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Introduction
Time series are ubiquitous in our data rich world. In what
follows I will describe how ideas from dynamical systems
and topological data analysis can be combined to gain in-
sights from time-varying data. We will see several applica-
tions to engineering and the life sciences, as well as some
of the theoretical underpinnings.
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Figure 1. Orange: results from the simulation initialized at 𝐯0;
blue: results after manually restarting the simulation from 𝐯𝑗.

Lorenz and the Butterfly
Imagine you have a project involving a crucial computer
simulation. For an initial value 𝐯0 = (𝑥0, 𝑦0, 𝑧0) ∈ ℝ3, a
sequence 𝐯0,… ,𝐯𝑛 ∈ ℝ3 is computed in such a way that
𝐯𝑗+1 is determined from 𝐯𝑗 for 𝑗 = 0,… ,𝑛−1. After the
simulation is complete you realize that a rerun is needed
for further analysis. Instead of initializing at 𝐯0, which
might take a while, you take a shortcut: you input a value
𝐯𝑗 selected from the middle of the current results, and the
simulation runs from there while you go for coffee. Figure
1 is displayed on the computer monitor upon your return;
the orange curve is the sequence 𝑥0,… , 𝑥𝑛 from the initial
simulation, and the blue curve is the 𝑥 coordinate for the
rerun initialized at 𝐯𝑗.

The results agree at first, but then they diverge widely;
what is going on? Edward Norton Lorenz, a mathemati-
cal meteorologist, asked himself the very same question
while studying a simplified model for weather forecasting
[19]. In the process of resolving the aforementioned dis-
crepancy, which one could erroneously attribute to soft-
ware error or a hardware malfunction, Lorenz laid out the
foundations for what we know today as chaos theory. The
relevant set of differential equations for the simplifiedmod-
el, called the Lorenz system, is shown in equation (1); 𝑥,𝑦,
and 𝑧 are real-valued functions of time 𝑡, and𝜎,𝜌,𝛽 ∈ ℝ
are physical constants.

𝑥′(𝑡) = 𝜎 ⋅ (𝑦 − 𝑥)
𝑦′(𝑡) = 𝑥 ⋅ (𝜌 − 𝑧) − 𝑦 (1)

𝑧′(𝑡) = 𝑥𝑦− 𝛽𝑧

Solving the Lorenz system yields a differentiable func-
tion

Φ ∶ ℝ×ℝ3 ⟶ ℝ3 (2)

where Φ(𝑡,𝐯0) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) satisfies (1) for all
𝑡 ∈ ℝ, and Φ(0,𝐯0) = 𝐯0 for all 𝐯0 ∈ ℝ3. In fact, the
orange curve from Figure 1 corresponds to Φ(𝑡, (5, 5, 5))
when (𝜎,𝜌,𝛽) = (10, 28, 8/3). The discrepancy between

the orange and blue curves, as elucidated in [19], is a prop-
erty inherent to the system. Lorenz realized that when
manually entering 𝐯𝑗 as input, he only used the first few
significant digits instead of the full precision values. In
other words, the system (1) can be extremely sensitive to
initial conditions in that any errors are compounded expo-
nentially with time.

This behavior is known today as the Butterfly Effect. The
metaphor is that even the tiniest change in initial atmo-
spheric conditions, such as a butterfly flapping its wings
in Brazil, may change the long-term evolution of weather
patterns enough to produce a tornado in Texas. Such un-
predictability is one of the hallmarks of a chaotic dynamical
system, and speaks to the futility of long-term weather pre-
diction. The butterfly metaphor is further amplified by the
shape of the solution 𝑡 ↦ Φ(𝑡, (5, 5, 5)) = (𝑥(𝑡), 𝑦(𝑡),
𝑧(𝑡)), 0 ≤ 𝑡 ≤ 200, shown in the left-hand side of Figure
2.
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Figure 2. Lorenz’s butterfly attractor

Dynamical systems aremathematical abstractions of time-
dependent physical processes. Intuitively speaking, a dy-
namical system consists of two pieces of data: a set of states
𝑀—e.g., all possible atmospheric conditions at a given lo-
cation on earth — along with rules Φ = {Φ𝑝 ∶ 𝑝 ∈ 𝑀}
describing how each state𝑝 ∈ 𝑀 changes over time. More
specifically,

Definition 0.1. A global continuous time dynamical system
is a pair (𝑀,Φ), where 𝑀 is a topological space and Φ ∶
ℝ × 𝑀 ⟶ 𝑀 is a continuous map so that Φ(0,𝑝) = 𝑝,
and Φ(𝑠,Φ(𝑡, 𝑝)) = Φ(𝑠 + 𝑡, 𝑝) for all 𝑝 ∈ 𝑀 and all
𝑡, 𝑠 ∈ ℝ.

The typical examples arising fromdifferential equations
(e.g., the Lorenz system) have as state space a smooth man-
ifold 𝑀 (e.g., ℝ3), and the dynamics are given by the inte-
gral curves (e.g., equation (2)) of a smooth vector field on
𝑀 (e.g., (1)).

Some subsets of 𝑀 are especially important since they
attract the evolution of states in close proximity. Indeed,
a set 𝐴 ⊂ 𝑀 is called an attractor (these are the kinds of
sets we will focus on) if it satisfies three conditions: (1) it
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is compact, (2) it is an invariant set — that is, if 𝑎 ∈ 𝐴
then Φ(𝑡, 𝑎) ∈ 𝐴 for all 𝑡 ≥ 0 — and (3) it has an open
basin of attraction. In other words, there is an invariant
open neighborhood 𝑈 ⊂ 𝑀 of 𝐴, so that

⋂
𝑡≥0

{Φ(𝑡, 𝑝) ∶ 𝑝 ∈ 𝑈} = 𝐴.

An attractor 𝐴 is called strange — and this is just a name
— if (1) there are arbitrarily close points 𝑝,𝑝′ in a basin
of attraction of 𝐴 for which the distance between Φ(𝑡, 𝑝)
and Φ(𝑡, 𝑝′) grows exponentially quickly with 𝑡, and (2)
𝐴 has non-integral Hausdorff dimension. Lorenz’s butterfly
Λ ⊂ ℝ3 from Figure 2 is one of the most widely known
examples of a strange attractor; its Hausdorff dimension is
approximately 2.063 [31].

Persistent Homology: Measuring Shape
From Finite Samples
The shape of attractors carries a great deal of information
about the global structure of a dynamical system.
Indeed, attractors with the shape of a circle𝑆1 = {𝑧 ∈ ℂ ∶
|𝑧| = 1} give rise to periodic processes; non-integral Haus-
dorff dimension is evidence of chaotic behavior; while high-
dimensional tori𝕋𝑛 = 𝑆1×⋯×𝑆1 are linked to quasiperi-
odicity. The latter is a type of recurrence emerging from the
superposition of periodic oscillators with incommensurate
(i.e., ℚ-linearly independent) frequencies. Quasiperiodic-
ity appears, for example, in turbulent fluids [26], and the
detection of biphonation in high-speed laryngeal videoen-
doscopy [30]. Similarly, the existence of chaos in brain
activity is of considerable interest in neuroscience [17], as
is the presence of periodic oscillators in biological systems
[27].

A data analysis question that has received significant at-
tention in recent years is how to measure the shape of a
topological space 𝕏 — e.g., an attractor — from a finite
set 𝑋 (the data) approximating it. This is the type of prob-
lem driving advances in Topological Data Analysis [7], and
where tools like persistent homology [22]—whichwewill
describe shortly — are relevant.

The space 𝕏 around which the observed data 𝑋 accu-
mulates is unknown in practice, so the typical strategy in
topological data analysis is to use 𝑋 to construct another
space whose shape approximates that of 𝕏. One of the
most widely used constructions is the Rips complex. If 𝑋
(not necessarily finite) comes equipped with a metric 𝜌,
then the Rips complex of 𝑋 at scale 𝛼 is the set

𝑅𝛼(𝑋) ∶= {{𝑥0,… , 𝑥𝑘} ⊂ 𝑋 ∶ 𝜌(𝑥𝑖, 𝑥𝑗) ≤ 𝛼 (3)

for all 0 ≤ 𝑖, 𝑗 ≤ 𝑘}

This is in fact a simplicial complex; points in𝑋 can be thought
of as vertices, sets with two elements {𝑥0, 𝑥1} ∈ 𝑅𝛼(𝑋)
are edges, {𝑥0, 𝑥1, 𝑥2} ∈ 𝑅𝛼(𝑋) is a triangular face, and

so on. A theorem of Janko Latschev [18] contends that if
𝕏 is a closed Riemannian manifold, then under mild den-
sity hypotheses (which unfortunately cannot be checked
in practice) the geometric realization of 𝑅𝛼(𝑋) is homo-
topy equivalent to 𝕏 for small 𝛼 > 0.

The shape of a space (i.e., its homotopy type) refers to
those properties that are invariant under continuous defor-
mations; e.g., is it connected? are there holes? Said proper-
ties can be formalized and quantified using homology [13].
Given an integer 𝑛 ≥ 0, the 𝑛-th homology of a topologi-
cal space𝐵with coefficients in a field 𝔽, denoted𝐻𝑛(𝐵; 𝔽),
is a vector space over 𝔽. Its dimension𝛽𝑛(𝐵; 𝔽)—the𝑛-th
Betti number of 𝐵with coefficients in 𝔽— provides a count
for the number of 𝑛-dimensional holes in 𝐵. Indeed, 𝛽0
counts the number of path-connected components, 𝛽1 is
the number of holes bounded by a closed loop in 𝐵, 𝛽2 is
the number of voids bounded by a closed 2-dimensional
region, and so on for 𝑛 ≥ 3. Here is an example: the
2-dimensional torus 𝕋2 = 𝑆1 × 𝑆1 in Figure 3 (left) has
Betti numbers 𝛽0(𝕋2; 𝔽) = 1 since it is path-connected,
𝛽1(𝕋2; 𝔽) = 2 since it has a horizontal and a vertical
hole, 𝛽2(𝕋2; 𝔽) = 1 since 𝕋2 itself encloses an empty vol-
ume, and 𝛽𝑛(𝕋2; 𝔽) = 0 for all 𝑛 ≥ 3. Similarly, the
2-sphere 𝑆2 = {𝐱 ∈ ℝ3 ∶ ‖𝐱‖ = 1} has Betti numbers
𝛽0(𝑆2; 𝔽) = 𝛽2(𝑆2; 𝔽) = 1 and 𝛽𝑛(𝑆2; 𝔽) = 0 for 𝑛 ≥ 3,
for the same reasons as the torus, but 𝛽1(𝑆2; 𝔽) = 0 since
every closed loop on 𝑆2 bounds a filled-in region.

Figure 3. Left: The 2-dimensional torus 𝕋2 = 𝑆1 ×𝑆1. Right:
The 2-sphere 𝑆2 = {𝐱 ∈ ℝ3 ∶ ‖𝐱‖ = 1}.

We remark that 𝛽𝑛(𝐵; 𝔽) can change with the choice of
field 𝔽. Indeed, if 𝐵 is a closed connected 𝑛-dimensional
manifold, 𝑝 ≥ 3 is a prime, and 𝔽𝑝 denotes the field with
𝑝 elements, then𝐵 is orientable if and only if𝛽𝑛(𝐵; 𝔽𝑝) =
1, and non-orientable if and only if𝛽𝑛(𝐵; 𝔽𝑝) = 0 (see for
example 3.26 and 3.28 in [13]).

For a realistic data set 𝑋, the Betti numbers 𝛼 ↦ 𝛽𝑛
(𝑅𝛼(𝑋); 𝔽) are expected to be unstable as𝛼 varies. Indeed,
sampling artifacts or noise in𝑋 can produce holes that are
present in 𝑅𝛼(𝑋) but not in 𝑅𝛼+𝛿(𝑋) for small 𝛿 > 0
(e.g., see Figure 4). This is where comparing the homol-
ogy of spaces related via maps is useful. If 𝛼 ≤ 𝛼′, then
𝜄𝛼,𝛼′ ∶ 𝑅𝛼(𝑋) ↪ 𝑅𝛼′(𝑋) given by 𝜄𝛼,𝛼′({𝑥0,… , 𝑥𝑘}) =
{𝑥0,… , 𝑥𝑘} induces a linear transformation

𝜄𝛼,𝛼′
𝑛 ∶ 𝐻𝑛(𝑅𝛼(𝑋); 𝔽) ⟶ 𝐻𝑛(𝑅𝛼′(𝑋); 𝔽). (4)
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Classes in𝐻𝑛(𝑅𝛼(𝑋); 𝔽) that are not in the Kernel of 𝜄𝛼,𝛼′
𝑛

for large𝛼′−𝛼 can thus be interpreted as being persistent
in the data, and suggest true homological features of the
underlying space 𝕏. The collection of vector spaces and
linear maps resulting from (4) is called the 𝑛-dimensional
persistent homology, with coefficients in 𝔽, of the Rips filtra-
tion ℛ(𝑋) = {𝑅𝛼(𝑋)}𝛼∈ℝ. Thus far we have that the
Betti numbers capture the homology of a space, yielding
succinct shape descriptors for its topology. The persistent
homology ofℛ(𝑋), on the other hand, describes the mul-
tiscale evolution of homological features underlying the
data. More generally,

Definition 0.2. A persistence vector space𝐕 is a collection
of vector spaces 𝑉𝛼, 𝛼 ∈ ℝ, and linear transformations
𝜄𝛼,𝛼′ ∶ 𝑉𝛼 ⟶ 𝑉𝛼′ , 𝛼 ≤ 𝛼′, so that:

1. 𝜄𝛼,𝛼 is the identity of 𝑉𝛼 for every 𝛼 ∈ ℝ.
2. 𝜄𝛼′,𝛼′′ ∘ 𝜄𝛼,𝛼′ = 𝜄𝛼,𝛼′′

, whenever 𝛼 ≤ 𝛼′ ≤ 𝛼′′.

Two persistence vector spaces 𝐕 = {𝑉𝛼, 𝜄𝛼,𝛼′} and 𝐖 =
{𝑊𝛼, 𝜅𝛼,𝛼′} are isomorphic, denoted 𝐕 ≅ 𝐖, if there are
linear isomorphisms 𝑇𝛼 ∶ 𝑉𝛼 ⟶ 𝑊𝛼 for all 𝛼 ∈ ℝ, so
that 𝜅𝛼,𝛼′ ∘ 𝑇𝛼 = 𝑇𝛼′ ∘ 𝜄𝛼,𝛼′

whenever 𝛼 ≤ 𝛼′.

We will concentrate on three quantities for a nonzero
element 𝛾 ∈ 𝑉𝛼:

𝖻𝗂𝗋𝗍𝗁(𝛾) ∶= inf {𝛼̃ ≤ 𝛼 ∶ 𝛾 ∈ 𝖨𝗆𝖺𝗀𝖾(𝜄𝛼̃,𝛼)}
(5)

𝖽𝖾𝖺𝗍𝗁(𝛾) ∶= sup{𝛼′ ≥ 𝛼 ∶ 𝛾 ∉ 𝖪𝖾𝗋𝗇𝖾𝗅 (𝜄𝛼,𝛼′)}

𝗉𝖾𝗋𝗌𝗂𝗌𝗍𝖾𝗇𝖼𝖾(𝛾) ∶= 𝖽𝖾𝖺𝗍𝗁(𝛾) − 𝖻𝗂𝗋𝗍𝗁(𝛾)
When each𝑉𝛼 is finite dimensional, the isomorphism type
of 𝐕 can be completely described via a simple invariant
called the barcode [9]:

Theorem 0.3. Let 𝐕 = {𝑉𝛼, 𝜄𝛼,𝛼′} be a persistence vector
space so that dim(𝑉𝛼) is finite for all 𝛼 ∈ ℝ. Then, there
exists a multiset (i.e., a set whose elements may appear with
repetitions) of intervals 𝐼 ⊂ [−∞,∞] called the barcode of
𝐕, denoted 𝖻𝖼𝖽(𝐕), and so that:

1. 𝖻𝖼𝖽(𝐕) subsumes the Betti numbers: If 𝛼 ∈ ℝ, then
dim(𝑉𝛼) is exactly the number of intervals 𝐼 ∈ 𝖻𝖼𝖽(𝐕),
counted with repetitions, so that 𝛼 ∈ 𝐼.

2. 𝖻𝖼𝖽(𝐕) encodes persistence: For every 𝐼 ∈ 𝖻𝖼𝖽(𝐕)
and every 𝛼 ∈ 𝐼, there exists 𝛾 ∈ 𝑉𝛼 so that the left
and right end-points of 𝐼 are 𝖻𝗂𝗋𝗍𝗁(𝛾) and 𝖽𝖾𝖺𝗍𝗁(𝛾),
respectively.

3. 𝖻𝖼𝖽(𝐕) is an invariant: If 𝐖 is a persistence vector
space withdim(𝑊𝛼) finite for all𝛼 ∈ ℝ, then𝖻𝖼𝖽(𝐕) =
𝖻𝖼𝖽(𝐖) if and only if 𝐕 ≅ 𝐖.

We will use 𝖻𝖼𝖽ℛ
𝑛 (𝑋; 𝔽) to denote the barcode for the

𝑛-dimensional persistent homology of ℛ(𝑋). Below in

Figure 4 we show an example for 𝑋 ⊂ ℝ2 sampled with
noise around the unit circle 𝑆1, the Rips complex 𝑅𝛼(𝑋)
at scales𝛼 = 0, 0.36, 0.6, 1.21, and the intervals (i.e., the
horizontal blue lines) that comprise the barcode 𝖻𝖼𝖽ℛ

1 (𝑋;
𝔽2). The computations were performed using the C++ li-
braryRipser [4]. The single long interval is indicative of a
persistent 1-dimensional hole in the data, which is consis-
tent with𝑋 being sampled around𝑆1; indeed,𝛽1(𝑆1; 𝔽) =
1. The shorter intervals, on the other hand, are due to
noise and sampling artifacts.

Figure 4. Barcode for the Rips filtration on 𝑋 ⊂ ℝ2 near 𝑆1.

As we have seen thus far, persistent homology can be
used to infer the topology of a space 𝕏 given a finite sam-
ple 𝑋: the number of (comparatively) longer intervals in
𝖻𝖼𝖽ℛ

𝑛 (𝑋; 𝔽) suggests a value for 𝛽𝑛(𝕏; 𝔽). The barcodes
𝖻𝖼𝖽ℛ

𝑛 (𝑋; 𝔽) can also be used to quantify/identify proper-
ties of dynamical systems: if 𝕏 is an attractor, a barcode
like the one in Figure 4 would be indicative of periodicity,
while the barcodes in Figure 5 would point to quasiperi-
odicity. Indeed, as we alluded to at the beginning of this
section, the superposition of incommensurate oscillators
(i.e., quasiperiodicity) is tied to attractors with the topol-
ogy of a high-dimensional torus [21]. In addition to pe-
riodicity and quasiperiodicity, measures of Hausdorff di-
mension can also be derived from persistent homology;
see for instance [20,25].

Attractor Reconstruction: Time Series Data, Tak-
ens’ Theorem, and SlidingWindow Embeddings
In practice it is exceedingly rare to have an explicit mathe-
matical description of a dynamical system of interest. In-
stead, one can often gathermeasurements of relevant quan-
tities for each state 𝑝 ∈ 𝑀 — e.g., in weather prediction
one can estimate temperature, pressure, etc. A way of mea-
suring can be thought of as a continuousmap𝐹 ∶ 𝑀 ⟶ ℝ
— called an observation function— and given an initial state
𝑝 ∈ 𝑀, one obtains the time series

𝜑𝑝 ∶ ℝ ⟶ ℝ
𝑡 ↦ 𝐹 ∘ Φ(𝑡, 𝑝) (6)

The blue and orange curves from Figure 1 are examples
of time series from the Lorenz system. A single time se-
ries may appear to be a complete oversimplification of the
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underlying dynamics. However, Takens’ embedding theo-
rem, due to Floris Takens [28], implies that they can actu-
ally be very useful. For smooth manifolds 𝑀 and 𝑁, and
for a nonnegative integer 𝑘, let 𝐶𝑘(𝑀,𝑁) denote the set
of functions from 𝑀 to 𝑁 whose derivatives up to degree
𝑘 exist and are continuous. 𝐶𝑘(𝑀,𝑁) can be endowed
with a topology, the (strong) Whitney topology, in which,
roughly speaking, two functions are close if and only if the
functions and all their derivatives up to degree 𝑘 are close
on compact subsets of 𝑀. Here is Takens’ theorem:

Theorem 0.4. Let𝑀 be a smooth, compact, Riemannian man-
ifold; let 𝜏 > 0 be a real number; and let 𝑑 ≥ 2dim(𝑀)
be an integer. Then, for generic Φ ∈ 𝐶2(ℝ × 𝑀, 𝑀) and
𝐹 ∈ 𝐶2(𝑀,ℝ), and for𝜑𝑝(𝑡) defined by (6), the delay map

𝜑 ∶ 𝑀 ⟶ ℝ𝑑+1

𝑝 ↦ (𝜑𝑝(0),𝜑𝑝(𝜏),𝜑𝑝(2𝜏),… ,𝜑𝑝(𝑑𝜏))
(7)

is an embedding (i.e., 𝜑 is injective and its derivative has full-
rank everywhere).

Generic means that the set of functions Φ,𝐹 for which
(7) is an embedding is open and dense in the Whitney
topology. In fact, if𝐴 ⊂ 𝑀 is a strange attractor, then𝜑 re-
stricted to 𝐴 will be (generically) an embedding whenever
𝑑 is at least twice the Hausdorff dimension of 𝐴. Takens’
theorem motivates the following definition.

Definition 0.5. Let 𝑓 ∶ ℝ ⟶ ℝ be a function, 𝜏 > 0 a
real number, and 𝑑 > 0 an integer. The sliding window em-
bedding of 𝑓, with parameters 𝑑 and 𝜏, is the vector-valued
function

𝑆𝑊𝑑,𝜏𝑓 ∶ℝ⟶ℝ𝑑+1

𝑡 ↦(𝑓(𝑡), 𝑓(𝑡 + 𝜏), 𝑓(𝑡 + 2𝜏),… , 𝑓(𝑡 + 𝑑𝜏))
(8)

The integer 𝑑+1 is the dimension, 𝜏 is the delay, and the
product 𝑑𝜏 is the window size. For 𝑇 ⊂ ℝ, the set

𝕊𝕎𝑑,𝜏𝑓 = {𝑆𝑊𝑑,𝜏𝑓(𝑡) ∶ 𝑡 ∈ 𝑇} (9)

is the sliding window point cloud associated to the sampling
set 𝑇.

Hence, given time series data 𝑓(𝑡) = 𝜑𝑝(𝑡) observed
fromapotentially unknowndynamical system (𝑀,Φ), Tak-
ens’ theorem implies that (generically) the sliding window
point cloud 𝕊𝕎𝑑,𝜏𝑓 provides a topological copy of
{Φ(𝑡, 𝑝) ∶ 𝑡 ∈ 𝑇} ⊂ 𝑀. In particular this will reconstruct
attractors. The underlying shape of 𝕊𝕎𝑑,𝜏𝑓 can be then
quantified with persistent homology, and the associated
barcodes 𝖻𝖼𝖽ℛ

𝑛 (𝕊𝕎𝑑,𝜏𝑓; 𝔽) can be used as features in in-
ference, classification, and learning tasks [12, 25, 32]. We
will see shortly several applications of these ideas to sci-
ence and engineering, as well as a theoretical discussion

on sliding window persistence and parameter choices. For
now, here is an instantiation of the pipeline:

Example. Let 𝜔 ∈ ℝ be irrational; we will use 𝜔 = √3
for computations but any other choice would do. Con-
sider the dynamics Φ and the observation function 𝐹 on
the torus 𝕋2 = 𝑆1 ×𝑆1 ⊂ ℂ2, given by

Φ ∶ℝ× 𝕋2 ⟶ 𝕋2

(𝑡, (𝑧1, 𝑧2)) ↦ (𝑒𝑖𝑡𝑧1, 𝑒𝑖𝜔𝑡𝑧2)
𝐹 ∶𝕋2 ⟶ ℝ

(𝑧1, 𝑧2) ↦ 𝖱𝖾(𝑧1 + 𝑧2)

If 𝑝 ∈ 𝕋2, then {Φ(𝑡, 𝑝) ∶ 𝑡 ∈ ℝ} is dense in 𝕋2, and
hence 𝕋2 is the only attractor; e.g., see [6], page 86, Ex-
ample 6.15. For 𝑝 = (1, 1) we obtain the quasiperiodic
time series 𝑓(𝑡) = 𝐹∘Φ(𝑡, (1, 1)) = cos(𝑡)+ cos(𝜔𝑡),
and we show in Figure 5 the dynamics 𝑡 ↦ Φ(𝑡, (1, 1)) on
the torus (left), the resulting time series 𝑓(𝑡) (center), and
the barcodes 𝖻𝖼𝖽𝑛 = 𝖻𝖼𝖽ℛ

𝑛 (𝕊𝕎𝑑,𝜏𝑓; 𝔽2) for 𝑑 = 4,𝜏 =
3
4√3𝜋, 𝑛 = 0, 1, 2 (right).

Figure 5. Left: The dynamics Φ on the torus. The colors, blue
through red, indicate the time 𝑡 for 𝑡 ↦ Φ(𝑡, (1, 1)) ∈ 𝕋2.
Center: The time series
𝑓(𝑡) = 𝐹 ∘ Φ(𝑡, (1, 1)) = cos(𝑡) + cos(√3𝑡). The colors
indicate the time variable 𝑡 ∈ [0, 30𝜋] and are coordinated
with the planar torus on the left panel. Right: Barcodes for the
Rips filtration ℛ(𝕊𝕎𝑑,𝜏𝑓); the number of long intervals
recovers the Betti numbers of the attractor:
𝛽0(𝕋2; 𝔽2) = 𝛽2(𝕋2; 𝔽2) = 1 and 𝛽1(𝕋2; 𝔽2) = 2.

SomeApplications of SlidingWindowPersistence
Wheeze detection. Awheeze is an abnormalwhistling sound
produced while breathing. It is often associated with ob-
structed airways and lung diseases such as asthma, lung
cancer, and congestive heart failure. In [11], Emrani, Gen-
timis, and Krim show that the 1-dimensional barcode
𝖻𝖼𝖽ℛ

1 (𝕊𝕎𝑑,𝜏𝑓; 𝔽), and particularly the length of its longest
interval (i.e., its maximum persistence)

𝗆𝗉ℛ
1 (𝕊𝕎𝑑,𝜏𝑓; 𝔽) (10)

= max{𝗅𝖾𝗇𝗀𝗍𝗁(𝐼) ∶ 𝐼 ∈ 𝖻𝖼𝖽ℛ
1 (𝕊𝕎𝑑,𝜏𝑓; 𝔽)}

is an effective feature for wheezing detection when 𝑓 is a
recorded breathing sound. Indeed, the presence of wheez-
ing in the sound signal 𝑓 leads to circular sliding window
point clouds. When testing on a large database of sound
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recordings, Emrani et al. show that (10) leads to a higher
detection accuracy than that of competing methods.
Periodicity quantification in gene expression data. Many
biological processes, including the cell cycle, cell division,
and the circadian clock, are periodic in nature. An impor-
tant problem in systems biology is to describe these mech-
anisms at a genetic level [27], and biologists approach this
by first collecting data. Specifically, how gene expression
changes across time in a given model organism — e.g.,
yeast, mice, etc. In [24] databases of time series of gene
expression data from the yeast cell cycle, the yeast meta-
bolic cycle, and themouse circadian clock are used to show
that measures similar to (10) can outperform state-of-the-
art methods for periodicity quantification, leading to the
discovery of novel clock-regulated genes.
Segmentation of dynamic regimes. Complex high-dimen-
sional systems can exhibit abrupt changes in qualitative
behavior. For instance, the Earth’s climate has undergone
several sudden transitions to and back from a “snowball
Earth” [14]. Identifying markedly different regimes in a
system’s evolution can thus be used for warning, model-
ing, and parameter estimation purposes [10]. Berwald et
al. show in [5] that, given time series data, effective classi-
fiers can be trained on features from the barcodes of sliding
window point clouds, with the goal of automatically seg-
menting a system into different behavioral regimes. Some
applications of their methodology include the detection of
bifurcations on stochastic and chaotic systems, as well as
the analysis of temperature and CO2 levels in the Earth’s
ice cores.
Chatter detection and classification in machining. Turn-
ing andmilling are cutting processes used extensively in in-
dustrial manufacturing. Chatter, or machining vibrations,
are wide oscillations of the cutting tool with respect to
the metal workpiece; these undesired undulations leave
surface flaws on the production piece during turning and
milling. Khasawneh et al. show in [15, 16] that, given
a time series 𝑓 describing the undulations of the cutting
piece, 𝖻𝖼𝖽ℛ

1 (𝕊𝕎𝑑,𝜏𝑓; 𝔽) can be used as an input feature
in classification algorithms for chatter detection.
Periodicity and quasiperiodicity in video data. A video
can be thought of as a multi-dimensional time series: the
result of sampling a function 𝑓 ∶ ℝ ⟶ ℝ𝑘. It follows
that computing 𝖻𝖼𝖽ℛ

𝑛 (𝕊𝕎𝑑,𝜏𝑓; 𝔽) for the sliding window
point cloud 𝕊𝕎𝑑,𝜏𝑓 ⊂ ℝ𝑘(𝑑+1) can be used to detect re-
current behavior (e.g., periodicity and quasiperiodicity) in
video data, without the need for tracking or surrogate sig-
nals. See for instance [30] for applications of these ideas to
the problem of quantifying periodicity in video data, the
detection of biphonation in high-speed laryngeal videoen-
doscopy, as well as the synthesis of slow-motion videos
from recurrent movements [29].

Theoretical Investigations of SlidingWindowPer-
sistence
The barcodes 𝖻𝖼𝖽ℛ

𝑛 (𝕊𝕎𝑑,𝜏𝑓; 𝔽) have been used success-
fully in several applications as described above. In prac-
tice, there are two main challenges that must always be
addressed. The first is parameter selection: appropriate
values for 𝑑 ∈ ℕ, 𝜏 > 0, 𝔽 and 𝑇 ⊂ ℝ need to be
determined, given the application and computational re-
sources at hand. The second challenge is validating the re-
sults. In tasks where the barcodes 𝖻𝖼𝖽ℛ

𝑛 (𝕊𝕎𝑑,𝜏𝑓; 𝔽) are
used as features, one must quantify the likelihood that
positive results are due to random fluctuations in the data.
These challenges bring into stark focus the need for a theo-
retical understanding of 𝖻𝖼𝖽ℛ

𝑛 (𝕊𝕎𝑑,𝜏𝑓; 𝔽) as a function
of all the parameters and the time series involved. The
main difficulty here is that our knowledge of the homo-
topy type/homology of the Rips complex 𝑅𝛼(𝑋), for ar-
bitrary 𝛼, is rather limited: planar circles [1] and gluings
thereof [3] are essentially the only spaces where we have
complete answers. I would like to highlight next some of
what we do know.
Sliding window persistence of periodic functions. Let
𝕋 = ℝ/2𝜋ℤ. As a warm-up example for understanding
the sliding window persistence of 𝑓 ∈ 𝐶1(𝕋,ℝ), let 𝐿 ∈
ℕ, 𝜙 ∈ ℝ, and 𝜁(𝑡) = sin(𝐿𝑡 +𝜙). A bit of trigonome-
try shows that

𝑆𝑊𝑑,𝜏𝜁(𝑡) = sin(𝐿𝑡 +𝜙)𝐮+ cos(𝐿𝑡 +𝜙)𝐯

where𝐮 = 𝑆𝑊𝑑,𝜏 cos(𝐿𝑡)|𝑡=0 and𝐯 = 𝑆𝑊𝑑,𝜏 sin(𝐿𝑡)|𝑡=0.
It readily follows that if𝑑 ≥ 1 and the set {𝐮,𝐯} is linearly
independent, then 𝕊𝕎𝑑,𝜏𝜁 = 𝑆𝑊𝑑,𝜏𝜁(𝕋) is a planar el-
lipse. The semi-major and semi-minor axes can be com-
puted explicitly as

𝑎 =
√√√
⎷
(𝑑+ 1) + | sin(𝐿(𝑑+1)𝜏)

sin(𝐿𝜏) |
2 (11)

and

𝑏 =
√√√
⎷
(𝑑+ 1) − | sin(𝐿(𝑑+1)𝜏)

sin(𝐿𝜏) |
2 .

The persistent homology of the Rips filtration on ellipses
with small eccentricity, i.e. when 𝑏 < 𝑎 < √2𝑏, has been
recently studied by Adamaszek et al. [2]. In particular,
their work implies that if

𝛼1 = 4√3𝑎𝑏2

𝑎2 + 3𝑏2 and 𝛼2 = 4√3𝑎2𝑏
3𝑎2 +𝑏2

then the homotopy type of 𝑅𝛼(𝕊𝕎𝑑,𝜏𝜁) for 0 < 𝛼 ≤ 𝛼2
is either that of the circle, or that of awedge of 2-dimensional
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spheres as follows:

𝑅𝛼(𝕊𝕎𝑑,𝜏𝜁) ≃

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝑆1 for 0 < 𝛼 < 𝛼1
𝑆2 for 𝛼 = 𝛼1
⋁5 𝑆2 for 𝛼1 < 𝛼 < 𝛼2
⋁3 𝑆2 for 𝛼 = 𝛼2

The range 𝛼1 < 𝛼 < 𝛼2 is especially interesting since
only one of the five 2-dimensional classes persists. In other
words, the linear transformation

𝐻2(𝑅𝛼(𝕊𝕎𝑑,𝜏𝜁); 𝔽) ⟶ 𝐻2(𝑅𝛼′(𝕊𝕎𝑑,𝜏𝜁); 𝔽)
has rank one for every 𝛼1 < 𝛼 < 𝛼′ < 𝛼2. We readily
obtain the following theorem.

Theorem 0.6. Let 𝜁(𝑡) = sin(𝐿𝑡+𝜙) for 𝐿 ∈ ℕ,𝜙 ∈ ℝ,
and for 𝑑 ∈ ℕ, 𝜏 > 0 let 𝑎,𝑏 ≥ 0 be as in (11). If 𝑎 <
√2𝑏 and 𝔽 is a field, then the maximum persistence (10) in
dimensions 1 and 2 satisfies

𝗆𝗉ℛ
1 (𝕊𝕎𝑑,𝜏𝜁; 𝔽) = 4√3𝑎𝑏2

𝑎2 + 3𝑏2

𝗆𝗉ℛ
2 (𝕊𝕎𝑑,𝜏𝜁; 𝔽) ≥ 4√3𝑎2𝑏

3𝑎2 +𝑏2 − 4√3𝑎𝑏2

𝑎2 + 3𝑏2 .

The cases 𝛼 > 𝛼2 for 𝑎 < √2𝑏 and 𝛼 > 0 for 𝑎 ≥
√2𝑏 are currently open. The case𝑎 = 𝑏, i.e. when𝕊𝕎𝑑,𝜏𝜁
is a circle, is much better understood. This happens when
the window size 𝑑𝜏 is equal to (an integer multiple of)
𝑑

𝑑+1
2𝜋
𝐿 , which is a little bit under 𝖯𝖾𝗋𝗂𝗈𝖽(𝜁) = 2𝜋

𝐿 . Since
the homotopy type of 𝑅𝛼(𝑆1) is known for all 𝛼 > 0 [1],
we get that

𝑅𝛼(𝕊𝕎𝑑,𝜏𝜁)

≃
⎧⎪⎪
⎨⎪⎪⎩

𝑆2𝑘+1 for sin ( 𝜋𝑘
2𝑘+1)<

𝛼
√2(𝑑+1) <sin(𝜋(𝑘+1)

2𝑘+3 )

⋁|ℝ| 𝑆2𝑘 for 𝛼=√2(𝑑+ 1) sin ( 𝜋𝑘
2𝑘+1)

where the linear transformation

𝐻2𝑘+1(𝑅𝛼(𝕊𝕎𝑑,𝜏𝜁); 𝔽) ⟶ 𝐻2𝑘+1(𝑅𝛼′(𝕊𝕎𝑑,𝜏𝜁); 𝔽)
is an isomorphism (with rank one) for every

√2(𝑑 + 1) sin( 𝜋𝑘
2𝑘+ 1) < 𝛼 ≤ 𝛼′

< √2(𝑑+ 1) sin(𝜋(𝑘 + 1)
2𝑘 + 3 ) .

Therefore,

Theorem 0.7. Let 𝜁(𝑡) = sin(𝐿𝑡 + 𝜙), let 𝔽 be a field,
and let 𝜏 = 2𝜋

𝐿(𝑑+1) . Then, for every integer 𝑘 ≥ 1,
𝗆𝗉ℛ

2𝑘(𝕊𝕎𝑑,𝜏𝜁; 𝔽) = 0 and

𝗆𝗉ℛ
2𝑘−1(𝕊𝕎𝑑,𝜏𝜁; 𝔽)

= √2(𝑑 + 1) ⋅ (sin( 𝜋𝑘
2𝑘+ 1)− sin(𝜋(𝑘 − 1)

2𝑘 − 1 )) .

One strategy to understand𝖻𝖼𝖽ℛ
𝑛 (𝕊𝕎𝑑,𝜏𝑓; 𝔽) for a func-

tion 𝑓 ∈ 𝐶1(𝕋,ℝ) is to first approximate 𝑓 by its truncated
Fourier series

𝑆𝑁𝑓(𝑡) = ∑
|𝑛|≤𝑁

𝑓(𝑛)𝑒𝑖𝑛𝑡 , 𝑓(𝑛) = 1
2𝜋 ∫

𝕋
𝑓(𝑡)𝑒−𝑖𝑛𝑡𝑑𝑡

and then investigate the asymptotic behavior of the sequence
of barcodes

𝖻𝖼𝖽ℛ
𝑛 (𝕊𝕎𝑑,𝜏𝑆𝑁𝑓; 𝔽) , 𝑁 ∈ ℕ. (12)

Indeed, the analysis of 𝜁(𝑡) = sin(𝐿𝑡 + 𝜙) presented
earlier can be bootstrapped to trigonometric polynomials,
and the Stability Theorem [8] can be used to study
𝖻𝖼𝖽ℛ

𝑛 (𝕊𝕎𝑑,𝜏𝑓; 𝔽) via the behavior of (12) as 𝑁 → ∞.
This line of reasoning was explored in [23]. In particular,
it yields insights for the choice of window size (it should
be approximately 𝑑

𝑑+1 times the period length 𝖯𝖾𝗋𝗂𝗈𝖽(𝑓)),
the embedding dimension (larger than twice the number
of relevant harmonics), and the choice of field of coeffi-
cients (one whose characteristic does not divide 2𝜋

𝖯𝖾𝗋𝗂𝗈𝖽(𝑓)).
We end with a theorem [23, 6.8] relating the sliding win-
dow persistence of 𝑓 to its harmonic content. In particular,
it provides an estimate of the effectiveness of maximum
persistence as ameasure of periodicity, and highlights how
densely the sliding window point cloud needs to be sam-
pled (i.e. the choice 𝑇 ⊂ 𝕋), given how irregular the func-
tion is, and the localization of its spectral power density.

Theorem 0.8. Let 𝑓 ∈ 𝐶1(𝕋,ℝ) be so that 𝑓(𝑡 + 2𝜋
𝐿 ) =

𝑓(𝑡) for all 𝑡 ∈ 𝕋, and assume (for simplicity) that 𝑓 has been
centered and normalized:

𝑓(0) = 0 , ‖𝑓‖2 ∶= ( 1
2𝜋 ∫

𝕋
|𝑓(𝑡)|2𝑑𝑡)

1/2
= 1

Let 𝜏𝑑 = 2𝜋
𝐿(𝑑+1) , 𝑇 ⊂ 𝕋, and 𝕊𝕎𝑑,𝜏𝑑𝑓 = 𝑆𝑊𝑑,𝜏𝑑𝑓(𝑇). If

𝑓′ = 𝑑𝑓
𝑑𝑡 and 𝑑𝐻 is the Hausdorff distance, then

sup
𝑑∈ℕ

𝗆𝗉ℛ
1 (𝕊𝕎𝑑,𝜏𝑑𝑓;ℚ)

≥ 2√3sup
𝑛∈ℤ

|𝑓(𝑛)| − 2√2‖𝑓′‖2 𝑑𝐻(𝑇,𝕋).

Beyond periodicity. Very little is known about the sliding
window persistence of other families of functions. There
are some results for quasiperiodic time series [21], but the
rest of the landscape is essentially uncharted territory. There
is also recentwork in identifying families of functionswhose
sliding window point clouds recover other spaces [32] —
e.g., Klein bottles, projective spaces, etc. It would be very
interesting to see these models in naturally occurring phe-
nomena, and perhaps in future applications of topology
to the analysis of complex time varying data.
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