one with 

the most potential: a project based on an unfolding do-
decahedron by USD students Jordan Abushahla, Nick 
Bail, and Eugene Wackerbarth. After minor alterations to 
this proposal, an initial Letter of Intent was put forward to 
Burning Man in November 2017. Passing the first round 
of approval, a full proposal 
was submitted at the end of 
January 2018, titled Unfolding 
Humanity. This version now 
included the iconic ‘charac-
ter rain’ animation from The 
Matrix, an ambitious LED 
lighting infrastructure, a ful-
ly-lined mirrored interior, and 
a detailed budget.

This duality in the artwork, 
of technological framework 
on the outside, with reflec-
tions of humanity pondering 
vastness of space and time on 
the inside, opens the door to 
ask deep questions. In par-
ticular, the sculpture invites 
the participant to explore ways technology plays a role in 
illuminating and controlling our lives, and the quest to 
be truly human and free. Basing the artwork on unsolved 
problems in mathematics and physics gives greater weight 
to its voice.

Creation
With a conceptual design in mind, we reached out to stu-
dents at USD for help. Soon afterwards, faculty members 
and the San Diego community at large were drawn in, to 
participate in the development, creation, and construction. 
There were roughly three global issues to consider:
1. the metal framework and its kinematics,
2. the pentagonal faces and lighting infrastructure, and
3. the transportation, build, and tear down at Burning Man.

During Spring and Summer 2018, engineering faculty, 
students, and alums took the lead in modeling, testing, 
and building the metal structure. The steel framing for the 
pentagonal faces was manufactured at USD, and the 20 
vertices (with three edges emanating from a vertex, each at 
108° from the other two) were commissioned to be cus-
tom welded. The structural design was further constrained 
by additional needs: for dismantling and reassembly, for 
the kinematic ability to unfold, and not least for rigidity 

Figure 3. Showcasing Unfolding Humanity at Balboa 
Park in San Diego, with eight panels open.
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of them were curious about all aspects of the piece, and 
constantly engaged the build volunteers with follow-up 
questions, both about the unfolding mathematics and the 
unknown cosmology. Many of these interactions led to 
rather long discussions about either the nature of math-
ematics itself, or what it meant for the universe to have 
a shape and what other possible shapes might be. After 
Burning Man, Unfolding Humanity was also showcased 
in downtown San Diego in October 2018, in the famous 
Balboa Park, outside the Old Globe Theatre; see Figure 3. 
The final resting place for this artwork is currently being 
discussed.

Several mathematics research problems were also inves-
tigated around unfolding geometry. For instance, a visual 
algorithm was developed that proved that every unfolding 
of an n-cube is without overlap, resulting in a valid net [2]. 
Work is in progress to show that every unfolding of all reg-
ular polytopes is possible. These explorations also resulted 
in conversations with artists, some leading to gallery shows 
[8]. Overall, Unfolding Humanity was a remarkable success, 
showcasing not only the interplay between engineering, 
mathematics, and the arts, but the collaboration between 
academia and the arts community. A video showcasing this 
work can be found in [10].

Based on our experience, we offer interested readers pur-
suing similar projects of their own a few closing thoughts. 
First, get connected with your local art community. We 
have found most artists and makers to be very interested 
in hearing about mathematics, especially topics that avoid 
technical or computational issues. In particular, there is a 
great thirst for understanding ideas and questions that are 
open and accessible for exploration.

Second, try to introduce physical aspects of mathematics 
to students. There is now a national ‘maker space’ move-
ment, led by Stanford’s d.school, that is trickling into the 
mathematics realm. There are versions of math laboratories 
at several colleges and universities (which can be traced 
back to the University of Minnesota’s famous Geometry 
Center) that try to bring an intersection of mathematics 
with other disciplines in a physical space.

And finally, be bold. In our experience as true amateurs 
in the sculpture world, we found tremendous encourage-
ment and support. The art and maker communities are 
wonderfully enthusiastic and deeply gifted. Most likely, 
the help you need will be found, and those helping you 
will be grateful for the experience, for both the entry into 
mathematics and the building of community.
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to explore other federal agency sources of funding for math-
ematics. The chart below shows that mathematicians are 
more dependent on the NSF for support than are scientific 
researchers in some other disciplines. It is worthwhile to 
note that other agencies contribute funds for mathematics 
research, but only to projects that contribute to their re-
spective missions. 

While 64% is clearly the majority of funding, this leaves 
a sizable chunk. Where does the remainder come from? 
The vast majority of the remainder comes from DoD and 
the Department of Health and Human Services (HHS) 
at 18% and 12% respectively. The Department of Energy 
(DoE) provides a smaller portion of funds for mathemati-

The AMS Office of Government Relations, located in 
Washington, DC, works with the federal government to 
try to make sure that the agencies that award money to 
mathematicians have the budget they need to ensure 
robust and stable funding for mathematics research. For 
example, the Office works with the Coalition for National 
Science Funding (CNSF) on annual appropriations for the 
National Science Foundation (NSF), and with the Coalition 
for National Security Research (CNSR) for Department of 
Defense (DoD) appropriations. Fair warning: this article 
contains (too) many acronyms.

Mathematicians working in academia often seek fed-
eral funding for their research from the NSF. This makes 
sense, as about 64% of federal support for basic research 
in the mathematical sciences—and done at colleges and 
universities—comes from the NSF (Figure 1).1 NSF fund-
ing is available for a wide variety of projects, including for 
individual investigator awards. 

The NSF is the only agency that supports mathematics 
research broadly across all fields. The goal of this article is 

Federal Funding for 
Mathematics Research
Reza Malek-Madani and Karen Saxe
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Figure 1: About 64% of federal support for basic 
research in the mathematical sciences—and done at 
colleges and universities—comes from the NSF.
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their own Multidisciplinary University Research Initiative 
(MURI). The first of these supports early career scientists 
who show exceptional promise in the specific service’s 
priority research areas. The awards are generous, and may 
be budgeted against any reasonable costs related to the 
conduct of the proposed research, including salary for the 
young investigator, graduate student support, supplies and 
operating expenses. Recent YIP awardees include:

 • SHAYAN OVEIS GHARAN, University Of Washington, “Ap-
plications of Algebraic Techniques in Algorithm Design” 
(Navy 2018);

 • JONATHAN HAUENSTEIN, University of Notre Dame, “The 
Geometry of Multiscale Models: Identifiability, Rep-
arameterization, Comparisons, and Parameter Space 
Exploration” (Army 2014);

 • LAURA BALZANO, University of Michigan, “Non-convex 
Optimization Algorithms and Theory for Matrix Factor-
ization with Dynamic Massive Data” (Air Force 2018);

 • SANJAM GARG, University of California, Berkeley, “Cryp-
tography for Big Data” (Air Force 2017).
Each year there are twenty-four MURI topics, with eight 

provided by each of the Air Force, Army, and Navy basic 
research offices. Many of the 2019 topics across all three 
services seek mathematical models and computational ap-
proaches to provide theory and understanding to complex 
physical and biological processes. As an example, one topic 
offered by Navy is “Fundamental Limits on Information 
Latency,” and this MURI will require researchers with 
backgrounds in signal processing, optimization, and game 
theory. “Advanced Analytical and Computational Modeling 
of Arctic Sea Ice” is another Navy topic, and the Army has 
a call out for proposals related to “Multi-layer Network 
Modeling of Plant and Pollen Distribution across Space and 
Time.” Watch for the 2020 topics announcement. 

The strategy of the Air Force Office of Scientific Research 
(AFOSR) is to invest in basic research with the goal of trans-
ferring its fruits to industry, to the academic community to 
further scientific knowledge, and to the various branches 
of the Air Force Research Laboratory, for further research 
and development of technology. Investment in pure math-
ematics research has been a key ingredient in AFOSR’s 
strategy where funding has been provided primarily in three 
programs: Dynamics & Control, Information Science, and 
Cybersecurity. The research topics being funded include: 
applied category theory, applied algebraic topology, and 
analysis. In this context, the word “applied” means seeking 
new mathematical concepts and theories that have poten-
tial applications in scientific disciplines such as dynamics 
of abstract systems, homotopy type theory, univalent foun-
dations, and formalized proofs.

Since 2011, AFOSR has sponsored a number of sin-
gle-investigator efforts, including foreign researchers, and 
a MURI project on Homotopy Type Theory and Univalent 
Foundations. The latter has the participation of a number of 

cal sciences research; this amounts to just under 5% of all 
federal funding for basic research done at universities and 
colleges in mathematics.2

The rest of this article will focus on DoD and HHS op-
portunities for mathematicians. The NSF is the only agency 
of the federal government that does not do research in its 
own labs (“in house” or intramural research). DoD and 
HHS opportunities are thus in the form of grants for faculty 
members (extramural) and also include options to work 
at the agency doing intramural research. In this article, we 
focus on extramural opportunities.

At DoD there are several agencies that contribute sig-
nificantly to research funding—the Air Force Office of 
Scientific Research, Army Research Office, Office of Naval 
Research, Defense Advanced Research Projects Agency, and 
the National Security Agency.

At HHS, mathematics research is supported by several 
of the National Institutes of Health’s (NIH) 21 institutes, 
including the National Heart, Lung, and Blood Institute 
(established 1948), the National Institute of General Med-
ical Sciences (established 1962), and the National Institute 
of Biomedical Imaging and Bioengineering (established 
2000).3

Department of Defense funding for mathematics
Industry is a vital partner for DoD in technology devel-
opment; it is perhaps not as well known that academic 
researchers also play a significant role in furthering DoD’s 
mission. According to NSF data, nearly one in every four 
dollars of DoD awards for scientific research goes to col-
leges, universities, and non-profits. Further, over 57% of 
DoD-sponsored basic research takes place at non-profits, 
and on college and university campuses.4

You may wonder why DoD supports basic research. 
The mission of the DoD is to provide the military forces 
needed to deter war and to protect the security of our na-
tion, and DoD’s capability to do so depends on technol-
ogy. Technology is the fruit of science, and basic research 
produces the new, transcendent ideas that will enable our 
future technologies. It is the role of DoD Basic Research 
Program Managers to make informed, but not guaranteed, 
investments in particular directions that they deem have 
the best chance of helping provide DoD with the new 
scientific understanding that will enable unprecedented 
future technologies.  

We highlight five agencies within the DoD. Three are 
the “services”—Air Force, Army, and Navy. Each of the 
services has a Young Investigator Program (YIP), and 

2Funding percentages for FY2015. See https://ncsesdata.nsf 
.gov/fedfunds/2015/html/FFS2015_DST_080.html
3https://www.nih.gov/institutes-nih/list-nih 
-institutes-centers-offices
4https://ncsesdata.nsf.gov/fedfunds/2015/
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Research (STIR) program, Presidential Early Career Award 
for Scientists and Engineers (PECASE), Historically Black 
College and Universities/Minority Institutions (HBCU/
MI) program, Conference Grants, and the High School 
Apprenticeship Program (HSAP)/Undergraduate Research 
Apprenticeship Program (URAP). This agency supported 
John Tukey’s work in statistical analysis, and his famous 
Fast Fourier Transform paper with Cooley acknowledges 
the Army Research Office as sole sponsor.5 They also sup-
ported Lotfi Zadeh’s work in fuzzy mathematics, which was 
honored posthumously with a 2017 Golden Goose Award.6 

For more information: https://www.arl.army 
.mil.

The Office of Naval Research (ONR) funding opportu-
nities are organized according to technology needs; math-
ematics falls in the department of “Command, Control, 
Communications, Computers, Intelligence, Surveillance, 
and Reconnaissance” (or, “Code 31”).7 Code 31 is further 
broken down into three divisions, one of which is “Math-
ematics, Computer and Information Systems” (Code 311). 
Code 311 funds basic research in areas including network 
theory, decision-making, cybersecurity, mathematical data 
science, and computational analysis. It includes three pro-
grams that have significant mathematical content.  

 • The Applied and Computational Mathematics Program 
focuses on developing analytical and computational 
tools for solving PDEs arising from various physical 
problems, such as ocean and atmospheric dynamics, 
inverse problems in acoustics, imaging targets in clut-
tered media, and multi-scale/multi-physics problems 
arising in the modeling of fatigue, fractures, and shocks. 
The mathematical modeling of sea ice dynamics and 
its multiscale nature is a current focus of research and 
several applied mathematicians are working on this 
topic (see Figure 2).

 • The Mathematical Data Science Program focuses on de-
veloping mathematical tools for efficiently representing 
data, understanding relationships in data, and extracting 
information from data. This program draws upon basic 
research in mathematics, probability, statistics, signal 
processing, machine learning, data engineering, and 
information theory.   

 • The Mathematical Optimization Program focuses on 
developing theory and algorithms for solving large-
scale optimization problems. This includes, but is not 
limited to, cutting plane and polyhedral techniques 
for mixed-integer programming, decomposition ap-

mathematicians, including Vladimir Voevodsky (deceased; 
formerly at the Institute for Advanced Study), Michael 
Shulman (University of San Diego), and Steve Awodey 
and Jeremy Avigad (both at Carnegie Mellon University). 
AFOSR has also sponsored work on data interpolation 
since 2011. In this effort, mathematicians are collaborat-
ing with control theorists to formulate a new framework 
for modeling and learning dynamical systems using only 
small amounts of data. Sponsorship of research on using 
category theory and operads to study abstract complex sys-
tems and their dynamics is leading to new discoveries and 
directions in this field. A group of mathematicians are using 
Wasserstein geometry and optimal transport for computer 
vision problems. AFOSR has sponsored research at the 
intersection of systems biology and differential equations. 
Another sponsored effort is investigating robotic navigation 
via sheaf-theoretic techniques. 

In applied and computational mathematics, AFOSR has 
had several MURIs in areas such as Uncertainty Quantifi-
cation (combination of applied probability and computa-
tional tools), Game Theory on Networks, and most recently 
in 2018 a MURI on Mean-Field Game Theory. 

For more information: https://www.wpafb 
.af.mil/afrl/afosr.

The Army Research Office supports any sort of mathe-
matics that may help enable a stronger future Army, and is 
the only funding agency within the DoD with a Mathemat-
ical Sciences Division. This division is currently organized 
into four programs: Modeling of Complex Systems (inter-
ests involving geometry, topology, non-smooth differential 
analysis), Probability and Statistics (interests involving 
SDEs, QSDEs, multivariate heavy-tailed phenomena), Bio-
mathematics, and Computational Mathematics. 

In addition to the YIP and MURIs described above, Army 
funding can be obtained through several programs, includ-
ing: Single Investigator program, Short-Term Innovative 

Figure 2: A snapshot of the state of sea ice in the 
Arctic, displaying its complex multiscale nature.

5 Cooley, J. W. and Tukey, J. W. “An Algorithm for the Machine Calculation 
of Complex Fourier Series.” Math. Comput. 19, 297–301, 1965.
6 https://www.goldengooseaward.org/awardees/fuzzy 
-logic
7https://www.onr.navy.mil/en/Science-Technology 
/Departments/Code-31
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workshops in the five subject areas of Algebra, Discrete 
Mathematics, Number Theory, Probability, and Statistics. 
They also support Research Experiences for Undergrad-
uates programs in any area of mathematics or computer 
science. In the past, MSP has funded individual researchers. 
For budgetary reasons, individual grants as well as Young 
Investigator Grants and the NSA Sabbatical Program are 
not currently available. It is possible that we will see these 
opportunities re-emerge in the future. 

For more information: https://www.nsa.gov.
In addition to the opportunities described above, there 

are joint programs between the NSF and other agencies. 
The “Algorithms for Threat Detection” program is just 
one example, and is jointly run by NSF and DoD. Har-
vard mathematician Shing-Tung Yau currently holds an 
award and is using tools from random graph theory and 
differential geometry to focus on finding patterns in large 
graphs that may be hidden and that could potentially be 
indicative of emerging threats of various kinds (internets, 
critical infrastructure networks, financial networks, social 
networks, etc.). 

Department of Health and Human Services 
funding for mathematics
As with all other federal agencies outside of the NSF, re-
search supported by HHS is mission driven. The NIH sits 
in HHS and, as you probably know, it works to prevent 
disease and improve health. Mathematicians have an array 
of opportunities to collaborate through NIH funding. 
Reinhard Laubenbacher of the University of Connecticut 
is working with a medical colleague on algorithms that 
could lead to new therapies to treat invasive Aspergillosis, 
a fungal disease of the lungs that poses serious health dan-
gers to patients with weakened immune systems, including 
organ transplant patients and cancer patients undergoing 
chemotherapy.

Within the National Institute of General Medical 
Sciences at NIH, the Division of Biophysics, Biomedical 
Technology, and Computational Biosciences supports 
research in mathematical biology through a program 
run jointly with the NSF.12 Both agencies recognize the 
need for promoting research at the interface between the 
mathematical sciences and the life sciences. This program 
is designed to encourage new collaborations, as well as to 
support existing ones. Mathematician Christine Heitsch 
(Georgia Tech), whose research interests lie at the interface 
between discrete mathematics and molecular biology, has 
been supported by this program.

The National Institute of Biomedical Imaging and 

proaches for large convex and non-convex problems, 
first- and second-order algorithms for convex optimiza-
tion, and distributionally robust methods for stochastic 
optimization. Also of interest is research in combinato-
rial optimization and discrete structures associated with 
these problems.
There are additional programs within the Division in 

which mathematics plays a supporting role, such as the Ma-
chine Learning, Reasoning, and Intelligence Program, and 
the Cyber Security and Complex Software Systems Program.

ONR-supported research has led to the proofs of the 
Four Color Theorem, the Strong Perfect Graph Theorem 
in graph theory, and Rota’s Conjecture in matroid theory. 

The Naval Research Enterprise (which includes ONR and 
the Naval Research Laboratories) has a variety of opportuni-
ties for students (undergraduate and graduate) and faculty.8 

For more information: https://www.onr.navy 
.mil.

The Defense Advanced Research Projects Agency 
(DARPA) funds projects focused on improving our national 
security. Many efforts across the agency may have a signifi-
cant mathematical component, and within the Defense Sci-
ences Office (DSO) of DARPA, several programs have had a 
strong mathematical focus. Mathematics-focused programs 
are generally aimed at developing new mathematical ap-
proaches and algorithms to solve problems spanning Arti-
ficial Intelligence, optimization, uncertainty quantification, 
dynamical systems modeling, control theory and design. 
Indeed the current DSO Broad Agency Announcements 
(BAAs) list “Frontiers in Math, Computation and Design” 
as one of four research topics of interest and will support 
basic research that fits with the call for proposals.9 It also 
offers a Young Faculty Award program to identify and en-
gage rising research stars in junior faculty positions at US 
academic institutions.10 Mechanical engineer Mark Fuge 
of the University of Maryland is a Young Faculty awardee 
for a project entitled “Topology and Synthesis of Design 
Manifolds,” studying how mathematical tools from topol-
ogy, group theory, and machine learning can aid human 
exploration of large, complex design spaces. 

For more information: https://www.darpa.mil.
The National Security Agency’s Mathematical Sciences 

Program (MSP) was “started in 1987 in response to an 
increasingly urgent need to support mathematics in the 
United States.”11 The MSP supports conferences and 

8https://www.onr.navy.mil/Education-Outreach
9https://www.fbo.gov/index?s=opportunity& 
mode=form&id=36a2f123679010655f4930a24cc 
8a750&tab=core&_cview=0
10https://www.darpa.mil/work-with-us/for-universi-
ties/young-faculty-award
11https://www.nsa.gov/what-we-do/research 
/math-sciences-program

12 https://www.nigms.nih.gov/Research/specificareas 
/mathbio/Pages/default.aspx
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Credits
Figure 2 is courtesy of Guy Williams (University of Tasmania/

ACE CRC) and Ted Maksym (WHOI).
Photo of Reza Malek-Madani is courtesy of the Photo Lab: US 

Naval Academy.
Photo of Karen Saxe is courtesy of Macalester College/David 

Turner.

Bioengineering funds research in modeling, simulation, 
and analysis.13 As with DoD, the NIH also collaborates with 
the NSF and there are inter-agency programs such as the 
Collaborative Research in Computational Neuroscience.14 

For more information: https://www.nih.gov.

Summary
Federal funding for mathematical research is available from 
agencies other than the NSF. The DoD and NIH granting 
agencies, in tandem with the NSF, have had a remark-
able record of focused investments in almost all areas of 
mathematics, but especially in applied and computational 
mathematics, that have resulted in rapid acceleration of 
several areas with game-changing effects on science and 
technology. Among these achievements are algorithm 
developments ranging from the Simplex method to the 
Fast Multipole method, the development of wavelets and 
its huge impact on JPEG 2000, to compressive sensing, 
uncertainty quantification, and now the mathematics of 
mean fields. All of these developments have benefited from 
investments by the NSF and the DoD and NIH granting 
agencies.  

This article has attempted to give an overview of funding 
opportunities at the DoD and the NIH, in particular. Key 
advice for the potential PI:

(a) Keep an eye on Broad Agency Announcements, the 
announcements that the DoD and NIH granting offices 
routinely publish to communicate launching of new ini-
tiatives.

(b) Have a conversation with the program officer, who 
often has a large degree of autonomy in developing their 
research portfolio, prior to submitting a proposal or a white 
paper to determine whether the proposed research is a good 
fit for the program. 

(c) Remember that both the DoD and NIH are charged 
with developing a portfolio of research investments that 
contribute to their respective missions.

Reza Malek-Madani Karen Saxe

13https://www.nibib.nih.gov/research-funding 
/mathematical-modeling-simulation-and-analysis
14https://www.nsf.gov/funding/pgm_summ.jsp?pims 
_id=5147
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SHORT STORIES

Wild Wild Whitehead
Danny Calegari

Take a knot. Take a tube around the knot. Put a new knot
in the tube, twisted around and clasping itself as in Fig-
ure 1. The new knot goes once around the tube, and then
“doubles back” and clasps itself. The new knot is theWhite-
head double of the old.

Figure 1. The green knot is the Whitehead double of the black
knot.

Let’s call the first knot𝐾0 and its Whitehead double𝐾1,
and let’s call the tube around 𝐾0 (actually a solid torus)
𝑁0. It makes sense to take the Whitehead double of any
knot, but in Figure 1, 𝐾0 is a trivial knot; i.e., it bounds
an embedded disk in 𝑆3. In this case, 𝐾1 is trivial too: it
bounds an embedded disk in 𝑆3. But 𝐾1 is knotted in 𝑁0.
Any embedded disk that 𝐾1 bounds must go outside 𝑁0.

On the other hand, 𝐾1 is homotopically trivial in 𝑁0; i.e.,
it bounds an immersed disk, one that crosses itself, but does
not cross 𝑁0. To see this, just push one of the clasps of 𝐾1
through the other one; this undoes the knotting, and the

Danny Calegari is a professor of mathematics at the University of Chicago. His
email address is dannyc@math.uchicago.edu.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti1837

result can be shrunk down to a point. The track of the knot
𝐾1 during this process sweeps out an immersed disk.

In terms of the fundamental group, a knot 𝐾 in a space
𝑋 determines a conjugacy class [𝐾] in the fundamental
group 𝜋1(𝑋). Now, 𝜋1(𝑁0) = ℤ, and since 𝐾1 bounds
an immersed disk, [𝐾1] is trivial in 𝜋1(𝑁0).

We can keep going. Let 𝑁1 be a tube around 𝐾1, thin
enough to fit in 𝑁0, and let 𝐾2 ⊂ 𝑁1 be the Whitehead
double of 𝐾1. And so on. Each 𝐾𝑖 bounds an embedded
disk in 𝑆3, but each of these disks must go (many times!)
all the way outside 𝑁0.

The tubes get thinner and thinner as we go, and longer
and longer. Consequently, the knots must get longer and
longer too: Each 𝐾𝑛 must wind back and forth at least
2𝑛 times around 𝑁0, clasping itself in a complicated way
at the end. The infinite intersection ⋂𝑖 𝑁𝑖 is called the
Whitehead continuum, whichwewriteWh, see Figure 2. The
Whitehead continuum is connected but not path connected.
It has an entangled dyadic Cantor set of “strands” that wind
around 𝑁0.

The complement 𝑆3−Wh is an open 3-manifold called
the Whitehead manifold. It turns out that 𝑆3 − Wh is con-
tractible but not homeomorphic to a 3-ball. Let’s see why.

The outside of𝑁0 in𝑆3 is another solid torus𝑁′
0, whose

core is a knot 𝐾′
0 linking 𝐾0 in a Hopf link. [𝐾′

0] is the
generator of 𝜋1(𝑆3 − 𝑁0) = 𝜋1(𝑁′

0) = ℤ. The knots
𝐾′

0 and 𝐾1 together form a 2-component link called the
Whitehead link. This link is symmetric: we can isotope it
around and interchange 𝐾′

0 and 𝐾1; see Figure 3.
Since [𝐾1] is trivial in 𝜋1(𝑁0) = 𝜋1(𝑆3 − 𝑁′

0), it
follows by symmetry that [𝐾′

0] is trivial in 𝜋1(𝑆3 − 𝑁1).
Consequently the inclusion map 𝑆3 − 𝑁0 → 𝑆3 − 𝑁1

APRIL 2019 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 581



Short Stories

Figure 2. Successive approximations converge to Wh.

Figure 3. The Whitehead link is symmetric.

induces the zero map on 𝜋1. Each 𝑁𝑖 is unknotted in
𝑆3, and each 𝑁𝑖+1 sits in 𝑁𝑖 the same way that 𝑁1 sits
in 𝑁0. So each 𝜋1(𝑆3 − 𝑁𝑖) = ℤ, and each inclusion
𝑆3 −𝑁𝑛 → 𝑆3 −𝑁𝑛+1 induces the zero map on 𝜋1. Tak-
ing a direct limit, 𝜋1(𝑆3 − Wh) itself is trivial. A similar
argument shows that all the homotopy groups of 𝑆3−Wh
vanish, and it is contractible.

On the other hand, the complement 𝑆3 −Wh−𝑁′
0 =

𝑁0 − Wh has an infinitely generated fundamental group;
each𝜋1(𝑁𝑖−𝑁𝑖+1) is complicated (it contains free groups
of every rank), and all of them include as subgroups of
𝜋1(𝑁0 −Wh). This shows that 𝑆3 −Wh is not a ball.

Now let’s compactify 𝑆3 −Wh by adding a single point
at infinity. This compact space can also be thought of as
the quotient space 𝑆3/Wh that we get by crushing Wh to a
single point. Because 𝑆3 −Wh is not a ball, 𝑆3/Wh is not
a manifold. However—remarkably—it is a manifold factor:
the product (𝑆3/Wh) × ℝ is homeomorphic to 𝑆3 ×ℝ!

How can this possibly be???
First, each 𝑁1 slice can be unknotted by a tiny perturba-

tion in 𝑁0 × ℝ. To distinguish the ℝ factor and, for the
sake of brevity, we refer to it as the “time” coordinate (this
is purely a notational convenience). In this language, we
unclasp 𝑁1 from itself by nudging one clasp very slightly
forward into the future, and the other very slightly back
into the past. After the nudge, 𝑁1 will not clasp itself, but
it will clasp a “future” 𝑁1 on one side, and a “past” 𝑁1
on the other. Instead of 𝑁1 clasping itself in a circle, we
get a chain of successive 𝑁1’s, each clasping the next, in a
slowly ascending spiral. Let’s let 𝜖/4 be the size of the per-
turbations of each clasp in the time direction, so that the
projection of each𝑁1 to the time coordinate after it’s been
nudged has total length 𝜖/2.

Nudging adjusts points in𝑁1×ℝ by sliding each point
×ℝ slightly backward or forward in time. Nudging ex-
tends to a self-homeomorphism 𝜈 of 𝑁0 × ℝ, fixed on
the boundary.

Figure 4. Folding the clasps of each 𝑁1 back and forth in time
nudges the union of all 𝑁1’s into a collection of spirals.

By the way, there’s not just one spiral—there’s a circle’s
worth of them, filling the whole of 𝑁1 × ℝ. Two slices
𝜈(𝑁1 ×𝑡), 𝜈(𝑁1 ×𝑠) are in the same spiral if and only if
𝑡 − 𝑠 is an integer multiple of 𝜖/2.

After nudging, the next move will straighten out this
and every other spiral so that its projection to the 𝑆3 factor
is small (let’s say for concreteness it has diameter < 𝜖/2)
without affecting the projection to the ℝ factor.

The cylinder 𝐾0 × ℝ ⊂ 𝑆3 × ℝ has polar coordinates
(𝜃, 𝑡)where𝜃 ∈ ℝ/ℤ. Extend these polar coordinates to a
small tubular neighborhood of𝐾0×ℝ containing𝑁1×ℝ,
with closure contained in the interior of 𝑁0 ×ℝ.

We can “untwist” every spiral simultaneously by themap

(𝜃, 𝑡) → (𝜃− 2𝑡/𝜖, 𝑡)

on our small tubular neighborhood. Twisting extends to
a self-homeomorphism 𝜏 of 𝑁0 ×ℝ, once again fixed on
the boundary.

In summary, first we nudge, then we twist. After doing
this, every 𝜏𝜈(𝑁1) slice projects to subsets of diameter at
most 𝜖/2 in both the ℝ and the 𝑆3 directions. So 𝜏𝜈(𝑁1)
has diameter at most 𝜖.

In other words, ℎ1 ∶= 𝜏𝜈 simultaneously shrinks all
the 𝑁1 slices in 𝑆3 ×ℝ as small as we like, while keeping
(𝑆3 −𝑁0) × ℝ fixed pointwise.
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Figure 5. Screw the top and bottom in opposite directions like
you’re taking the lid off a pickle jar.

Take a sequence 𝜖𝑖 → 0, and repeat this operation for
each 𝑖 > 1 in place of 1 with 𝜖𝑖 in place of 𝜖. We get a se-
quence of self-homeomorphisms ℎ𝑖 ∶ 𝑆3 × ℝ → 𝑆3 ×
ℝ, each supported in 𝑁𝑖−1 × ℝ, as a composition of a
nudge-and-twist ℎ𝑖 ∶= 𝜏𝑖𝜈𝑖. Each 𝑁𝑖 slice gets smaller
and smaller in diameter as we apply consecutive ℎ𝑖’s. Un-
der application of successive ℎ𝑖’s, the orbit of every point
is a Cauchy sequence, and the infinite composition

ℎ ∶= lim
𝑖→∞

ℎ𝑖 ℎ𝑖−1 ⋯ℎ1 ∶ 𝑆3 × ℝ → 𝑆3 ×ℝ

is well-defined and continuous.
For any compact subset 𝑋 of 𝑆3 − Wh the restriction

of ℎ to 𝑋 is the composition of finitely many homeomor-
phisms, so the restriction of ℎ to (𝑆3−Wh)×ℝ is a home-
omorphism. On the other hand, each Wh slice is succes-
sively shrunk smaller and smaller by successive ℎ𝑖, so in
the end ℎ crushes each Wh slice to a point, and ℎ factors
as ℎ = 𝑔𝜋,

𝑆3 ×ℝ 𝜋−→ (𝑆3/Wh) × ℝ 𝑔−→ 𝑆3 ×ℝ,
where 𝜋 ∶ 𝑆3 × ℝ → (𝑆3/Wh) × ℝ is the quotient map,
and 𝑔 is the homeomorphism we’ve been looking for.

AUTHOR’S NOTE. The main theorem in this article
and its proof are both well-known, and not due to me!
They are due to J. Andrews and L. Rubin, Bull. Amer.
Math. Soc. 71(1965), 675-677.

Credits

All images are courtesy of Danny Calegari.
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At a lunch briefing in the Dirksen Senate Office Building on 
December 4, 2018, Rodolfo H. Torres gave the Hill staffers 
in attendance what former US Representative Bart Gordon 
(D-TN) called “ammunition” for their science advocacy. 
In his half hour at the lectern, the University of Kansas 
mathematician (and AMS Fellow) made the case for federal 
funding of basic research by showing how investigation of 
foundational questions can launch lines of inquiry that 
produce, sometimes decades later, societally beneficial 
applications galore.

“This is the way, many times, research takes place,” Torres 
explained. “We move from fundamental research in maybe 
math, physics, or biology to applied research in which we 

want to apply these tools to solve specific problems, and 
eventually we get—sometimes—to translational research. 
We find cures for diseases and solve problems that affect 
our society and the way in which we live.”

Titled “From the Color of Birds to Nanomaterials and New 
Technologies,” Torres’s talk juxtaposed what he acknowl-
edged to be an unlikely trio of topics, “things you won’t 
normally think to find in the same sentence.” Before Torres 
discussed the blue hue of birds, however, he used analogies 
to give his audience a feel for Fourier analysis. 

Fourier analysis decomposes a signal into a combination 
of oscillating waves of different frequencies and amplitudes, 
he said, much as a prism separates a beam of light into a 
spectrum of colors of different wavelengths. Representing 
a signal using its Fourier coefficients is like writing a recipe 
for a cake when the ingredients—here the waves of differ-
ent frequencies—are always the same. The amounts—the 
amplitudes—suffice to encode the information. Similarly, 
Torres explained, a two-dimensional image can be repre-
sented as a superposition of planar waves.
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spaghetti. Torres and his biologist colleagues saw a certain 
order in these cross sections, and they adapted the two-di-
mensional Fourier transform to analyze the periodicity 
and optical properties of the tissue. They demonstrated 
that the nanostructure of the collagen arrays accounts for 
that brilliant blue.

“Only certain wavelengths that resonate with the phys-
ical distance present in the material get scattered,” Torres 
explained, “and those are the ones we see.”

Such structural color exists not just in birds but also 
in mammals (a mandrill’s nose, for instance), butterflies, 
and dragonflies. And photonic structures, structures that 
selectively interfere with light, don’t possess only optical 
properties. They can also render tissues antibacterial or 
self-cleaning or superhydrophobic (extremely difficult to 
wet). Study of tissues with desirable properties such as 
these has “really led to what I would call the bioinspired 
nanomaterial revolution,” said Torres.

Research in the field of evolutionary photonics promises 
applications in renewable energy, nanomedicine, and ad-
vanced material engineering. Torres encouraged audience 
members to visit the website of the NSF-funded National 
Nanotechnology Coordinated Infrastructure (https://
www.nnci.net) to learn how nanostructures might enable 
more efficient light harvesting or advance energy storage. As 
an example of a medical application of nanofabrication, he 
highlighted a flexible membrane hundreds of times thinner 
than aluminum foil that alleviates glaucoma by distributing 
pressure and facilitating absorption of fluid buildup.

Torres closed his talk by reiterating the role of mathematics 
in science and technology and underscoring the potential 
of basic mathematics to unlock future advances. “When we 
start talking about order and symmetry and geometry, this 
is the field of mathematics,” Torres said. Mathematicians 
can quantify this order (or lack thereof), thereby explaining 

Torres briefly displayed a slide bearing (along with two 
recent Notices covers) a list of the “arsenal of tools” that 
deploy Fourier analysis for signal analysis and image pro-
cessing: wavelets, curvelets, diffusion maps, compressed 
sensing… “By treating signals and images as mathematical 
objects, they can be quantitatively and algorithmically 

manipulated to extract, enhance, filter, and compress the 
information they represent,” the slide read.

Wavelets afforded Torres the opportunity to both discuss 
return on federal investment in mathematics and provide a 
first sampling of useful applications. A. P. Calderón’s 1964 
paper “Intermediate spaces and interpolation, the complex 
method” includes the following acknowledgement: “This 
work was partly supported by N.S.F. grant GP.-574.” 

“So this paper of Calderón, which is the birth of wavelets 
[within mathematics], was funded by the National Science 
Foundation in 1964,” Torres said. “I would be very curious 
to know how much was awarded to Calderón.” 

From Calderón’s likely modest seed grant has grown 
a field of research with ramifications for everything from 
national security to agriculture. While the FBI can’t match 
crime-scene fingerprints to those of known criminals quite 
as quickly as detectives do in television procedurals, wave-
let-based compression of fingerprint images does speed up 
the process. Statistical analysis using wavelets of computed 
tomography (CT) images enables more accurate determi-
nation of cancer prognosis. Applying Fourier analysis to 
satellite imagery gives soybean producers in the American 
heartland projected crop yields for their competitors in 
Brazil.

But back to the titular birds. It turns out that the blue facial 
skin sported by birds such as the asities of Madagascar de-
rives its color not from a pigment but from the structure of 
the tissue itself. The skin is composed of long, thin collagen 
fibers. Look at it with an electron microscope and you see 
something like the cross section of a bundle of angel hair 

MSRI Director David Eisenbud (standing right) 
solicited from audience members their reasons for 
attending the briefing.

Rodolfo Torres mentions the arsenal of tools for signal 
analysis and image processing that are based on 
Fourier analysis.
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physical phenomena found in nature. These newly under-
stood natural phenomena then serve as inspiration for 
cutting-edge human-developed technologies.

Torres suggested thinking of applied research as building 
a key to a particular door we need to open. Fundamental 
research, in contrast, is like creating a master key, one that 
will open many different doors. “In fact, it’s going to be 
opening doors that you still don’t know that you need to 
open,” he said. “But you will have it ready when the need 
arises.”

Of course the purpose of congressional briefings such 
as the one on December 4 is to publicize among policy-
makers and keepers of the federal purse-strings instances 
of sometimes long-unused master keys of mathematics 
opening societally fruitful doors. It’s a service that Joel 
Creswell from the office of Congressman Daniel Lipinski 
(D-IL) appreciates as he supports Lipinski’s work on the 
Committee of Science, Space, and Technology. 

“These aren’t stories that you can come up with from 
looking at the research literature,” he said in response to 
MSRI Director David Eisenbud’s post-presentation question 
about what prompted audience members to attend. “You 
really need experts in the field to be able to say, ‘Here’s a 
discovery that traces back to this basic research.’”

Credits
Author photo is by Craig Merow.
All other photos are by Scavone Photography.
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“haves” and “have nots” when it comes to graduate student 
job opportunities.

Another thing I want to say about the profession is that 
I think that mathematics has been steadily broadening its 
scope over the last few decades with increased interaction 
with computer science, with the social sciences, with bi-
ology and other sciences. This is not brand new; it’s been 
expanding in scope for a while now. I think this expansion 
has really blurred boundaries between applied and pure 
math, or at least inspired more connections between pure 
and applied math. That’s also a healthy development for 
the field.

Notices: And your work kind of spans applied and pure 
mathematics, correct?

Pipher: Yes, most of my work is in analysis, and that as-
pect is pure math, proving theorems. But I also do research 
in cryptography, and that is not about proving theorems. 
It’s really done with certain applications in mind.

Notices: You mentioned that you see the diversity of the 
profession increasing.

Pipher: Let me just say the profession should entail an 
increase in diversity as you’re able to attract people with-
different work styles. But this whole subject of diversity in 
the profession is a larger one.

Notices: How do you see the mathematics profession chang-
ing, and what kind of challenges do those changes pose?

Pipher: Over time, mathematics has become more 
collaborative. There’s an increase in social and team ap-
proaches. I think that, on the whole, this is very healthy 
for the profession. It should entail that mathematics as a 
profession will be able to attract people with different work 
styles and ways of contributing, resulting in more diversity. 
An increase in team approaches and collaboration results 
in a comparable increase in output and in publications 
per person. An individual researcher is able to be part of 
many more projects. 

One of the more slightly worrisome aspects of this is the 
escalation of what a good graduate student resume looks 
like. Those graduate students who are lucky enough to 
have really collaborative advisors, or to be in environments 
where there are active research seminars and visitors flow-
ing through, or who have the good fortune to participate 
in institute programs or opportunities like the AMS Math 
Research Communities are going to have resumes that look 
more like the resumes of postdocs a generation ago. The 
worrisome aspect is that it could create a starker division of 
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and I look forward to working with Karen Saxe, who has 
been a great leader of that office.

Notices: When you’re talking about advocacy for mathemat-
ics, apart from research funding, what does that involve?

Pipher: It involves communicating mathematics to a lay 
audience. What is a mathematician? What is mathematics? 
Why is it important? For example, the congressional hear-
ings that AMS and MSRI [Mathematical Sciences Research 
Institute] collaborate on twice a year in Washington are 
great examples. Twice a year, a mathematician is invited to 
give a general-audience talk about mathematics to an au-
dience which includes congressional staffers and members 
of Congress themselves. It’s a great opportunity to show 
what the mathematical community is doing for the good 
of society. This is the kind of advocacy that is foundational 
to everything else, to getting people to understand why 
mathematics is so important and exciting.

Notices: What do you see as the role of the AMS in promoting 
diversity? What tangible things do you think the AMS can do 
to help really increase diversity and inclusion in the profession?

Pipher: I’d like 
to talk about that 
in the context of 
my priorities for 
AMS. Continuing 
to expand upon 
the work of past 
presidents in di-
versity and inclu-
sion in the math 

community is really one of the four or five priorities that I 
have identified for my presidency.

First of all, I’d like to see a new committee—hopefully, 
ideally, from my point of view, a policy committee—de-
voted to diversity and inclusion. This is not to isolate the 
efforts, but to help to distribute them and to help the 
Society focus on this mission. I also want to see the AMS 
reach out to people in our community who are already 
working very hard on diversity and inclusion efforts in their 
institutions, in their particular communities, to bring their 
expertise and ideas to the AMS and to help us with our ef-
forts. That’s something I think that we can do a better job 
with. I’d like to examine the policies and the processes at 
AMS that encourage or discourage diversity in everything 
from our publications to our prizes.

I think that transparency and communication are central 
to establishing that the AMS truly takes this issue seriously. 
And finally, I think that the AMS could take a leadership 
position in taking climate issues seriously. For example, the 
APS, the American Physical Society, has a program where it 
facilitates climate reviews of departments at the request of 
the chairs. I think it’s a good model for us. It’s something 
that’s being discussed within AMS now.

The second priority I want to mention is advocacy. Ad-
vocacy for mathematics and communication about mathe-
matics to a broad constituency is very important. Advocat-
ing for research with federal funding agencies, foundations 
and congressional offices is already part of my job as Vice 
President for Research at Brown. I’ve also for several years 
been a member of the SIAM [Society for Industrial and 
Applied Mathematics] Science Policy Committee, which 
is something I’d like to continue. It offers me a somewhat 
different perspective than I get from membership in the 
similar AMS committee.

As director of ICERM, I’ve had a lot of interaction with 
DMS [Department of Mathematical Science] and other 
NSF [National Science Foundation] directorates. And I 
look forward to more work in this capacity. I really intend 
to support the work of the Washington office of the AMS, 

AMS President Jill C. Pipher.

I’d like the AMS to 
foster a broader view of 

what it means to be a 
mathematician.
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Notices: You are I think somewhat unique in terms of other 
past presidents in having a background in industry. You co-
founded a company, so you spent some time working outside of 
academia.

Pipher: I have. I think that helps me appreciate the ways 
in which mathematicians can contribute to many different 
endeavors in the world and how interesting and valuable it 
is to have these experiences [outside of academia].

I would like to mention another priority, which may 
seem smaller by comparison with others, but there is a 
larger context for it. Within the AMS, I’d like to revisit the 
list of committees that we have and do some real consoli-
dation. The larger context is this: I want service on an AMS 
committee to be truly impactful and rewarding, and result 
in outcomes that the very busy people we are asking to serve 
on these committees can point to with great satisfaction. I 
want to be sure that organizationally our committees are 
high-functioning, running well, and having an impact.

And then finally, I’m still learning a lot about the AMS; 
I’m listening to what’s important to members of the AMS. 
I’m still forming priorities and developing ideas for what 
I’d like to do.

Notices: Going back to your point about broadening the 
profession, it’s something that outgoing president Ken Ribet also 
mentioned, when I talked with him, really acknowledging that a 
lot of people who get degrees in math won’t be doing jobs within 
academia. Are there particular priorities or perspectives you feel 
like you’ve gotten from being outside of academia that might 

help academics in their work?

Pipher: The thing about 
an academic research career 
is that in many ways, an 
individual researcher drives 
their own research agenda. 
And of course, one’s career 
is more successful when 
aligned with general trends 
in the profession, where the 
funding is going, and so 
forth. So we can’t say that 
as academics we’re totally 
independent. The level of 
independence of an aca-
demic career is not there in 
an industry career. I talk to 
people who have worked as 
mathematicians in the NSA 
[National Security Agency]. 
And of course, they can’t 
discuss the kinds of prob-

Notices: Are there any other priorities you want to mention?

Pipher: I’d like the AMS to work to foster a broader view 
of what it means to be a mathematician. Our profession 
is much bigger than academia. Clearly academic research 
mathematics is a central part of what the AMS should be 
supporting. But there are more careers and more oppor-
tunities in mathematics beyond academia. And if we start 
with this perspective, then the AMS might be able to take a 
leadership role in professional development opportunities 
for students—both undergraduates and graduates—who 
will, of necessity, be pursuing non-academic careers. These 
careers will be mathematically rewarding, but they won’t be 
careers as faculty members or professors. I want the AMS 
to be their organization too.

I think that the partnerships that AMS has developed, 
like those with the NSF and with the Simons Foundation, 
are important. Two terrific programs have resulted: the 
Mathematics Research Communities [MRC] and the Travel 
Awards. I’ve served on the selection committee for the MRC 
and there are many more excellent proposals than can be 
funded for a program that is doing an outstanding job of 
getting graduate students involved in cutting edge research. 
I hope to help identify and develop more such partnerships.

And speaking of the MRC, I am thrilled with the in-
creased focus of AMS on the "next generation" of math-
ematicians. I will pay close attention to the Society’s role 
in providing opportunities for students and in helping 
recent graduates find rewarding careers in the mathemat-
ical sciences.

Jill C. Pipher lecturing at Brown University. 
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Pipher: Sure! Got a couple hours? [laughter] Just kid-
ding. But I could talk about that a lot.

First of all, the Institute was founded by a remarkable 
team of people in math and applied math, who all con-
tributed huge amounts of time and ideas to the proposal 
and its implementation. It was an incredibly collaborative 
effort from our team, the Brown administration, and the 
departments. Really, the start of this whole process was 
very auspicious, and there was a lot of support at all levels 
of the university. I was very energized to do this job and 
to do it well.

It’s a lot like a startup company that’s gotten some ven-
ture capital. Suddenly you have some money, and you have 
to build something. The first year was hiring staff. The key 
staff positions—the assistant director, the IT director, and 
so on—were key to making everything else work. Then we 
worked weekly with the architects who were planning the 
renovation, and with the weekly construction management 
team meetings after that. That was the opportunity to tell 
the architects and the construction team what a math in-
stitute should look like, what did we really need. One of 
the things we needed was to be able to write everywhere, 
and that was realized at ICERM.

In our proposal, we had formed our science advisory 
board and our Board of Trustees, so those boards were in 
place, but we still had to jump in (with the help of those 
board members) and build two years of semester programs 
all at once, plus our summer undergraduate research pro-
grams and independent workshops. There were lots of 
days at the very beginning that I just felt like my head was 
spinning at the end of the day. I might even have gotten a 
little cranky here and there, but I did feel like I had a lot of 
help, and that was key. After the proposal was in, the co-PIs 
on the grant continued continued to work alongside me 
to support all the efforts of the Institute. That was Björn 
Sandstede, Jeff Hoffstein, Jeff Brock, and Jan Hesthaven. 
Without the help of our boards and their advice, it would 
not have gone as smoothly as it did.

Being the director was a very satisfying professional expe-
rience. I came to know and appreciate a lot of mathematics 
that was new for me. I met a lot of incredibly talented and 
dedicated people whose research I was thrilled to support.

I believe that our programs have been, and continue 
to be, tremendously beneficial to the grad students and 
postdocs that we encourage to participate and that the 
Institute supports. They come, and they spend the three 
months of the program enjoying not only the benefits of 
the scientific aspects of the Institute—the mathematical 
activities and events, the lectures and so forth—but we 
also provide a professional seminar series for them with 
information about the profession, about how to apply for 
jobs, about how to create resumes, about ethics training in 
research. I think that is very beneficial for young people, 
and that was something I was especially proud of. Finally, 

lems that they’re working on. But I’ve heard many of them 
say, “Well, I’m working on some really fascinating things, 
some great problems, and it’s very challenging and reward-
ing. And then it’s done at five o’clock, and I go home and 
do other things. I don’t take my work home.” Many industry 
jobs have a more defined and perhaps more balanced day 
than we have as academics. Many of the people I know 
working in academia are working all the time.

In industry, you probably have to like working with 
teams and working on group projects, which many more 
mathematicians seem to be gravitating towards in any case. 
It’s a different kind of career, but it’s also a mathematically 
rewarding one. When a graduate student graduates and goes 
into a career in industry or government or whatever, if it’s 
not academic, I just don’t want to hear somebody say, “Oh, 
they left math.” Because they’re not leaving math. They are 
going on to a non-academic mathematical career. It has 
to be part of our culture to appreciate and value multiple 
career paths.

I believe that valuing multiple career paths has to simply 
be part of the culture of our mathematical community. In 
fact, this attitude is a good example of what I mean by “in-
clusion” as I think about committees or initiatives focused 
on “diversity and inclusion”. These two concepts—diversity 
and inclusion—are typically lumped together, but they 
are distinct notions, and equally important. By now, most 
people understand what diversity means. However, “in-
clusion” seems to be a little more elusive. I want to stress 
that inclusion is not an afterthought—it’s about creating a 
welcoming environment, one where people are comfort-
able to be themselves.

Notices: How have you been involved in the AMS in the past, 
and what led you to get involved in the first place? 

Pipher: I’ve been a member of AMS in order to support 
all the ways the Society advances the profession and indi-
vidual careers—through its publications, conferences and 
meetings, advocacy, and special programs for students and 
researchers at all levels, like the Math Research Communi-
ties, the travel awards, and the fellowships. The benefits of 
membership in a professional society are twofold: what you 
get, and what you can give. At this moment in my career, 
membership in the AMS gives me the further opportunity 
to actively contribute to and help shape the priorities of 
the Society. These include supporting the next generation 
of mathematicians, advocating for the importance of 
mathematics in science and society, and recognizing and 
promoting mathematical research.

Notices: Can you talk a little bit about what it was like to be 
the founding director of ICERM? It sounds very intimidating to 
found an entire new research center.
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it used to be that every time I had a casual conversation 
with a stranger, like on a plane, and the word math was 
mentioned, I would hear, “Oh, it was my worst subject,” 
and there would often be the word 'hate'. But I’ve noticed 
a shift. I’m discovering more people who are responding 
positively, who find or who found math interesting, and es-
pecially more parents who want to support their children’s 
skills and interest in math. 

I had a great experience connecting with parents who 
wanted to support their daughters’ interest in math at 
an ICERM program called Girls Get Math; the program 
I founded about five years ago with the help of a private 
donation from the Phoebe Snow foundation. It’s a one- 
week summer day camp for rising 10th and 11th grade girls 
who express an interest in math, not self-identified-defi-
nitely-going-to-be-math-majors necessarily, but who have 
expressed enough of an interest to get a letter of recom-
mendation from their high school teacher. This program 
serves about twenty-five or thirty high school girls in our 
community. What we wanted to do was create a curriculum 
and a model that could go nationwide, so that anybody 
who wanted to run a Girls Get Math program in their 
community could do that with materials and computer 
labs that ICERM provided. At the end of the week, we have 
an awards ceremony. The parents are invited, sometimes 
their high school teachers come, and it’s really meaningful 
to meet the parents of these girls, about half of whom are 
on full scholarships for this program, and see how much 
it means to them that their daughters are expressing an 
interest in math...how much they want to support that 
interest. Maybe I don’t really have more than anecdotal 
impressions of a changing public perception, but I feel 
positive and optimistic.

Notices: I believe you are only the third woman to be President 
of AMS, and I think also maybe only the third person who isn’t 
a white man. I wonder, do you feel a lot of pressure from that? 
In general, in your career, you’ve probably often been one of the 
only women, or the highest-ranking woman, in various settings. 
How do you feel about that?

Pipher: It’s a complicated question. Yes, I’m very keenly 
aware that there have been only three women who have 
been President of the AMS in 130 years. That’s a burden 
that minorities in any profession face, the burden of repre-
senting not just your own best efforts, but the best efforts 
of your entire gender or your entire ethnic group. I have to 
avoid thinking like that because it’s distracting. I feel that I 
have a great opportunity to help an organization that really 
matters, that’s important, that has a tremendous impact. 
And I view it as an opportunity to be of service, and so I’m 
trying not to think about myself personally in this role, 
but rather what I can do or what impact I can have on the 
Society itself.

the special events that ICERM hosted while I was director, 
like the AWM [Association for Women in Mathematics] 
40th anniversary Research Symposium, which was one of 
the very first things we did in 2011, and the Blackwell–Tapia 
Prize conference, and CAARMS, the Conference for African 
American Researchers in the Mathematical Sciences, were 
all very meaningful events for me personally.

All in all, it was a tremendously exciting and deeply 
significant professional experience.

Notices: I’d imagine getting to know researchers in a lot of 
really different fields of math has to be a benefit as you’re moving 
into the presidency of the AMS.

Pipher: It did certainly broaden my perspective in the 
field. I think having that background means there are cer-
tain things that I won’t have to learn on the job that are 
relevant to my objectives in this position at AMS, and also 
to the expectations of the position. I’m excited to bring that 
experience to this job.

Notices: You mentioned that you might be interested in ex-
panding the number of prizes that the AMS offers, or prizes in 
mathematics in general. Can you talk a little bit more about that?

Pipher: I can only speak to what I think is important, 
but of course, I can’t plan to do something like this on my 
own. First, I’d like to get a sense of the interest of the com-
munity and the appropriate governance committees of the 
AMS in such an enterprise. When I compare mathematics 
to the other physical sciences, I think that mathematicians 
are under-recognized. There are just too few awards and 
prizes to adequately recognize all the great contributions 
to research and to the profession. At the Association for 
Women in Mathematics, we started these research prizes 
during my presidency. Right from the very start, the research 
prize nominations were incredibly competitive and an-
guishing—so many good people for each individual prize! 
It helped underscore for me the need for more recognition 
in our community. So I would like to start this conversation 
about prizes in the appropriate committees in the organi-
zation and see what other people think and if we can take 
some steps to improve the situation.

Notices: We touched a little bit on public understanding of 
math and public communication of math. How do you feel that 
the public perception of math has changed in the past few years 
or decades?

Pipher: I think it’s slowly changing to reflect a greater 
appreciation of the ubiquity and power of mathematics. 
That’s partly a function of the expansion of the scope of 
mathematics in fields like computer science, and biology, 
and neuroscience, and so forth. This is just anecdotal, but 
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aimed at quantifying how the properties of coefficients of 
the equation, particularly smoothness, affect the behavior 
of the solutions. In addition, we want to have a sharp 
understanding of the interaction between the geometric 
properties of the boundary of the domain on which the 
solution is defined, and the regularity of solutions. For ex-
ample, if a function is harmonic in the upper half-space or 
the ball, and it vanishes on a portion of the boundary, then 
near that piece of the boundary the solution decays like the 
distance to the boundary. But if the boundary has corners or 
Lipschitz singularities, then the rate of vanishing is merely 
a Hölder continuous function of the distance. More spe-
cifically, my research concerns questions of solvability of a 
range of boundary value problems—Dirichlet, Neumann, 
Regularity—for linear elliptic and parabolic divergence 
form equations with non-smooth coefficients in domains 
with singularities on the boundary. There is a large, active 
community of analysts working on these problems and I’ve 
benefited from some great collaborations over the years, 
and most recently with Martin Dindos, Steve Hofmann, 
Carlos Kenig, Linhan Li, and Svitlana Mayboroda. 

I’m also continuing to think about some problems in 
post-quantum cryptography and homomorphic encryp-
tion, in collaboration with Jeff Hoffstein, Joe Silverman, 
William Whyte and Zhenfei Zhang.

Notices: Post-quantum cryptography definitely sounds very 
scary to me. I guess I have these sci-fi dystopia things in mind, 
computer pirate hackers.

Pipher: Public key cryptography is the tool that makes it 
possible to have secure on-line financial transactions, but 
the public-key cryptosystems that are currently in wide use 
would be broken by a quantum computer. This is thanks to 
quantum algorithms, such as Shor’s algorithm, that would 
run in polynomial time on a quantum computer. When will 
we be able to overcome the serious obstacles in building 
a scalable quantum computer? That’s a question I won’t 
try to answer. Let me just say that there is great pressure 
from government agencies like NIST [National Institute of 
Standards and Technology], from government intelligence 
agencies [and offices] like NSA and GCHQ [Government 
Communications Headquarters], and from other bodies 
such as the National Academy of Sciences, to identify algo-
rithms for public key cryptography and secure key exchange 
that are resistant to quantum speedups. 

The NTRU public key encryption system, that I am a 
co-inventor of, uses an algorithm that remains resistant to 
the speed-ups afforded by quantum computing. That is, no 
one has yet found a quantum algorithm that can find the 
shortest vector in an integer lattice faster than a classical 
computer. So I have a vested interest in the creation of a 
quantum computer—I’m all for that. [laughter]

Notices: I’d imagine, though, there might be the flip side 
where you do feel happy to be a role model for a large number 
of people, having a leadership roles like this.

Pipher: In the last decade or so, there has been a fair 
amount of research on the importance of role models. 
Some studies have concluded that implicit stereotypes 
can be reduced in the presence of positive role models, 
and others suggest that exposure to female role models in 
STEM can help close the gender gap. All of this reinforces 
my personal view of the tremendous importance of role 
models. I was a graduate student in the early ’80s at UCLA, 
working in analysis, when S.-Y. Alice Chang arrived as a 
newly tenured professor. She was impressive and confident, 
and was also the first female professor in science that I ever 
talked to or got to know. Her mathematics and her career 
path has always been an inspiration to me.

I understand that my own career path may be inspiring 
to girls and early-career women in mathematics—a fact 
that is both gratifying and daunting. I am grateful to have 
opportunities to support and encourage the next generation 
of women mathematical scientists. At the same time, it is 
both challenging and disconcerting to feel that one ’’rep-
resents” an entire group while trying to pursue a research 
career in science. When I graduated in 1985, there were very 
few women in my field (besides Alice). At conferences, I 
would rarely see other women. Sometimes, I was the only 
female speaker. Today, young women studying science in 
college report that they carry the burden of feeling that their 
performances represent their gender, not just themselves. I 
understand and remember that feeling.

So, I would say that the issue of being a role model is 
mixed. It’s both a privilege and a burden. From my present 
vantage point, I most keenly feel the privilege of this role. 
But I still remember the burdens from an earlier stage in 
my career.

Notices: When you’re not working, what kind of things do 
you like to spend your time on?

Pipher: Thinking about math. [laughter] Which is not 
so much of a joke. Given my current job and how much 
administration I have to do, when I get a chance to go to a 
conference or block out days to work with a collaborator, 
I feel like I’m on math vacation But outside of math and 
work, I like spending time with with my family. I like play-
ing the piano. And I enjoy traveling.

Notices: What are some of the math questions that you’re 
currently thinking about when you get to go on math vacation?

Pipher: I’m continuing to work on solvability of  bound-
ary value problems for elliptic and parabolic equations 
with non-smooth coefficients. This research, at the interface 
of harmonic analysis and PDE, is part of a large program 
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Beyond cryptography, people are working hard to under-
stand what a quantum computer can do more efficiently 
than a classical computer. The big question is: When can we 
find quantum algorithms that realize exponential speedups 
over their classical counterparts? 

Notices: [The creation of a quantum computer] would make 
your work more valuable. 

Pipher: Absolutely. That’s my conflict of interest disclo-
sure for the article. [laughter]

Notices: Thanks for taking the time to talk with me, Jill.

Pipher: Thank you.

Credits
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Citation for Seminal Contribution to Research: 
Haruzo Hida
The 2019 Leroy P. Steele Prize for Seminal Contribution to 
Research is awarded to Haruzo Hida of the University of 
California, Los Angeles, for his highly original paper “Ga-
lois representations into GL2(Zp[[X ]]) attached to ordinary 
cusp forms,” published in 1986 in Inventiones Mathematicae.

In this paper, Hida made the fundamental discovery 
that ordinary cusp forms occur in p-adic analytic families. 
J.-P. Serre had observed this for Eisenstein series, but there 
the situation is completely explicit. The methods and per-
spectives that Hida introduced have been used in the past 
three decades to solve fundamental problems in the theory 
of p-adic Galois representations and p-adic L-functions, and 
they have led to progress on p-adic analogues of the conjec-
ture of Birch and Swinnerton-Dyer. Hida families are now 
ubiquitous in the arithmetic theory of automorphic forms, 
and his research has changed the way we view the subject.

Biographical Note: Haruzo Hida
Haruzo Hida is a Distinguished Professor of mathe-

matics at UCLA. Born in 1952 in the beach resort town of 

Hamadera (presently, Sakai West-ward), Japan, he received 
an MA (1977) and Doctor of Science (1980) from Kyoto 
University. He did not have a thesis advisor. He held po-
sitions at Hokkaido University (Japan) from 1977–1987 
up to an associate professorship. He visited the Institute 
for Advanced Study for two years (1979–1981), though he 
did not have a doctoral degree in the first year there, and 
the Institut des Hautes Études Scientifiques and Université 
de Paris Sud from 1984–1986. Since 1987, he has held a 
full professorship at UCLA (and was promoted to Distin-
guished Professor in 1998).

Hida’s main research interests lie in arithmetic geometry, 
both Archimedean and Henselian, through the automor-
phic approach (initiated by Erich Hecke). He was an invited 
speaker at the ICM in Berkeley (1986), a Guggenheim fel-
low (1991–1992), a recipient of the Spring Prize from the 
Mathematical Society of Japan (1992), a senior scholar at 
the Clay Mathematics Institute (2010–2011), an inaugural 
fellow of the American Mathematical Society (2012), and a 
recipient of a Docteur Honoris Causa, Universitée de Paris 
XIII (2015). He is the author of seven research books and 
monographs on his own results.

2019 Leroy P. Steele Prizes

The 2019 Leroy P. Steele Prizes were presented at the 125th Annual Meeting of the AMS in Baltimore, Maryland, in 
January 2019. The Steele Prizes were awarded to HARUZO HIDA for Seminal Contribution to Research, to PHILIPPE FLAJOLET 
and ROBERT SEDGEWICK for Mathematical Exposition, and to JEFF CHEEGER for Lifetime Achievement.

Haruzo Hida Philippe Flajolet Robert Sedgewick Jeff Cheeger
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Response from Haruzo Hida
It is a great honor (and also a big surprise) to receive 
the Leroy P. Steele Prize for Seminal Contribution to Re-
search from the AMS. Why a surprise? The name of the 
town Hamadera appears (as “Takashi-no-Hama”) in the 
sixth–eighth-century Japanese “Tan-ka/Chou-ka” poem 
anthology “Manyou-shu” (Ten thousand leaves), and by a 
tradition of the town, I was familiar with the ancient poems 
at an early age (as they are all written in Japanese pho-
netic symbols, so, easy to read). Starting with the poems, 
I enjoyed Japanese and Chinese classics. Chinese poems 
by a decadent Japanese Zen monk of the fifteenth century 
greatly impressed me; they could be interpreted (with a 
question mark) to suggest the purpose of one’s life could 
be found only in an enjoyable pastime (or more precisely, 
a way to kill time), lasting until one’s demise. From that 
time on, I tried in earnest to find such a way to kill time. I 
finally found one accidentally in the mid-1970s and, after 
that, became totally addicted to math. Therefore, I am 
hardly professional nor academic in mathematical work, 
and I often create mathematics without tangible reference 
to contemporaries. It seems unfair that such a person would 
be chosen for a prestigious AMS prize. Nevertheless, my 
work has found some deep applications. This hopefully 
legitimizes the award.

A seventeenth-century Japanese playwright told a Con-
fucianist that creating a play is to walk the boundary of 
imaginary and real (or dream and truth) without stepping 
out of the narrow path. When in 1975 I started to study 
(with Koji Doi) the relation between congruence and  
L-values, Doi told me that a Hecke eigenform appears 
to have siblings having eigenvalues (of Hecke operators) 
congruent modulo a (parent) prime with the eigenval-
ues of the initial form. While at IAS, I felt that pathwise 
connectedness of the Archimedean topology forces the 
core cuspidal spectrum of Hecke operators to be discrete; 
so, under a Henselian topology, totally disconnected, I 
imagined that the spectrum is prevalently continuous. 
After having returned to Japan in the fall of 1981, I started 
making progress in proving this guess and succeeded (par-
tially) in getting a proof via arithmetic geometry by the 
end of January 1982. Since the result seemed too strong, 
I sought one more proof. I got another via Betti Étale co-
homology of modular curves within a couple of months. 
Afterwards, I sent out preprints to senior number theorists 
I’d encountered at Princeton. The second proof is in the 
paper published in 1986 for the award (and now there are 
more than two proofs).

Since I enjoy finding results independent of my fellow 
mathematicians, I did not make too much effort to find 
applications to classical questions posed by others, but a 
handful of excellent number theorists became interested 
in later years, and found good applications for my result.

Citation for Mathematical Exposition: 
Philippe Flajolet and Robert Sedgewick
The 2019 Leroy P. Steele Prize for Mathematical Exposi-
tion is awarded to Philippe Flajolet (posthumously) of 
the Institut National de Recherche en Informatique et en 
Automatique (INRIA) and Robert Sedgewick of Princeton 
University for their book Analytic Combinatorics (Cam-
bridge University Press, Cambridge, 2009), an authoritative 
and highly accessible compendium of its subject, which 
demonstrates the deep interface between combinatorial 
mathematics and classical analysis. It is a rare work, one 
that defines the relatively young subject in its title, mixing 
equal parts of complex analysis and combinatorial struc-
ture. The authors have combined their extraordinary ana-
lytical and expository skills to organize the entire subject 
into a well-developed and fascinating story. Its publication 
in 2009 was a major event, and as a result, analytic combi-
natorics is now a thriving subdiscipline of combinatorial 
and stochastic mathematics, as well as a key component of 
the analysis of algorithms.

Quoting Robin Pemantle’s 2010 review of Analytic Com-
binatorics, published in SIAM Review, “This is one of those 
books that marks the emergence of a subfield.” The book 
magically summarizes a vast amount of information. It 
identifies and expounds key techniques that have never 
been explained so well before, while consistently paying 
proper attention to the historical context. It features world-
class graphics and typesetting and a definitive bibliography. 
The book is largely self-contained and a pleasure to read—
any mathematician can use it as the basis for teaching a 
course on analytic combinatorics as an undergraduate 
elective in mathematics.

Biographical Note: Philippe Flajolet
Philippe Flajolet (1948–2011) was an extraordinary French 
mathematician and computer scientist. He graduated from 
École Polytechnique in Paris in 1970, obtained a PhD 
from Université Paris 7 with Maurice Nivat in 1973 and a 
Doctorate in Sciences from the University of Paris at Orsay 
in 1979. He spent his career at INRIA in Rocquencourt, 
France, where he eventually led the ALGO research group, 
which produced numerous outstanding young scientists 
and attracted visiting researchers from all over the world.

He held numerous visiting positions: at Waterloo, Stan-
ford, Princeton, Wien, Barcelona, IBM, and Bell Laborato-
ries. He received several prizes, including the Grand Science 
Prize of UAP (1986), the Computer Science Prize of the 
French Academy of Sciences (1994), and the Silver Medal 
of CNRS (2004). He was elected a Corresponding Member 
(Junior Fellow) of the French Academy of Sciences in 1994, 
a Member of the Academia Europaea in 1995, and a Mem-
ber (Fellow) of the French Academy of Sciences in 2003. 
He was made a knight of the Légion d’Honneur in 2010.
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massive open online courses (MOOCs) and published 
extensive online content on analysis of algorithms and ana-
lytic combinatorics and, with Kevin Wayne, algorithms and 
computer science. These materials have made it possible 
and convenient for millions of people around the world to 
teach and learn these subjects, particularly in regions where 
access to higher education is difficult.

Response from Robert Sedgewick
This award is thrilling and humbling for me, but also bit-
tersweet, because Philippe is not here to share it. But all 
of us who were there vividly remember his excitement at 
our event in Paris on the occasion of his sixtieth birthday 
when we presented him with the first printed copy of 
Analytic Combinatorics. I keep the look on his face at that 
moment fresh in my mind and know that the same look 
would grace us now.

Philippe and I (and many others) were students of the 
work of Don Knuth in the 1970s, and inspired by the idea 
that it was possible to develop precise information about 
the performance of computer programs through classical 
analysis. When we first began working together in 1980, 
our goal was just to organize models and methods that we 
could use to teach our students what they needed to know. 
As we traveled between Paris and Princeton, producing 
conference papers, journal articles, and INRIA research 
reports, we began to understand that something more 
general was at work, and Analytic Combinatorics began to 
emerge. It is particularly gratifying to see citations of the 
book by researchers in physics, chemistry, genomics, and 
many other fields of science, not just mathematicians and 
computer scientists.

Analyzing algorithms is challenging—at the outset, 
known results were often either excessively detailed or 
rough, questionably useful approximations. Thus, what fun 
it was to consider the idea that maybe (despite the formi-
dable barrier of the Halting Problem) one could develop 
a black box that could take a program as input and pro-
duce as output an asymptotic estimate of its running time. 
How challenging it was to develop a rigorous calculus that 
takes us from simple formal descriptions of combinatorial 
objects through properties of generating functions in the 
complex plane to precise information about the objects. 
How exciting it was to build on this work to develop theo-
rems of sweeping generality that encompass whole families 
of combinatorial classes. As Philippe said, developing new 
theorems like these “constitutes the very essence of analytic 
combinatorics.”

With a vibrant community of researchers working on 
developing and applying such theorems, I suspect and hope 
that the story of analytic combinatorics is just in its infancy.  

I am particularly heartened by the statement in the 
citation that any mathematician could use our book to 
teach an undergraduate course on the subject. Having the 

Flajolet’s extensive and far-reaching research in mathe-
matics and computer science spanned formal languages, 
computer algebra, combinatorics, number theory, and anal-
ysis, all oriented toward the study of algorithms and discrete 
structures. During his forty years of research, he contributed 
nearly 200 publications. An important proportion of these 
are foundational contributions or represent uncommon 
breadth and depth. Highlights range from pioneering work 
in computer algebra in the 1980s to theorems in asymptotic 
analysis in the 1990s that inspired decades of later research 
to a probabilistic algorithm that is widely used in modern 
cloud computing. Much of his research laid the foundation 
for the development, with Sedgewick, of the subfield of 
mathematics that is now known as analytic combinatorics, 
a calculus for the study of discrete structures.

These research contributions will have impact for gen-
erations. Flajolet’s approach to research, based on endless 
curiosity, discriminating taste, deep knowledge, relentless 
computational experimentation, broad interest, intellectual 
integrity, and genuine camaraderie, will serve as an inspira-
tion for years to come to those who knew him.

Biographical Note: Robert Sedgewick
Robert Sedgewick is the William O. Baker Professor in the 
Department of Computer Science at Princeton University. 
Born in 1946 in Willimantic, Connecticut, he graduated 
from Brown University in 1968 and did his doctoral work 
with Donald E. Knuth at Stanford University, receiving his 
PhD in 1975. After ten years on the faculty at Brown, he 
left to be the founding chair of Princeton’s Department of 
Computer Science in 1985. He served for twenty-six years 
as a member of the board of directors of Adobe Systems 
and has held visiting research positions at Xerox PARC, 
IDA, INRIA, and Bell Laboratories.

Sedgewick is the author of twenty books. He is best 
known for Algorithms, which has been a best-selling text-
book since the early 1980s and is now in its fourth edition. 
His other current textbooks include An Introduction to the 
Analysis of Algorithms and Analytic Combinatorics (with 
Philippe Flajolet) and Computer Science: An Interdisciplinary 
Approach (with Kevin Wayne).

Beyond his work with Flajolet on analytic combina-
torics, Sedgewick’s research is characterized by a scientific 
approach to the study of algorithms and data structures, 
where careful implementations and appropriate mathe-
matical models are validated by experimentation and then 
used to understand performance and develop improved 
versions. Many of his research results are expressed in his 
Algorithms books, and his implementations routinely serve 
as reference and are featured throughout our global com-
putational infrastructure.

In recent years, Sedgewick has been a pioneer in devel-
oping modern approaches to disseminating knowledge, 
from introductory to graduate level. He has developed six 
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Biographical Note: Jeff Cheeger
Jeff Cheeger was born in Brooklyn, New York, in 1943. He 
graduated from Erasmus Hall High School in 1960 and 
from Harvard College in 1964. He received his PhD from 
Princeton under Salomon Bochner and James Simons in 
1967. After a year in Berkeley as an NSF Postdoctoral Fel-
low and a year at the University of Michigan as an assistant 
professor, he moved to Stony Brook, where he remained for 
the next twenty years, rising to the rank of Distinguished 
Professor. Since 1989, he has been a member of the Cou-
rant Institute, where since 2003 he has been Silver Professor 
of Mathematics.

Cheeger has given invited addresses at the International 
Congress of Mathematicians in 1974 and 1986. He was 
awarded the Max Planck Research Prize of the Alexander 
von Humboldt Society in 1996 and the Oswald Veblen 
Prize of the AMS in 2001. He was elected to the National 
Academy of Sciences in 1997, the Finnish Academy of 
Science and Letters in 1998, and the American Academy 
of Arts and Sciences in 2006. He was elected a Fellow of 
the AMS in 2012.

Response from Jeff Cheeger
It is a great honor to have been awarded the Leroy P. Steele 
Prize for Lifetime Achievement. It is especially gratifying to 
have received an award for research done over my whole 
career and for which the citation includes work with a 
number of remarkable mathematicians, the interactions 
with whom have enriched my life. I would particularly like 
to thank my collaborators Paul Baum, Detlef Gromoll, Jim 
Simons, S.-T. Yau, Michael Taylor, Werner Muller, Robert 
Schrader, Misha Gromov, Jean-Michel Bismut, Mike Ander-
son, Gang Tian, Xiaochun Rong, Xianzhe Dai, Kenji Fukaya, 
Toby Colding, Bruce Kleiner, Assaf Naor, and Aaron Naber. 
I would also like to acknowlege the influence of my friends 
Blaine Lawson, Dennis Sullivan, and Is Singer.

I was introduced to mathematics by my father, Thomas 
Cheeger, a structural engineer. He could not have given 
me a better gift. My mother, Pauline, stressed to me the 
benefits of hard work.

In junior high school, I made a very good friend, Mel 
Hochster, with whom I could share my interest in mathe-
matics. It was exciting and fun. When I was an undergrad-
uate at Harvard, two professors, Shlomo Sternberg and 
Raoul Bott, made a big impression. They introduced me 
to differential geometry and algebraic topology. Beyond 
that, they conveyed the feeling that being a mathematician 
was something like being a member of a special order, an 
order into which one could hope to one day be initiated. 
During my last year, I took a PDE course from Jim Simons. 
In graduate school at Princeton, along with my official ad-
visor, Salomon Bochner, Jim became my teacher and then 
my friend. I owe him a lot.

broadest possible reach was indeed our hope when, with 
the support of our editor, we provided free access to the 
book on the web. For the past several years, I have been 
working hard to apply twenty-first-century tools to develop 
a unique resource for teaching this material. Anyone can 
now teach and learn Analytic Combinatorics using the stu-
dio-produced lecture videos, new problems with solutions, 
and other online content found at ac.cs.princeton.
edu. Philippe, who always embraced technology, would be 
particularly pleased with the idea that it now makes ana-
lytic combinatorics accessible to large numbers of people 
around the world.

Citation for Lifetime Achievement: Jeff Cheeger
The 2019 Leroy P. Steele Prize for Lifetime Achievement is 
awarded to Jeff Cheeger of the Courant Institute, New York 
University, for his fundamental contributions to geometric 
analysis and their far-reaching influence on related areas 
of mathematics. For more than half a century, Jeff Cheeger 
has been a central figure in differential geometry and, more 
broadly, geometric analysis. His work on the profound and 
subtle effects of curvature on the topology and geometry 
of manifolds, often under very weak regularity conditions, 
has laid and continues to lay foundations for much of the 
progress in these areas ever since his 1967 dissertation.

His work, both alone and in collaboration with others, 
has yielded such spectacular results as the Soul and Splitting 
Theorems (with Detlef Gromoll) and the Compactness 
and Collapsing Theories (with Kenji Fukaya and Misha 
Gromov), which have been among the most important 
developments in geometry in the past three decades. These 
fundamental theories have had far-reaching consequences, 
for instance, playing an essential role in Perelman’s res-
olution of the Poincaré conjecture. Cheeger’s inequality 
bounding from below the first nonzero eigenvalue of the 
Laplacian in terms of a certain isoperimetric constant, 
known as Cheeger’s constant, has had numerous applica-
tions, as has his work on the Hodge theory and spectral 
geometry of singular spaces, the structure theory of spaces 
with bounds on Ricci curvature, his resolution of the Ray–
Singer Conjecture, the theory of differential characters (with 
James Simons), his work on differentiability of Lipschitz 
functions on metric measure spaces, and many others have 
been the fundamental tools that enabled major advances 
in geometry and analysis that continue to bear fruit and 
shape the field. 

http://ac.cs.princeton.edu
http://ac.cs.princeton.edu
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About the Prizes
The Leroy P. Steele Prizes were established in 1970 in 
honor of George David Birkhoff, William Fogg Osgood, 
and William Caspar Graustein. Osgood was president of 
the AMS during 1905–1906, and Birkhoff served in that 
capacity during 1925–1926. The prizes are endowed under 
the terms of a bequest from Leroy P. Steele. Up to three 
prizes are awarded each year in the following categories: 
(1) Lifetime Achievement: for the cumulative influence of 
the total mathematical work of the recipient, high level 
of research over a period of time, particular influence on 
the development of a field, and influence on mathematics 
through PhD students; (2) Mathematical Exposition: for a 
book or substantial survey or expository research paper; (3) 
Seminal Contribution to Research: for a paper, whether re-
cent or not, that has proved to be of fundamental or lasting 
importance in its field or a model of important research. 
The Prize for Seminal Contribution to Research is awarded 
on a six-year cycle of subject areas. The 2019 prize was 
open; the 2020 prize will be given in analysis/probability; 
the 2021 prize in algebra/number theory; the 2022 prize in 
applied mathematics; the 2023 prize in geometry/topology; 
and the 2024 prize in discrete mathematics/logic.

The Leroy P. Steele Prizes for Mathematical Exposition 
and Seminal Contribution to Research carry a cash award 
of US$5,000; the Prize for Lifetime Achievement, a cash 
award of US$10,000.

The Steele Prizes are awarded by the AMS Council act-
ing on the recommendation of a selection committee. The 
members of the committee for the 2019 Steele Prizes were:

 • Robert L. Bryant,
 • Tobias H. Colding,
 • Eric M. Friedlander,
 • Mark L. Green,
 • B. H. Gross (Chair),
 • Carlos E. Kenig,
 • Dusa McDuff,
 • Victor Reiner,
 • Thomas Warren Scanlon

Credits

Photos of the winners were provided by each of them.

I was very lucky to have found my way into differential 
geometry which, I have come to believe, was the right area 
for my particular turn of mind. When I started, it was a bit 
out of fashion, underdeveloped, not overly competitive, but 
poised to take off. For me, this was ideal. Later, I learned 
some analysis, which opened up new vistas.

As reseachers, our job is to produce new mathematics. 
Still, looking back over a whole career, it is somewhat mind 
blowing to realize how little we understood when I began, 
as compared to what has since been discovered. 

From the time I was young, I was struck by the fact that in 
mathematics, questions have a right or wrong answer. This 
has a consequence. With small exceptions, mathematicians 
tend to genuinely admire each other’s achievements. An-
other thing, as mathematicians we have quite direct access 
to some of the most original minds of the past and of the 
present. From such people, if you keep your ears open, you 
can really learn something. Finally, we are lucky in that 
we get to think about what we want and to interact with 
brilliant young people. I feel very fortunate to have had a 
life in mathematics.

The list of previous recipients of the Leroy P. Steele Prizes 
may be found on the AMS website at https://www.ams 
.org/profession/prizes-awards/ams-prizes 
/steele-prize. 

https://www.ams.org/profession/prizes-awards/ams-prizes/steele-prize
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Citation
The Mary P. Dolciani Prize 
for Excellence in Research is 
awarded to Stephan Ramon 
Garcia, W. M. Keck Distin-
guished Service Professor and 
Professor of Mathematics at 
Pomona College, for his out-
standing record of research 
in operator theory, complex 
analysis, matrix theory, and 
number theory, for high-qual-
ity scholarship with a diverse 
set of undergraduates, and for 

his service to the profession.
Garcia received his PhD in Mathematics in 2003 from 

the University of California at Berkeley. He is the author 
of eighty-nine research papers in several areas, including 
operator theory, linear algebra, complex analysis, mathe-
matical physics, and number theory. His work has appeared 
in top research journals, as well as top expository journals, 
and he has been the Principal Investigator on four NSF 
research grants. He has co-authored four books and is 
currently writing two more. Garcia has also co-authored 
over twenty-nine articles with undergraduates, with papers 
appearing in the American Mathematical Monthly, the No-
tices of the American Mathematical Society, Proceedings of the 
American Mathematical Society, and the Journal of Number 
Theory, among others. His paper “G. H. Hardy: Mathemat-
ical Biologist,” written with a student, was included in the 
2016 book series The Best Writing on Mathematics, published 
by Princeton University Press. Garcia currently serves as an 
editor of the Notices of the American Mathematical Society, 
the American Mathematical Monthly, Proceedings of the Amer-

ican Mathematical Society, Annals of Functional Analysis, and 
the undergraduate research journal Involve. He serves on 
the Human Resources Board of the American Institute of 
Mathematics (AIM), whose goal is to foster diversity in the 
activities of AIM. He is also a member of the advisory board 
of Research Experiences for Undergraduate Faculty (REUF), 
an NSF-funded program for faculty who are interested 
in conducting research with underrepresented minority 
students, students with disabilities, and first-generation 
college students.

Garcia’s research began with complex analysis and Hp 
spaces and now includes, among several other topics, op-
erator theory on Hilbert spaces. One of his objectives is to 
develop models for various classes of operators. In a series 
of highly cited papers published in Transactions of the AMS 
and the Journal of Functional Analysis, he and his coauthors 
pioneered the study of complex symmetric operators. 
Specifically, the theory behind linear transformations T 
that are “almost” self-adjoint by means of a conjugate-lin-
ear, isometric involution C; that is, T = CT∗C. Thus, the 
conjugation C works to express an operator in terms of 
its adjoint. These almost self-adjoint operators are called 
complex symmetric operators. Many unexpected and highly 
non-normal operators have been shown to be complex 
symmetric, as have several classes of familiar operators. 
Garcia and his colleagues have developed a structure theory 
for this important (and large) class of operators. They are 
currently developing the machinery to connect truncated 
Toeplitz operators and complex symmetric operators. They 
conjecture that every complex symmetric operator on a 
Hilbert space can be concretely represented in terms of 
truncated Toeplitz operators.

Garcia has also made significant contributions to num-
ber theory. His work in number theory has been primarily 

2019 Mary P. Dolciani Prize  
for Excellence in Research

STEPHAN RAMON GARCIA was awarded the inaugural Mary P. Dolciani Prize for Excellence in Research of the AMS at the 
125th Annual Meeting of the AMS in Baltimore, Maryland, in January 2019.

Stephan Ramon Garcia
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in four areas: geometric lattice theory, exponential sums, 
arithmetic quotient sets, and the behavior of the Euler 
totient near prime arguments. Exponential sums, such as 
Gauss sums, Kloosterman sums, Ramanujan sums, and 
others, are classical objects of study in analytic number 
theory. Garcia’s novel approach was to view these sums 
from the standpoint of supercharacter theory. From this 
perspective, classical exponential sums can be viewed as 
orthogonal functions on certain abelian groups. Garcia 
and his co-authors (many of whom were undergraduate 
students) used this approach to visualize exponential 
sums, exhibiting some rather remarkable and visually 
stunning graphical features of these objects. An arithme-
tic quotient set is a set of fractions a/b, where a and b are 
elements of an infinite arithmetically defined set. Garcia 
and his co-authors explored the relationship between the 
arithmetic properties of a set and the analytic properties of 
its corresponding quotient set, for example its density in 
the positive reals or in p-adic completions of the field of 
rational numbers. Concerning the Euler totient, one strik-
ing recent result of Garcia, his student Elvis Kahoro, and 
Florian Luca (subject to the Bateman–Horn conjecture) is 
that for an overwhelming majority of twin prime pairs (p, 
p + 2), the first prime p has more primitive roots than the 
second, p + 2. Moreover, this is reversed for a small positive 
proportion of the twin primes.

Again, in these rich and deep subject areas, Garcia has 
been able to involve undergraduates in this work.

Biographical Note
Stephan Ramon Garcia is W. M. Keck Distinguished Ser-
vice Professor and Professor of Mathematics at Pomona 
College. He earned his BA and PhD in mathematics from 
UC Berkeley and was a postdoc at UC Santa Barbara. Since 
2006 he has been on the faculty of Pomona College. He 
was recently elected a Fellow of the AMS (2019).

He is the author of over eighty-nine research articles in 
operator theory, complex analysis, matrix analysis, num-
ber theory, discrete geometry, and other fields. Several 
dozen of these papers were co-authored with students, 
many of whom are from underrepresented groups in the 
mathematical sciences. Garcia has also written four books: 
Introduction to Model Spaces and Their Operators (with W. T. 
Ross and J. Mashreghi, Cambridge, 2016), A Second Course 
in Linear Algebra (with R. A. Horn, Cambridge, 2017), Finite 
Blaschke Products and Their Connections (with W. T. Ross 
and J. Mashreghi, Springer, 2018), and 100 Years of Math 
Milestones: The Pi Mu Epsilon Centennial Collection (with S. 
J. Miller, AMS, forthcoming).

Garcia has received four NSF research grants as principal 
investigator and five teaching awards. He serves on the 
editorial boards of the Notices of the American Mathematical 
Society (2019– ), Proceedings of the American Mathematical 
Society (2016– ), Involve (2011– ), the American Mathemat-

ical Monthly (2017– ), and Annals of Functional Analysis  
(2013– ). He has served on the Human Resources Board of 
the American Institute of Mathematics since 2008.

Response from Stephan Ramon Garcia
I am deeply honored to receive the inaugural Mary P. Dol-
ciani Prize for Excellence in Research. Thanks go to the 
American Mathematical Society and the Mary P. Dolciani 
Halloran Foundation for initiating this award. Although I 
am the first recipient of this prize, there are many vibrant 
researchers at non-PhD-granting institutions who are also 
worthy. I look forward to celebrating the achievements of 
future prizewinners in the years to come.

This would not have been possible without the advice 
and support of my many colleagues in the profession 
and the members of my department. I owe a great deal of 
thanks to those mathematicians who mentored me during 
my formative years. My advisor, Donald Sarason, and 
my postdoctoral mentor, Mihai Putinar, are due special 
consideration. I also thank my innumerable co-authors, 
from whom I learned a great deal, and my many research 
students throughout the years. Finally, I wish to thank my 
wife, Gizem Karaali, and our children, Reyhan and Altay, 
for their constant support and affection.

About the Prize
The Mary P. Dolciani Prize for Excellence in Research is 
awarded by the AMS Council acting on the recommen-
dation of a selection committee. The members of the 
committee to select the inaugural winner of the Mary P. 
Dolciani Prize were: 

 • Linda Chen,
 • Pamela Gorkin (Chair),
 • Jeremy T. Teitelbaum. 

The AMS Mary P. Dolciani Prize for Excellence in Re-
search recognizes a mathematician from a department that 
does not grant a PhD who has an active research program 
in mathematics and a distinguished record of scholarship. 
It is funded by a grant from the Mary P. Dolciani Halloran 
Foundation. Mary P. Dolciani Halloran (1923–1985) was 
a gifted mathematician, educator, and author. She devoted 
her life to developing excellence in mathematics education 
and was a leading author in the field of mathematical text-
books at the college and secondary school levels.

Credits
Photo of Stephan Ramon Garcia by Gizem Karaali.
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Citation
The 2019 Ruth Lyttle Satter Prize 
in Mathematics is awarded to 
Maryna Viazovska of École 
Polytechnique Fédérale de Lau-
sanne for her groundbreaking 
work in discrete geometry and 
her spectacular solution to the 
sphere-packing problem in di-
mension eight.

In his 1900 list of outstand-
ing mathematical problems, 
David Hilbert asked, “How 

can one arrange most densely in space an infinite number 
of equal solids of a given form, e.g., spheres with given 
radii…?” Viazovska’s work is a major advance in address-
ing this question. Her 2017 paper in Annals of Mathematics 
shows that the E8 root lattice is the densest sphere packing 
in eight dimensions. Shortly after this much heralded 
breakthrough, Dr. Viazovska, in collaboration with Henry 
Cohn, Abhinav Kumar, Stephen D. Miller, and Danylo 
Radchenko, adapted her methods to prove that the op-
timal sphere-packing density in dimension twenty-four 
is achieved by the Leech lattice. Prior to these results, the 
sphere-packing problem had not been solved beyond di-
mension three. 

Maryna Viazovska’s work has been described as “simply 
magical,” “very beautiful,” and “extremely unexpected.” 
Her solution to the sphere-packing problem in dimension 
eight, while conceptually simple, has a deep structure based 
on certain functions that she explicitly constructs in terms 
of modular forms. It establishes a new, unanticipated con-
nection between modular forms and discrete geometry. 

Dr. Viazovska’s earlier results on spherical designs are 
fundamental contributions to the topic. Her 2013 Annals 
of Mathematics paper with Andriy Bondarenko and Danylo 
Radchenko solved a conjecture of J. Korevaar and J. L. H. 
Meyers by showing for N > Cdt

d, where Cd is a positive 
constant depending only on d, that spherical t-designs with 
N points exist in the unit sphere Sd. Spherical designs have 
been essential tools of practical importance in the statisti-
cal design of experiments and in both combinatorics and 
geometry. Most recently, spherical t-designs have appeared 
in the guise of quantum t-designs with applications to 
quantum information theory and quantum computing.

For more about the proof and background on the 
sphere-packing problem, see  “A conceptual breakthrough 
in sphere packing,” by Henry Cohn, Notices of the AMS, 64 
(2017), no. 2; 102–115.

Biographical Sketch
Maryna Viazovska was born in Ukraine and received her 
doctorate from the University of Bonn in 2013. She was a 
postdoctoral researcher at Berlin Mathematical School and 
Humboldt University of Berlin, as well as a Minerva Distin-
guished Visitor at Princeton University, before joining the 
faculty at Lausanne as a full professor in 2018. She has been 
awarded the Salem Prize (2016), a Clay Research Award 
(2017), the SASTRA Ramanujan Prize (2017), a European 
Prize in Combinatorics (2017), and a New Horizons Prize 
in Mathematics (2018). She was an invited speaker at the 
2018 International Congress of Mathematicians in Rio de 
Janeiro.

2019 Ruth Lyttle Satter Prize 
in Mathematics

MARYNA VIAZOVSKA was awarded the 2019 Ruth Lyttle Satter Prize in Mathematics at the 125th Annual Meeting of the 
AMS in Baltimore, Maryland, in January 2019.

Maryna Viazovska
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About the Prize
The Ruth Lyttle Satter Prize is awarded every two years to 
recognize an outstanding contribution to mathematics 
research by a woman in the previous six years. Established 
in 1990 with funds donated by Joan S. Birman, the prize 
honors the memory of Birman’s sister, Ruth Lyttle Satter.  
Satter earned a bachelor's degree in mathematics and then 
joined the research staff at AT&T Bell Laboratories during 
World War II. After raising a family, she received a PhD 
in botany at the age of forty-three from the University of 
Connecticut at Storrs, where she later became a faculty 
member. Her research on the biological clocks in plants 
earned her recognition in the United States and abroad. 
Birman requested that the prize be established to honor her 
sister's commitment to research and to encourage women 
in science. The prize carries a cash award of US$5,000. 

The Satter Prize is awarded by the AMS Council acting 
on the recommendation of a selection committee. For the 
2019 prize, the following individuals served as members 
of the selection committee:

 • Georgia Benkart, 
 • Estelle Basor (Chair),
 • Richard Taylor.

Credits
Photo of Maryna Viazovska is courtesy of Maryna Viazovska.

A list of previous recipients of the Ruth Lyttle Sat-
ter Prize in Mathematics may be found on the AMS 
website at https://www.ams.org/profession/ 
prizes-awards/pabrowse?purl=satter-prize.

https://www.ams.org/profession/prizes-awards/pabrowse?purl=satter-prize
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Citation
The 2019 Levi L. Conant Prize 
is awarded to Alex Wright for 
his article “From rational bil-
liards to dynamics on moduli 
spaces,” published in 2016 in 
the Bulletin (New Series) of the 
American Mathematical Society; 
53 (2016), no.1, 41–56.

In only sixteen pages, the 
article gives a panoramic view 
of the theory of translation 
surfaces and of the recent 
breakthrough by Alex Eskin, 

Maryam Mirzakhani, and Amir Mohammadi on the struc-
ture of the orbit closure of a translation surface. Wright’s 
account combines brevity with clarity. It is a considerable 
feat: this active and highly technical research area comprises 
the work of many. The article gives nonspecialists a good 
entry point and a guide to further reading.

The article starts with motivation from billiards inside 
planar polygons. The billiard dynamical system describes 
the motion of a particle in a domain, subject to specular 
reflections off the boundary. Many mechanical systems with 
elastic collisions, that is, collisions in which the energy and 
momentum are preserved, are described as billiard systems. 
Little is known about billiards in general polygons (for ex-
ample, we still do not know whether every obtuse triangle 
has a periodic billiard trajectory!); the situation is consider-
ably better understood when the angles of the polygon are 
π-rational, because of their relation to translation surfaces. 
A translation surface is a surface that is presented as a finite 
collection of planar polygons, glued together along pairings 
of parallel edges. Reflected copies of rational polygons are 
special examples of translation surfaces.

Through ample figures and examples, Wright gives a 
simple definition of translation surfaces and their moduli 

space, clearly explains the relation to rational billiards, and 
describes an action of the general linear group GL(2, R) 
on the moduli space. He provides a brief survey of semi-
nal work by Kerckhoff, Masur, Smillie, and Veech (in the 
1980–1990s), including the surprising result by Veech that 
billiards in a regular polygon share a familiar property with 
billiards in a square: in countably many directions, every 
billiard trajectory is periodic, but in every other direction, 
trajectories are equidistributed.

The second half of the article is devoted to the recent 
breakthrough by Eskin, Mirzakhani, and Mohammadi: the 
closure of the GL(2, R) orbit of a translation surface is always a 
manifold, defined locally by linear equations in (the standard) 
period coordinates.

Wright outlines the proof and describes the relation of 
this theorem to other fundamental results, such as Rat-
ner’s orbit closure theorem and the high and low entropy 
methods of Einsiedler, Lindenstrauss, and Katok in homo-
geneous space dynamics. Wright also describes an intimate 
connection between moduli of translation surfaces and 
Teichmüller theory.

Several applications of the theorem are presented. For 
example, given a polygon and two points x and y inside 
it, the illumination problem asks whether there exists a 
billiard trajectory in the polygon from x to y. Recently, 
Lelièvre, Monteil, and Weiss proved that if the polygon is 
rational, then for every x there are at most finitely many y 
not illuminated by x; this work relies heavily on the theo-
rem of Eskin, Mirzakhani, and Mohammadi.

Over the years, a number of surveys of the theory of 
translation surfaces and related topics have appeared, from 
lengthy and detailed ones to short overviews of the subject. 
Wright’s article is based on his talk in the Current Events 
Bulletin at the Joint Mathematics Meetings in January of 
2015. It is a tribute to the work of Maryam Mirzakhani, 
who passed away in 2017.

2019 Levi L. Conant Prize

ALEX WRIGHT was awarded the 2019 Levi L. Conant Prize at the 125th Annual Meeting of the AMS in Baltimore, Mary-
land, in January 2019.

Alex Wright
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Biographical Note
Alex Wright received his BMath at the University of Wa-
terloo in 2008 and his PhD at the University of Chicago 
in 2014. He was then awarded a five-year Clay Research 
Fellowship, which he held primarily at Stanford University. 
He is now at the University of Michigan. His research inter-
ests include Teichmüller theory, geometry, and dynamical 
systems, including special families of algebraic curves that 
arise in this context. In 2018 he received the Michael Brin 
Dynamical Systems Prize for Young Mathematicians.

Response from  Alex  Wright
I’m honored to receive this recognition for my expository 
article on the breakthrough work of Eskin, Mirzakhani, and 
Mohammadi. This work lies in Teichmüller dynamics, and 
yet it has remarkable connections to toy models in physics, 
other dynamical systems, ergodic theory on homogeneous 
spaces, and special families of algebraic curves. I am espe-
cially thankful to Alex Eskin and Maryam Mirzakhani for 
teaching me so much about the field. I’m also grateful to 
David Eisenbud for inviting me to speak on this topic at 
the Current Events Bulletin, and to Susan Friedlander for 
encouraging me to publish an article based on that talk.

About the Prize
The Levi L. Conant Prize is awarded by the AMS Council 
acting on the recommendation of a selection committee. 
For the 2019 prize, the selection committee consisted of 
the following individuals:

 • Thomas C. Hales (Chair),
 • Izabella Joanna Laba,
 • Serge L. Tabachnikov.

The Levi L. Conant Prize is awarded annually to recog-
nize an outstanding expository paper published in either 
the Notices of the AMS or the Bulletin of the AMS in the 
preceding five years.

Established in 2001, the prize honors the memory of 
Levi L. Conant (1857–1916), who was a mathematician 
at Worcester Polytechnic Institute. The prize carries a cash 
award of US$1,000.

Credits
Photo of Alex Wright is courtesy of Alex Wright.

A list of previous recipients of the Levi L. Conant 
Prize may be found on the AMS website at https://
www.ams.org/profession/prizes-awards 
/pabrowse?purl=conant-prize.

https://www.ams.org/profession/prizes-awards/pabrowse?purl=conant-prize
https://www.ams.org/profession/prizes-awards/pabrowse?purl=conant-prize
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Citation
The 2019 E. H. Moore Research 
Article Prize is awarded to the 
paper “Pin(2)-equivariant 
Seiberg–Witten Floer homol-
ogy and the triangulation con-
jecture” by Ciprian Manolescu, 
published in the Journal of the 
American Mathematical Society; 
29 (2016), no.1, 147–176.

This paper resolves the Tri-
angulation Conjecture, show-
ing that there are topological 

manifolds that do not admit a simplicial triangulation in 
each dimension greater than 4. This is achieved by introduc-
ing Pin(2)-equivariant Seiberg–Witten Floer homology to 
give homology cobordism invariants of oriented homology 
3-spheres, including an integral lift of the Rokhlin invari-
ant which is negated by taking the mirror image (reverse 
orientation). The new invariants are powerful enough to 
show that there does not exist a homology 3-sphere with 
Rokhlin invariant 1 which is homology cobordant to its 
mirror image. In turn, this implies the existence of non 
triangulable manifolds in dimensions 5 and higher by the 
work of D. E. Galewski and R. J. Stern and of T. Matumoto. 
Note that it was known before that 2- and 3-dimensional 
manifolds are triangulable, and there are 4-manifolds 
which do not admit a triangulation, thus resolving the 
triangulation question in all dimensions.

One expert referred to this as a “landmark article.” 
Moreover, the techniques from the paper are already being 
applied to answer other questions in low-dimensional 
topology, for example regarding the homology cobordism 

groups, and inspired a related theory of involutive Hee-
gaard Floer homology.

Biographical Sketch
Ciprian Manolescu was born in Romania in 1978. He 
received his BA in 2001 and his doctorate in 2004, both 
from Harvard University. After appointments at Princeton 
University, Columbia University, and the University of 
Cambridge, he joined the University of California, Los  
Angeles, where he is now a professor. He was previously 
awarded the Frank and Brennie Morgan Prize, a Clay Re-
search Fellowship, and a European Mathematical Society 
Prize. In 2017 he became a Fellow of the American Mathe-
matical Society, and in 2018 he gave an invited talk at the 
International Congress of Mathematicians.

Response from Ciprian Manolescu
I feel very honored to receive the E. H. Moore Research 
Article Prize from the AMS. The main result of the paper is 
the existence of non triangulable manifolds in dimensions 
at least 5. In principle, a low-dimensional topologist like 
me could have no hope of proving such a result. Luckily, 
in the 1970s, David Galewski, Ron Stern, and Takao Ma-
tumoto managed to reduce this statement to a conjecture 
about the homology cobordism group in dimension 3, 
and this is the conjecture I proved. They deserve more 
than half of the credit for the final theorem. I would like 
to thank my mentors Peter Kronheimer, Mike Hopkins, 
and Lars Hesselholt. With their help, during my student 
years at Harvard I developed a stable homotopy version of 
Seiberg–Witten Floer homology. I found a few applications 
for this construction back then, but the theory lay more or 
less dormant for the next decade. In 2012 I started thinking 
about homology cobordism, and I then realized that by 

2019 E.H. Moore  
Research Article Prize

CIPRIAN MANOLESCU was awarded the 2019 E. H. Moore Research Article Prize at the 125th Annual Meeting of the AMS 
in Baltimore, Maryland, in January 2019.

Ciprian Manolescu
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incorporating an extra symmetry into my old construction 
I could get new information. The result was the article cited 
for this award. I am happy to see that, in the past few years, 
several young mathematicians have further developed the 
techniques from my paper to yield even more insight into 
homology cobordism. I would particularly like to acknowl-
edge the contributions of Irving Dai, Kristen Hendricks, 
Jennifer Hom, Tye Lidman, Francesco Lin, Jianfeng Lin, 
Matt Stoffregen, Linh Truong, and Ian Zemke. It was a plea-
sure having some of them as collaborators and students. 
Finally, I want to thank my colleagues at UCLA for making 
the department a great place to do research.

About the Prize
The E.H. Moore Research Article Prize is awarded every 
three years for an outstanding research article that appeared 
in one of the primary AMS research journals: Journal of the 
AMS, Proceedings of the AMS, Transactions of the AMS, AMS 
Memoirs, Mathematics of Computation, Electronic Journal 
of Conformal Geometry and Dynamics, or Electronic Journal 
of Representation Theory. The article must have appeared 
during the six calendar years ending a full year before the 
meeting at which the prize is awarded. The prize carries a 
cash award of US$5,000. 

The prize honors the extensive contributions of E. H. 
Moore (1862–1932) to the AMS.  Moore founded the 
Chicago section of the AMS, served as the Society's sixth 
president (1901–1902), delivered the Colloquium Lectures 
in 1906, and founded and nurtured the Transactions of the 
AMS.

The E.H. Moore Research Article Prize is awarded by the 
AMS Council acting on the recommendation of a selection 
committee. For the 2019 prize, the members of the selection 
committee were:

 • Ian Agol (Chair),
 • F. Michael Christ,
 • Sergio Roberto Fenley,
 • Nets H. Katz,
 • Claire Marie Voisin.

Credits
Photo of Ciprian Manolescu is courtesy of Reed Hutchinson.

A list of previous recipient of the E.H. Moore  
Research Article Prize may be found on the AMS 
website at https://www.ams.org/profession/ 
prizes-awards/pabrowse?purl=moore-prize.

https://www.ams.org/profession/prizes-awards/pabrowse?purl=moore-prize
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Citation
The David P. Robbins Prize is awarded to Roger Behrend, 
Ilse Fischer, and Matjaz̆ Konvalinka for the paper “Di-
agonally and antidiagonally symmetric alternating sign 
matrices of odd order,” published in 2017 in Advances in 
Mathematics.

In this work, Behrend, Fischer, and Konvalinka prove, 
after more than thirty years, the conjectured formula for 
the number of odd-order diagonally and antidiagonally 
symmetric alternating sign matrices, the last remaining of 
David Robbins’s conjectures on alternating sign matrices.  

An alternating sign matrix (ASM) is a square matrix in 
which every entry is 0, 1, or –1, and along each row and 
column the nonzero entries alternate in sign and have a 
sum of 1. They were introduced by David Robbins and 
Howard Rumsey in work on a certain generalization of 
the determinant where these matrices surfaced naturally. 
Robbins, in the mid-1980s, initiated a program of counting 
symmetry classes of ASMs of a given size and conjectured 
remarkably simple product formulae for most of these 
symmetry classes. The quote from his 1991 survey paper 
reads: “These conjectures are of such compelling simplic-
ity that it is hard to understand how any mathematician 

can bear the pain of living without 
understanding why they are true.”

All had been proven by 2006, 
with the exception of the conjecture 
for diagonally and antidiagonally 
symmetric ASMs, which had resisted 
proof until the present paper.

The Robbins conjectures have led 
to the development of new methods 
of enumeration, as well as to the 
discovery of deep connections to 
statistical physics. The first break-
through came in 1996, with the 
proof by Doron Zeilberger that n × n 

ASMs are equinumerous with totally symmetric, self-com-
plementary plane partitions in a 2n × 2n × 2n box, for which 
George Andrews had derived a simple product formula. 
In the same year, Greg Kuperberg made the connection to 
statistical physics by deriving the same ASM enumeration 
from the Izergin–Korepin determinant for a partition func-
tion for the six-vertex model on a square grid with domain 
wall boundary conditions. Kuperberg subsequently used 
this approach to enumerate three other symmetry classes of 
ASMs, and the enumeration by Roger Behrend, Ilse Fischer, 
and Matjaz̆ Konvalinka builds on his work.

The main technical tool introduced by Kuperberg is a set 
of determinants and Pfaffian formulae for ASM partition 
functions, and it is these formulae that explain why the enu-
meration formulae are products of small factors. Behrend, 
Fischer, and Konvalinka arrive at a partition function with a 
compact formula by introducing vertex weights, depending 
on many parameters, into the model. Through computa-
tional experiments, they were able to guess the form of the 
partition function, which of course depends fundamentally 
on the choice of weights. To arrive at the compact formula, 
they took advantage of the observation by Soichi Okada, 
and by Alexander Razumov and Yuri Stroganov, that parti-

2019 David P. Robbins Prize

ROGER BEHREND, ILSE FISCHER, and MATJAZ̆ KONVALINKA were awarded the 2019 David P. Robbins Prize at the 125th Annual 
Meeting of the AMS in Baltimore, Maryland, in January 2019.

Roger Behrend Ilse Fischer Matjaz̆ Konvalinka
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tion functions associated with ASM enumeration can often 
be written in terms of determinants which are associated 
with characters of irreducible representations of classical 
groups. In this case the partition function turns out to be 
a sum of two determinants, and each determinant reduces 
at some point to a Schur function.

The David P. Robbins Prize is awarded to a novel research 
paper in algebra, combinatorics, or discrete mathematics 
with a significant experimental component. This proof 
of the last remaining of David Robbins’s conjectures on 
alternating sign matrices is a shining example. Not only is 
it a crowning achievement that makes use of deep meth-
ods developed by a community of researchers over more 
than twenty-five years, it is also a paper that makes new 
problems accessible.

Biographical Sketch: Roger Behrend
Roger Behrend was born in Melbourne, Australia. He 
studied mathematics and physics at the University of Mel-
bourne and Imperial College London, receiving a PhD in 
mathematical physics from the University of Melbourne 
in 1997. Between 1997 and 2000, he held postdoctoral 
positions at the Physics Institute of the University of Bonn 
and the C. N. Yang Institute for Theoretical Physics at Stony 
Brook University. He has worked in the School of Mathe-
matics at Cardiff University since 2001 and held a visiting 
position in the Faculty of Mathematics at the University 
of Vienna during 2017–2018. His research throughout the 
past decade has been in combinatorics. Much of his spare 
time is spent listening to classical music.

Response from Roger Behrend
I feel deeply honored to receive the David P. Robbins Prize 
together with my collaborators Ilse Fischer and Matjaz̆ 
Konvalinka. It is fitting that in the research recognized by 
this award, we proved a conjecture of Robbins himself, 
and that this conjecture involved alternating sign matri-
ces, which were first encountered by David Robbins and 
Howard Rumsey.

I believe that our construction of a proof of Robbins’s 
conjecture for the number of odd-order diagonally and 
antidiagonally symmetric alternating sign matrices lies 
some distance from both the beginning and the end of 
the overall story of alternating sign matrices. Looking back, 
the proof depended on a significant body of earlier work, 
including that of Mills, Robbins, Rumsey, Izergin, Korepin, 
Zeilberger, Kuperberg, Okada, Razumov, and Stroganov. 
Looking forward, there remain many intriguing mysteries 
still to be resolved. As an important example, bijective 
proofs are currently lacking for known equalities between 
numbers of alternating sign matrices and numbers of cer-
tain plane partitions.

I am thankful to my wife Rachael and to my colleagues, 
family, and friends for their support throughout my explo-
ration of the fascinating world of alternating sign matrices. 

Biographical Sketch: Ilse Fischer
Ilse Fischer received her doctoral degree in 2000 from 
the University of Vienna under the direction of Christian 
Krattenthaler. After some years as a postdoctoral researcher 
at the University of Klagenfurt, she returned to a faculty 
position at the University of Vienna in 2004. In 2009 
she was awarded the START prize of the Austrian Federal 
Ministry for Science, the most prestigious award for young 
researchers in Austria, and a 1.1 million € research grant 
endowment. In 2017 she was promoted to full professor. 
Her research is devoted to enumerative and algebraic 
combinatorics, and its connections to statistical physics 
and other fields.

Response from Ilse Fischer
The idea of working on Robbins’s last open conjecture on 
alternating sign matrices slowly manifested in my mind as 
I was writing a grant proposal about ten years ago, when I 
identified it as an ultimate, albeit unrealistic, goal. In the 
beginning I hardly dared spend much time on it, but every 
now and then I discussed it with other combinatorialists. 
Roger Behrend and Matjaz̆ Konvalinka were obviously 
among them, but I also had a particularly fruitful exchange 
with Arvind Ayyer back in 2012, which led us to several 
conjectures on the enumeration of extreme diagonally and 
antidiagonally symmetric alternating sign matrices of odd 
order. About three years later, Arvind, Roger, and I were 
able to prove these conjectures, and to some extent also 
this work paved the way for the eventual proof of Robbins’s 
conjecture. I feel deeply honored and moved to now receive, 
together with Matjaz̆ and Roger, the David P. Robbins Prize. 

I would like to express my appreciation for the initiative 
to support mathematical research with an experimental 
component. Results discovered through experiment rather 
than intuition have the potential to be particularly surpris-
ing, and proving them can present a challenge because 
initially one may have no clue as to the reason why they 
are true. The area of enumerative combinatorics Robbins 
and several others originated serves as a good example: 
They introduced objects such as alternating sign matrices, 
plane partitions, and lozenge tilings, and while for most 
enumerations no explicit formula exists containing, say, 
only the basis arithmetic operations, certain enumerations 
of those objects are expressible by simple product formulas, 
which were usually discovered through computer exper-
iments. Although all of Robbins’s conjectures have now 
been proven, the proofs are complicated and we still lack 
thorough understanding just in what situations to expect 
a simple enumeration formula, nor are we able to explain 
phenomena such as the same enumeration formula ap-
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is on a topic broadly accessible, and (4) provides a simple 
statement of the problem and clear exposition of the work. 
The US$5,000 prize is awarded every three years. 

The David P. Robbins Prize is awarded by the AMS 
Council acting on the recommendation of a selection 
committee. The members of the 2016 David P. Robbins 
Prize Committee were:

 • Nola Alon 
 • Robert Calderbank (Chair)
 • Timothy Chow 
 • Sylve Corteel
 • Avi Wigderson

Credits
Photo of Roger Behrend is courtesy of Roger Behrend.
Photo of Ilse Fischer is by Barbara Mair ©University of  

Vienna.
Photo of Matjaz̆ Konvalinka is by Peter Legis̆a.

pearing in the context of two very different combinatorial 
objects. Much of my past and current research has been 
driven by these questions.

Biographical Sketch: Matjaz̆ Konvalinka
Matjaz̆ Konvalinka was born in Ljubljana, Slovenia. He ob-
tained his bachelor’s and master’s degrees at the University 
of Ljubljana, and his PhD at the Massachusetts Institute of 
Technology in 2008 under Igor Pak. He held a postdoctoral 
position at Vanderbilt University until 2010, and has been 
a professor at the Faculty of Mathematics and Physics, 
University of Ljubljana, since then. In 2012, he received a 
University award for excellent teaching and research. He 
mostly works in enumerative and algebraic combinatorics, 
and particularly enjoys bijective proofs, Schur functions, 
and tableaux combinatorics.

Response from Matjaz̆ Konvalinka
I am deeply honored to be one of the recipients of the AMS 
David P. Robbins Prize. One of the reasons I love combi-
natorics is that many of its problems can be explained to a 
child, even when they are fiendishly hard to solve, and they 
inspire deep new tools and theorems. Problems involving 
alternating sign matrices are a prime example of this. Com-
binatorialists will forever be grateful to David Robbins and 
his coauthors for introducing them to the community and 
for the conjectures related to their enumeration.

I owe a debt of gratitude to many people. First and 
foremost I have to thank Ilse and Roger, my coauthors, 
both amazing mathematicians and people. They are truly 
worthy recipients of this prize. I am also deeply grateful 
to Marko Petkovšek for my first combinatorics courses; to 
my PhD advisor Igor Pak for everything he taught me and 
for always knowing what problems I will like; to Richard 
Stanley for his wonderful lectures, papers, and books; and 
to Sara Billey for being the best collaborator and friend one 
could imagine. My colleagues and students at the University 
of Ljubljana are a big part of why I enjoy my job. Many 
thanks also go to my husband Danijel and our daughter 
Ana, to the rest of my family, and to my friends, not least 
for seeming less surprised by this prize than I am.

About the Prize
The David P. Robbins Prize was established in 2005 in 

memory of David P. Robbins by members of his family. 
Robbins, who died in 2003, received his PhD in 1970 from 
the Massachusetts Institute of Technology. He was a long-
time member of the Institute for Defense Analysis Center 
for Communications Research and a prolific mathema-
tician whose work (much of it classified) was in discrete 
mathematics. The prize is given for a paper published 
during the preceding six calendar years that (1) reports on 
novel research in algebra, combinatorics, or discrete math-
ematics, (2) has a significant experimental component, (3) 

A list of previous recipients of the David P. Robbins 
Prize can be found on the AMS website at: http://www 
.ams.org/profession/prizes-awards/ams-prizes 
/robbins-prize.

http://www.ams.org/profession/prizes-awards/ams-prizes/robbins-prize
http://www.ams.org/profession/prizes-awards/ams-prizes/robbins-prize
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Citation
The 2019 Oswald Veblen Prize in Geometry is awarded to 
Xiuxiong Chen, Simon Donaldson, and Song Sun for the 
three-part series entitled “Kähler–Einstein Metrics on Fano 
Manifolds, I, II and III” published in 2015 in the Journal 
of the American Mathematical Society, in which Chen, Don-
aldson, and Sun proved a remarkable nonlinear Fredholm 
alternative for the Kähler–Einstein equations on Fano 
manifolds. They show that this fully nonlinear PDE can be 
solved if and only if a certain stability condition involving 
only finite-dimensional algebro-geometric data holds.

In 1982 Shing-Tung Yau received the Fields Medal in 
part for his 1978 proof of the so-called Calabi Conjecture. 
In particular Yau proved that if the first Chern class of a 
compact Kähler manifold vanishes (respectively, is nega-
tive), then it admits a Kähler–Einstein metric, i.e., there is 
a unique Kähler metric in the same class with vanishing 
(respectively, constant negative) Ricci curvature.

Yau later conjectured that a solution in the case of Fano 
manifolds, i.e., those with positive first Chern class, would 

necessarily involve an algebro-geo-
metric notion of stability. Seminal 
work of Gang Tian and then Don-
aldson clarified and generalized this 
idea. The resulting conjecture—that 
a Fano manifold admits a Kähler–
Einstein metric if and only if it is 
K-stable—became one of the most 
active topics in geometry. In 1997 
Tian introduced the notion of K-sta-
bility used in the cited papers, and 
used this to demonstrate that there 
are Fano manifolds with trivial au-

tomorphism group which do not admit Kähler–Einstein 
metrics.

Proving this conjecture had long been understood to 
involve a vast combination of ideas from symplectic and 
complex geometry, infinite-dimensional Hamiltonian 
reduction, and geometric analysis. All methods involved 
some kind of continuity method; in 2011 Donaldson pro-
posed one involving Kähler–Einstein metrics with cone 
singularities (published by Springer in Essays in Mathematics 
and Its Applications in 2012).

One of the main technical obstacles then was how to 
control certain limits of sequences of Kähler metrics on 
Fano manifolds (equivalently, how to obtain the “par-
tial C0-estimate”). One can take the so-called Gromov– 
Hausdorff limit, but a priori this could be a metric space 
with no algebro-geometric description.

It was a huge breakthrough when, in 2012, Donald-
son and Sun managed to use Bergman kernels to put the 
structure of a normal projective algebraic variety on the 
Gromov–Hausdorff limit of a noncollapsing sequence of 

2019 Oswald Veblen Prize 
in Geometry

The 2019 Oswald Veblen Prize in Geometry was presented at the 125th Annual Meeting of the AMS in Baltimore, 
Maryland, in January 2019. The prize was awarded to XIUXIONG CHEN, SIMON DONALDSON, and SONG SUN.

Xiuxiong Chen Simon Donaldson Song Sun
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polarized Kähler manifolds with bounded Ricci curvature 
(published in Acta Mathematica in 2014).

Chen, Donaldson, and Sun gave a complete solution 
of the conjecture for Fano manifolds a few months later. 
The announcement was published in International Mathe-
matics Research Notices in 2014, and full proofs followed in 
“Kähler–Einstein metrics on Fano manifolds. I: Approxima-
tion of metrics with cone singularities,” “Kähler–Einstein 
metrics on Fano manifolds. II: Limits with cone angle less 
than 2π,” and “Kähler–Einstein metrics on Fano manifolds. 
III: Limits as cone angle approaches 2π and completion 
of the main proof,” all published in 2015 in the Journal 
of the AMS.

As one nominator put it, “This is perhaps the biggest 
breakthrough in differential geometry since Perelman’s 
work on the Poincaré conjecture. It is certainly the biggest 
result in Kähler geometry since Yau’s solution of the Calabi 
conjecture thirty-five years earlier. It is already having a 
huge impact that will only grow with time.”

Biographical Note: Xiuxiong Chen
Xiuxiong Chen received his undergraduate degree in 1987 
from the University of Science and Technology of China 
(USTC) and a master’s degree from the graduate school 
of USTC and the Academia Sinica in 1989, supervised 
by JiaGui Peng in geometry and Weiyue Ding in anal-
ysis. He then moved to the University of Pennsylvania 
in 1989 for his doctoral degree under the supervision 
of E. Calabi. He held positions at McMaster University 
(1994–1996), Stanford University (1996–1998), Princeton 
University (1998–2002), and the University of Wisconsin– 
Madison (2002–2009). Since 2009 he has been a professor 
of mathematics at Stony Brook University. He was an in-
vited speaker at ICM 2002 in Beijing and is a 2015 Fellow 
of the American Mathematical Society and a 2016 Simons 
Fellow in mathematics. Over his career, he has supervised 
around twenty PhD students in mathematics.

Biographical Note: Simon Donaldson
Simon Donaldson received his undergraduate degree in 
1978 from Cambridge University and moved to Oxford 
for his doctorate, supervised by Michael Atiyah and Nigel 
Hitchin. He held positions in Oxford and Stanford before 
moving to Imperial College, London, in 1998. At present 
he is a permanent member of the Simons Center for Ge-
ometry and Physics, Stony Brook. Over his career he has 
supervised about forty-five doctoral students, many of 
whom are now leading figures in mathematical research. 
Donaldson was awarded a Fields Medal in 1986 for his 
work on gauge theory and four-dimensional manifolds, 
and he has made contributions to several other branches 
of differential geometry. He was an invited speaker at ICMs 
in 1983, 1986, 1998, and 2018. He has held a number of 
editorial positions (including, currently, the Journal of the 

AMS), and served on a variety of committees, including the 
Executive Committee of the International Mathematical 
Union (1994–2002).

Biographical Note: Song Son
Song Sun was born in 1987 in Huaining, Anhui province, 
China. He received a BS from the University of Science and 
Technology of China in 2006 and a PhD from the Univer-
sity of Wisconsin–Madison in 2010, supervised by Xiuxiong 
Chen. He held a postdoctoral position at Imperial College 
London from 2010–2013, and then became an assistant 
professor at Stony Brook University. In 2018, he joined the 
faculty at University of California, Berkeley. Sun received 
an Alfred P. Sloan Research Fellowship in 2014, and was an 
invited speaker at ICM 2018 in Rio de Janeiro.

Response from Xiuxiong Chen, 
Simon Donaldson, and Song Sun
It is a great honor to be awarded the 2019 Oswald Veblen 
Prize for our work on Kähler–Einstein metrics. Our work 
builds on that of many others. In 1954, Calabi proposed 
his vision of far-reaching existence theorems for canonical 
metrics on Kähler manifolds—a vast extension of the clas-
sical theory for Riemann surfaces. The foundation for this 
vision came from the developments of complex differential 
geometry over the preceding decades by Kähler, Hodge, 
Chern, and others. In its general formulation, involving 
“extremal” Kähler metrics, Calabi’s problem remains to a 
large extent open, but in the case of Kähler–Einstein metrics 
the existence theory is now in a relatively satisfactory state. 
A crucial breakthrough by S.-T. Yau, which famously dealt 
with the cases of negative or zero first Chern class, was 
recognized in the 1981 Veblen Prize. Many mathematicians 
have contributed to the understanding of the remaining 
“positive” case over the four decades since Yau’s work. We 
feel very fortunate and privileged to have had the oppor-
tunity to play a part in this long story.

Our cited work interweaves strands from several different 
fields. One is the theory of the complex Monge–Ampère 
equation, with estimates in the style going back to Calabi 
and Yau, but also with modern developments which extend 
the theory to singular varieties. Another is the convergence 
theory of Riemannian manifolds with Ricci curvature 
bounds: our work blends these ideas with complex geome-
try through the L2 or “Hörmander” method. A third strand 
brings in the circle of ideas linking geometric invariant 
theory in algebraic geometry, and notions of “stability,” 
to symplectic geometry. In the few years following our 
cited work, several other proofs of the main result have 
appeared, but all sharing a similar diversity of techniques. 
This diversity is an intrinsic feature of the problem, which 
seeks a bridge between differential and algebraic geometry. 
While our work provides an answer to one long-standing 
question, these recent developments open up wonderful 
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new vistas, for example in the study of moduli spaces and 
singularities, within this grand theme.  

We are very glad to have this opportunity to thank our 
wives—Holly, Nora, and Jiajia—for their wonderful sup-
port, which was crucial for us in completing this work. 
Xiuxiong Chen wishes to take this opportunity to thank 
his advisor, E. Calabi, for his mathematical guidance and 
inspiration.

About the Prize
The Oswald Veblen Prize in Geometry is awarded every 
three years for a notable research memoir in geometry or 
topology that has appeared during the previous five years 
in a recognized North American journal (until 2001 the 
prize was usually awarded every five years). Established 
in 1964, the prize honors the memory of Oswald Veblen 
(1880–1960), who served as president of the AMS during 
1923–1924. It was established in 1961 in memory of Ve-
blen through a fund contributed by former students and 
colleagues and later doubled by Veblen's widow.  In 2013, 
Cathleen Synge and Herbert Morawetz made a major dona-
tion that substantially increased the prize fund.  Cathleen 
S. Morawetz served as president of the AMS in 1995–1996. 
The Veblen Prize carries a cash award of US$5,000. 

The Veblen Prize is awarded by the AMS Council acting 
on the recommendation of a selection committee. For the 
2019 prize, the members of the selection committee were:

 • Danny C. Calegari,
 • Albert Marden (Chair),
 • Ulrike Tillmann.

Credits
Photo of Xiuxiong Chen is by Holly Chen.
Photo of Simon Donaldson is courtesy of Simon Donaldson.
Photo of Song Sun is by Jia Jia He.

A list of previous recipients of the Oswald  
Veblen Prize in Geometry may be found on 
the AMS website at https://www.ams.org 
/profession/prizes-awards/pabrowse?purl 
=veblen-prize.

https://www.ams.org/profession/prizes-awards/pabrowse?purl=veblen-prize
https://www.ams.org/profession/prizes-awards/pabrowse?purl=veblen-prize
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Citation: Marsha Berger
The 2019 Norbert Wiener Prize 
in Applied Mathematics is 
awarded to Marsha Berger for 
her fundamental contributions 
to Adaptive Mesh Refinement 
and to Cartesian mesh tech-
niques for automating the sim-
ulation of compressible flows 
in complex geometry.

In solving partial differen-
tial equations, Adaptive Mesh 
Refinement (AMR) algorithms 
can improve the accuracy of a 
solution by locally and dynam-

ically resolving complex features of a simulation. Marsha 
Berger is one of the inventors of AMR. The block-structured 
approach to AMR was introduced by Berger in her 1982 
thesis, and, from this, the Berger–Oliger algorithm and 
the Berger–Colella algorithm were developed by Berger, 
Joseph Oliger, and Phillip Colella. Berger provided the 
mathematical foundations, algorithms, and software that 
made it possible to solve many otherwise intractable sim-
ulation problems, including those related to blood flow, 
climate modeling, and galaxy simulation. Her mathemat-
ical contributions include local error estimators to identify 
where refinement is needed, stable and conservative grid 
interface conditions, and embedded boundary and cut-
cell methods. She is part of the team that created Cart3D, 
a NASA code based on her AMR algorithms that is used 
extensively for aerodynamic simulations and which was 
instrumental in understanding the Columbia Space Shuttle 
disaster. She also helped build GeoClaw, an open source 
software project for ocean-scale wave modeling. It is used 

2019 Norbert Wiener Prizes 
in Applied Mathematics

The 2019 Norbert Wiener Prizes in Applied Mathematics were presented at the 125th Annual Meeting of the AMS in 
Baltimore, Maryland, in January 2019. The prizes were awarded to MARSHA BERGER and to ARKADI NEMIROVSKI.

to simulate tsunamis, debris flows, and dam breaks, among 
other applications.

Biographical Note: Marsha Berger
Marsha Berger received her PhD in computer science from 
Stanford in 1982. She started as a postdoc at the Courant 
Institute of Mathematical Sciences at NYU, and is currently 
a Silver Professor in the computer science department, 
where she has been since 1985.

She is a frequent visitor to NASA Ames, where she has 
spent every summer since 1990 and several sabbaticals. Her 
honors include membership in the National Academy of 
Sciences, the National Academy of Engineering, and the 
American Academy of Arts and Science. She is a fellow of 
the Society for Industrial and Applied Mathematics. Berger 
was a recipient of the Institute of Electrical and Electronics 
Engineers Fernbach Award and was part of the team that 
won the 2002 Software of the Year Award from NASA for 
their Cart3D software.

Response  from Marsha Berger
What a thrill to learn that I will be one of the recipients 
of the 2019 Norbert Wiener Prizes! One of the main en-
joyments I get from my research is developing tools to 
solve real problems in aerodynamics, tsunami modeling, 
etc., that others can use. This has been possible because of 
collaborators I have been fortunate to meet, starting with 
Phil Colella and Antony Jameson, and later Randy LeVeque 
and Michael Aftosmis, along with a number of postdocs.

I am particularly pleased that this kind of research is 
being recognized. The Adaptive Mesh Refinement (AMR) 
and Cartesian grid projects have both required the creation 
of new techniques in mathematics and computer science. 
They were decade-long efforts where I and my collaborators 
developed theory and algorithms, while paying attention 

Marsha Berger



FROM THE AMS SECRETARY

614    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 4

to important practical aspects of their use in realistic ge-
ometries. Complicated algorithms have complicated im-
plementations, and accuracy, robustness, and performance 
are all essential parts of the research.

About the Prize
The AMS-SIAM Norbert Wiener Prize in Applied Mathemat-
ics is awarded every three years to recognize outstanding 
contributions to applied mathematics in the highest and 
broadest sense. Established in 1967 in honor of Norbert 
Wiener (1894–1964), the prize was endowed by the De-
partment of Mathematics of the Massachusetts Institute of 
Technology. The prize is given jointly by the AMS and the 
Society for Industrial and Applied Mathematics (SIAM). 
The recipient must be a member of one of these societies. 
The prize carries a cash award of US$5,000.

For the 2019 prize, the members of the AMS-SIAM se-
lection committee were:

 • Emmanuel Candes (Chair),
 • James Weldon Demmel,
 • Charles R. Doering.

Credits
Photo of Marsha Berger is courtesy of Marsha Berger.

A list of the previous recipients of the Norbert Wiener 
Prize in Applied Mathematics may be found on the 
AMS website at https://www.ams.org/profession 
/prizes-awards/pabrowse?purl=wiener-prize.

https://www.ams.org/profession/prizes-awards/pabrowse?purl=wiener-prize
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Citation: Arkadi 
Nemirovski
The 2019 Norbert Wiener Prize 
in Applied Mathematics is 
awarded to Arkadi Nemirovski 
for his fundamental contri-
butions to high-dimensional 
optimization and for his dis-
covery of key phenomena in 
the theory of signal estimation 
and recovery.

A powerful and original de-
veloper of the mathematics 
of high-dimensional optimi-
zation, Nemirovski, with D. 

Yudin, invented the ellipsoid method used by Leonid 
Khachiyan to show for the first time that linear programs 
can be solved in polynomial time. With Yurii Nesterov, he 
extended interior point methods in the style of Narendra 
Karmarkar to general nonlinear convex optimization. This 
foundational work established that a rich class of convex 
problems, called semidefinite programs, are solvable in 
polynomial time; semidefinite programs are nowadays rou-
tinely used to model concrete applied problems or to study 
deep problems in theoretical computational complexity. A 
third breakthrough, with Aharon Ben-Tal, was the invention 
of methods of robust optimization to address problems in 
which the solution may be very sensitive to problem data. 
Nemirovski also, and rather amazingly, made seminal con-
tributions in mathematical statistics, establishing the opti-
mal rates at which certain classes of nonparametric signals 
can be recovered from noisy data and investigating limits 
of performance for estimation of nonlinear functionals 
from noisy measurements. All in all, Nemirovski’s contri-

butions have become bedrock standards with tremendous 
theoretical and practical impact on the field of continuous 
optimization and beyond.

Biographical Note: Arkadi Nemirovski
Arkadi Nemirovski was born in 1947 in Moscow, Russia. 
He earned his PhD (1974) from Moscow State University, 
under the supervision of Georgi Evgen’evich Shilov. His 
research areas are convex optimization (information-based 
complexity of convex optimization, design of efficient first 
order and interior point algorithms, robust optimization) 
and nonparametric statistics. He held research associate 
positions at the Moscow Research Institute for Automatic 
Equipment (1973–1987) and the Central Economic 
Mathematical Institute of USSR/Russian Academy of Sci-
ences (1987–1993) and was professor at the Faculty of 
Industrial Engineering and Management, Technion, Israel 
(1993–2005). Since 2005, he has held a professorship at 
the H. Milton Stewart School of Industrial and Systems 
Engineering at Georgia Institute of Technology.

Arkadi Nemirovski was elected to the US National Acad-
emy of Engineering (2017) and the American Academy of 
Arts and Sciences (2018). He is a recipient of the Fulkerson 
Prize of the Mathematical Programming Society (MPS) and 
the AMS (1982, joint with L. Khachiyan and D. Yudin), 
the Dantzig Prize of MPS and SIAM (1991, joint with M. 
Grötschel), and the John von Neumann Theory Prize of 
the Institute for Operations Research and the Management 
Sciences (INFORMS) (2003, joint with M. Todd).

Response  from  Arkadi Nemirovski
I am deeply honored and grateful to receive the 2019 Nor-
bert Wiener Prize in Applied Mathematics—a distinction 
I never dreamt of. As a student, I have been fortunate to 
be taught by brilliant mathematicians at the Mechanical 

Arkadi Nemirovski

2019 Norbert Wiener Prizes 
in Applied Mathematics

The 2019 Norbert Wiener Prizes in Applied Mathematics were presented at the 125th Annual Meeting of the AMS in 
Baltimore, Maryland, in January 2019. The prizes were awarded to MARSHA BERGER and to ARKADI NEMIROVSKI.
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and Mathematical Faculty of Moscow University, where I 
was mentored by Georgi Shilov. During my professional 
life, I had the honor and privilege to collaborate with out-
standing colleagues, first and foremost, with Yuri Nesterov, 
Aharon Ben-Tal, and Anatoli Iouditski, to whom I am ex-
tremely grateful for their indispensable roles in our joint 
research and for decades of friendship. I owe a lot to the 
excellent working conditions I enjoyed at the Central Eco-
nomic Mathematical Institute in Moscow, at Technion—the 
Israel Institute of Technology, and at Georgia Institute of 
Technology.

I always thought that the key word in “applied mathe-
matics” is “mathematics”—even when all we need at the 
end of the day is a number, I believe that what matters 
most are rigorous results on how fast this number could be 
found and how accurate it is, which poses challenging and 
difficult mathematical problems. I am happy to observe 
how my research area—convex optimization—thrives due 
to the effort of new generations of researchers, and how 
rapidly extends the scope of its applications.

About the Prize
The AMS-SIAM Norbert Wiener Prize in Applied Mathemat-
ics is awarded every three years to recognize outstanding 
contributions to applied mathematics in the highest and 
broadest sense. Established in 1967 in honor of Norbert 
Wiener (1894–1964), the prize was endowed by the De-
partment of Mathematics of the Massachusetts Institute of 
Technology. The prize is given jointly by the AMS and the 
Society for Industrial and Applied Mathematics (SIAM). 
The recipient must be a member of one of these societies. 
The prize carries a cash award of US$5,000.

For the 2019 prize, the members of the AMS-SIAM se-
lection committee were:

 • Emmanuel Candes (Chair)
 • James Weldon Demmel
 • Charles R. Doering.

Credits
Photo of Arkadi Nemirovski is courtesy of Arkadi  

Nemirovski.

A list of the previous recipients of the Norbert Wiener 
Prize in Applied Mathematics may be found on the 
AMS website at https://www.ams.org/profession 
/prizes-awards/pabrowse?purl=wiener-prize.
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Citation
The recipient of the 2019 AMS-
MAA-SIAM Frank and Brennie 
Morgan Prize for Outstanding 
Research in Mathematics by an 
Undergraduate Student is Ravi 
Jagadeesan of Harvard Univer-
sity. Jagadeesan was selected 
as the winner of the Prize for 
“[his] fundamental contribu-
tions across several topics in 
pure and applied mathematics, 
including algebraic geometry, 
statistical theory, mathemati-

cal economics, number theory, and combinatorics” from 
a pool with outstanding candidates who impressed the 
selection committee. His papers have been published or 
accepted for publication in journals such as Proceedings of 
the London Mathematical Society, Electronic Journal of Com-
binatorics, Research in Number Theory, American Economic 
Journal: Microeconomics, and Games and Economic Behavior. 
Additionally, he has presented three papers at the Associa-
tion for Computing Machinery Conference on Economics 
and Computation.

Jagadeesan’s research in mathematics began early, when 
he published combinatorics papers on pattern avoidance 
for permutations in the context of (i) alternating permu-
tations and (ii) Young’s diagrams and tableaux (joint with 

Nihal Gowravaram). Then he went on to derive a new 
invariant for the action of the absolute Galois group of Q 
on the set of isomorphism classes of the so-called dessins 
d’enfants (children’s drawings). In another paper, he gave 
a new proof of Serre’s characterization of regular local 
rings (joint with Aaron Landesman). At Harvard, he has 
worked on the birational geometry of elliptic fibrations 
and its connections to the combinatorics of hyperplane 
arrangements. His resulting award-winning senior thesis 
and three related papers (joint with Mboyo Esole, Steven 
Jackson, Monica Kang, and Alfred Noël) lie at the interface 
of algebraic geometry, combinatorics, and string theory.

Jagadeesan’s work in mathematical economics is in 
the fields of matching theory, market design, and pub-
lic finance. In the view of his references, he brings deep 
mathematical insights and connections from multiple 
areas to the table. His papers in matching theory (joint 
with Tamás Fleiner, Zsuzsanna Jankó, Scott Kominers, Ross 
Rheingans-Yoo, and Alex Teytelboym) leverage topological 
fixed-point theorems and ideas from general equilibrium 
to yield insights into the structure of equilibria in markets 
with frictions. His work in market design streamlined the 
analysis of proposed market-clearing mechanisms and 
clarified the role of key mathematical assumptions. His 
paper on optimal taxation with an endogenous growth 
rate is described as being an important contribution to 
theoretical public finance.

2019 Frank and Brennie Morgan 
Prize for Outstanding 

Research in Mathematics by 
an Undergraduate Student

RAVI JAGADEESAN was awarded the 2019 Frank and Brennie Morgan Prize for Outstanding Research in Mathematics by 
an Undergraduate Student at the 125th Annual Meeting of the AMS in Baltimore, Maryland, in January 2019.

Ravi Jagadeesan
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In addition to the above work, Jagadeesan has extended 
Ramsey theory via quasi-colorings to write a paper on 
causal statistical inference in the presence of an underlying 
graph or a network. Regarding this contribution, a reference 
letter writer states that they were most satisfied by Jagadee-
san’s “harnessing the beauty and power of mathematics 
to find structure in a messy real-world problem…making 
fundamental progress on an important problem of our 
times.” Indeed, the committee members felt that this state-
ment could be applied as well to much of Jagadeesan’s work 
in economics and other areas. Case in point: he has used 
ideas from category theory to coauthor a Python library, 
Matriarch, for biomaterials architecture (joint with Tristan 
Giesa, David Spivak, and Markus Buehler).

Biographical Note: Ravi Jagadeesan
Ravi Jagadeesan grew up in Naperville, Illinois. His in-
terest in mathematics was inspired at a young age by his 
grandparents—all four of them mathematicians—and his 
parents—who are both computer scientists. He attended 
Phillips Exeter Academy in Exeter, New Hampshire, for high 
school, where he had the opportunity to take advanced 
courses in mathematics and develop his problem-solving 
skills. He graduated from Harvard with an AB summa cum 
laude in mathematics (with a minor in economics) and 
with an AM in statistics.

He had the opportunity to work in several different 
areas of pure and applied mathematics—including alge-
braic geometry, combinatorics, number theory, statistical 
theory, and mathematical economics—under a host of ad-
visers. His first experience with mathematical research was 
during high school, when he was a student in the MIT math 
department’s Program for Research in Mathematics, Engi-
neering, and Science (PRIMES). He then became interested 
in exploring applied work and spent summers working on 
research in applied mathematics at the Center for Excel-
lence in Education’s Research Science Institute (RSI) at MIT 
and as an Economic Design Fellow at the Harvard Center 
of Mathematical Sciences and Applications (CMSA). He is 
currently a student in Harvard’s PhD program in Business 
Economics, where he is a National Science Foundation 
Graduate Research Fellow.

Jagadeesan earned a gold medal at the International 
Mathematical Olympiad in 2012 and was named a Putnam 
Fellow in 2014. He received Harvard’s Jacob Wendell Schol-
arship Prize, and his senior thesis on “Crepant resolutions 
of ℚ-factorial threefolds with compound Du Val singu-
larities” was awarded the Thomas Temple Hoopes Prize.

Outside of mathematics and economics, he enjoys danc-
ing and is a member of the Harvard Ballroom Dance Team.

Response from Ravi Jagadeesan
It is a great honor to receive the 2019 AMS-MAA-SIAM 
Frank and Brennie Morgan Prize for Outstanding Research 

in Mathematics by an Undergraduate Student. I would like 
to thank Mrs. Morgan, as well as the AMS, MAA, and SIAM, 
for establishing this prize and for recognizing me.

I would also like to thank my many mentors—Markus 
Buehler, Noam Elkies, Mboyo Esole, Pavel Etingof, Zuming 
Feng, John Geanakoplos, Tristan Giesa, Jerry Green, Joel 
Lewis, Akhil Mathew, Natesh Pillai, John Rickert, David 
Spivak, Stefanie Stantcheva, Alex Teytelboym, Alex Volfo-
vsky, Shing-Tung Yau, and, especially, Scott Kominers—for 
their advice and support over the years. 

I am grateful to the MIT Program for Research in Mathe-
matics, Engineering and Science, the Research Science Insti-
tute, and the Harvard Center of Mathematical Sciences and 
Applications for providing excellent work environments.

I am also grateful for research and travel grants from 
Harvard Business School, the Harvard College Research 
Program, and the Harvard math department. Most of all, 
I would like to thank my family—including my wonder-
ful grandparents, parents, and sister—for their love and 
support.

Citation for Honorable Mention: Evan Chen
Evan Chen is recognized with an Honorable Mention for 
the 2019 Frank and Brennie Morgan Prize for Outstanding 
Research in Mathematics by an Undergraduate Student. He 
has authored many papers in combinatorics and number 
theory, some as a single author and some in collaboration. 
He has had papers accepted to the Proceedings of the AMS, 
the Electronic Journal of Combinatorics, Research in Number 
Theory, and the International Journal of Number Theory. In 
joint work, he proved an elliptic curve version of Linnik’s 
theorem. He answered an open question on balance con-
stants of posets and, in joint work, made progress on the 
long-studied problem of classification of Wilf-equivalence 
classes of patterns. He is currently a PhD student at the Mas-
sachusetts Institute of Technology, where he is supported 
by an NSF Graduate Fellowship.

Biographical Sketch: Evan Chen
Evan Chen was born and raised in California and com-
pleted his undergraduate degree in Cambridge, Massachu-
setts. He is currently pursuing a PhD in mathematics at 
the Massachusetts Institute of Technology, supported by 
an NSF fellowship.

Besides research, Evan is deeply involved in the training 
of the USA team for the International Math Olympiad 
(IMO), after having won a gold medal himself in high 
school. Among other roles, he is the assistant academic 
director for the USA’s training camp and the coordinator for 
the USA team selection tests. He is also the current chief of 
staff for the Harvard–MIT math tournament and the author 
of a popular MAA-published book in competitive geometry. 
Outside of math and teaching, Evan enjoys board games 
and Korean pop dance.
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soring this meaningful award. I am extremely thankful to 
my advisor Jacob Fox for his help and support throughout 
my undergraduate years, which has shaped my passion 
and understanding of combinatorics. I am also grateful to 
Yufei Zhao, who has given me useful advice throughout our 
collaboration. I am fortunate to have learned great math-
ematics from Stanford math professors, particularly Amir 
Dembo, Persi Diaconis, Andrea Montanari, Lenya Ryzhik, 
Ravi Vakil, and Jan Vondrak. Last but not least, I would like 
to thank my family and friends for their support, especially 
to my friend Phan-Minh Nguyen, who has provided me 
with tremendous encouragement and insights through our 
endless conversations in mathematics and statistics.

About the Prize
The Frank and Bernie Morgan Prize is awarded annually 
for outstanding research in mathematics by an undergrad-
uate student (or students having submitted joint work). 
Students in Canada, Mexico, or the United States or its 
possessions are eligible for consideration for the prize. 
Established in 1995, the prize was endowed by Mrs. Frank 
(Brennie) Morgan of Allentown, Pennsylvania, and carries 
the name of her late husband. The prize is given jointly by 
the AMS, the Mathematical Association of America (MAA), 
and the Society for Industrial and Applied Mathematics 
(SIAM) and carries a cash award of US$1,200. 

Recipients of the Frank and Bernie Morgan Prize are cho-
sen by a joint AMS-MAA-SIAM selection committee. For the 
2019 prize, the members of the selection committee were: 

 • Nathan Louis Gibson,
 • Anant P. Godbole (Chair),
 • V. Kumar Murty,
 • Ken Ono,
 • Catherine Sulem,
 • Melanie Matchett Wood. 

Credits
Photo of Ravi Jagadeesan is by Ross Campbell Photography.

Response from Evan Chen
It is a wonderful privilege to receive an Honorable Mention 
for the 2019 Frank and Brennie Morgan Prize. I would like 
to thank Mrs. Morgan and the AMS, MAA, and SIAM for 
their generosity and support of undergraduate research.

I would like to acknowledge and thank Joe Gallian and 
Ken Ono for their mentorship and support during my un-
dergraduate years. The three summers I spent at these REU 
programs were immensely productive learning and research 
experiences and contributed greatly to my development. I 
am also deeply grateful for their encouragement and advice.

I would also like to extend thanks to my professors and 
teachers from the past several years, with particular thanks 
to Zuming Feng, Po-Shen Loh, Zvezda Stankova, and Yan 
Zhang. Finally I would like to thank my family and friends 
for their constant care and support.

Citation for Honorable Mention: Huy Tuan Pham
Huy Tuan Pham is recognized with an Honorable Mention 
for the 2019 Frank and Brennie Morgan Prize for Out-
standing Research in Mathematics by an Undergraduate 
Student. He has jointly authored several papers in additive 
combinatorics. These papers compose his undergraduate 
thesis, for which he won the Kennedy Thesis Prize at Stan-
ford University. Two of his papers have been accepted to 
International Mathematical Research Notices and to Discrete 
Analysis. His work uses tools from combinatorics, number 
theory, and analysis to show that tower-type bounds are 
needed in some natural applications of Szemerédi’s regu-
larity method, including Green’s generalization of Roth’s 
theorem for popular difference. He is currently at the Uni-
versity of Cambridge supported by a Trinity Studentship 
and will start his PhD studies at Stanford this fall.

Biographical Note: Huy Tuan Pham
Huy Tuan Pham was born and raised in Ho Chi Minh City, 
Vietnam. After finishing high school at High School for 
the Gifted at Vietnam National University, Ho Chi Minh 
City, he attended Stanford University, where he received a 
BS in Mathematics with Honors and a minor in Computer 
Science, and an MS in Statistics. He is now at Cambridge 
University pursuing Part III of the Mathematical Tripos and 
will return to Stanford University for his PhD.

Huy’s initial interest in combinatorics was devel-
oped during International Math Olympiad trainings in  
Vietnam. Since his sophomore year, he has been working 
with Jacob Fox on probabilistic and additive combinator-
ics. He plans to continue his study of combinatorics and 
probability in his PhD.

Response from Huy Tuan Pham
I am honored to receive an Honorable Mention for the 
2019 Frank and Brennie Morgan Prize. I would like to thank 
Mrs. Frank Morgan and the AMS, MAA, and SIAM for spon-

A list of previous recipients of the Frank and Brennie 
Morgan Prize for Outstanding Research in Mathemat-
ics by an Undergraduate Student may be found on the 
AMS website at https://www.ams.org/profession 
/prizes-awards/pabrowse?purl=morgan-prize.

https://www.ams.org/porfession/prizes-awards/pabrowse?purl=morgan-prize
https://www.ams.org/porfession/prizes-awards/pabrowse?purl=morgan-prize
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Citation
The 2019 JPBM Communica-
tions Award is presented to 
Margot Lee Shetterly for her 
book and subsequent movie 
Hidden Figures, which opened 
science and mathematics to a 
new generation of women and 
people of color by bringing 
into the light the stories of the 
African American women who 
made significant contributions 
to aeronautics and astronautics 
and, ultimately, to America’s 
victory in the Space Race.

Biographical Note
Margot Lee Shetterly is a writer, researcher, and entrepre-
neur. She is the author of Hidden Figures: The American 
Dream and the Untold Story of the Black Women Mathema-
ticians Who Helped Win the Space Race, which was a top 
book of 2016 for both TIME and Publisher’s Weekly (William 
Morrow and Company, New York, 2016), a USA Today best-
seller, and a no. 1 New York Times bestseller. Shetterly is 
also the founder of the Human Computer Project, a digital 
archive of the stories of NASA’s African American “Human 
Computers,” whose work tipped the balance in favor of 
the United States in World War II, the Cold War, and the 
Space Race. According to the New York Times, the 2017 film 
adaptation of her book introduces viewers to “real people 
you might wish you had known more about earlier…[who] 

can fill you with an outrage at the persistence of injustice 
and gratitude towards those who had the grit to stand up 
against it.”

About the Prize
The JPBM Communications Award is presented annually 
to reward and encourage journalists and other communi-
cators who, on a sustained basis, bring mathematical ideas 
and information to nonmathematical audiences. JPBM 
represents the American Mathematical Society, the Amer-
ican Statistical Association, the Mathematical Association 
of America, and the Society for Industrial and Applied 
Mathematics. The award carries a cash prize of US$2,000.

Credits
Photo of Margot Lee Shetterly is by Aran Shetterly.

2019 Joint Policy Board 
for Mathematics 
Communications Award

MARGOT LEE SHETTERLY was awarded the 2019 Joint Policy Board for Mathematics Communications Award at the Joint 
Mathematics Meetings in Baltimore, Maryland, in January 2019.

Margot Lee Shetterly

A list of previous recipients of the JPBM Commu-
nications Award may be found on the AMS web-
site at https://www.ams.org/profession/prizes 
-awards/pabrowse?purl=jpbm-comm-award.

https://www.ams.org/porfession/prizes-awards/pabrowse?purl=jpbm-comm-award
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Community Updates

NEWS

From the AMS Public 
Awareness Office

2019 Who Wants to Be a Mathematician Champion.  
LUKE ROBITAILLE a homeschooled freshman from Texas, 
won the 2019 Who Wants to Be a Mathematician Champi-
onship, which took place at the Joint Mathematics Meet-
ings in Baltimore. Luke, pictured here with AMS Presi-
dent Ken Ribet and AMS President-Elect Jill Pipher, won 
$5,000 for himself and $5,000 for the Mid-Cities Math 
Circle at the University of Texas at Arlington. See Luke 
just after his victory at https://www.youtube.com 
/watch?v=AMrqiXuDUpg and see a webcast of the game 
at https://livestream.com/psav/wwtbam2019 
/videos/186039084.

A community-wide effort 
builds The Next Generation 
Fund 

Thanks to generous donors, The Next Generation Fund 
(NextGen) will provide dedicated funding to AMS pro-
grams for doctoral students and early career mathemati-
cians, with the goal of issuing modest support to as many 
people as possible. 

Fundraising for NextGen began in 2017, with a for-
ward-thinking philanthropist’s offer to match up to $1.5 
million in donations. Numerous donors made gifts toward 
this goal and the fund has received support from across 
the community. Visit www.ams.org/nextgen to see our 
progress to date in making the match. 

The Maryam Mirzakhani Fund for The Next Generation 
is part of NextGen. Gifts to this fund support rising mathe-
maticians while also commemorating Maryam Mirzakhani 
and her mathematics contributions.

A brochure about The Next Generation Fund with infor-
mation about how to give is being mailed to AMS members 
and friends this spring.

Luke Robitaille, winner of the 2019 Who Wants to Be a 
Mathematician Championship.

Early career mathematicians at JMM 2019.

http://www.ams.org/nextgen
cav
Rectangle

https://www.youtube.com/watch?v=AMrqiXuDUpg
https://www.youtube.com/watch?v=AMrqiXuDUpg
https://livestream.com/psav/wwtbam2019/videos/186039084
https://livestream.com/psav/wwtbam2019/videos/186039084
cav
Rectangle

cav
Rectangle

cav
Rectangle

cav
Rectangle



622    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 4

NEWS

Community Updates

AMS Math Poetry Contest Winners. The AMS con-
ducted a math poetry contest for Maryland students—mid-
dle school, high school, and undergraduate students—as 
part of the 2019 Joint Mathematics Meetings. The winners 
read their poems:

“Math is Me,” by BROOKE C. JOHNSTON, Notre Dame 
Preparatory School

“A Love Letter to My X,” by TINA XIA, Walt Whitman 
High School

“Coalition,” by KELIN TORRES-RODAS, Prince George’s 
Community College

To read the winning poems, see www.ams.org 
/math-poetry.

Credits
Photos from the AMS Public Awareness Of�ce by Annette 

Emerson.
Photos by Kate Awtrey, Atlanta Convention Photography.

2019 Mathematical Art Awards. The 2019 Mathematical 
Art Exhibition Awards were made at the Joint Mathematics 
Meetings last week “for aesthetically pleasing works that 
combine mathematics and art.” The three chosen works 
were selected from the exhibition of juried works in various 
media by eighty mathematicians and artists from around 
the world.

Best photograph, painting, or print: "Roundabout” (pair 
of prints), by JAMES MAI

Best textile, sculpture, or other medium: “DT-MSH/TC 
Klein Bottle,” by ELIZABETH PALEY

Honorable Mention: “Breaking the Ruled,” by  
MATT ENLOW

The Mathematical Art Exhibition Award “for aestheti-
cally pleasing works that combine mathematics and art” 
was established in 2008 through an endowment provided 
to the AMS by an anonymous donor who wishes to ac-
knowledge those whose works demonstrate the beauty and 
elegance of mathematics expressed in a visual art form.

From left to right: Johnston, Xia, Torres-Rodas, and 
contest judge JoAnne Growney.

“DT-MSH/TC Klein Bottle,” by Elizabeth Paley.

http://www.ams.org//math-poetry
http://www.ams.org//math-poetry
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Mathematics People

NEWS

dian university. The prize consists of a monetary award and 
an invitation to present a lecture at each institute.

—From a CRM-Fields-PIMS announcement

Vasey and Harrison-Trainor 
Awarded Sacks Prizes

MATTHEW HARRISON-TRAINOR of Vic-
toria University, Wellington, and 
SEBASTIEN VASEY of Harvard University 
were awarded 2017 Gerald Sacks 
Prize of the Association for Symbolic 
Logic (ASL).

In his thesis, “The Complexity 
of Countable Structures,” Harri-
son-Trainor established many very 
strong theorems in computable struc-

ture theory. Of these results, two stand out. His full descrip-
tion of the Scott spectrum of a theory was a very surprising 
general result whose proof settled several open problems, 
including ones raised by Marker, Sacks, and Montalbán. The 
second provides a thorough analysis of degree spectra and 
degrees of categoricity on cones. It shows that the behaviors 
of these notions are natural in the sense of relativizing to 
all degrees above some fixed one. Harrison-Trainor received 
his PhD in 2017 from the University of California, Berkeley, 
under the direction of Antonio Montalbán.

Vasey, in his thesis “Superstability and categoricity in 
abstract elementary classes,” undertook a deep and sus-
tained study of classification theory for abstract elementary 
classes. Among the many theorems he proved, his eventual 
categoricity theorem for universal classes is recognized as 
a landmark achievement towards Shelah’s conjecture gen-
eralizing Morley’s theorem on uncountable categoricity to 
abstract elementary classes. A second remarkable result is 
his classification of the stability spectrum for tame AECs, 
which may well pave the way for connections with, and 
applications to, other areas of mathematics. Vasey received 
his PhD in 2017 from Carnegie Mellon University under the 
direction of Rami Grossberg. He tells the Notices: “I started 
out as an engineer: my undergraduate studies (at EPFL, in 
Lausanne) were in communication systems engineering. 

Ghoussoub Awarded 2019 
CRM-Fields-PIMS Prize

NASSIF GHOUSSOUB of the Univer-
sity of British Columbia has been 
awarded the 2019 CRM-Fields-PIMS 
Prize. The citation reads: “Nassif 
Ghoussoub has a remarkable record 
of deep, original, and influential 
contributions to the theory and ap-
plications of functional analysis, the 
calculus of variations, and partial dif-
ferential equations. His pioneering 
work on the resolution of De Giorgi’s 

conjecture, on the PDE of microelectromechanical systems, 
and on the theory of self-dual PDE have all had a lasting 
impact on mathematical analysis. This is in addition to 
his extraordinary contributions to Canadian mathematics 
in general.”

Nassif Ghoussoub was born in Mali and obtained his 
PhD from Université Pierre et Marie Curie in 1975. He 
did a postdoctoral fellowship at the Ohio State University 
(1976–1977), then joined the mathematics department at 
the University of British Columbia, where he is currently 
Distinguished University Professor. His honors include 
the Coxeter-James Prize (1990), the Jeffery-Williams Prize 
(2007), and the David Borwein Distinguished Career Award 
(2010), all from the Canadian Mathematical Society (CMS). 
He was awarded the Queen Elizabeth II Diamond Jubilee 
Medal in 2012. He served as vice president of the CMS 
from 1994 to 1996. He is founder and scientific director 
of the Banff International Research Station and has also 
been founding director of PIMS and co-editor-in-chief of 
the Canadian Journal of Mathematics. He is a Fellow of the 
Royal Society of Canada (1994), of the American Mathe-
matical Society (2012), of the Fields Institute (2017), and 
of the CMS (2018). He is an Officer of the Order of Canada.

The prize is awarded by the Centre de recherches 
mathématiques (CRM), the Fields Institute, and the Pacific 
Institute for the Mathematical Sciences (PIMS) to recognize 
exceptional research achievement in the mathematical 
sciences. The candidate’s research should have been con-
ducted primarily in Canada or in affiliation with a Cana-

Nassif 
Ghoussoub

Sebastien Vasey
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Sjöstrand Awarded 2018 
Bergman Prize

JOHANNES SJÖSTRAND of Université de 
Bourgogne has been awarded the 
2018 Bergman Prize. Established in 
1988, the prize recognizes mathe-
matical accomplishments in the areas 
of research in which Stefan Bergman 
worked. Sjöstrand will receive a cash 
award of US$26,000, the 2018 in-
come from the Stefan Bergman Trust.

Citation
Johannes Sjöstrand is awarded the 

Bergman Prize for his fundamental work on the Bergman 
and Szegő kernels, as well as for his numerous fundamental 
contributions to microlocal analysis, spectral theory, and 
partial differential equations (PDEs). He is especially being 
recognized for his groundbreaking work with L. Boutet de 
Monvel on describing the singularities and asymptotics of 
the Bergman and Szegő kernels in strictly pseudoconvex 
domains in Cn. This work has been highly influential in 
subsequent developments on these and related topics. 
Sjöstrand is also being recognized for his contributions to 
microlocal analysis, spectral theory, and PDEs. Together 
with A. Melin, he has developed the theory of Fourier inte-
gral operators with complex-valued phase functions, with 
applications to the oblique derivative problem. In joint 
work with R. B. Melrose, he has obtained fundamental re-
sults on the propagation of singularities for boundary value 
problems. Sjöstrand has created the powerful and highly 
influential approach to analytic microlocal analysis, based 
on the theory of Fourier-Bros-Iagolnitzer (FBI) transforms 
and on the use of exponentially weighted spaces of holo-
morphic functions on the transform side. This approach 
was shown to be crucial in the study of regularity and 
propagation of singularities for PDEs (including boundary 
value problems) in the real analytic category. In joint work 
with B. Helffer, Sjöstrand has developed an incisive and 
far-reaching analysis of the tunnel effect for semiclassical 
Schrödinger operators, including a study of the Witten com-
plex, and has contributed significantly to the understanding 
of the fine spectral properties of the Harper operator. The 
work of Johannes Sjöstrand in the theory of scattering res-
onances, including joint work with M. Zworski, has had 
a truly revolutionary impact on the subject. Among the 
many groundbreaking results obtained by Sjöstrand in this 
direction, we mention a microlocal version of the method 
of complex scaling and a local trace formula for resonances. 
Sjöstrand has given numerous decisive contributions to 
the spectral theory of non-self-adjoint operators, including 
operators of Kramers-Fokker-Planck type (joint work with 

My encounter with mathematical logic in 2010, and an 
exchange year at Carnegie Mellon University in 2011–2012, 
made me decide to change fields and turn to pure mathe-
matics. I also have a solid background in computer science, 
especially in programming languages and the theory of 
computation. I know bits and pieces about GNU Linux/
Unix system administration.”

The Sacks Prize is awarded annually for the most out-
standing doctoral dissertation in mathematical logic.

—From an ASL announcement

Churchill Scholarships 
Awarded
Three students in the mathematical sciences have received 
scholarships from the Winston Churchill Foundation of 
the United States for the 2019–2020 academic year. The 
Churchill Scholars are RYAN CHEN of Princeton Univer-
sity (pure mathematics), ANTHONY CONIGLIO of Indiana 
University (applied mathematics), and BRIAN SEYMOUR 
of the University of Virginia (applied mathematics). The 
scholarships cover one year of master’s study at Churchill 
College in the University of Cambridge. The awards cover 
full tuition, a stipend, travel costs, and the chance to apply 
for a US$2,000 special research grant.

—From a Churchill Foundation announcement

Johannes 
Sjöstrand
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F. Hérau and C. Stolk) and analytic non-self-adjoint oper-
ators in dimension two (joint work with A. Melin and with 
M. Hitrik). More recently, Sjöstrand has completed a deep 
and fundamental analysis of the Weyl asymptotics for the 
eigenvalues of non-self-adjoint differential operators in the 
presence of small random perturbations.

Sjöstrand received his PhD from Lund University in 
1972 under the direction of Lars Hörmander. He has been 
affiliated with the University of Paris XI as well as Bour-
gogne. He is a member of the Royal Swedish Academy of 
Sciences and was elected to the American Academy of Arts 
and Sciences in 2017. 

Sjöstrand says: “I was asked by the Notices to give some 
interesting facts. Here is one: My thesis advisor, Professor 
Lars Hörmander, was away to spend the academic year 
1970–1971 at Courant Institute, and since there was not 
very much for me to do in Lund, I asked Professor Lars 
Gårding about the possibility of travelling to some other 
place in the Spring semester. He advocated Aarhus, Paris, 
or Cambridge (England). After some thought, I decided on 
Paris as the most exciting place. This was a slightly random 
decision about a mathematical excursion at an unstable 
equilibrium point of my life; the following events included 
less choice, and I ended up in France for good. Maybe there 
was also some fascination for French culture that started 
with Babar that my parents read to me in Swedish transla-
tion. It takes more than a generation to become fully French 
and to be accepted as such, but with my wife we are happy 
to see that all our children and grandchildren live in France 
and are quite well settled.”

About the Prize
The Bergman Prize honors the memory of Stefan Bergman, 
best known for his research in several complex variables, 
as well as the Bergman projection and the Bergman ker-
nel function that bear his name. A native of Poland, he 
taught at Stanford University for many years and died in 
1977 at the age of eighty-two. He was an AMS member for 
thirty-five years. When his wife died, the terms of her will 
stipulated that funds should go toward a special prize in 
her husband’s honor.

The AMS was asked by Wells Fargo Bank of California, 
the managers of the Bergman Trust, to assemble a commit-
tee to select recipients of the prize. In addition, the Society 
assisted Wells Fargo in interpreting the terms of the will 
to ensure sufficient breadth in the mathematical areas in 
which the prize may be given. Awards are made every one 
or two years in the following areas: (1) the theory of the 
kernel function and its applications in real and complex 
analysis and (2) function-theoretic methods in the theory 
of partial differential equations of elliptic type with atten-
tion to Bergman’s operator method.

The members of the selection committee for the 2018 
Bergman Prize were: 

 • Donatella Danielli
 • Peter Ebenfelt
 • Anna Mazzucato (Chair)

—Elaine Kehoe

Credits
Photo of Nassif Ghoussoub is courtesy of the Paci�c Institute 

for the Mathematical Sciences.
Photo of Sebastien Vasey is courtesy of Samaneh Mesbahi- 

Vasey.
Photo of Johannes Sjöstrand is courtesy of Johannes 

Sjöstrand.

A list of the past recipients of the Bergman Prize 
can be found at www.ams.org/profession 
/prizes-awards/pabrowse?purl=bergman 
-prize. 

Advertisement
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Listings for upcoming mathematics opportunities to appear in Notices may be submitted to notices@ams.org.

University of Texas, Austin. Organizer: Arie Israel, 
arie@math.utexas.edu. Website: https://web 
.ma.utexas.edu/conferences/cbms.

For more information, see the individual con-
ference websites or cbmsweb.org/regional 
-conferences/2019-conferences. 

—CBMS announcement

Early Career

2019 Clay Research Conference  
and Workshops

The 2019 Clay Research Conference and Workshops will 
be held at the Clay Mathematical Institute, University of 
Oxford, from September 29 to October 4, 2019. The Re-
search Conference will be held on October 2 and associated 
workshops during the week. For more information see 
the website.org/events/2019-clay-research 
-conference-and-workshops.

—From a Clay Mathematics Institute announcement

Call for Proposals for 
2020 NSF-CBMS Regional 
Research Conferences

The NSF-CBMS Regional Research Conferences in the 
Mathematical Sciences are a series of five-day conferences 
that usually feature a distinguished lecturer delivering ten 
lectures on a topic of important current research in one 
sharply focused area of the mathematical sciences. The 
Conference Board of the Mathematical Sciences (CBMS) 
publicizes the conferences and disseminates the resulting 
conference materials. Support is provided for about thirty 
participants at each conference. Proposals should address 
the unique characteristics of the NSF-CBMS conferences, 
outlined in the Program Description found at https://

Early Career

NSF-CBMS Regional  
Conferences 2019

With National Science Foundation (NSF) support, the 
Conference Board of the Mathematical Sciences (CBMS) 
will hold five Regional Research Conferences during the 
summer of 2019. Each five-day conference features a dis-
tinguished lecturer who delivers ten lectures on a topic 
of important current research. Support for about thirty 
participants is provided for each conference. 

May 13–17, 2019: Mathematical Molecular Bioscience 
and Biophysics. Guowei Wei, Michigan State University, 
lecturer. University of Alabama, Tuscaloosa. Organizer: 
Shan Zhao, szhao@ua.edu. Website: cbms.ua.edu.

May 13–17, 2019: Topological Methods in Machine 
Learning and Artificial Intelligence. Gunnar Carlsson, 
Stanford University, lecturer. College of Charleston. Or-
ganizer: Ben Cox, coxbl@cofc.edu. Website: blogs 
.cofc.edu/cbms-tda2019/.

May 20–24, 2019: L-functions and Multiplicative  
Number Theory. Kannan Soundararajan, Stanford Univer-
sity, lecturer. University of Mississippi. Organizer: Micah 
Milinovich, mbmilino@olemiss.edu. Website: math 
.olemiss.edu/cbms2019/.

May 20–24, 2019: The Cahn-Hilliard Equation: Recent 
Advances and Applications. Alain Miranville, University of 
Poitiers, lecturer. Montgomery Bell State Park Conference 
Center and Inn, Burns, Tennessee, sponsored by the Univer-
sity of Memphis. Organizer: Gisele Goldstein, cahnhil-
liardnsfcbms@gmail.com. Website: memphis.edu 
/msci/cahn-hilliard-nsf-cbms2019.

August 5–9, 2019: Fitting Smooth Functions to 
Data. Charles L. Fefferman, Princeton University, lecturer. 

The most up-to-date listing of NSF funding opportunities from the 
Division of Mathematical Sciences can be found online at: 
www.nsf.gov/dms and for the Directorate of Education and 
Human Resources at www.nsf.gov/dir/index.jsp?org=ehr.   
To receive periodic updates, subscribe to the DMSNEWS listserv by following 
the directions at www.nsf.gov/mps/dms/about.jsp. 
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nsf.gov/pubs/2019/nsf19539/nsf19539.htm. 
The deadline for proposals is April 26, 2019.

—From an NSF announcement

AWM Gweneth Humphreys Award

The Association for Women in Mathematics awards the 
Gweneth Humphreys Award annually to a mathematics 
teacher who has encouraged female undergraduates to 
pursue mathematical careers and/or the study of math-
ematics at the graduate level. The deadline for nomina-
tions is April 30, 2019. See https://awm-math.org 
/humphreys-award or email awm@awm-math.org. 

—From an AWM announcement

Call for Applications for  
the 2019 Rosenthal Prize

The National Museum of Mathematics (MoMath) awards 
the Rosenthal Prize annually. Designed to recognize and 
promote hands-on math teaching in upper elementary and 
middle school classrooms, the prize carries a cash award of 
US$25,000 for the single best activity, plus up to five addi-
tional monetary awards for other innovative activities. The 
deadline for applications is May 15, 2019. See https://
rpz.momath.org.

—From a MoMath announcement

Sabbatical Opportunities at 
the National Security Agency

The Mathematical Sciences Program at the National Secu-
rity Agency(NSA) invites mathematicians, statisticians, and 
other researchers in the mathematical sciences to apply for a 
sabbatical at the NSA. Successful applicants will join a team 
of technical experts to collaborate on operational problems 
at NSA’s headquarters in Maryland. Since employment at 
NSA requires a security clearance, applications for sabbat-
ical positions need to be submitted well in advance of the 
date on which the sabbatical is scheduled to commence. 
For the same reason, these positions are open to US citizens 
only. Individuals selected for these sabbatical positions 
will receive salary supplement, travel expenses, and a 
housing allowance. Further information can be obtained 
on the webpage (https://www.nsa/gov/What-We-Do 
/Research/Math-Sciences-Program/Sabbaticals) 
or by email from Charles Toll or Barbara Johnson at msp-
grants.nsa.gov.

—Charles Toll

CONTACT:
AMS Professional Programs

American Mathematical Society
201 Charles Street  |  Providence, RI 02904-2213 USA

800.321.4267, ext. 4096  |  mathjobs@ams.org

The automated job application database 
sponsored by the AMS.

MathJobs.Org offers a paperless 
application process for applicants and 

employers in mathematics.

Registered Applicants Can:
• Create their own portfolio of application 

documents
• Make applications online to participating 

employers
• Choose to make a cover sheet viewable by all 

registered employers

Registered Employers Can:
• Post up to seven job ads
• Set all criteria for required documents, and add 

speci�c questions
• Receive and upload reference letters
• Manage applicant information and 

correspondence quickly and easily
• Set limited access permissions for faculty and 

EOE administrators
• Search for and sort additional applicants in the 

database
• Choose an advertising-only account, or a 

discounted single ad account

Visit mathjobs.org for pricing information.

FREE FOR APPLICANTS
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Ohio Northern University 
Visiting Assistant Professor of Mathematics

Posting Number: F000070
Position Type: Full-Time Faculty
Department: Mathematics & Statistics
Benefits Summary:
Benefit package includes: Medical, Dental, Vision and Pre-
scription insurance, Life insurance, Workers’ Compensation 
insurance, Unemployment insurance, and Total Disability 
insurance. Retirement: The University contributes 4% of the 
regular salary with up to 3% of additional matched con-
tributions into the TIAA Retirement Program. Other ben-
efits include tuition remission for employee, spouse, and 
employee’s dependent children under the age of 25 (this 
does not include the last two year of the PharmD program 
or the JD), and twenty days of paid medical leave per year.
Job Summary:
The successful candidate will show excellence in teaching a 
variety of lower and upper-level mathematics courses. The 
applicant will be pursuing a solid research agenda, will 
advise and involve in research undergraduate students, and 
will serve on department, college or university committees. 
The rank is commensurate with experience and credentials.
Scope:
One year Visiting Assistant Professor of Mathematics and 
Statistics.

Principal Responsibilities:
Teaching (including advising/mentoring students and 
engaging them in high impact learning practices), main-
taining an effective scholarly activity.
Required Skills:
Excellence in teaching and the ability to pursue a solid 
research agenda. Good interpersonal skills and an ability 
to mentor students both inside and outside the classroom. 
Women and minorities are encouraged to apply.
Minimum Qualifications:
PhD in Mathematics or Applied Mathematics.
Appointment Length: 9-months
Closing Date: 04/01/2019
Open Until Filled: No
Status: Full-Time

To view full description and apply online go to: 
https://jobs.onu.edu/postings/5933.

ONU is an equal employment opportunity employer. Ac-
cordingly, no person shall be discriminated against on the basis 
of race, color, sex, gender identity, transgender status, religion, 
national origin, age, disability, sexual orientation, marital status, 
military or veteran status, genetic information or any other cate-
gory protected by federal, state, or local law. This policy applies to 
all areas of employment including recruitment, hiring, training 
and development, promotion, transfer, compensation, benefits, 
discipline, separation and other terms, condition and privileges 
of employment.
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REPUBLIC OF KOREA

Korean Institute for Advanced Study (KIAS) 
Assistant Professor & Research Fellow 

in Pure and Applied Mathematics

The School of Mathematics at the Korea Institute for Ad-
vanced Study (KIAS) invites applicants for the positions 
at the level of KIAS Assistant Professor and Postdoctoral 
Research Fellow in pure and applied mathematics. KIAS, 
founded in 1996, is committed to the excellence of research 
in basic sciences (mathematics, theoretical physics, and 
computational sciences) through high-quality research pro-
grams and a strong faculty body consisting of distinguished 
scientists and visiting scholars.

Applicants are expected to have demonstrated excep-
tional research potential, including major contributions 
beyond or through the doctoral dissertation. The annual 
salary starts from 50,500,000 Korean Won (approximately 
US$45,500 at current exchange rate) for Research Fellows, 
and 57,500,000 Korean Won for KIAS Assistant Profes-
sors, respectively. In addition, individual research funds 
of 10,000,000 ~ 13,000,000 Korean Won are available 
per year. The initial appointment for the position is for 
two years and is renewable for up to two additional years, 
depending on research performance and the needs of the 
research program at KIAS.

Applications will be reviewed twice a year, May 20 and 
November 20, and selected applicants will be notified in a 
month after the review. In exceptional cases, applications 
can be reviewed other times based on the availability of 
positions. The starting date of the appointment is negotia-
ble. Application materials must include a standard cover 
sheet which is posted on the website (www.kias.re.kr), 
a cover letter, a curriculum vitae including a list of publica-
tions, a research plan, and three letters of recommendation. 
All documents, prepared in English, should be submitted 
by post or e-mail to:

Ms. Sojung Bae (mathkias@kias.re.kr)
School of Mathematics
Korea Institute for Advanced Study (KIAS)
85 Hoegiro (Cheongnyangni-dong 207-43), Dongdae-

mun-gu,
Seoul 02455, Republic of Korea

08

CHINA

Tianjin University, China 
Tenured/Tenure-Track/Postdoctoral Positions at 

the Center for Applied Mathematics

Dozens of positions at all levels are available at the recently 
founded Center for Applied Mathematics, Tianjin Univer-
sity, China. We welcome applicants with backgrounds in 
pure mathematics, applied mathematics, statistics, com-
puter science, bioinformatics, and other related fields. We 
also welcome applicants who are interested in practical 
projects with industries. Despite its name attached with 
an accent of applied mathematics, we also aim to create a 
strong presence of pure mathematics. Chinese citizenship 
is not required.

Light or no teaching load, adequate facilities, spacious 
office environment and strong research support. We are 
prepared to make quick and competitive offers to self-mo-
tivated hard workers, and to potential stars, rising stars, as 
well as shining stars.

The Center for Applied Mathematics, also known as the 
Tianjin Center for Applied Mathematics (TCAM), located 
by a lake in the central campus in a building protected as 
historical architecture, is jointly sponsored by the Tianjin 
municipal government and the university. The initiative 
to establish this center was taken by Professor S. S. Chern. 
Professor Molin Ge is the Honorary Director, Professor 
Zhiming Ma is the Director of the Advisory Board. Professor 
William Y. C. Chen serves as the Director.

TCAM plans to fill in fifty or more permanent faculty 
positions in the next few years. In addition, there are a 
number of temporary and visiting positions. We look for-
ward to receiving your application or inquiry at any time. 
There are no deadlines.

Please send your resume to mathjobs@tju.edu.cn.
For more information, please visit cam.tju.edu 

.cn or contact Ms. Erica Liu at mathjobs@tju.edu.cn, 
telephone: 86-22-2740-6039.
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Linear Algebra I
Frederick P. Greenleaf, Courant 
Institute, New York University, NY, 
and Sophie Marques, University 
of Cape Town, South Africa

This book is the first of two vol-
umes on linear algebra for grad-
uate students in mathematics, 
the sciences, and economics, 
who have: a prior undergradu-
ate course in the subject; a basic 
understanding of matrix alge-
bra; and some proficiency with 
mathematical proofs. Proofs are 

emphasized and the overall objective is to understand the 
structure of linear operators as the key to solving problems 
in which they arise.

Titles in this series are co-published with the Courant Institute of Math-
ematical Sciences at New York University.

Courant Lecture Notes, Volume 29
March 2019, 261 pages, Softcover, ISBN: 978-1-4704-
4871-4, LC 2018047584, 2010 Mathematics Subject Clas-
sification: 97H60, 15–01, 15A04, 15A15, 15A16, 15A18, 
15A21, 40A05, 40A25, 20B30, List US$51, AMS members 
US$40.80, MAA members US$45.90, Order code CLN/29

bookstore.ams.org/cln-29

Algebra and 
Algebraic Geometry

Representations of 
Reductive Groups
Avraham Aizenbud, Weizmann 
Institute of Science, Rehovot, Israel, 
Dmitry Gourevitch, Weizmann 
Institute of Science, Rehovot, Israel, 
David Kazhdan, Hebrew Univer-
sity of Jerusalem, Israel, and Erez 
M. Lapid, Weizmann Institute of 
Science, Rehovot, Israel, Editors

This volume contains the pro-
ceedings of the Conference on 
Representation Theory and Alge-
braic Geometry, held in honor of 

Joseph Bernstein, from June 11–16, 2017, at the Weizmann 
Institute of Science and The Hebrew University of Jerusa-
lem. The topics reflect the decisive and diverse impact of 
Bernstein on representation theory in its broadest scope.

Proceedings of Symposia in Pure Mathematics, Volume 
101
April 2019, 450 pages, Hardcover, ISBN: 978-1-4704-4284-
2, LC 2018041948, 2010 Mathematics Subject Classification: 
11F27, 11F70, 20C08, 20C33, 20G05, 20G20, 20G25, 
22E47, List US$133, AMS members US$106.40, MAA 
members US$119.70, Order code PSPUM/101

bookstore.ams.org/pspum-101
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Number Theory

Exploring Continued 
Fractions
From the Integers to Solar 
Eclipses
Andrew J. Simoson, King Uni-
versity, Bristol, TN

This text explores recurrent phe-
nomena, including astronom-
ical transits and conjuctions, 
lifecycles of cicadas, and eclipses, 
by way of continued fraction 
expansions. The deeper purpose 
is to find patterns, solve puzzles, 

and discover some appealing number theory.

Dolciani Mathematical Expositions, Volume 53
May 2019, approximately 371 pages, Hardcover, ISBN: 
978-1-4704-4795-3, 2010 Mathematics Subject Classification: 
11J70, 00A05, 70F15, List US$52, AMS Individual member 
US$39, AMS Institutional member US$41.60, MAA mem-
bers US$39, Order code DOL/53

bookstore.ams.org/dol-53

Quadratic Number Theory
An Invitation to Algebraic 
Methods in the Higher 
Arithmetic
J. L. Lehman, University of Mary 
Washington, Fredericksburg, VA

This text is an introduction to al-
gebraic number theory for read-
ers with a moderate knowledge 
of elementary number theory 
and some familiarity with the 
terminology of abstract algebra. 

With its exceptionally clear prose, hundreds of exercises, 
and historical motivation, it would make an excellent text-
book for a second undergraduate course in number theory 
or a terrific choice for independent reading.

Dolciani Mathematical Expositions, Volume 52
March 2019, 394 pages, Hardcover, ISBN: 978-1-4704-
4737-3, LC 2018040720, 2010 Mathematics Subject Classifi-
cation: 11R11, 11R29, 11R27, 11E25, 11E16, 11A55, 11B50, 
11Y40, List US$52, AMS Individual member US$39, AMS 
Institutional member US$41.60, MAA members US$39, 
Order code DOL/52

bookstore.ams.org/dol-52

Calculus

Calculus for the Life 
Sciences
A Modeling Approach
James L. Cornette and Ralph A. 
Ackerman

Freshman and sophomore life 
sciences students respond well 
to the modeling approach to 
calculus, difference equations, 
and differential equations pre-
sented in this book. Examples 
of population dynamics, phar-
macokinetics, and biologically 

relevant physical processes are introduced in Chapter 1, 
and these and other life sciences topics are developed 
throughout the text.

This title will be available in print version for the first time. 
This item will also be of interest to those working in applications.

AMS/MAA Textbooks, Volume 29
December 2015, 713 pages, Softcover, ISBN: 978-1-4704-
5142-4, List US$99, Order code TEXT/29

bookstore.ams.org/text-29

Geometry and Topology

Two-Dimensional 
Geometries
A Problem-Solving 
Approach
C. Herbert Clemens, Ohio State 
University, Columbus, OH

This book on two-dimensional 
geometry uses a problem-solv-
ing approach to actively engage 
students in the learning pro-
cess. The aim is to guide readers 
through the story of the subject, 

while giving them room to discover and partially construct 
the story themselves. The book bridges the study of plane 
geometry and the study of curves and surfaces of non-con-
stant curvature in three-dimensional Euclidean space.

Pure and Applied Undergraduate Texts, Volume 34
April 2019, 142 pages, Hardcover, ISBN: 978-1-4704-4760-
1, LC 2018045838, 2010 Mathematics Subject Classification: 
51F10, 51F20, 51F25, 51–01, 51K10, List US$89, AMS 
members US$71.20, MAA members US$80.10, Order 
code AMSTEXT/34

bookstore.ams.org/amstext-34
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Differential Equations

New Developments in 
the Analysis of Nonlocal 
Operators
Donatella Danielli, Purdue Uni-
versity, West Lafayette, IN, Arshak 
Petrosyan, Purdue University, 
West Lafayette, IN, and Camelia 
A. Pop, University of Minnesota, 
Minneapolis, MN, Editors

This volume contains the pro-
ceedings of the AMS Special 
Session on New Developments 
in the Analysis of Nonlocal 
Operators, held from October 

28–30, 2016, at the University of St. Thomas, Minneapolis, 
Minnesota. Problems represented in this volume include 
uniqueness for weak solutions to abstract parabolic equa-
tions with fractional time derivatives and the behavior of 
the one-phase Bernoulli-type free boundary near a fixed 
boundary and its relation to a Signorini-type problem.

Contemporary Mathematics, Volume 723
March 2019, 214 pages, Softcover, ISBN: 978-1-4704-4110-
4, LC 2018039664, 2010 Mathematics Subject Classification: 
35R09, 35R11, 35R35; 11M41, 26A33, 60G51, 91G80, 
List US$117, AMS members US$93.60, MAA members 
US$105.30, Order code CONM/723

bookstore.ams.org/conm-723

New in Contemporary 
Mathematics
Algebra and 
Algebraic Geometry

Algebraic Curves and Their 
Applications
Lubjana Beshaj, West Point Mil-
itary Academy, NY, and Tony 
Shaska, Oakland University, Roch-
ester, MI, Editors

This volume contains a col-
lection of papers on algebraic 
curves and their applications. 
While algebraic curves tradition-
ally have provided a path toward 
modern algebraic geometry, they 
also provide many applications 
in number theory, computer 

security and cryptography, coding theory, differential equa-
tions, and more.

Contemporary Mathematics, Volume 724
March 2019, 344 pages, Softcover, ISBN: 978-1-4704-
4247-7, LC 2018040058, 2010 Mathematics Subject Clas-
sification: 11G30, 11G50, 11G32, 11T71, 11T06, 14H37, 
14H40, 14H45, 14H52, 14H55, List US$117, AMS mem-
bers US$93.60, MAA members US$105.30, Order code 
CONM/724

bookstore.ams.org/conm-724
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New AMS-Distributed 
Publications
Analysis

The First NEAM
Conference Proceedings, 
Brockport 2016
Javad Mashreghi, Laval Univer-
sity, Quebec, Canada, Gabriel 
Prajitura, SUNY Brockport, NY, 
and Ruhan Zhao, SUNY Brock-
port, NY, Editors

The volume contains the pro-
ceedings of the First Northeast-
ern Analysis Meeting, held in 
Brockport between October 14 
and 16, 2016. It consists of a 

careful selection of papers covering a large range of subjects 
in mathematical analysis.

Among the topics discussed are: (1) classical complex 
function theory; (2) differential operators on trees; (3) 
integral operators; (4) operator theory on function spaces; 
(5) Fourier analysis; and (6) geometry of Banach spaces.

A publication of the Theta Foundation. Distributed world-
wide, except in Romania, by the AMS.

International Book Series of Mathematical Texts
December 2018, 166 pages, Hardcover, ISBN: 978-606-
8443-11-9, 2010 Mathematics Subject Classification: 00B25, 
30–06, 42–06, 46–06, 47–06, List US$48, AMS members 
US$38.40, Order code THETA/25

bookstore.ams.org/theta-25

Differential Equations

Resonances for 
Homoclinic Trapped Sets
Jean-François Bony ,  IMB, 
CNRS, Université de Bordeaux, 
Talence, France, Setsuro Fujiié, 
Ritsumeikan University, Kusatsu, 
Japan, Thierry Ramond, Uni-
versité Paris-Sud, CNRS, Orsay, 
France, and Maher Zerzeri, Uni-
versité Paris 13, Sorbonne Paris 
Cité, CNRS, Villetaneuse, France

The authors study semiclassical 
resonances generated by homo-
clinic trapped sets. First, under 

some general assumptions, they prove that there is no res-
onance in a region below the real axis. Then, they obtain 
a quantization rule and the asymptotic expansion of the 
resonances when there is a finite number of homoclinic 
trajectories. The same kind of result is proved for homo-
clinic sets of maximal dimension.

Next, the authors generalize to the case of homoclinic/
heteroclinic trajectories and study the three bump cases. In 
all of these settings, the resonances may either accumulate 
on curves or form clouds. The authors also describe the 
corresponding resonant states.

This item will also be of interest to those working in analysis.

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the U.S., Canada, and Mexico. Orders from 
other countries should be sent to the SMF. Members of the SMF receive 
a 30% discount from list.

Astérisque, Number 405
December 2018, 314 pages, Softcover, ISBN: 978-2-85629-
894-7, 2010 Mathematics Subject Classification: 35B34, 
35P20, 37C29, 37C25, 35C20, 81Q20, 35S10, 35J10, List 
US$90, AMS members US$72, Order code AST/405

bookstore.ams.org/ast-405
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Meetings & Conferences of the AMS
April Table of Contents

Meetings in this Issue

  2019  
March 15–17 Auburn, Alabama p. 635
March 22–24 Honolulu, Hawai'i p. 637
April 13–14 Hartford, Connecticut p. 639
June 10–13 Quy Nhon, Vietnam  p. 640
September 14–15 Madison, Wisconsin p. 644
October 12–13 Binghamton, New York  p. 646
November 2–3 Gainesville, Florida p. 647
November 9–10 Riverside, California p. 647

  2020  
January 15–18 Denver, Colorado p. 648
March 13–15 Charlottesville, Virginia p. 648
March 21–22 Medford, Massachusetts p. 649
April 4–5 West Lafayette, Indiana p. 649
May 2–3 Fresno, California p. 649
September 12–13 El Paso, Texas p. 649
October 3–4 State College, Pennsylvania p. 650
October 24–25 Salt Lake City, Utah p. 650

  2021  
January 6–9 Washington, DC p. 650
July 5–9 Grenoble, France p. 650
July 19–23 Buenos Aires, Argentina p. 651
October 9–10 Omaha, Nebraska  p. 651

  2022  
January 5–8 Seattle, Washington p. 651 

  2023  
January 4–7 Boston, Massachusetts    p. 651

See https://www.ams.org/meetings for the  
most up-to-date information on the meetings and  

conferences that we offer.

The Meetings and Conferences section of the Notices gives 
information on all AMS meetings and conferences ap-
proved by press time for this issue. Please refer to the page 
numbers cited on this page for more detailed information 
on each event. 

Invited Speakers and Special Sessions are listed as soon 
as they are approved by the cognizant program committee; 
the codes listed are needed for electronic abstract sub-
mission. For some meetings the list may be incomplete. 
Information in this issue may be dated. 
The most up-to-date meeting and conference information 
can be found online at: www.ams.org/meetings.

Important Information About AMS Meetings: Poten-
tial organizers, speakers, and hosts should refer to page 
127 in the January 2019 issue of the Notices for general 
information regarding participation in AMS meetings and 
conferences.

Abstracts: Speakers should submit abstracts on the 
easy-to-use interactive Web form. No knowledge of LATEX is 
necessary to submit an electronic form, although those who 
use LATEX may submit abstracts with such coding, and all 
math displays and similarily coded material (such as accent 
marks in text) must be typeset in LATEX. Visit www.ams.
org/cgi-bin/abstracts/abstract.pl. Questions 
about abstracts may be sent to abs-info@ams.org. Close 
attention should be paid to specified deadlines in this issue. 
Unfortunately, late abstracts cannot be accommodated.

Associate Secretaries of the AMS
Central Section: Georgia Benkart, University of Wiscon-
sin–Madison, Department of Mathematics, 480 Lincoln 
Drive, Madison, WI 53706-1388; email: benkart@math 
.wisc.edu; telephone: 608-263-4283.

Eastern Section: Steven H. Weintraub, Department of 
Mathematics, Lehigh University, Bethlehem, PA 18015-
3174; email: steve.weintraub@lehigh.edu; tele-
phone: 610-758-3717.
Southeastern Section: Brian D. Boe, Department of Math-
ematics, University of Georgia, 220 D W Brooks Drive, 
Athens, GA 30602-7403, email: brian@math.uga.edu; 
telephone: 706-542-2547.

Western Section: Michel L. Lapidus, Department of Math-
ematics, University of California, Surge Bldg., Riverside, 
CA 92521-0135; email: lapidus@math.ucr.edu; tele-
phone: 951-827-5910.

http://www.ams.org/meetings
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Meetings & Conferences 
of the AMS

MEETINGS & CONFERENCES

IMPORTANT INFORMATION REGARDING MEETINGS PROGRAMS: AMS Sectional Meeting programs do not appear in 
the print version of the Notices. However, comprehensive and continually updated meeting and program information 
with links to the abstract for each talk can be found on the AMS website. See www.ams.org/meetings/. 

Final programs for Sectional Meetings will be archived on the AMS website accessible from the stated URL .

Auburn, Alabama
Auburn University

March 15–17, 2019
Friday – Sunday

Meeting #1146
Southeastern Section
Associate secretary: Brian D. Boe

Announcement issue of Notices: January 2019
Program first available on AMS website: January 31, 2019
Issue of Abstracts: Volume 40, Issue 2

Deadlines
For organizers: Expired
For abstracts: Expired

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited Addresses
Grigoriy Blekherman, Georgia Institute of Technology, Do Sums of Squares Dream of Free Resolutions?.
Carina Pamela Curto, Pennsylvania State University, Graphs, network motifs, and threshold-linear algebra in the brain.
Ming Liao, Auburn University, Invariant Markov processes under actions of Lie groups.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at www.ams.org/cgi-bin/abstracts/abstract.pl.

Algebraic and Discrete Methods in Mathematical Biology, Carina Curto, The Pennsylvania State University, Katherine 
Morrison, University of Northern Colorado, and Nora Youngs, Colby College.

Applications of Algebraic Geometry, Greg Blekherman, Georgia Institute of Technology, Michael Burr, Clemson Univer-
sity, and Tianran Chen, Auburn University at Montgomery.

Clustering Methods and Applications, Benjamin McLaughlin, Naval Surface Warfare Center Panama City Division 
(NSWCPCD), and Sung Ha Kang, Georgia Institute of Technology.

Combinatorial Matrix Theory, Zhongshan Li, Georgia State University, and Xavier Martínez-Rivera, Auburn University.
Commutative and Combinatorial Algebra, Selvi Kara Beyarslan, University of South Alabama, and Alessandra Costan-

tini, Purdue University.
Developments in Commutative Algebra, Eloísa Grifo, University of Michigan, and Patricia Klein, University of Kentucky.
Differential Equations in Mathematical Biology, Guihong Fan, Columbus State University, Zhongwei Shen, University 

of Alberta, and Xiaoxia Xie, Idaho State University.

http://www.ams.org/meetings/
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Discrete and Convex Geometry, Andras Bezdek, Auburn University, Ferenc Fodor, University of Szeged, and Wlodzimierz 
Kuperberg, Auburn University.

Evolution Equations and Applications, Dmitry Glotov, Wenxian Shen, and Paul G. Schmidt, Auburn University.
Experimental Mathematics in Number Theory, Analysis, and Combinatorics, Amita Malik, Rutgers University, and Armin 

Straub, University of South Alabama.
Geometric Flows and Minimal Surfaces, Theodora Bourni, University of Tennessee, and Giuseppe Tinaglia, King’s College 

London and University of Tennessee.
Geometric Methods in Representation Theory, Jiuzu Hong and Shrawan Kumar, University of North Carolina, Chapel 

Hill, and Yiqiang Li, University at Buffalo, the State University of New York.
Geometric and Combinatorial Aspects of Representation Theory, Mark Colarusso, University of South Alabama, and Jonas 

Hartwig, Iowa State University.
Geometry and Topology of Low Dimensional Manifolds, and Their Invariants, John Etnyre, Georgia Institute of Technology, 

Bulent Tosun, University of Alabama, and Shea Vela-Vick, Louisiana State University.
Graph Theory in Honor of Robert E. Jamison’s 70th Birthday, Robert A Beeler, East Tennessee State University, Gretchen 

Matthews, Virginia Tech, and Beth Novick, Clemson University.
Hopf Algebras and Their Applications, Robert Underwood, Auburn University at Montgomery, and Alan Koch, Agnes 

Scott College.
Mapping Class Groups, Joan Birman, Columbia University, and Kevin Kordek and Dan Margalit, Georgia Institute of 

Technology.
Mathematical Analysis and Control Theory of Coupled Partial Differential Equation Models, George Avalos and Pelin Gu˝ven 

Geredeli, University of Nebraska-Lincoln, and László Kindrat, University of New Hampshire.
Nonlinear Reaction-Diffusion Equations and Their Applications, Jerome Goddard,II, Auburn University at Montgomery, 

Nsoki Mavinga, Swarthmore College, Quinn Morris, Appalachian State University, and R. Shivaji, University of North 
Carolina at Greensboro.

Probability and Stochastic Processes, Ming Liao, Erkan Nane, and Jerzy Szulga, Auburn University.
Random Discrete Structures, Lutz P Warnke, Georgia Institute of Technology, and Xavier Pérez-Giménez, University of 

Nebraska-Lincoln.
Recent Advances in Coarse Geometry, Jerzy Dydak, University of Tennessee.
Recent Advances in Numerical Methods for PDEs and PDE-constrained Optimization, Yanzhao Cao, Thi-Thao-Phuong 

Hoang, and Junshan Lin, Auburn University.
Recent Developments in Graph Theory, Xiaofeng Gu, Jeong-Hyun Kang, David Leach, and Rui Xu, University of West 

Georgia.
Representations of Lie Algebras, Algebraic Groups, and Quantum Groups, Joerg Feldvoss, University of South Alabama, 

Lauren Grimley, Spring Hill College, and Cornelius Pillen, University of South Alabama.
The Modeling and Analysis of Spatially Extended Structures, Shibin Dai, University of Alabama, Keith Promislow, Mich-

igan State University, and Qiliang Wu, Ohio University.
Topological Data Analysis, Statistics and Applications, Yu-Min Chung, University of North Carolina at Greensboro, and 

Vasileios Maroulas, University of Tennessee.
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Honolulu, Hawai‘i
University of Hawai‘i at Mānoa

March 22–24, 2019
Friday – Sunday

Meeting #1147
Central Section & Western Section
Associate secretaries: Georgia Benkart 
and Michel L. Lapidus

Announcement issue of Notices: January 2019
Program first available on AMS website: February 7, 2019
Issue of Abstracts: Volume 40, Issue 2

Deadlines
For organizers: Expired
For abstracts: Expired

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited Addresses
Barry C. Mazur, Harvard University, On the arithmetic of curves (Einstein Public Lecture in Mathematics).
Aaron Naber, Northwestern University, Analysis of geometric nonlinear ppartial differential equations.
Deanna Needell, UCLA, Simple approaches to complicated data analysis.
Katherine E Stange, University of Colorado, Boulder, An illustration in number theory.
Andrew Suk, University of California San Diego, On the Erdos-Szekeres convex polygon problem.

Special Sessions
Advances in Iwasawa Theory, Frauke Bleher, University of Iowa, Ted Chinburg, University of Pennsylvania, and Robert 

Harron, University of Hawai‘i at Mānoa.
Advances in Mathematical Fluid Mechanics, Kazuo Yamazaki, University of Rochester, and Adam Larios, University of 

Nebraska - Lincoln.
Algebraic Groups, Galois Cohomology, and Local-Global Principles, Raman Parimala, Emory University, Andrei Rapinchuk, 

University of Virginia, and Igor Rapinchuk, Michigan State University.
Algebraic Number Theory and Diophantine Equations, Claude Levesque, University of Laval.
Algebraic Points, Barry Mazur and Hector Pasten, Harvard University.
Algebraic and Combinatorial Structures in Knot Theory, Sam Nelson, Claremont McKenna College, Natsumi Oyamaguchi, 

Shumei University, and Kanako Oshiro, Sophia University.
Algebraic and Geometric Combinatorics, Andrew Berget, Western Washington University, and Steven Klee, Seattle Uni-

versity.
Analysis of Nonlinear Geometric Equations, Aaron Naber, Northwestern University, and Richard Bamler, University of 

California Berkeley.
Analytic and Probabilistic Methods in Convex Geometry, Alexander Koldobsky, University of Missouri, Alexander Lit-

vak, University of Alberta, Dmitry Ryabogin, Kent State University, Vladyslav Yaskin, University of Alberta, and Artem 
Zvavitch, Kent State University.

Applications of Ultrafilters and Nonstandard Methods, Isaac Goldbring, University of California, Irvine, and Steven Leth, 
University of Northern Colorado.

Arithmetic Dynamics, Andrew Bridy, Yale University, Michelle Manes, University of Hawai‘i at Mānoa, and Bianca 
Thompson, Harvey Mudd College.

Arithmetic Geometry and Its Connections, Laura Capuano, University of Oxford, and Amos Turchet, University of Wash-
ington.

Arithmetic and Transcendence of Special Functions and Special Values, Matthew A. Papanikolas, Texas A&M University, 
and Federico Pellarin, Université Jean Monnet, St. Étienne.

Coarse Geometry, Index Theory, and Operator Algebras: Around the Mathematics of John Roe, Erik Guentner, University of 
Hawai‘i at Mānoa, Nigel Higson, Penn State University, and Rufus Willett, University of Hawai‘i at Mānoa.

Coding Theory and Information Theory, Manabu Hagiwara, Chiba University, and James B. Nation, University of Hawai‘i.
Combinatorial and Experimental Methods in Mathematical Phylogeny, Sean Cleary, City College of New York and the CUNY 

Graduate Center, and Katherine St. John, Hunter College and the American Museum of Natural History.
Commutative Algebra and its Environs, Olgur Celikbas and Ela Celikbas, West Virginia University, and Ryo Takahashi, 

Nagoya University.
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Computability, Complexity, and Learning, Achilles A. Beros and Bjørn Kjos-Hanssen, University of Hawai‘i at Mānoa.
Computational and Data-Enabled Sciences, Roummel Marcia, Boaz Ilan, and Suzanne Sindi, University of California, 

Merced.
Constructive Aspects of Complex Analysis, Ilia Binder and Michael Yampolsky, University of Toronto, and Malik Younsi, 

University of Hawai‘i at Mānoa.
Differential Geometry, Vincent B. Bonini, Cal Poly San Luis Obispo, Jie Qing, University of California, Santa Cruz, and 

Bogdan D. Suceava, California State University, Fullerton.
Dynamical Systems and Algebraic Combinatorics, Maxim Arnold, University of Texas at Dallas, Jessica Striker, North 

Dakota State University, and Nathan Williams, University of Texas at Dallas.
Emerging Connections with Number Theory,I, Katherine Stange, University of Colorado, Boulder, and Renate Scheidler, 

University of Calgary.
Equivariant Homotopy Theory and Trace Methods, Andrew Blumberg, University of Texas, Teena Gerhardt, Michigan State 

University, Michael Hill, UCLA, and Michael Mandell, Indiana University.
Factorization and Arithmetic Properties of Integral Domains and Monoids, Scott Chapman, Sam Houston State University, 

Jim Coykendall, Clemson University, and Christopher O’Neill, University California, Davis.
Generalizations of Symmetric Spaces, Aloysius Helminck, University of Hawai‘i at Mānoa, Vicky Klima, Appalachian 

State University, Jennifer Schaefer, Dickinson College, and Carmen Wright, Jackson State University.
Geometric Approaches to Mechanics and Control, Monique Chyba, University of Hawai‘i at Mānoa, Tomoki Ohsawa, The 

University of Texas at Dallas, and Vakhtang Putkaradze, University of Alberta.
Geometry, Analysis, Dynamics and Mathematical Physics on Fractal Spaces, Joe P. Chen, Colgate University, Lũ (Tim) Hùng, 

Hawai‘i Pacific University, Machiel van Frankenhuijsen, Utah Valley University, and Robert G. Niemeyer, University of 
the Incarnate Word.

Homotopy Theory, Kyle Ormsby and Angélica Osorno, Reed College.
Interactions between Geometric Measure Theory, PDE, and Harmonic Analysis, Mark Allen, Brigham Young University, 

Spencer Becker-Kahn, University of Washington, Max Engelstein, Massachusetts Institute of Technology, and Mariana 
Smit Vega Garcia, University of Washington.

Interactions between Noncommutative Algebra and Noncommutative Algebraic Geometry, Garrett Johnson, North Carolina 
Central University, Bach Nguyen and Xingting Wang, Temple University, and Daniel Yee, Bradley University.

Lie Theory in the Representations of Groups and Related Structures - dedicated to the memory of Kay Magaard, Christopher 
Drupieski, DePaul University, and Julia Pevtsova, University of Washington.

Mapping Class Groups, Asaf Hadari, University of Hawai‘i, and Jing Tao, University of Oklahoma.
Mathematical Analysis of Nonlinear Phenomena, Mimi Dai, University of Illinois at Chicago.
Mathematical Methods and Models in Medicine, Monique Chyba, University of Hawai‘i, and Jakob Kotas, University of 

Hawai‘i and University of Portland.
New Trends in Geometric Measure Theory, Antonio De Rosa, Courant Institute of Mathematical Sciences, New York 

University, and Luca Spolaor, Massachusetts Institute of Technology.
New Trends on Variational Calculus and Non-Linear Partial Differential Equations, Craig Cowan, University of Manitoba, 

Michinori Ishiwata, Osaka University, Abbas Moameni, Carleton University, and Futoshi Takahashi, Osaka City Uni-
versity.

Nonlinear Wave Equations and Applications, Boaz Ilan, University of California, Merced, and Barbara Prinari, University 
of Colorado, Colorado Springs.

Numerical Methods for Partial Differential Equations, Evan Gawlik, Michael Holst, and Martin Licht, University of Cal-
ifornia, San Diego.

Real and Complex Singularities, Leslie Charles Wilson, University of Hawai‘i, Mānoa, Goo Ishikawa, Hokkaido Uni-
versity, and David Trotman, Aix-Marseille University.

Recent Advances and Applications of Modular Forms, Amanda Folsom, Amherst College, Pavel Guerzhoy, University of 
Hawai‘i at Mānoa, Masanobu Kaneko, Kyushu University, and Ken Ono, Emory University.

Recent Advances in Lie and Related Algebras and their Representations, Brian D. Boe, University of Georgia, and Jonathan 
Kujawa, University of Oklahoma.

Recent Advances in Numerical Methods for PDEs, Hengguang Li, Wayne State University, and Sara Pollock, University 
of Florida.

Recent Developments in Automorphic Forms, Solomon Friedberg, Boston College, and Jayce Getz, Duke University.
Recent Trends in Algebraic Graph Theory, Sebastian Cioaba, University of Delaware, and Shaun Fallat, University of Regina.
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SYZ Mirror Symmetry and Enumerative Geometry, Siu Cheong Lau, Boston University, Naichung Leung, The Chinese 
University of Hong Kong, and Hsian-Hua Tseng, Ohio State University.

Several Complex Variables, Peter Ebenfelt, University of California, San Diego, John Erik Fornaess, University of Mich-
igan and Norwegian University of Science and Technology, Ming Xiao, University of California, San Diego, and Yuan 
Yuan, Syracuse University.

Spaces of Holomorphic Functions and Their Operators, Mirjana Jovovic and Wayne Smith, University of Hawai‘i.
Sparsity, Randomness, and Optimization, Deanna Needell, University of California, Los Angeles.
Spectral Geometry: The Length and Laplace Spectra of Riemannian Manifolds, Benjamin Linowitz, Oberlin College, and 

Jeffrey S. Meyer, California State University at San Bernardino.
Stability and Singularity in Fluid Dynamics, Tristan Buckmaster, Princeton University, Steve Shkoller, University of 

California, Davis, and Vlad Vicol, Princeton University.
Structural Graph Theory, Zixia Song, University of Central Florida, Martin Rolek, College of William and Mary, and 

Yue Zhao, University of Central Florida.
The Mathematics of Cryptography, Shahed Sharif, California State University, San Marcos, and Alice Silverberg, Univer-

sity of California, Irvine.
Three-dimensional Floer Theory, Contact Geometry, and Foliations, Joan Licata, Australian National University, and Robert 

Lipshitz, University of Oregon.
Topics at the Interface of Analysis and Geometry, Alex Austin and Sylvester Eriksson-Bique, University of California, Los 

Angeles.
Valuations on Algebraic Function Fields and Their Subrings, Ron Brown, University of Hawai‘i, Steven Dale Cutkosky, 

University of Missouri, and Franz-Viktor Kuhlmann, University of Szczecin.
What is Happening in Mathematical Epidemiology? Current Theory, New Methods, and Open Questions, Olivia Prosper, 

University of Kentucky.

Hartford, Connecticut
University of Connecticut Hartford (Hartford Regional Campus)

April 13–14, 2019
Saturday – Sunday

Meeting #1148
Eastern Section
Associate secretary: Steven H. Weintraub

Announcement issue of Notices: February 2019
Program first available on AMS website: February 21, 2019
Issue of Abstracts: Volume 40, Issue 2

Deadlines
For organizers: Expired
For abstracts: Expired

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited Addresses
Brian C Hall, University of Notre Dame, Eigenvalues of random matrices in the general linear group in the large-N  limit.
Christina Sormani, Lehman College and CUNYGC, Compactness theorems for sequences of Riemannian Manifolds.
Olivier Bernardi, Brandeis University, Percolation on triangulations, and a bijective path to Liouville quantum gravity.

Special Sessions
Algebraic Number Theory, Harris Daniels, Amherst College, and Alvaro Lozano-Robledo and Erik Wallace, University 

of Connecticut.
Analysis, Geometry, and PDEs in Non-smooth Metric Spaces, Vyron Vellis, University of Connecticut, Xiaodan Zhou, 

Worcester Polytechnic Institute, and Scott Zimmerman, University of Connecticut.
Banach Space Theory and Metric Embeddings, Mikhail Ostrovskii, St. John’s University, and Beata Randrianantoanina, 

Miami University.
Chip-firing and Divisor Theory, Caroline Klivans, Brown University, and David Perkinson, Reed College.
Cluster Algebras and Related Topics, Emily Gunawan and Ralf Schiffler, University of Connecticut.
Combinatorial Commutative Algebra and Polyhedral Geometry, Elie Alhajjar, US Military Academy, and McCabe Olsen, 

Ohio State University.
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Computability Theory, Damir Dzhafarov and Reed Solomon, University of Connecticut, and Linda Brown Westrick, 
Pennsylvania State University.

Convergence of Riemannian Manifolds, Lan-Hsuan Huang and Maree Jaramillo, University of Connecticut, and Christina 
Sormani, City University of New York Graduate Center and Lehman College.

Discrete Dynamical Systems and Applications, Elliott J. Bertrand, Sacred Heart University, and David McArdle, University 
of Connecticut.

Invariants of Knots, Links, and Low-dimensional Manifolds, Patricia Cahn, Smith College, and Moshe Cohen and Adam 
Lowrance, Vassar College.

Knot Theory, the Colored Jones Polynomial, and Khovanov Homology, Adam Giambrone, Elmira College, and Katherine 
Hall, University of Connecticut.

Mathematical Cryptology, Lubjana Beshaj, United States Military Academy, and Jaime Gutierrez, University of Canta-
bria, Santander, Spain.

Mathematical Finance, Oleksii Mostovyi, University of Connecticut, Gu Wang, Worcester Polytechnic Institute, and 
Bin Zhou, University of Connecticut.

Modeling and Qualitative Study of PDEs from Materials Science and Geometry., Yung-Sze Choi, Changfeng Gui, and Xia-
odong Yan, University of Connecticut.

Recent Advances in Structured Matrices and Their Applications, Maxim Derevyagin, University of Connecticut, Olga Holz, 
University of California, Berkeley, and Vadim Olshevsky, University of Connecticut.

Recent Development of Geometric Analysis and Nonlinear PDEs, Ovidiu Munteanu, Lihan Wang, and Ling Xiao, Univer-
sity of Connecticut.

Representation Theory of Quantum Algebras and Related Topics, Drew Jaramillo, University of Connecticut, Garrett John-
son, North Carolina Central University, and Margaret Rahmoeller, Roanoke College.

Special Session on Regularity Theory of PDEs and Calculus of Variations on Domains with Rough Boundaries, Murat Akman, 
University of Connecticut, and Zihui Zhao, University of Washington.

Special Values of L-functions and Arithmetic Invariants in Families, Ellen Eischen, University of Oregon, Yifeng Liu, Yale 
University, Liang Xiao, University of Connecticut, and Wei Zhang, Massachusetts Institute of Technology.

Stochastic Analysis and Related Fields, Fabrice Baudoin, University of Connecticut, and Cheng Ouyang, University of 
Illinois at Chicago.

Stochastic Processes, Random Walks, and Heat Kernels, Patricia Alonso Ruiz, University of Connecticut, and Phanuel 
Mariano, Purdue University.

Sub-Riemannian and CR Geometric Analysis, Fabrice Baudoin, University of Connecticut, and Luca Capogna, Worcester 
Polytechnic Institute.

Quy Nhon, Vietnam
International Centre for Interdisciplinary Science and Education (ICISE)

June 10–13, 2019
Monday – Thursday

Meeting #1149
Associate secretary: Brian D. Boe
Announcement issue of Notices: April 2019

Deadlines
For organizers: Expired
For abstracts: April 16, 2019

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/internmtgs.html.

Invited Addresses
Henry Cohn, Microsoft Research, Sphere packing, Fourier interpolation, and ground states in 8 and 24 dimensions.
Robert Guralnick, University of Southern California, Fixed point free permutations and applications.
Le Tuan Hoa, Institute of Mathematics, Vietnam Academy of Science and Technology, On the complexity of polynomial 

systems.
Nguyen Dong Yen, Institute of Mathematics, Vietnam Academy of Science and Technology, Hanoi, Vietnam, Second-Or-

der Tangent Sets and Second-Order Subdifferentials.
Zhiwei Yun, Massachusetts Institute of Technology, Endoscopy for Hecke categories and character sheaves.
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Nguyen Tien Zung, Toulouse Mathematics Institute, On a universal conservation law in dynamics.

Special Sessions
Algebraic Topology, Nguyen Huu Viet Hung, Vietnam National University, Hanoi (Vietnam), Le Minh Ha, Vietnam 

Institute for Advanced Study in Mathematics (Vietnam), and Dev Sinha, University of Oregon (USA).
Applied and Industrial Mathematics, John Birge, University of Chicago (USA), and Vu Hoang Linh, Vietnam National 

University, Hanoi (Vietnam).
Arithmetic Algebraic Geometry and related topics, Phung Ho Hai, Institute of Mathematics, Vietnam Academy of Science 

and Technology (Vietnam),  Le Hung Viet Bao, Northwestern University (USA), and Ngo Dac Tuan, CNRS and University 
of Caen Normandy (France).

Commutative Algebra and Its Interactions to Combinatorics, Le Tuan Hoa, Vietnam Academy of Science & Technology 
(Vietnam), and Ha Huy Tai, Tulane University (USA).

Complex Geometry and Dynamical Systems, Pham Hoang Hiep, Vietnam Academy of Science and Technology (Vietnam), 
Daniel Burns, University of Michigan (USA), Tien-Cuong Dinh, National University of Singapore (Singapore), and Thai 
Thuan Quang, Quy Nhom University (Vietnam).

Discrete Mathematics, Phan Thi Ha Duong, Vietnam Academy of Science & Technology (Vietnam), and Vu Ha Van, 
Yale University (USA).

Formal Mathematics, Thomas C. Hales, University of Pittsburgh (USA), and Tran Nam Trung, Vietnam Academy of 
Science & Technology (Vietnam).

Geometry and Physics, Nguyen Tien Zung, Toulouse Mathematics Institute (France), and Tudor Ratiu, Shanghai Jiao 
Tong University (China).

Groups, Representations and Applications, Pham Huu Tiep, Rutgers University (USA/Vietnam), and Robert M. Guralnick, 
University of Southern California (USA).

Homological Methods in the Representation Theory of Groups and Algebras, Daniel K. Nakano, University of Georgia (USA), 
Jon Carlson, University of Georgia (USA), and Ngo Vo Nham, University of North Georgia (USA).

Optimization and Variational Analysis, Nguyen Dong Yen, Vietnam Academy of Science & Technology (Vietnam), Phan 
Quoc Khanh, Vietnam National University, Ho Chi Minh City (Vietnam), and Huynh Van Ngai, Quy Nhon University 
(Vietnam).

Singularities and Algebraic Geometry, Le Quy Thuong, Vietnam National University, Hanoi (Vietnam), Nero Budur, KU 
Leuven (Belgium), and Pho Duc Tai, Vietnam National University, Hanoi (Vietnam).

Value Distribution Theory, Complex Geometry, Diophantine Approximation, and Related Topics, William Cherry, University 
of North Texas (USA), Ta Thi Hoai An, Vietnam Academy of Science & Technology (Vietnam), and Min Ru, University 
of Houston (USA).

This announcement was composed with information taken from the website maintained by the local organizers at vnus2019 
.viasm.edu.vn. Please watch this website for the most up-to-date information.

Abstract Submissions
Abstracts must be submitted online at https://vnus2019.vasm.edu.vn. The deadline for abstract submissions is April 
16, 2019.

Accommodations
The Vietnam Mathematical Society has suggested some hotels for participants of the meeting while they are in Quy 
Nhon. Should participants choose to utilize a room at one of these properties, all arrangements should be made via 
the local organizer’s website. A list of suggested properties can be found here: vnus2019.viasm.edu.vn/article 
/accommodation-11.

Please note, hotel reservations are only valid after a meeting registration fee has been collected via the online registra-
tion form located here: vnus2019.viasm.edu.vn.

Khách Sa.n Hai Âu (Seagull) Hotel (****) 489 An Duong Vuong Street, Quy Nhon City, Binh Dinh Province, Viet-
nam, Tel : (84-56) 3 846 377; seagullhotel.com.vn. (7km from ICISE, 12 km from Dieu Tri Station, and 37 km 
from Phu Cat Airport)

A limited number of rooms at Khách Sa.n Hai Âu (Seagull) Hotel (****) will be reserved for meeting participants at 
a discounted rate. Please check the Vietnam-US Joint Meeting website for more details. Conveniently located 7 km away 
from the ICISE, Khách Sa.n Hai Âu (Seagull) Hotel is a beachfront property offering contemporary rooms with sea views. 
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The hotel features an outdoor pool and two on-site dining options. Guests can enjoy free WiFi access in all areas of the 
hotel as well as free private parking.

All rooms have air conditioning, a personal safe, cable TV and a mini-bar. Beautiful views of either the city or of the 
sea can be enjoyed from private balconies. Amenities also include a spa and fitness center. The hotel’s front desk operates 
24-hours a day and has a tour desk to assist guests with currency exchange, day tour arrangements and airport transfer 
services. Khách Sa.n Hai Âu (Seagull) Hotel’s Salagane Restaurant serves an array of Asian and European dishes, while 
Royal Restaurant features international cuisine.

One room can be reserved per person. Each room has either one double bed or two single beds.
A round trip shuttle bus will be arranged between Khách Sa.n Hai Âu (Seagull) Hotel and ICISE for each day of the 

conference.

The local organizers for the Vietnam–US Joint Meeting also suggest the following hotels:
Royal Hotel and Healthcare Resort Quy Nhon, 01 Han Mac Tu Street, Ghenh Rang Ward, Quy Nhon, Vietnam, Tel: 

+84 256 3747 100; royalquynhon.com. The Royal Hotel and Healthcare Resort Quy Nhon is 7km from the ICISE.
Sai Gon Quy Nhon Hotel, 24 Nguyen Hue Street, Le Loi Ward, Quy Nhon City, Binh Dinh Province, Tel +84 2563 

829922; saigonquynhonhotel.com.
For more information regarding hotels near ICISE, please visit vnus2019.viasm.edu.vn.

Local Information / Tourism
The Vietnam-US Joint Meeting will take place at the International Centre for Interdisciplinary Science and Education 
(ICISE). Just a few kilometers away from the city centre of Quy Nhon, capital of Binh Dinh province, ICISE is located on 
50 acres of park land between the mountains and the sea. https://www.icisequynhon.com/icise-about-us.

The city of Quy Nhon is located on the east coast of Vietnam, just 45 minutes north, by air, from Ho-Chi-Minh City 
(Saigon) and 1.5 hours south of Hanoi. This economically growing city, still preserved from mass tourism, has retained 
its traditions including martial arts and reveals an authentic face of Vietnam.

Local tourism information and maps can be found at https://vnus2019.viasm.edu.vn. This site offers details 
on general travel information, accommodations, restaurants and transportation in Quy Nhon.

Vietnamese currency is called Vietnamese Dong, often abbreviated as VND. The denominations of paper notes include 
500,000; 200,000; 100,000; 50,000; 20,000; 10,000; 5,000 and 2,000 Dong. At the time of publication of this announce-
ment, the exchange rate was US$1 equal to 23,204.50 Dong. Cash (foreign currency) can be exchanged upon arrival at 
the international airports in Hanoi and Ho Chi Minh City (Saigon). Banks will exchange money and travelers cheques. 
Banking hours are typically Mondays through Fridays, 9 am to 5 pm.

Plan to bring a number of payment options on your Vietnamese trip for peace of mind. Credit cards are good for 
bigger purchases, but cash is what you’ll need the most. Major credit cards can be accepted at most hotels, tourist shops 
and some department stores. You should notify your bank of your international travel, and the potential legitimate use 
of your card abroad, prior to leaving your home country. It is highly recommended that you exchange your money before 
you arrive in Vietnam.

Vietnam’s electrical current is supplied at 220 volts, 50 cycles. The most common plug types are the dual and three-
pointed prongs, which are different from the western plugs. Please note that Vietnam runs on 220 volts, which will burn 
110-volt appliances.

Please visit the Vietnam–US Joint Meeting website vnus2019.viasm.edu.vn/article/useful-information 
-15 for information on the area's dining and attractions as well as other useful information such as emergency contacts 
while traveling.

Registration and Meeting Information
Please visit vnus2019.viasm.edu.vn for information regarding registration for the Vietnam–US Joint Meeting, as 
well as the conference schedule and specific locations at ICISE. 

Special Needs
It is the goal of the AMS to ensure that its conferences are accessible to all, regardless of disability. The AMS will strive, 
unless it is not practicable, to choose venues that are fully accessible to the physically handicapped.

If special needs accommodations are necessary in order for you to participate in an AMS international meeting, please 
communicate your needs in advance to the local organizers.
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AMS Policy on a  Welcoming Environment
The AMS strives to ensure that participants in its activities enjoy a welcoming environment. In all its activities, the AMS 
seeks to foster an atmosphere that encourages the free expression and exchange of ideas. The AMS supports equality of 
opportunity and treatment for all participants, regardless of gender, gender identity, or expression, race, color, national 
or ethnic origin, religion or religious belief, age, marital status, sexual orientation, disabilities, or veteran status.

The AMS thanks our hosts for their gracious hospitality.

Travel
In order to welcome you to Quy Nhon and to organize your transfer from Phu Cat Airport, train or bus station to the 
conference hotel, please provide your travel details to the conference secretariat. The travel details that you will need to 
provide include your flight, train, or bus number as well as the date and the arrival time in Quy Nhon.

By Air: Quy Nhon can be reached by plane from Hanoi and from Ho Chi Minh City (Saigon). Arriving from abroad, the 
second alternative is recommended because of the fare and the time duration of the journey (1 hour from Ho Chi Minh 
City instead of 1.5 hours from Hanoi).

Phu Cat Airport is situated in Cat Tan commune, Phu Cat district, Binh Dinh province, about 35 km far from the 
northwest of Quy Nhon city center. Flights to Quy Nhon are currently operated by the domestic airlines: Vietnam Airlines, 
Vietjet, Jetstar, and Bamboo Airways with the frequency of up to 10 flights per day from Ho Chi Minh City, and up to 3 
flights per day from Hanoi.

From Phu Cat Airport, travellers can take either a taxi or the shuttle bus to Quy Nhon City Center. The price for a 4-seat 
taxi is approximately US$12 and the price for the shuttle bus is approximately US$2 per person.

Vietnam Airlines https://www.vietnamairlines.com/vn/en/Home;
Vietjet air https://www.vietjetair.com/Sites/Web/en-US/Home;
Jetstar Pacific https://www.jetstar.com/us/en/home;
Bamboo Airways https://www.bambooairways.com/en.

By Train: The railway from Ho Chi Minh (Saigon) station to Dieu Tri (Binh Dinh province) station is about 630 Kilome-
ters. There are 4 Reunification Express trains including SE2, SE4, SE6 and SE8 on this route. These depart daily and take 
about 11 to 12 hours one-way from Saigon to Dieu Tri Dieu Tri station (Binh Dinh Province). There are several seat types 
to purchase ranging from US$35–$50, one-way.

The railway from Hanoi station to Dieu Tri station (Binh Dinh Province) is 1096 Kilometers. There are 4 Reunification 
Express trains including SE1, SE3, SE5 and SE7 on this route departing daily. This trip is 20–23 hours, one-way, and requires 
changing trains. There are several seat types to purchase ranging US$45–$80, one way. https://vietnam-railway.
com.
 
By Bus: It is possible to travel by bus from Ho Chi Minh City (12–13 hours, one-way) for US$11–$14 person and from 
Hanoi (22–25 hours, one-way) for US$30–$60 per person.

There will be a complimentary shuttle service from Quy Nhon City Center to ICISE during the conference.

Local Transportation
Taxi Service: Taxis in Quy Nhon and other provinces in Vietnam are charged by the number of kilometers on the meter. 
The taxi call-center operators do not speak English and most likely will not understand the pronunciation of the street 
names of a non-Vietnamese speaking customer.  Please ask a receptionist at your hotel to place the call on your behalf. 

Sun Taxi: +84 56 368 6868
Taxi Mai Linh: +84. 3838 3838
Taxi Chí Thành: +84 56 3827888
Taxi Dân: +84 56 3818881
Taxi Hoàng Anh: +84 56 3525525

Local Bus Service: Public buses in Quy Nhon are often crowded and time consuming, but serve as an inexpensive way to 
travel. Bus hours are: 5:30 am–7:00 pm. Buses that stop near ICISE are bus numbers: T2; T5; T7; T8; T9; T12.
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Weather
Quy Nhon is quite warm in June with high temperatures around 93°F (34°C) and lows around 80°F (26°C). June is 
one of the less humid months in Quy Nhon where humidity it is usually about 63 percent. June is typically one of the 
months in Quy Nhon with least amount of precipitation although visitors should be prepared for inclement weather and 
check weather forecasts in advance of their arrival.

Information for International Participants:
Visitors to Vietnam should obtain a visa prior to their travel unless they are bearing a nationality which has visa exemption 
agreements with Vietnam. A Visa page will be issued at the Vietnamese consulates in US or at the entry airport in Vietnam.

For some countries eligible for electronic visas, foreigners can apply for a tourist visa online via an official website of 
the Vietnam Immigration Department.

Local organizers recommend that all participants apply for a business visa and will provide an approval letter for the 
application process.

Please visit the Vietnam-USA Joint Mathematical Meeting website for more information regarding obtaining a VISA 
for the meeting. vnus2019.viasm.edu.vn/article/visa-useful-information-8.

Madison, Wisconsin
University of Wisconsin–Madison

September 14–15, 2019
Saturday – Sunday

Meeting #1150
Central Section
Associate secretary: Georgia Benkart

Announcement issue of Notices: June 2019
Program first available on AMS website: July 23, 2019
Issue of Abstracts: Volume 40, Issue 3

Deadlines
For organizers: Expired
For abstracts: July 16, 2019

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited Addresses
Nathan Dunfield, University of Illinois, Urbana-Champaign, Title to be announced.
Teena Gerhardt, Michigan State University, Title to be announced.
Lauren Williams, University of California, Berkeley, Title to be announced (Erdős Memorial Lecture).

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at www.ams.org/cgi-bin/abstracts/abstract.pl.

Algebraic and Geometric Combinatorics (Code: SS 12A), Benjamin Braun, University of Kentucky, Marie Meyer, Lewis 
University, and McCabe Olsen, Ohio State University.

Analysis and Probability on Metric Spaces and Fractals (Code: SS 10A), Guy C. David, Ball State University, and John 
Dever, Bowling Green State University.

Arithmetic of Shimura Varieties (Code: SS 26A), Chao Li, Columbia University, and Solly Parenti and Tonghai Yang, 
University of Wisconsin–Madison.

Association Schemes and Related Topics – in Celebration of J.D.H. Smith’s 70th Birthday (Code: SS 8A), Kenneth W. Johnson, 
Penn State University Abington, and Sung Y. Song, Iowa State University.

Automorphic Forms and L-Functions (Code: SS 16A), Simon Marshall and Ruixiang Zhang, University of Wisconsin–
Madison.

Classical and Geophysical Fluid Dynamics: Modeling, Reduction and Simulation (Code: SS 17A), Nan Chen, University of 
Wisconsin–Madison, and Honghu Liu, Virginia Tech University.

Combinatorial Algebraic Geometry (Code: SS 21A), Juliette Bruce and Daniel Erman, University of Wisconsin–Madison, 
Chris Eur, University of California Berkeley, and Lily Silverstein, University of California Davis.
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Commutative Algebra: in Celebration of the 150th Birthday of Roger and Sylvia Wiegand (Code: SS 22A), Nicholas Baeth, 
Franklin & Marshall College, and Graham Leuschke, Syracuse University.

Computability Theory in honor of Steffen Lempp’s 60th birthday (Code: SS 6A), Joseph S. Miller, Noah D. Schweber, and 
Mariya I. Soskova, University of Wisconsin–Madison.

Connections between Noncommutative Algebra and Algebraic Geometry (Code: SS 15A), Jason Gaddis and Dennis Keeler, 
Miami University.

Extremal Graph Theory (Code: SS 14A), Józef Balogh, University of Illinois, and Bernard Lidický, Iowa State University.
Fully Nonlinear Elliptic and Parabolic Partial Differential Equations, Local and Nonlocal (Code: SS 25A), Fernando Charro, 

Wayne State University, Stefania Patrizi, The University of Texas at Austin, and Peiyong Wang, Wayne State University.
Geometry and Topology of Singularities (Code: SS 13A), Laurentiu Maxim, University of Wisconsin–Madison.
Hodge Theory in Honor of Donu Arapura’s 60th Birthday (Code: SS 11A), Ajneet Dhillon, University of Western Ontario, 

Kenji Matsuki and Deepam Patel, Purdue University, and Botong Wang, University of Wisconsin–Madison.
Homological and Characteristic p > 0 Methods in Commutative Algebra (Code: SS 1A), Michael Brown, University of Wis-

consin–Madison, and Eric Canton, University of Michigan.
Lie Representation Theory (Code: SS 19A), Mark Colarusso, University of South Alabama, Michael Lau, Université Laval, 

and Matt Ondrus, Weber State University.
Model Theory (Code: SS 5A), Uri Andrews and Omer Mermelstein, University of Wisconsin–Madison.
Recent Developments in Harmonic Analysis (Code: SS 3A), Theresa Anderson, Purdue University, and Joris Roos, Uni-

versity of Wisconsin–Madison.
Recent Work in the Philosophy of Mathematics (Code: SS 4A), Thomas Drucker, University of Wisconsin–Whitewater, 

and Dan Sloughter, Furman University.
Several Complex Variables (Code: SS 7A), Hanlong Fang and Xianghong Gong, University of Wisconsin–Madison.
Special Functions and Orthogonal Polynomials (Code: SS 2A), Sarah Post, University of Hawai‘i at Mānoa, and Paul Ter-

williger, University of Wisconsin–Madison.
Topics in Graph Theory and Combinatorics (Code: SS 20A), Songling Shan and Papa Sissokho, Illinois State University.
Topology and Descriptive Set Theory (Code: SS 18A), Tetsuya Ishiu and Paul B. Larson, Miami University.
Uncertainty Quantification Strategies for Physics Applications (Code: SS 9A), Qin Li, University of Wisconsin–Madison, 

and Tulin Kaman, University of Arkansas.
Wave Phenomena in Fluids and Relativity (Code: SS 24A), Sohrab Shahshahani, University of Massachusetts, and Willie 

W.Y. Wong, Michigan State University.
Zero Forcing, Propagation, and Throttling (Code: SS 23A), Josh Carlson, Iowa State University, and Nathan Warnberg, 

University of Wisconsin–La Crosse.
Fully Nonlinear Elliptic and Parabolic Partial Differential Equations, Local and Nonlocal (Code: SS 25A), Fernando Charro, 

Wayne State University, Stefania Patrizi, The University of Texas at Austin, and Peiyong Wang, Wayne State University.
Arithmetic of Shimura Varieties (Code: SS 26A), Chao Li, Columbia University, Solly Parenti, University of Wisconsin–

Madison, and Tonghai Yang, University of Wisconsin–Madison.
Hall Algebras, Cluster Algebras and Representation Theory (Code: SS 27A), Xueqing Chen, UW–Whitewater and Yiqiang 

Li, SUNY at Buffalo.
Stochastic Partial Differential Equations and Related Fields (Code: SS 28A), Igor Cialenco, Illinois Institute of Technology, 

Yu Gu, Carnegie Mellon University, and Hyun-Jung Kim, Illinois Institute of Technology.
Floer Homology in Dimensions 3 and 4 (Code: SS 29A), Jianfeng Lin, UC San Diego and Christopher Scaduto, Univer-

sity of Miami.
Functional Analysis and Its Applications (Code: SS 30A), Clement Boateng Ampadu, Boston, MA and Waleed Al-Rawash-

deh, Montana Tech University.
Connecting Network Structure and Behavior of Biological Interaction Systems (Code: SS 31A), David Anderson, University 

of Wisconsin–Madison, Gheorghe Craciun, University of Wisconsin–Madison, and Abhishek Deshpande, University 
of Wisconsin–Madison.

Relations Between the History and Pedagogy of Mathematics (Code: SS 32A), Emily Redman, University of Massachusetts, 
Amherst, Brit Shields, University of Pennsylvania, and Rebecca Vinsonhaler, University of Texas, Austin.

Large Scale Properties of Interacting Stochastic Systems (Code: SS 33A), Timo Seppäläinen, University of Wisconsin–Mad-
ison, Hao Shen, University of Wisconsin–Madison, and Benedek Valko, University of Wisconsin–Madison.

Homotopy Theory, Gabe Angelini-Knoll (Code: SS 34A), Michigan State University, Teena Gerhardt, Michigan State Uni-
versity, and Bertrand Guillou, University of Kentucky.
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Quasigroups and Loops—in honor of J.D.H. Smith’s 70th birthday (Code: SS 35A), J.D. Phillips, Northern Michigan Uni-
versity and Petr Vojtechovsky, University of Denver.

Supergeometry, Poisson Brackets, and Homotopy Structures (Code: SS 36A), Ekaterina Shemyakova, University of Toledo 
and Theodore Voronov, University of Manchester.

Nonlinear Dispersive Equations and Water Waves (Code: SS 37A), Mihaela Ifrim, University of Wisconsin–Madison and 
Daniel Tataru, University of California, Berkeley.

Applications of Algebra and Geometry (Code: SS 38A), Shamgar Gurevich and Jose Israel Rodriguez, University of 
Wisconsin–Madison.

Recent Trends in the Mathematics of Data (Code: SS 39A), Sebastien Roch, University of Wisconsin–Madison, David 
Sivakoff, Ohio State University, and Joseph Watkins, University of Arizona.

Number Theory and Cryptography (Code: SS 40A), Eric Bach, University of Wisconsin–Madison and Jon Sorenson, 
Butler University.

Geometry and Topology in Arithmetic (Code: SS 41A), Rachel Davis, University of Wisconsin–Madison.

Binghamton, New York
Binghamton University

October 12–13, 2019
Saturday – Sunday

Meeting #1151
Eastern Section
Associate secretary: Steven H. Weintraub

Announcement issue of Notices: August 2019
Program first available on AMS website: August 29, 2019
Issue of Abstracts: Volume 40, Issue 3

Deadlines
For organizers: Expired
For abstracts: August 20, 2019

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited Addresses
Richard Kenyon, Brown University, Title to be announced.
Tony Pantev, University of Pennsylvania, Title to be announced.
Lai-Sang Young, New York University, Title to be announced.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at www.ams.org/cgi-bin/abstracts/abstract.pl.

Groups and Their Representations (Code: SS 1A), Jamison Barsotti and Rob Carman, College of William and Mary, and 
Daniel Rossi and Hung P. Tong-Viet, Binghamton University.

Representations of Lie algebras, Vertex Operators, and Related Topics (Code: SS 2A), Alex Feingold, Binghamton University, 
and Christopher Sadowski, Ursinus College.
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Gainesville, Florida
University of Florida

November 2–3, 2019
Saturday – Sunday

Meeting #1152
Southeastern Section
Associate secretary: Brian D. Boe
Announcement issue of Notices: September 2019

Program first available on AMS website: September 19, 
2019

Issue of Abstracts: Volume 40, Issue 4

Deadlines
For organizers: April 2, 2019
For abstracts: September 10, 2019

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited Addresses
Jonathan Mattingly, Duke University, Title to be announced.
Isabella Novik, University of Washington, Title to be announced.
Eduardo Teixeira, University of Central Florida, Title to be announced.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at www.ams.org/cgi-bin/abstracts/abstract.pl.

Combinatorial Lie Theory (Code: SS 3A), Erik Insko, Florida Gulf Coast University, Martha Precup, Washington Uni-
versity in St. Louis, and Edward Richmond, Oklahoma State University.

Fractal Geometry and Dynamical Systems (Code: SS 2A), Mrinal Kanti Roychowdhury, University of Texas Rio Grande 
Valley.

Geometric and Topological Combinatorics (Code: SS 1A), Bruno Benedetti, University of Miami, Steve Klee, Seattle Uni-
versity, and Isabella Novik, University of Washington.

Riverside, California
University of California, Riverside

November 9–10, 2019
Saturday – Sunday

Meeting #1153
Western Section
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: September 2019

Program first available on AMS website: September 12, 
2019

Issue of Abstracts: Volume 40, Issue 4

Deadlines
For organizers: April 9, 2019
For abstracts: September 3, 2019

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited Addresses
Mohsen Aliabadi, University of Illinois at Chicago, Chicago, IL, A connection between matchings in field extensions and 

the fundamental theorem of algebra.
Jonathan Novak, University of California, San Diego, Title to be announced.
Anna Skripka, University of New Mexico, Albuquerque, Title to be announced.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at http://www.ams.org/cgi-bin/abstracts/abstract.pl.
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Geometric Partial Differential Equations and Variational Methods (Code: SS 4A), Longzhai Lin, University of California, 
Santa Cruz, Xiangwen Zhang, University of California, Irvine, and Xin Zhou, University of California, Santa Barbara.

Inverse Problems (Code: SS 3A), Hanna Makaruk, Los Alamos National Laboratory, and Robert Owczarek, University 
of New Mexico, Albuquerque and University of New Mexico, Los Alamos.

Random Matrices and Related Structures (Code: SS 2A), Jonathan Novak, University of California, San Diego, and Karl 
Liechty, De Paul University.

Topics in Operator Theory (Code: SS 1A), Anna Skripka and Maxim Zinchenko, University of New Mexico.

Denver, Colorado
Colorado Convention Center

January 15–18, 2020
Wednesday – Saturday

Meeting #1154
Joint Mathematics Meetings, including the 126th Annual 
Meeting of the AMS, 103rd Annual Meeting of the Mathe-
matical Association of America (MAA), annual meetings of 
the Association for Women in Mathematics (AWM) and the 
National Association of Mathematicians (NAM), and the win-
ter meeting of the Association of Symbolic Logic (ASL), with 

sessions contributed by the Society for Industrial and Applied 
Mathematics (SIAM)
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: October 2019
Program first available on AMS website: November 1, 2019
Issue of Abstracts: To be announced

Deadlines
For organizers: April 2, 2019
For abstracts: To be announced

Charlottesville, Virginia
University of Virginia

March 13–15, 2020
Friday – Sunday
Southeastern Section
Associate secretary: Brian D. Boe
Announcement issue of Notices: To be announced

Program first available on AMS website: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited Addresses
Moon Duchin, Tufts University, Title to be announced. (Einstein Public Lecture in Mathematics)
Isabella Novik, University of Washington, Title to be announced
Eduardo Teixeira, University of Central Florida, Title to be announced. 

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at http://www.ams.org/cgi-bin/abstracts/abstract.pl.

Curves, Jacobians, and Abelian Varieties (Code: SS 1A), Andrew Obus, Baruch College (CUNY),, Tony Shaska, Oakland 
University, and Padmavathi Srinivasan, Georgia Institute of Technology.
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Medford, Massachusetts
Tufts University

March 21–22, 2020
Saturday – Sunday
Eastern Section
Associate secretary: Steven H. Weintraub
Announcement issue of Notices: To be announced

Program first available on AMS website: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

West Lafayette, Indiana
Purdue University

April 4–5, 2020
Saturday – Sunday
Central Section
Associate secretary: Georgia Benkart
Announcement issue of Notices: To be announced

Program first available on AMS website: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Fresno, California
California State University, Fresno

May 2–3, 2020
Saturday – Sunday
Western Section
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: To be announced

Program first available on AMS website: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

El Paso, Texas
University of Texas at El Paso

September 12–13, 2020
Saturday – Sunday
Central Section
Associate secretary: Georgia Benkart
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced
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State College, Pennsylvania
Pennsylvania State University, University Park Campus

October 3–4, 2020
Saturday – Sunday
Eastern Section
Associate secretary: Steven H. Weintraub
Announcement issue of Notices: To be announced

Program first available on AMS website: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Salt Lake City, Utah
University of Utah

October 24–25, 2020
Saturday – Sunday
Western Section
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: To be announced

Program first available on AMS website: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Washington, District of Columbia
Walter E. Washington Convention Center

January 6–9, 2021
Wednesday – Saturday
Joint Mathematics Meetings, including the 127th Annual 
Meeting of the AMS, 104th Annual Meeting of the Mathe-
matical Association of America (MAA), annual meetings of 
the Association for Women in Mathematics (AWM) and the 
National Association of Mathematicians (NAM), and the win-
ter meeting of the Association of Symbolic Logic (ASL), with 
sessions contributed by the Society for Industrial and Applied 
Mathematics (SIAM).

Associate secretary: Brian D. Boe
Announcement issue of Notices: October 2020
Program first available on AMS website: November 1, 2020
Issue of Abstracts: To be announced

Deadlines
For organizers: April 1, 2020
For abstracts: To be announced

Grenoble, France
Université Grenoble Alpes

July 5–9, 2021
Monday – Friday
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced
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Buenos Aires, Argentina
The University of Buenos Aires

July 19–23, 2021
Monday – Friday
Associate secretary: Steven H. Weintraub
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Omaha, Nebraska
Creighton University

October 9–10, 2021
Saturday – Sunday
Central Section
Associate secretary: Georgia Benkart
Announcement issue of Notices: To be announced

Program first available on AMS website: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Seattle, Washington
Washington State Convention Center and the Sheraton Seattle Hotel

January 5–8, 2022
Wednesday – Saturday
Associate secretary: Georgia Benkart
Announcement issue of Notices: October 2021
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Boston, Massachusetts
John B. Hynes Veterans Memorial Convention Center, Boston Marriott Hotel, and Boston Sheraton Hotel

January 4–7, 2023
Wednesday – Saturday
Associate secretary: Steven H. Weintraub
Announcement issue of Notices: October 2022
Program first available on AMS website: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced
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Upcoming Features 
and Memorial Tributes

The Mathematics of  Quantum-Enabled  Applications on the D-Wave 
Quantum Computer
by Jesse J. Berwald

Memorial  Tribute: L. Gaunce Lewis Jr. (1949–2006) and  Mark 
Steinberger (1950–2018)
by J. Peter May

Algebraic, Geometric, and  Topological Methods in Linear 
Optimization
by Jesús A. De Loera

Statistical   Numerical  Approximation
by Houman Owhadi, Clint Scovel, and Florian Schäfer
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35 Monticello Place,  
Pawtucket, RI 02861 USA

facebook.com/amermathsoc
@amermathsoc

AMS / MAA Press
Exploring Continued Fractions
From the Integers to Solar Eclipses
Andrew J. Simoson, King University, Bristol, TN

This text explores recurrent phenomena, including astronomical 
transits and conjuctions, lifecycles of cicadas, and eclipses, by way 
of continued fraction expansions.
Dolciani Mathematical Expositions, Volume 53; 2019; approximately 371 pages; 
Hardcover; ISBN: 978-1-4704-4795-3; List US$52; AMS members US$39; MAA 
members US$39; Order code DOL/53

Linear Algebra I 
Frederick P. Greenleaf, Courant Institute, New York University and 
Sophie Marques, University of Cape Town, South Africa

This book is the first of two volumes on linear algebra for graduate 
students in mathematics, the sciences, and economics who have: a 
prior undergraduate course in the subject; a basic understanding of 
matrix algebra; and some proficiency with mathematical proofs.
Titles in this series are co-published with the Courant Institute of Mathematical 
Sciences at New York University.

Courant Lecture Notes, Volume 29; 2019; 261 pages; Softcover; ISBN: 978-1-4704-
4871-4; List US$51; AMS members US$40.80; MAA members US$45.90; Order 
code CLN/29

AMS / MAA Press
Quadratic Number Theory 
An Invitation to Algebraic Methods in the Higher Arithmetic
J. L. Lehman, University of Mary Washington, Fredericksburg, VA

This text is an introduction to algebraic number theory for readers 
with a moderate knowledge of elementary number theory and 
some familiarity with the terminology of abstract algebra.
Dolciani Mathematical Expositions, Volume 52; 2019; 394 pages; Hardcover; ISBN: 
978-1-4704-4737-3; List US$52; AMS members US$39; MAA members US$39; 
Order code DOL/52

Two-Dimensional Geometries 
A Problem-Solving Approach
C. Herbert Clemens, Ohio State University, Columbus

This book on two-dimensional geometry uses a problem-solving 
approach to actively engage students in the learning process.
Pure and Applied Undergraduate Texts, Volume 34; 2019; 142 pages; Hardcover; 
ISBN: 978-1-4704-4760-1; List US$89; AMS members US$71.20; MAA mem-
bers US$80.10; Order code AMSTEXT/34

= Textbook
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