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Introduction
For almost a year, I sat in Washington DC’s National Airport 
every Sunday waiting for my flight to Houston. I was 22 
years old with an undergraduate degree in mathematics, 
now working in consulting for IBM. I followed physicians 
in area hospitals each week collecting data. In the evenings, 
I taught myself R, the statistical programming language, in 
order to organize and analyze the data so we could build 
models to predict the flow of patients through the hospital 
system. Each week, I found that the theories of mathematics 
I learned in school were insufficient to address all of the 
tasks I was assigned. My work involved structuring datasets, 
making our code run faster, and understanding the specific 
details of how hospitals function. Data constructed from 
the social interactions was anything but straightforward.

I decided I needed to learn more and headed to Yale 
University for a PhD in statistics. I chose the program 
because I wanted to develop my mathematics background 
while blending it with computational statistics. My doctoral 
dissertation concerned the computational challenges of 
applying a certain class of statistical models to estimate 
forms of structural dependence in datasets with a large 
number of variables. As a result of this study, toward the 
end of my time in graduate school I became broadly in-
terested in how methods from exploratory data analysis, 
data visualization, and statistical learning could be applied 
to very large datasets. My mentors in graduate school pro-
vided me with fundamental skills in statistical computing 
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for structuring and writing efficient code. I felt, however, 
a substantial disconnect between the data and problems I 
was working with in an academic setting and the data that 
statisticians typically work with in industry applications. 
Most of the work in academic statistics concerns the prob-
abilistic modeling of data, with a particular focus on the 
estimation of unknown population parameters. In practice, 
often much more time is spent acquiring, structuring, and 
visualizing data.

With a desire to learn about the real challenges of apply-
ing computational statistics to large, messy data sets, I took 
a position as a research statistician at Travelers Insurance. 
In that role I applied machine learning algorithms to the 
task of predicting fraud and the price of future insurance 
claims. Two years later, I became a senior member of the 
technical staff at AT&T Labs Research in New York City 
where I focused on location analytics using cell-phone 
telemetry data.

In the sections that follow, I explain some of the re-
search questions I worked on during my time in these two 
positions and how the skills I learned in graduate school 
prepared me to address them. I focus on what made these 
questions—and experiences in general—particularly in-
teresting. I also include a discussion of some critical draw-
backs of working in an industry lab. I conclude with my 
own vision for mutually beneficial partnerships between 
industry labs and academic researchers.

Travelers Research and Development
My first job out of graduate school was on the Travelers’ 
research and development team responsible for personal 
automobile insurance. The large number of messy data 
sets and unsolved problems that required new innovative 
approaches made the position especially appealing to me. 
I found building models within the insurance industry 

Taylor Arnold is assistant professor of statistics at the University of Rich-
mond. His email address is tarnold2@richmond.edu.

Communicated by Notices Associate Editor Noah Simon.

For permission to reprint this article, please contact: reprint 
-permission@ams.org.

DOI: https://dx.doi.org/10.1090/noti1855



508    Notices of the AmericAN mAthemAticAl society Volume 66, Number 4

Early Career

particularly rewarding. I built predictive algorithms that 
Travelers actually used to make real decisions about what 
policies to write and how much to charge for them.

While I worked on a number of interesting problems, 
the majority of my time was spent constructing pure pre-
mium models. These models predict, using historic data, 
the expected amount of money that would be paid out on 
a particular automobile policy. Actuarial and sales teams 
incorporate overhead and market-based adjustments to 
pure premium models in order to arrive at the final rates 
that are actually charged to consumers for an insurance pol-
icy. Several machine learning competitions have featured 
anonymized datasets with the goal of predicting pure pre-
mium values [1, 11]. These competitions, however, obscure 
the most interesting features of building pricing models. 
Here, I describe three particularly challenging research 
questions that underly the construction of premium mod-
els within the insurance industry.

The distribution of observed pure premiums makes it 
difficult to apply many standard statistical techniques with-
out some modifications. Most policies do not receive any 
claims and have an observed pure premium cost of zero. 
When claims are made, the amount of money requested has 
a property known in statistics as a “heavy tail”: a small num-
ber of insurance claims require an extremely large payout. 
These large costs primarily come from extensive medical 
expenses as a result of automobile accidents. The general 
distribution of premiums, therefore, should be modeled 
by a mixed distribution with a discrete mass at zero and a 
continuous distribution on the positive real numbers. It is 
possible to split a premium model into separate frequency 
(the discrete part, predicting whether the policy will have 
a claim) and severity (the continuous part, predicting how 
large a claim will be) components. However, splitting the 
model this way ignores important correlations between fre-
quency and severity. A better alternative is to use a Tweedie 
distribution, which arises from assuming that the number 
of claims made on a policy follows a Poisson distribution 
and the amount of any given claim is distributed with a 
gamma distribution [12]. Software exists for fitting a gen-
eralized linear model where the dependent variable has 
a Tweedie distribution. (Figure 1 shows simulated values 
from three Tweedie models with varying dispersion param-
eters [6].) Interesting research questions arose whenever 
we wanted to use a new approach or statistical method 
in our pure premium models. For example, we wanted 
to incorporate constraints into our models to reduce the 
number of variables used in the final output. Implement-
ing constrained models required new mathematical deri-
vations and software implementations. Since estimating 
parameters in the Tweedie model can become numerically 
unstable, in addition to demanding a significant amount 
of computational power, these implementations required 
careful thought and nontrivial extensions of currently 
available algorithms.

Automobile pure premium models are typically con-
structed to estimate the cost of insuring a particular auto-
mobile. Variables used in this calculation may come from 
features of the automobile itself (e.g., cost, make, age, and 
safety features) or from details of the specific policy (e.g., 
zip code, deductibles, miles driven per year). Some partic-
ularly powerful features are also associated directly with 
the individual drivers on a policy. Examples of predictive 
driver-level features include credit histories, ages, number 
of prior claims, and the number of prior traffic violations. 
The challenge becomes how to summarize driver-level 
variables at the level of a particular automobile. Should we 
construct a variable equal to the average age of all drivers? 
Could we create variables for the minimum and maximum 
age of all drivers on a policy? Or should we count the 
number of drivers below some age threshold? Any of these 
new features could be computed for a policy and used in 
the pricing algorithm. A choice of how to create these ag-
gregated features must be made for dozens of driver-level 
variables, with the typical trade-offs between variance and 
bias when including too many or too few correlated vari-
ables into a single model. The challenge of summarizing 
predictive variables at the level of an observed response, 
a particular example of feature engineering, is a frequent 
challenge in industry applications. I believe this is one of 
the single biggest challenges in applied machine learning 
that is largely overlooked within academic research.

Another important challenge in deriving pure premium 
models is ensuring that models conform to various gov-
ernment regulations. In the United States, automobile 
insurance is regulated at the state level, and each of the 
fifty states has its own set of rules. Credit information, for 
example, is not an allowed predictor variable for pricing 
policies in Massachusetts. In New Jersey, only a limited 
number of geographic regions can be defined for pricing 
and discount purposes. Many states allow insurers to use 
the age of drivers in pricing models but require that aging 
can only decrease prices and never increase them. Building 
models that follow these regulations, while retaining most 
of their predictive properties, was a constant challenge 
within the research and development group at Travelers.

The research problems I encountered at Travelers point 
to two takeaways about graduate education in statistics. We 
need more statisticians in industry who have the training 
and interest to conduct original, open-ended research. 
Many of the most interesting and beneficial projects could 
not be solved with off-the-shelf statistics tools. They require 
experience with graduate-level statistical theory as well as 
general skills in conducting original research. At the same 
time, we need graduate programs in statistics to include 
more training in computer science and the empirical social 
sciences. Computer science and engineering courses can 
provide skills for writing efficient code to deal with larger 
datasets, understanding how to implement new estimation 
algorithms, and knowing the principles of building data-
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lular voice call, a text message, or the transferring of generic 
data. With the widespread coverage of 4G networks and the 
proliferation of cellphone applications, most cellphones 
today are involved in a nearly constant stream of CDRs that 
cover the majority of the day [9]. By associating each cell 
tower in a CDR with its location, these records make it pos-
sible to determine approximately where a device is at any 
given moment in time (see Figure 2 for an example) [13]. 
This data has been widely used as legal evidence and was 
recently employed to assist aid workers helping with the 
West African Ebola virus epidemic from 2013–2016 [14].

The location analytics data that I worked with was so 
large that it needed to be distributed over hundreds of 
machines. Overall, the data I had access to amounted to 
several petabytes (1000 terabytes) and took days to process 
even over our large cluster. Given my expertise, I was tasked 
with building a data pipeline from scratch that ingested the 
raw CDR records and produced a normalized database of 
each observed device’s location—a daunting but exciting 
challenge. In order to work with data stored over a large 
distributed system, I had to learn two new frameworks 
(Hadoop and HBase) and learn how to write code for 
them in a programming language I was not very familiar 
with (Java). Because data arrived hourly and needed to be 
processed immediately, my data pipeline needed to auto-
matically run throughout the day. In applied statistics we 
are often reminded and taught how to interactively check 
whether there are potential issues in a data source. With 
the system I was building, it was important to build in au-
tomated tests that would check new data as it came in. This 
was necessary because there were frequent upstream data 
issues with the raw CDR files that were being delivered. For 
example, all of the data from a particular city for six hours 
in a day might go missing due to an internal networking 

bases, and experience writing and testing code that may 
be used in production. Social science applications give 
experience with the techniques and challenges of using 
data and models to understand human behavior. They also 
are more likely to explain the political and legal challenges 
that may underly the collection of data or deployment of 
empirically trained models.

AT&T Labs Research
In April 2014, I transitioned to the statistics department 
at AT&T Labs Research. The group has a long history of 
exceptional work in the field of applied and computational 
statistics and traces its roots back to the original Bell Labs 
[7]. Rick Becker was one of the three original authors of the 
S language, the precursor to the popular R programming 
language for statistical computing, which was developed 
at AT&T in the 1980s [4]. Simon Urbanek is one of the 
small set of core developers of the current R-Project. Chris 
Volinski and Robert Bell were both on the winning team 
for the million-dollar Netflix movie recommendation 
competition [5]. A large draw for my move to AT&T was 
the chance to work with these and other fantastic scholars 
in the field of computational statistics.

Another motivation for my interest in working at AT&T 
was the desire to work with extremely large datasets, a 
continuation of my graduate school research. My world-
class colleagues at the labs in a range of fields gave me 
the opportunity to work collaboratively on new research 
questions and to keep learning about new areas. My group 
focused on cellphone location analytics, which required 
working with large data sources. Our primary dataset was 
built from observations known as call detail records, or 
CDRs. A CDR is generated whenever there is an interaction 
between a cellphone and cell tower. CDRs can include a cel-

Figure 1. A histogram of simulated random draws from a  Tweedie distribution for three different dispersion 
parameters. When modelling insurance premiums, high dispersion values are used to describe policies that 
incur claims on only a small percentage of policies.
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the computational details of working at scale with large 
distributed datasets [2]. I also worked on integrating a new 
spatio-temporal visualization algorithm known as nano-
cubes into an R package [10]. This allowed our researchers 
at AT&T Labs to easily explore small subsets of our data 
within their browsers.

During my time at AT&T Labs, I had the chance to de-
velop new software and study approaches for working with 
extremely large datasets. Doing research at the Labs gave 
me expertise in the modeling and management of large 
datasets at a scale that would have been nearly impossible 
to work with in academia. My experience in an industry lab, 
in short, offered educational opportunities beyond what 
was available within a formal graduate program.

Drawbacks
Positions in industry labs are not without their own 
unique issues. For example, in an industry position there 
is a complete lack of personal ownership over ideas, work, 
and software. Projects that take months or years of work 

issue. Or the format of a field would occasionally change 
and cause some of the code to break. The completed data 
pipeline opened up many research questions for our team. 
Quick access to small selections of the corpus (through 
the distributed database) allowed for exploratory analysis 
that allowed us to start thinking critically about what the 
data was able to show. For example, we found that using 
the location data was great for detecting movement along 
highways and public transit routes. It was less useful, how-
ever, in the accurate detection of static devices.

Once the location data was cleaned and stored on our 
research servers, we created tools for modeling and visu-
alizing the data. Mike Kane, Simon Urbanek, and I built a 
set of tools in R for working with large distributed datasets 
[3]. These functions focused on being able to process a 
fixed number of lines of data, allowing for chunk-wise 
operations on large datasets. Using these tools, we de-
veloped a distributed algorithm that allows for applying 
penalized regression to arbitrarily large datasets. Our work 
on this problem eventually led to a textbook focused on 

Figure 2. Maps show registered cell phone towers (solid dots) in the vicinity of Rochester, New Hampshire. 
Each path describes an artificial collection of towers that sequentially handle cell phone traffic for a fictional 
driver commuting from Madbury to Rochester. In the left panel, the driver takes a sequence of smaller roads—
Littleworth, Calef Highway, and Gonic Road. The right shows an alternative path that travels by Route 16 (thick 
grey line). 
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me reflect on how to turn my individual applied projects 
into larger-scale methodological frameworks. Similarly, 
watching students use and struggle with existing software 
libraries helps me to understand the shortcomings in avail-
able tools and how they can be addressed.

One challenge of leaving industry labs has been finding 
ways to continue my scholarship in large-scale statistical 
computing without access to industrial datasets. Currently, 
I have solved this problem by finding publicly available 
datasets that share common traits with those seen in in-
dustrial applications. For example, I have a current project 
that involves working with the entire corpus of page his-
tories from Wikipedia, which amounts to several terabytes 
of textual data. The size of the corpus and complexities of 
dealing with the data address many of the same challenges 
I faced working with CDRs at AT&T Labs. I am involved in 
another project that uses computer vision techniques to 
extract features from video files. While the raw features are 
associated with individual frames, the predictive modeling 
tasks I am interested in—such as scene detection and char-
acter movement—require building models for sequences of 
images. The challenges here mirror the issues of aggregating 
driver-level data to a particular automobile that I faced at 
Travelers.

My experience in industry has impacted my own teach-
ing philosophy. Across all of my classes, my ultimate goal is 
to help students develop the skills needed to engage in the 
ethical and insightful analysis of data. For me this means 
that I need to teach the entire pipeline of working with data 
instead of focusing only on probabilistic modeling. In my 
introductory courses we spend a lot of time talking about 
how to correctly structure data in a spreadsheet. We also 
spend several weeks working on how to interpret statisti-
cal visualizations in both written and oral formats. In my 
courses on data science, students learn how to fetch data 
through APIs and spend several weeks building interactive 
websites with Javascript. These experiences improve their 
ability to present useful data visualizations as well as make 
them comfortable working in new programming languages 
and approaching tasks outside their typical comfort zone.

I found my experiences in industrial research labs both 
rewarding and generally enjoyable. At the same time, I also 
understand the difficulties of life in an industry lab and 
appreciate the relative freedoms afforded by a position 
in academia. Some of the most influential scholars in my 
own work have had similar histories that intersect between 
industry and academic positions, including John Tukey 
(who split his time between Princeton and AT&T Labs), 
danah boyd (a researcher at Microsoft with an ongoing 
position at NYU), Yann LeCun (a computer science pro-
fessor at NYU and director of research at Facebook), and 
Hadley Wickham (RStudio and Rice University). These 
scholars have produced some of the most important work 
in applied statistics. Hadley Wickham’s triptych of papers 
and associated software for applied data analysis—“A 

often result in no tangible outcomes that are seen outside 
of the company. Business concerns may force researchers 
to abandon interesting lines of work in favor of other tasks.

I engaged in a wide array of interesting research projects 
at Travelers and AT&T. Unfortunately, almost none of this 
work is publicly available. Industry labs typically forbid 
the publishing of research that uses internal data; without 
the datasets as examples, most of the methodological 
innovations made in my work were hard to motivate or 
even explain.1 At Travelers we were not even allowed to 
publish software that we had built. AT&T Labs, with its 
long tradition in computing, was more willing to allow 
the publication of software. The two papers I have from my 
time there both focus on specific software libraries we built. 
However, even this type of publication is increasingly rare.

Another concern I had while employed within an in-
dustry research lab was whether my work was being used 
in ethical and appropriate ways. Take, for example, the 
cellphone location analytics projects. All of the applications 
I directly worked on were either banal internal studies, 
such as testing network dead spots, or external consulting 
projects that made use of highly aggregated tabulations to 
show the general movement of people through space for 
urban planning purposes. However, there was no way for 
me to stop, or to even be aware of, my code being used for 
more objectionable applications. These concerns may also 
extend to all publicly available research. When publishing 
method papers or open source software, there is also no way 
to ensure that derivative work is being used responsibly. 
But, at least in the publicly available case, the research is not 
being internally motivated or funded by these applications. 
Also, I believe that the net benefit of publicly available 
research generally outweighs the concerns of misuse. The 
potential for abuse is harder to justify with research that is 
never made externally available.

After two and half years at AT&T, I left to join the fac-
ulty at the University of Richmond. The year prior to my 
departure, I taught two courses as a part-time lecturer at 
Yale University. This experience reignited my passion for 
teaching and convinced me that I wanted to make that a 
permanent part of my work. I also wanted the opportunity 
to make more of my research public in order to get external 
feedback and to see my methods and code made usable in 
other domains.

Academia and Future Directions
As I have transitioned back into academia, my experience 
in industry continues to shape my approach to research 
and teaching. For example, I no longer see a sharp divide 
between my work as a researcher and an educator. Teaching 
students how to work with messy, unstructured data makes 

1Prior to my time at AT&T there were more opportunities to publish da-
ta-driven research. See the paper [8] by my colleagues for a great example 
that illustrates the nature of the internal projects we worked on.
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layered grammar of graphics” [15], “Tidy Data” [17], 
and “The split-apply-combine strategy for data analysis”  
[16]—have been highly influential, for example, in my 
own work. I hope to see more direct partnerships where 
academic faculty can participate in research with industry 
labs. These exchanges have the benefit of bringing to light 
many understudied problems in applied statistics. It also 
provides an external source for critically reviewing the ways 
data are being used in industry and its potential effects on 
society as a whole.

References
1. Allstate Claim Prediction Challenge, available at https 

://www.kaggle.com/c/claim-prediction 
-challenge. Accessed: September 30, 2018.

2. Arnold T, Kane M, Lewis B. A computational approach to sta-
tistical learning, Chapman and Hall/CRC, 2019.

3. Arnold T, Kane M, Urbanek S, iotools: High-Performance 
I/O Tools for R, The R Journal 9 (2017), no. 1, 6–13.

4. Becker R, Chambers J, and Wilks A, The new S language: 
A programming environment for data analysis and graphics, 
Wadsworth & Brooks, 1988.

5. Bell R, Bennet J, Koren Y, Volinsky C, The million dollar 
programming prize, IEEE Spectrum 46 (5): 28–33, 2009.

6. Faraway J, Extending the linear model with R: Generalized lin-
ear, mixed effects and nonparametric regression models, Chap-
man and Hall/CRC, 2016.

7. Gertner J. The idea factory: Bell Labs and the great age of 
American innovation, Penguin, 2012.

8. Isaacman S, Becker R, Cáceres R, Kobourov S, Martonosi 
M, Rowland J, Varshavsky A, Identifying important places 
in people’s lives from cellular network data, In: Proceedings 
of the 9th International Conference on Pervasive Computing 
2011: 133–151.

9. Järv O, Ahas R, Witlox F, Understanding monthly variabil-
ity in human activity spaces: A twelve-month study us-
ing mobile phone call detail records, Transport. Res. Part 
C-Emerg., 38: 122–135, 2015.

10. Lins L, Klosowski J, Scheidegger C, Nanocubes for re-
al-time exploration of spatiotemporal datasets, IEEE T. Vis. 
Comput. Gr., 19 (12): 2456–2465, 2013.

11. Prudential Life Insurance Assessment, available at 
https://www.kaggle.com/c/prudential-life 
-insurance-assessment. Accessed: September 30, 
2018.

12. Smyth G, Jørgensen B, Fitting Tweedie’s Compound Pois-
son model to insurance claims data: Dispersion model-
ling, ASTIN Bulletin: The Journal of the IAA, 32 (1): 143–
157, 2002.

13. Wang H, Calabrese F, Lorenzo G, Ratti C, Transportation 
Mode Inference from Anonymized and Aggregated Mo-
bile Phone Call Detail Records, In: Proceedings of the 13th 
IEEE International Conference on Intelligent Transportation 
Systems, 2010: 318–323.

14. Wesolowski A, Buckee C, Bengtsson L, Wetter E, Lu X, 
Tatem A, Commentary: Containing the Ebola outbreak 
— The Potential and Challenge of Mobile Network Data, 
PLoS Currents Cutbreaks, 6: 2014.

15. Wickham H, A Layered Grammar of Graphics, J. Compu-
tat. Graph. Stat., 19 (1): 3–28, 2010.

16. Wickham H, The split-apply-combine strategy for data 
analysis, J. Stat. Softw., 40.1 (1): 1–29, 2011.

17. Wickham H, Tidy Data, J. Stat. Softw., 59 (10): 1–23, 2014.

Taylor Arnold


