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Introduction
Robert Coleman wrote a series of papers in the 1980s
[Col82, Col85b, CdS88] where he developed a theory of
𝑝-adic line integration on curves and higher-dimensional
varieties with good reduction at 𝑝. He gave a number of
spectacular applications for these integrals, thereby demon-
strating that they are a powerful tool in arithmetic geom-
etry. These integrals are now known as Coleman integrals.
The theory has since been extended in a number of differ-
ent directions by Berkovich, Besser, Colmez, Vologodsky,
and Zarhin, among others. Moreover, these integrals are
amenable to computation, and implementations in vari-
ous contexts are available in the computer algebra systems
SageMath and Magma.

We discuss how to construct and compute these inte-
grals and conclude by mentioning a few applications. For
ease of exposition, we will assume that 𝑋 is a smooth pro-
jective curve of genus 𝑔 defined over 𝐐. We will also as-
sume that 𝑝 is a prime of good reduction for 𝑋, which
means that locally, the equations defining 𝑋 can be writ-
ten with coefficients in 𝐙𝑝, so that when we reduce these
modulo 𝑝, we obtain a smooth curve over 𝐅𝑝.

Suppose 𝜔 is a meromophic 1-form of the second kind
on 𝑋𝐐𝑝 , i.e., a 1-form with residue zero at all poles. What

does it mean to compute the line integral ∫𝑄𝑃 𝜔 for points
𝑃,𝑄 ∈ 𝑋(𝐐𝑝)? The crux of the matter is understanding
a 𝑝-adic “path” between the points 𝑃 and 𝑄, in particular
if 𝑃 and 𝑄 are 𝑝-adically far away from each other.
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First we introduce a bit of terminology. Let 𝑋𝑎𝑛 de-
note the rigid analytic space over 𝐐𝑝 associated to 𝑋 (this
is an analogue of a complex analytic space over a non-
archimedean field). There is a natural specialization map
from 𝑋𝑎𝑛 to its special fibre 𝑋 given by reduction mod 𝑝.
The fibres of this map are open unit disks, called residue
disks.

Now fix a residue disk 𝐷 and consider 𝑃 ∈ 𝐷. We can
compute a uniformizing parameter 𝑡 at 𝑃, and if 𝑃′ ≡ 𝑃
(mod 𝑝), the “tiny integral” ∫𝑃

′

𝑃 𝜔 = ∫𝑡(𝑃
′)

0 𝜔(𝑡)𝑑𝑡, com-
puted by a change of variables, converges. In particular,
this is the Coleman integral of 𝜔 between 𝑃 and 𝑃′.

Example 1. Let 𝑋 ∶ 𝑦2 = 𝑥5 + 2𝑥 + 1 over 𝐐5, and
consider the points 𝑃 = (0, 1), 𝑃′ = (5, 56) and the dif-
ferential form 𝑑𝑥

2𝑦 . We have that 𝑡 = 𝑥 is a uniformizing

parameter at 𝑃, and we compute 𝑦 = 1+𝑡− 1
2𝑡2+ 1

2𝑡3−
5
8𝑡4 + 11

8 𝑡5 − 29
16𝑡6 + 45

16𝑡7 − 589
128𝑡8 +𝑂(𝑡9). We have

∫
𝑃′

𝑃

𝑑𝑥
2𝑦 =∫

5

0

𝑑𝑥(𝑡)
2𝑦(𝑡)𝑑𝑡

=3⋅5 + 3⋅52+2⋅53+2⋅54+3⋅55+3⋅56+𝑂(57).

However, if 𝑄 ≢ 𝑃 (mod 𝑝), the strategy above does
not work. Indeed, as open unit disks in the 𝑝-adic topol-
ogy are either disjoint or identical, we seem to have a se-
rious problem: we can compute tiny integrals within any
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given residue disk, but howdowe carry out analytic contin-
uation to ensure compatibility between different residue
disks?

Coleman solved this problem using Dwork’s principle
of analytic continuation along Frobenius, that is to say, using
the fact that these integrals are Frobenius equivariant. By
computing the action of Frobenius on differentials, Cole-
man showed that there is a canonical path between two
points, which allowed him to compute integrals between
different disks. One works over a wide open subspace 𝑉
of 𝑋𝑎𝑛 (obtained by removing from 𝑋𝑎𝑛 a finite number
of closed disks of radius less than 1) and uses Frobenius (a
rigid analytic map) to write down a linear system. The key
insight is that by (proofs of) theWeil conjectures, we know
the possible eigenvalues of Frobenius on 𝑝-adic (Monsky-
Washnitzer or rigid) cohomology. We make this more pre-
cise below.

Integrals Between Different Residue Disks
First we record a number of useful properties of the Cole-
man integral:

Theorem 2 (Coleman). Let 𝜂,𝜉 be 1-forms of the second
kind on a wide open subspace 𝑉 of 𝑋𝑎𝑛 and 𝑃,𝑄,𝑅 ∈ 𝑉.
The definite Coleman integral has the following properties:

1. Linearity: ∫𝑄𝑃 (𝑎𝜂 + 𝑏𝜉) = 𝑎∫𝑄𝑃 𝜂+ 𝑏∫𝑄𝑃 𝜉.
2. Additivity in endpoints: ∫𝑄𝑃 𝜉 = ∫𝑅𝑃 𝜉+ ∫𝑄𝑅 𝜉.
3. Change of variables: If 𝑉′ ⊂ 𝑋′ is a wide open sub-
space of a rigid analytic space𝑋′ and𝜙 ∶ 𝑉 → 𝑉′ a rigid

analytic map then ∫𝑄𝑃 𝜙∗𝜉 = ∫𝜙(𝑄)
𝜙(𝑃) 𝜉.

4. Fundamental theorem of calculus: ∫𝑄𝑃 𝑑𝑓 = 𝑓(𝑄) −
𝑓(𝑃) for 𝑓 a rigid analytic function on 𝑉.

The rigid cohomology group 𝐻1
rig(𝑋/𝐐𝑝) is a 2𝑔-

dimensional 𝐐𝑝-vector space that is equipped with an ac-
tion of 𝑝-power Frobenius 𝐹𝑝 that is lifted from the spe-
cial fibre 𝑋. By the work of Baldassarri and Chiarellotto,
there is an isomorphism between rigid and algebraic de
Rham cohomology. Let {𝜔0,… ,𝜔2𝑔−1} be a basis of
𝐻1

rig(𝑋/𝐐𝑝).
One first computes the action of 𝑝-power Frobenius 𝐹𝑝

on each differential in the basis and reduces using relations
in cohomology to obtain

𝐹∗
𝑝 (𝜔𝑖) = 𝑑𝑓𝑖 +

2𝑔−1

∑
𝑗=0

Φ𝑖𝑗𝜔𝑗, (1)

where each 𝑓𝑖 is an element of a ring of overconvergent
functions associated to 𝑋𝐐𝑝 , and Φ ∈ 𝑀2𝑔×2𝑔(𝐐𝑝). In
the case of hyperelliptic curves, the computation (1) is Ked-
laya’s algorithm, and in the case of smooth curves, this was
recently made into a practical algorithm by Tuitman. Then
one uses properties of the Coleman integral to compute
the values of integrals on basis differentials between points

𝑃,𝑄 where the 𝑓𝑖 converge, starting from

∫
𝐹𝑝(𝑄)

𝐹𝑝(𝑃)
𝜔𝑖 = ∫

𝑄

𝑃
𝐹∗
𝑝 𝜔𝑖,

and using (1) to deduce the following:

2𝑔

∑
𝑗=1

(Φ − 𝐼)𝑖𝑗 (∫
𝑄

𝑃
𝜔𝑗)

= 𝑓𝑖(𝑃) − 𝑓𝑖(𝑄) −∫
𝐹𝑝(𝑃)

𝑃
𝜔𝑖 −∫

𝑄

𝐹𝑝(𝑄)
𝜔𝑖.

(2)

In particular, since the eigenvalues of the matrixΦ are alge-
braic numbers of complex absolute value 𝑝1/2, the matrix
Φ − 𝐼 is invertible, and we obtain the integrals of basis
differentials between 𝑃 and 𝑄.

Example 3. As in our previous example, let𝑋 ∶ 𝑦2 = 𝑥5+
2𝑥+1 over𝐐5. Now consider the points𝑃 = (0, 1),𝑄 =
(1, 2). Using (2), we compute in SageMath that

∫
𝑄

𝑃

𝑑𝑥
2𝑦 = 2⋅5+4⋅52+3⋅53+4⋅54+4⋅55+2⋅56+𝑂(57).

Remark 4. One can instead compute the Coleman integrals
of regular 1-forms by passing to the Jacobian of the curve
and rescaling so that the endpoints of integration are in the
residue disk of the identity. Pulling back to the curve, this
allows one to rewrite any given Coleman integral as a sum
of tiny integrals. Themain advantage of the approach with
Frobenius is that it generalizes easily to iterated Coleman
integrals.

Coleman and de Shalit, as well as Besser [Bes02], de-
fined iterated Coleman integrals

∫
𝑄

𝑃
𝜉𝑛 ⋯𝜉1,

which behave formally like iterated path integrals

∫
1

0
∫

𝑡1

0
⋯∫

𝑡𝑛−1

0
𝑓𝑛(𝑡𝑛)⋯𝑓1(𝑡1)𝑑𝑡𝑛 ⋯ 𝑑𝑡1.

Besser and de Jeu were the first to give an algorithm to
compute iterated Coleman integrals, in the case of 𝑋 =
𝐏1\{0, 1,∞}. These integrals are defined by the 𝑝-adic
differential equations

{ Li0(𝑧) = 𝑧
1−𝑧

𝑑Li𝑛+1(𝑧) = Li𝑛(𝑧)𝑑𝑧
𝑧 , 𝑛 ≥ 0

and are 𝑝-adic polylogarithms, which via a 𝑝-adic ana-
logue of Beilinson’s conjecture, are conjecturally related to
special values of 𝑝-adic 𝐿-functions. In the case of higher
genus curves, one can compute𝑛-fold iterated Coleman in-
tegrals by applying (1) to each differential in the integrand,
then relating 𝑛-fold integrals to (𝑛−1)-fold integrals and
making an observation about the eigenvalues of thematrix
Φ⊗𝑛, to produce the appropriate analogue of (2).
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Applications
Coleman and Gross described how to use Coleman inte-
grals to compute 𝑝-adic heights on Jacobians of curves,
which allows one to compute interesting arithmetic invari-
ants, such as 𝑝-adic regulators. Indeed, there is a (global)
𝑝-adic height pairing on the Jacobian of a curve that, in
many ways, parallels the story of the canonical Néron–
Tate height: the Coleman–Gross 𝑝-adic height is a bilinear
form ℎ that can be computed via a decomposition

ℎ(𝑃1, 𝑃2) = ∑
𝑣
ℎ𝑣(𝑃1, 𝑃2)

into local heights ℎ𝑣. While the local heights at primes
𝑣 ≠ 𝑝 are computed via arithmetic intersection theory
(just as in the Néron–Tate height, though the intersection
multiplicities are weighted with 𝑝-adic logarithms), the lo-
cal height pairing at the prime 𝑣 = 𝑝 is given in terms of
a Coleman integral. By computing global 𝑝-adic heights
on a basis of the Mordell–Weil group of the Jacobian, one
can calculate a 𝑝-adic regulator, which is one of the in-
variants appearing in a 𝑝-adic analogue of the Birch and
Swinnerton-Dyer conjecture.

Coleman also used these integrals to compute torsion
points on Jacobians. He further gave a beautiful re-
interpretation [Col85a], via his eponymous integrals, of
the classical method of Chabauty for showing finiteness
of the number of rational points on curves𝑋/𝐐whose Ja-
cobians have rank less than their genus. On each residue
disk, the Coleman integrals are locally analytic and can
be written as convergent 𝑝-adic power series, with finitely
many zeros. By bounding the number of zeros of these in-
tegrals (where this zero locus, whichwe denote as𝑋(𝐐𝑝)1,
is a finite set of 𝑝-adic points containing the set of ratio-
nal points), he gave an upper bound on the number of
rational points on such curves. The Chabauty–Coleman
method has been generalized in a number of ways, for in-
stance, by removing the hypothesis that 𝑝must be a prime
of good reduction. This variant was used by Stoll and Katz–
Rabinoff–Zureick-Brown to give a uniform bound on the
number of rational points on curves whose Jacobians have
rank at most 𝑔− 3.

Iterated Coleman integrals are conjectured to satisfy
striking relationships when evaluated on rational points
on curves, with no restriction on the rank of the Jacobian
of the curve. Kim’s construction of Selmer varieties [Kim09]
gives a sequence of sets

𝑋(𝐐𝑝)1 ⊃ 𝑋(𝐐𝑝)2 ⊃ ⋯ ⊃ 𝑋(𝐐𝑝)𝑛,
where each set𝑋(𝐐𝑝)𝑘 is described by𝑘-fold iteratedCole-
man integrals and contains the set of rational points𝑋(𝐐).
One would like to show that, for a given curve𝑋/𝐐, there
is a computable depth ℓ at which the set 𝑋(𝐐𝑝)ℓ is finite.
Moreover, one would like to compute the set 𝑋(𝐐𝑝)ℓ.
Some recent progress has been made on understanding

quadratic Chabauty—i.e., studying the set𝑋(𝐐𝑝)2—by con-
structing integrals that vanish on the set of points𝑋(𝐐𝑝)2
for curveswith extra structure andMordell–Weil rank equal
to 𝑔. More generally, by carrying out Kim’s nonabelian
Chabauty program, one hopes to discover new relationships
among iterated Coleman integrals, thereby leading to a
new, constructive proof of finiteness of rational points on
higher genus curves.
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