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Falconer’s Conjecture?
Alex Iosevich

The Statement of the Problem
Many problems in mathematics take the following form.
Suppose that 𝑋,𝑌 are sets and 𝑓 ∶ 𝑋 → 𝑌 is a function.
Suppose that 𝑋 is sufficiently large and 𝑓 is suitably non-
trivial. Then 𝑓(𝑋) takes up a substantial portion of 𝑌. A
classical example of this phenomenon is Picard’s Little The-
orem, which says that any entire analytic function whose
range omits two points must be a constant function.

Let 𝑋 = 𝐸 × 𝐸, 𝑌 = ℝ, and 𝑓(𝑥, 𝑦) = |𝑥 − 𝑦|,
where 𝐸 is a compact subset of ℝ𝑑, 𝑑 ≥ 2, and |𝑥| =
√𝑥

2
1 + 𝑥2

2 +⋯+ 𝑥2
𝑑. The Falconer distance problem asks

how large does the Hausdorff dimension of 𝐸 needs to be
to ensure that the Lebesgue measure of the distance set

Δ(𝐸) = {|𝑥 − 𝑦| ∶ 𝑥, 𝑦 ∈ 𝐸}
is positive.

In this context, it is sufficient to think of Hausdorff di-
mension of a compact set 𝐸, denoted by 𝑑𝑖𝑚ℋ(𝐸), in the
following way. There exists a Borel measure supported on
𝐸 such that for every𝛼 < 𝑑𝑖𝑚ℋ(𝐸), the𝛼-energy integral

𝐼𝛼(𝜇) = ∫∫|𝑥 − 𝑦|−𝛼𝑑𝜇(𝑥)𝑑𝜇(𝑦) < ∞. (1)

The background and the details pertaining to the Haus-
dorff dimension and energy integrals are beautifully de-
scribed in Falconer’s “Geometry of Fractal Sets” ([5]),
andMattila’s “Fourier Analysis andHausdorff Dimensions”
([12]).

This problem can be viewed as amore delicate variant of
the celebrated Steinhaus Theorem, which says that if 𝐸 ⊂
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ℝ𝑑 is of positive Lebesgue measure, then 𝐸 − 𝐸 = {𝑥 −
𝑦 ∶ 𝑥 ∈ 𝐸,𝑦 ∈ 𝐸} contains an open ball centered at the
origin.

The Falconer Distance Conjecture says that if the Haus-
dorff dimension of 𝐸 ⊂ ℝ𝑑, 𝑑 ≥ 2, is greater than 𝑑

2 , then
the Lebesgue measure of Δ(𝐸) is positive. This problem
was formulated by Falconer in 1985 ([6]).

Connections with the Erdős Distance Problem
The Falconer Distance Conjecture is a continuous analog
of the Erdős Distance Conjecture, which says that if 𝑃 ⊂
ℝ𝑑, 𝑑 ≥ 2, is a finite set, then for every 𝜖 > 0 there exists
𝐶𝜖 > 0 such that

#Δ(𝑃) ≥ 𝐶𝜖(#𝑃)
2
𝑑−𝜖.

This problem was introduced by Erdős in 1945, and af-
ter 66 years of efforts by many of the most prominent ex-
perts in combinatorics and related fields, the problem was
finally solved in two dimensions by Guth and Katz ([9]).
In higher dimensions, the problem is still open, with the
best exponents due to Jozsef Solymosi, Cszaba Toth, and
Van Vu (see [15]).

Sharpness of the Erdős/Falconer Exponents
It is important to note that the conjectured exponent 𝑑

2
in the Falconer distance problem and the exponent 2

𝑑 in
the Erdős distance problem are strongly linked. Let 𝑃𝑞 =
ℤ𝑑∩[0,𝑞]𝑑. Then #𝑃𝑞 ≈ 𝑞𝑑. The size ofΔ(𝑃𝑞) does not
exceed the number of values of the quadratic form 𝑥2

1 +
𝑥2
2+⋯+𝑥2

𝑑, 𝑥𝑗 ∈ [0, 𝑞],which is bounded by 𝑞2+𝑞2+
⋯ + 𝑞2 = 𝑑𝑞2. Setting 𝑛 = 𝑞𝑑, we see that #Δ(𝑃𝑞) ≤
𝑑𝑛 2

𝑑 , and the sharpness of the 2
𝑑 exponent in the Erdős

distance problem is established.
In order to establish the sharpness of the 𝑑

2 exponent
in the Falconer distance conjecture, we bootstrap off the
Erdős distance problem example above. Let𝑞1=2,𝑞𝑖+1=
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𝑞𝑖
𝑖 . Let 𝐸𝑠

𝑖 , 𝑠 ∈ (𝑑
2 , 𝑑) denote the 𝑞− 𝑑

𝑠
𝑖 -neighborhood of

1
𝑞𝑖 𝑃𝑞𝑖 . A result in Falconer’s book ([5]), Chapter 8, shows
that the Hausdorff dimension of 𝐸𝑠 = ∩𝑖𝐸𝑠

𝑖 is equal to 𝑠.
On the other hand,

|Δ(𝐸𝑠
𝑖 )| ≤ 𝐶𝑞− 𝑑

𝑠
𝑖 ⋅ #Δ(𝑃𝑞𝑖) ≤ 𝐶′𝑞2− 𝑑

𝑠
𝑖 ,

from which it follows that |Δ(𝐸𝑠)|, the Lebesgue measure
of 𝐸𝑠, may be 0 if 𝑠 < 𝑑

2 , thus establishing the sharpness
of the 𝑑

2 exponent up to the endpoint.

The 𝐿∞ Theory
In order to understand how many distances a set 𝐸 ⊂ ℝ𝑑,
𝑑 ≥ 2, determines, one cannot avoid studying the inci-
dence function that counts how often a fixed distance oc-
curs. In the discrete case this is simply amatter of counting
the number of pairs of elements from 𝐸 whose pairwise
distance equals a given value. In the continuous case one
must proceed a bit more carefully. Let 𝜎𝑡 denote the sur-
face measure on the sphere of radius 𝑡 > 0 centered at
the origin. Let 𝜌 be a smooth cut-off, ≡ 1 in the unit ball
and vanishing outside a slightly larger ball. Let 𝜌𝜖(𝑥) =
𝜖−𝑑𝜌(𝑥

𝜖), and define 𝜎𝜖
𝑡 (𝑥) = 𝜎𝑡 ∗𝜌𝜖(𝑥). Let

𝜈𝜖(𝑡) = ∫∫𝜎𝜖
𝑡 (𝑥 − 𝑦)𝑑𝜇(𝑥)𝑑𝜇(𝑦),

where 𝜇 is a Borel measure supported on 𝐸. One should
think of this quantity as the 𝜖-approximation of the inci-
dence function on Δ(𝐸), which counts pairs of points in
𝐸 separated by the distance 𝑡. Also, at least heuristically
and this can be made quite precise, lim𝜖→0+ 𝜈𝜖(𝑡) is the
distance measure 𝜈 defined by the relation

∫𝑓(𝑡)𝑑𝜈(𝑡) = ∫∫𝑓(|𝑥 − 𝑦|)𝑑𝜇(𝑥)𝑑𝜇(𝑦). (2)

Falconer observed by a simple covering argument that
if one can show that 𝜈𝜖(𝑡) is uniformly bounded, then
the Lebesgue measure of Δ(𝐸) is positive. More precisely,
cover Δ(𝐸) by the collection {(𝑡𝑖 − 𝜖𝑖, 𝑡𝑖 + 𝜖𝑖)}. The fol-
lowing is a formal argument that can be made precise with
a tiny bit of work. We have 1 = 𝜇× 𝜇(𝐸× 𝐸)

≤ ∑
𝑖
𝜇× 𝜇{(𝑥, 𝑦) ∶ 𝑡𝑖 − 𝜖𝑖 ≤ |𝑥 − 𝑦| ≤ 𝑡𝑖 + 𝜖𝑖}

≤ 𝐶∑
𝑖
𝜖𝑖𝜈𝜖𝑖(𝑡𝑖)

= 𝐶∑
𝑖
𝜖𝑖 ∫∫𝜎𝜖𝑖

𝑡𝑖 (𝑥 − 𝑦)𝑑𝜇(𝑥)𝑑𝜇(𝑦)

= 𝐶∑
𝑖
𝜖𝑖 ∫|𝜇̂(𝜉)|2𝜎̂𝜖𝑖

𝑡𝑖 (𝜉)𝑑𝜉.

Using the method of stationary phase (see e.g. [14]), it
is not difficult to see that

|𝜖𝑖𝜎̂𝜖𝑖
𝑡𝑖 (𝜉)| ≤ 𝐶|𝜉|− 𝑑−1

2 ⋅ min{|𝜉|−1, 𝜖𝑖}. (3)

Plugging the estimate (3) back in and tracing the in-
equalities backwards, we see that this quantity is bounded
by ∑𝑖 𝜖𝑖 ⋅ ∫ |𝜉|−

𝑑−1
2 |𝜇̂(𝜉)|2𝑑𝜉.

By a simple Plancherel style argument, this expression
equals

∑
𝑖
𝜖𝑖 ⋅ ∫∫ |𝑥 − 𝑦|− 𝑑+1

2 𝑑𝜇(𝑥)𝑑𝜇(𝑦)

= 𝐼𝑑+1
2
(𝜇) ⋅∑

𝑖
𝜖𝑖 ≤ 𝐶∑

𝑖
𝜖𝑖

if the Hausdorff dimension of 𝐸 is greater than 𝑑+1
2 , as we

explain in the paragraph preceding the formula (1). It fol-
lows that∑𝑖 𝜖𝑖 ≥ 1

𝐶 > 0, which implies that the Lebesgue
measure of Δ(𝐸) is positive.

The 𝐿2 Theory: Setup
In the previous section we obtained a good exponent for
the Falconer Distance Problem by obtaining an 𝐿∞ esti-
mate for the smoothed out measure on the distance set.
In order to improve the exponent, we are going to describe
the method that only relies on 𝐿2 bounds for the distance
measure 𝜈. Observe that if 𝜈 ∈ 𝐿2, then

1 = (∫𝑑𝜈(𝑡))
2
≤ |Δ(𝐸)|∫𝜈2(𝑡)𝑑𝑡 ≤ 𝐶|Δ(𝐸)|,

which would imply that |Δ(𝐸)| ≥ 1
𝐶 > 0.

The advantage of this point of view is two-fold. First, it
is typically far easier to prove that something is in 𝐿2 than
to show that it is in 𝐿∞. Second, it turns out that the 𝐿∞

bound on𝜈𝜖, independent of 𝜖, is not even true in general
if the Hausdorff dimension of the underlying set is < 𝑑+1

2 .
This was shown by Mattila in two dimensions ([11]) and
by the author and Senger ([10]) in three dimensions. In
higher dimensions the question is still open, but the au-
thor and Senger ([10]) showed that 𝜈𝜖 is not in 𝐿∞ with
constants independent of 𝜖 in dimensions four and higher
if the Euclidean distance is replaced by a suitable variant
of the parabolic metric.

Another advantage of𝐿2 norms is that Plancherel comes
into play. Mattila proved that if the Hausdorff dimension
of a compact set 𝐸 ⊂ ℝ𝑑 is > 𝑑

2 , 𝜇 is a Borel measure
supported on 𝐸 and

ℳ(𝜇) = ∫(∫
𝑆𝑑−1

|𝜇̂(𝑟𝜔)|2𝑑𝜔)
2
𝑟𝑑−1𝑑𝑟 < ∞, (4)

then the distance measure 𝜈 introduced above has an 𝐿2

density, and thus |Δ(𝐸)| > 0.
Mattila derived this result using the method of station-

ary phase and properties of Bessel functions. We are go-
ing to sketch a geometric derivation obtained by Greenleaf,
the author, Liu, and Palsson ([7]) wheremore complicated
geometric configurations are also studied.

Recalling the definition of the distancemeasure𝜈 in (2),
we see that in order to compute ∫𝜈2(𝑡)𝑑𝑡 we must come
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to grips with quadruplets 𝑥,𝑦, 𝑥′, 𝑦′ ∈ 𝐸4 such that |𝑥 −
𝑦| = |𝑥′ − 𝑦′|. In reality we must consider quadruplets
where distances are close to equal and then devise a careful
limiting process, but let’s keep going. If |𝑥−𝑦| = |𝑥′−𝑦′|,
then there exists 𝑔 ∈ 𝑂𝑑(ℝ) (the orthogonal group) such
that 𝑥 − 𝑦 = 𝑔(𝑥′ −𝑦′).

In the plane this 𝑔 is unique. In higher dimensions,
one must consider the appropriate stabilizer. Rewriting
the equation we obtain 𝑥 − 𝑔𝑥′ = 𝑦 − 𝑔𝑦′ and this has
the 𝐿2 norm of the natural measure on 𝐸 − 𝑔𝐸 written
all over it. More precisely, define the measure 𝜈𝑔 by the
relation

∫𝑔(𝑧)𝑑𝜈𝑔(𝑧) = ∫∫𝑔(𝑢− 𝑔𝑣)𝑑𝜇(𝑢)𝑑𝜇(𝑣). (5)

Arguing in this way we can show that

∫𝜈2(𝑡)𝑑𝑡 = ∫∫𝜈2
𝑔(𝑧)𝑑𝑧𝑑𝑔,

where 𝑑𝑔 is the Haar measure on 𝑂𝑑(ℝ), provided that
both sides make sense. The Fourier transform of 𝜈𝑔 is easy
to compute using the formula (5). By Plancherel we con-
clude that

∫∫𝜈2
𝑔(𝑧)𝑑𝑧𝑑𝑔 = ∫{∫|𝜇̂(𝑔𝜉)|2𝑑𝑔} |𝜇̂(𝜉)|2𝑑𝜉

= 𝑐∫(∫
𝑆𝑑−1

|𝜇̂(𝑟𝜔)|2𝑑𝜔)
2
𝑟𝑑−1𝑑𝑟 ≡ ℳ(𝜇).

𝐿2-theory: Wolff–Erdogan
Until very recently, the best known results on the Falconer
distance problem were due to Wolff ([16]) in the plane
and Erdogan (IMRN, 2006) in higher dimensions. They
proved that the Lebesguemeasure of the distance set is pos-
itive, provided that the Hausdorff dimension of the under-
lying set is> 𝑑

2+ 1
3 . We shall briefly comment on themore

recent efforts, but for now let us describe the 𝑑
2 + 1

3 theory
that laid the foundation for further progress. The key esti-
mate established by Wolff and Erdogan is the following.

∫
𝑆𝑑−1

|𝜇̂(𝑡𝜔)|2𝑑𝜔 ≤ 𝐶(𝑑, 𝑠, 𝜖)𝑡𝜖−( 𝑑+2𝑠−2
4 )𝐼𝑠(𝜇), (6)

where 𝐼𝑠(𝜇) = ∫∫ |𝑥 − 𝑦|−𝑠𝑑𝜇(𝑥)𝑑𝜇(𝑦) is the energy
integral of 𝜇. Plugging this back into (4) yields

ℳ(𝜇) ≤ 𝐶∫∫|𝜇̂(𝑡𝜔)|2𝑡𝑑−1𝑡𝜖−( 𝑑+2𝑠−2
4 )𝐼𝑠(𝜇)𝑑𝜔𝑑𝑡

= 𝐶∫|𝜇̂(𝜉)|2|𝜉|𝜖−( 𝑑+2𝑠−2
4 )𝐼𝑠(𝜇)𝑑𝜉

= 𝐶′𝐼𝜖+ 3𝑑−2𝑠+2
4

(𝜇)𝐼𝑠(𝜇),

which is bounded if 𝑑𝑖𝑚ℋ(𝐸)> 𝑑
2 + 1

3 .

Recent Advances
After a long hiatus, the advances on the Falconer distance
conjecture started coming again in recent months. X. Du,

L. Guth, H. Wang, B. Wilson, and R. Zhang ([2]) obtained
the dimensional threshold 9

5 inℝ3 and improved the thresh-
old for 𝑑 ≥ 4 as well. Their higher dimensional threshold
for 𝑑 ≥ 4 was further improved by X. Du and R. Zhang
([3]) to 𝑑2

2𝑑−1 = 𝑑
2 + 1

4 + 1
8𝑑−4 .

What is behind all this activity? Several key recent ad-
vances in harmonic analysis come into play and perhaps
the most important of these is the connection with the
Schrodinger operator. Du and Zhang deduced their 𝑑2

2𝑑−1
threshold from the following Schrödinger estimate. Let
𝑛 ≥ 1, 𝛼 ∈ (0,𝑛 + 1] and 𝜇 a compactly supported
Borel measure such that 𝜇(𝐵(𝑥, 𝑟)) ≤ 𝐶𝑟𝛼. Then

||𝑒𝑖𝑡Δ𝑓||𝐿2(𝐵(0⃗,𝑅);𝑑𝜇𝑅(𝑥,𝑡) ⪅ 𝑅 𝛼
2(𝑛+1) ||𝑓||2,

from which they deduced a good bound for the spherical
average in (6).

In two dimensions, Guth, Iosevich, Ou, and Wang ([8])
improved the dimensional threshold to 5

4 , proved a pinned
version of the result, and extended it to a variety of smooth
metrics. In this setting, a completely new approach needed
to be developed because the authors proved that for any
𝛼< 4

3 there exists a planar set of Hausdorff dimension 𝛼
such that (4) is infinite. They solved this problem by con-
sidering 𝐸1, 𝐸2 ⊂ 𝐸 separated by distance ∼ 1, and let-
ting 𝜇1 and 𝜇2 be Frostman measures on 𝐸1, 𝐸2. They di-
vided𝜇1 into𝜇1 = 𝜇1,𝑔𝑜𝑜𝑑+𝜇1,𝑏𝑎𝑑, where𝜇1,𝑏𝑎𝑑, roughly
speaking, comes from the example where the 𝐿2 norm of
the distance measure is infinite. They showed that the 𝐿1

norm of 𝜇1,𝑏𝑎𝑑 is not too large using a beautiful projec-
tion estimate due toOrponen ([13]). This reducedmatters
to obtaining an upper bound for the 𝐿2 norm of 𝜇2,𝑏𝑎𝑑,
which was accomplished via a suitable Schrödinger type
estimate partly based on the decoupling theorem of Bour-
gain and Demeter ([1]).
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