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BÔCHER MEMORIAL PRIZE
The Bôcher Prize is awarded for a notable paper in analysis published during the preceding six years. The work 
must be published in a recognized, peer-reviewed venue.

CHEVALLEY PRIZE IN LIE THEORY
The Chevalley Prize is awarded for notable work in Lie Theory published during the preceding six years; a recipi-
ent should be at most twenty-five years past the PhD.

LEONARD EISENBUD PRIZE FOR MATHEMATICS AND PHYSICS
The Eisenbud Prize honors a work or group of works, published in the preceding six years, that brings mathemat-
ics and physics closer together.

FRANK NELSON COLE PRIZE IN NUMBER THEORY
This Prize recognizes a notable research work in number theory that has appeared in the last six years. The work 
must be published in a recognized, peer-reviewed venue.

The selection committees for these prizes request nominations for consideration 
for the 2020 awards, which will be presented at the Joint Mathematics Meetings 
in Denver, CO, in January 2020. Information about past recipients of these prizes 
may be found at www.ams.org/prizes-awards.

Call for 
Nominations



LEVI L. CONANT PRIZE
The Levi L. Conant Prize, first awarded in January 2001, is presented annually for an outstanding expository paper 
published in either the Notices of the AMS or the Bulletin of the AMS during the preceding five years.

JOSEPH L. DOOB PRIZE
The Doob Prize recognizes a single, relatively recent, outstanding research book that makes a seminal contribu-
tion to the research literature, reflects the highest standards of research exposition, and promises to have a deep 
and long-term impact in its area. The book must have been published within the six calendar years preceding the 
year in which it is nominated. Books may be nominated by members of the Society, by members of the selection 
committee, by members of AMS editorial committees, or by publishers. The prize is awarded every three years.

AWARD FOR DISTINGUISHED PUBLIC SERVICE
The Award for Distinguished Public Service recognizes a research mathematician who has made recent or sus-
tained distinguished contributions to the mathematics profession through public service. The award is given every 
other year.

Further information about AMS prizes can be found at the Prizes and Awards website: 
www.ams.org/prizes-awards.

Further information and instructions for submitting a nomination can be found at the prize nomination 
website: www.ams.org/nominations.

For questions contact the AMS Secretary at secretary@ams.org. 

The nomination period is March 1 through June 30, 2019.

Nominations that refl ect the diversity
of our profession are encouraged.
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A WORD FROM...
Jill Pipher, AMS President

My term as President is just days old (as of this writing), and I am excited to get started on 
the hard work of advancing my highest priority goals. These include advocacy for math-
ematics research and education, and increasing public awareness of the importance of 
mathematics; identifying processes that support, or hinder, diversity and inclusion in AMS 
programs and activities and in the profession more broadly; strengthening partnerships 
with other mathematical professional societies; and ensuring support for programs that de-
velop a full range of professional opportunities for the next generation of mathematicians. 

In this note, I’d like to highlight a few of the ways that AMS has been working to sup-
port students and early career mathematicians, and then look ahead to future initiatives 
and challenges.

Recently, one of my graduate students had the good fortune to participate in a Math-
ematics Research Community (MRC). This extraordinary program, partially funded by a 
grant from the National Science Foundation, offers early career mathematicians an inten-

sive one-week collaborative research retreat led by faculty experts. Several MRCs are chosen and developed each 
year from a very competitive pool of high-quality proposals. The graduate student research teams typically find 
results leading to publications and long-lasting collaborations, and they are also given funds to attend the next 
Joint Mathematics Meetings (JMM). 

It is really important for students and recent graduates to be able to travel for research, and attend mathematics 
conferences like JMM and the sectional meetings. In another partnership, this time with the Simons Foundation, 
the AMS launched a travel program for research-related travel for early career mathematicians, with awards of $2000 
per year. A second travel award program, made possible through the support of a private gift, provides funds for 
graduate students to attend AMS meetings.

Professional development, interacting with the experts in one’s field, and creating connections with peers are 
some of the important benefits of going to conferences. Some of these goals can be accomplished closer to home, 
through activities generated by student chapters. At my home institution, Brown University, our AMS graduate 
student chapter has held several annual one-day conferences featuring student talks and posters. I was happy to 
learn that there are now more than sixty AMS graduate student chapters, engaging students with our Society while 
building mathematical communities. AMS provides a small annual fund to support chapter activities like the one 
at Brown.

Looking ahead, there are great opportunities for AMS to continue its important work in these directions: The 
Campaign for The Next Generation, new commitments to mathematics education, and Joint Mathematics Meet-
ings Reimagined.

Historically, the most successful AMS programs for early career scholars have existed on temporary funding. 
The public phase of The Campaign for The Next Generation (www.ams.org/giving/nextgen) was launched at 
the 2019 JMM. A generous benefactor is providing matching funds of up to $1.5 million to help establish this 
endowment. At present, the AMS is 85% of the way to the initial goal of a $3 million endowed fund. Funds from 
this endowment will be used to provide small yet impactful grants to support early career mathematicians in 
multiple ways, such as with travel and child care grants. And in the near future, the AMS will bring on a Director 
of Education located in the Office of Government Relations in Washington, DC, thus expanding its commitment 
to mathematics education.
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Jill Pipher is Elisha Benjamin Andrews Professor of Mathematics at Brown University and president of the American Mathematical Society. Her 
email address is Jill_Pipher@Brown.edu.
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Finally, and importantly, the leadership of AMS is inviting the community to help in reimagining our future JMM 
(https://www.ams.org/about-us/jmm-reimagined); starting in 2022, MAA will focus its administrative efforts on 
MAA MathFest, and management of JMM will be handled entirely by AMS. This creates both a challenge and an oppor-
tunity—to ensure that JMM contains all the programming attractive to a wide constituency of mathematicians, from 
undergraduate students to senior mathematicians. I believe that the success of this annual meeting lies in its amazing 
breadth, in programming and events that reflect the wide-ranging interests in teaching and research of its attendees. We 
welcome your ideas as the process of remaking JMM unfolds.

Jill Pipher
AMS President
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CORRIGENDUM

The Spring Lecture Sampler from the March 2019 
issue contained an attribution error. On page 412 of 
Katherine E. Stange’s article “An Illustration in Number 
Theory,” a density one result concerning curvatures 
in an Apollonian circle packing was attributed to 
Bourgain and Fuchs (cited as [2]). In fact, the result 
is due to Jean Bourgain and Alex Kontorovich, “On 
the local-global conjecture for integral Apollonian 
gaskets, with an appendix by Péter Varjú,” in Invent. 
Math., 196 (2014), no. 3, 589–650.
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Your generous gifts help hundreds of mathematically talented youths 
receive immersive mathematics education each summer. Thank you for 
your donations!  

SUPPORT AMS Epsilon Fund for Young Scholars Programs.

www.ams.org/support

For questions or more information, contact 
the AMS Development of� ce at 401.455.4111 
or development@ams.org

Thank you!

Support the

EPSILON FUND
                for young scholars

Students at work on fi nite-state automata at 
MathILy, an Epsilon Fund-supported program. 

P
h

o
to

 c
o

u
rt

es
y 

M
at

h
IL

y.



LETTERS TO THE EDITOR

*We invite readers to submit letters to the editor at notices-letters 
@ams.org.
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On Cryptography of 
“The Ubiquity of Elliptic Curves”
Dear Prof. Goins and Editors of the Notices of the AMS,

The article in the February issue of the Notices titled “The 
Ubiquity of Elliptic Curves” by Edray Herber Goins is an 
engaging introduction to the fascinating world of elliptic 
curves. The article mentions several important applications 
of elliptic curves in cryptography. As a cryptographer my-
self, I feel compelled to correct the record regarding several 
claims in the article.

The article sketches the elliptic-curve Diffie-Hellman 
protocol, which allows two parties to compute a shared 
secret from their public shares. Variants of this protocol 
secure much of today’s Internet, and its creators, Whitfield 
Diffie and Martin E. Hellman, were recognized for their 
contribution with the prestigious ACM A. M. Turing Award 
in 2015.

Using the cast of characters and notation of the article, 
Shuri and T’Challa negotiate a key using the Diffie-Hellman 
protocol by exchanging public shares [s]P and [t]P. Their 
shared secret, which only they can compute, is [st]P. (The ar-
ticle conflates authenticity, i.e., “Shuri and T’Challa can feel 
confident that they are indeed who they say they are” and 
secrecy, which is what the Diffie-Hellman key agreement 
offers, but this can be repaired with some modifications to 
the protocol.) The more substantive issue is that the article 
seems to imply that the security of the protocol rests on 
the hardness of recovering secret s and t from the public 
shares, known as the (elliptic curve) discrete logarithm 
problem. Hardness of this problem is necessary but not 
sufficient. The actual problem faced by the eavesdropper 
is to compute [st]P from [s]P and [t]P, which is known as 
the (Computational) Diffie-Hellman problem.

Although the distinction may appear to be subtle or 
even trivial (we do not know any candidate groups where 
the Computational Diffie-Hellman problem is easy but the 
discrete logarithm problem is hard), the grand program 
of precisely relating hardness assumptions and security 
of protocols such as this one has played a central role in 
development of cryptography as a rigorous discipline. A 
common misconception, which the article echoes, is that 
the attacker’s goal in breaking a cryptographic protocol 
is to recover secret keys of the honest participants. This 
is rarely the case; relatively few cryptographic definitions 
require the adversary to produce a secret key in its entirety. 
Instead, definitions typically focus on the damage that the 

New Online Notices Format
Dear editors,

I found the new Notices of the AMS webpage to be a step 
down from the previous version. One of the most annoying 
things is that I could no longer select a past issue I want 
from a pull-down menu and see a webpage with links to all 
the articles in that past issue. Clicking on the “back issue” 
link takes me to a page with only links to the entire PDF of 
the full volume of earlier issues. When would anyone ever 
want to download the entire volume of a journal? Readers 
are always looking for a specific article.

Please revert to the earlier format.

Sincerely,
Izube Reitung 

(Received March 21, 2019)

A NOTE FROM THE AMS. Thank you for sharing your 
comments; Notices online users have provided us with 
valuable feedback on the new webpage. This feedback 
has led to updates that include submenus to make 
navigation of the new format more user-friendly. These 
updates were released at the end of April, 2019. 
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rich and diverse field, with dozens of subareas with their 
own priorities and skillsets. It greatly benefits from con-
tributions by experts from other subjects, with the only 
prerequisite being an open mind and intellectual curiosity.

—Ilya Mironov,
San Francisco, CA

(Received March 14, 2019)

adversary seeks to inflict, such as reading a sent message 
or forging a signature.

As an example of elliptic curve cryptography in the real 
world, the article uses HomeKit, Apple’s smart appliances 
framework. HomeKit-compliant devices are expected to 
use a particular set of protocols and parameters, such as 
Curve25519 for encryption or 3072-bit prime modulus for 
password authentication.

The article claims inaccurately that the discrete logarithm 
problem in a 3072-bit prime field is as hard as AES-256. 
In reality, the (conjectured) security of 3072-bit discrete 
logarithm is a rough equivalent of AES-128. By comparison, 
to achieve parity with AES-256, one would have to use a 
modulus that is approximately five times as long. (See, for 
instance, NIST Special Publication 800-57 “Recommenda-
tion for Key Management.”)

The article concludes with an anecdote that somehow 
explains lukewarm adoption of the HomeKit specification 
with the software engineers’ unfamiliarity (due to their 
assumed unsophistication) when it comes to elliptic curve 
arithmetic. While I cannot offer any insight into HomeKit’s 
market strategy, I do disagree with the statement that soft-
ware developers are intimidated by elliptic curve cryptog-
raphy. In fact, quite the opposite is true.

After more than a decade of cautious experimentation 
by the industry and efforts by standardization bodies such 
as NIST, ANSI, or IETF, elliptic curve cryptography adoption 
kicked into high gear when Suite B was released by NSA in 
2005. In its announcement NSA strongly endorsed several 
elliptic curve-based protocols. Transport Layer Security 
(TLS), the protocol behind the secure version of HTTP, 
incorporated support for elliptic-curve key agreement 
starting in 2006. The Bitcoin protocol, as described in the 
2008 paper, is based on a (Koblitz) elliptic curve. Following 
Bitcoin, virtually all blockchains use some elliptic curves 
for their public-key operations, and, thanks to the recent 
boom in cryptocurrencies, elliptic curve arithmetic has been 
implemented by enthusiasts on every conceivable hardware 
platform and in a myriad of programming languages.

To the best of my knowledge, the primary source linking 
HomeKit’s woes with its Curve25519 requirement was a 
Forbes article from July 2015 (https://www.forbes.com/
sites/aarontilley/2015/07/21/whats-the-hold-
up-for-apples-homekit). Forbes’s story is, however, more 
nuanced and positive. The first—unoptimized—ports of 
elliptic curve cryptography mandated by HomeKit were 
indeed unacceptably slow, such as needing 40 seconds to 
open a smartlock. Later implementations, assisted by spe-
cialized hardware and additional memory, turned out to 
be much more efficient. If anything, we can conclude that 
engineers successfully internalized necessary concepts from 
computational number theory, refactored their implemen-
tations, and achieved their performance targets.

I’d like to conclude my letter on an optimistic and 
welcoming note. Modern cryptography is a remarkably 
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How do AMS Graduate Student Chapters support 
the mathematical community and beyond?

AMS Chapter at Clemson University 
“Our Clemson University AMS student chapter recently brought back 
one of our alumni, Drew Lipman, who is now the lead data scientist 
at Hypergiant. We had a great career discussion with lots of good 
questions from graduate students and good insights from Drew about 
how to be ready for the transition into an industry career. Over lunch 
we learned more about the culture of working in the fast-paced world 
of startups, giving grad students a perspective that will help them in 
their upcoming career choices. We also enjoyed Drew’s Math Club talk 
on game theory. Thanks for coming back Drew!”

AMS Chapter at University of Georgia 
“On November 10th, as the Georgia Bulldogs prepared to face off against 
Auburn, graduate students from STEM departments across campus came 
together to participate in STEMzone, an outreach event made up of STEM-
themed tailgating booths. Our booth, MathZone, aimed to provide audience 
members with a fun, colorful, and hands-on mathematical experience, in an 
effort to combat the math negativity and fear prevalent among the general 
population. Among other things, our booth activities included bubbles, 
math toys, an art project, stickers, puzzles, and a Mobius strip cutting 
activity.”

AMS Chapter at University of Mississippi
“In honor of AMS Day, our second year graduate student Moriah Gibson 
presented Algebraic Properties and Geometric Applications of Fibonacci 
Numbers in our University of Mississippi AMS Graduate Student 
seminar.”

AMS Chapter at Washington State University
“We held an Introduction to LaTeX workshop. Graduate and senior 
undergraduate students from different departments attended the workshop 
that was led by Dr. Sergey Lapin who introduced the audience to the basics 
of LaTeX, and shared some of his go-to resources.”

AMS Chapter at Sam Houston State University 
“The math and statistics department came together as a family and had 
a memorable night full of delicious food and fun games! We could not 
have asked for a better department and community to be a part of! We 
hope you all had a wonderful time and we are thankful for the bond 
developed amongst all of us. #mathisfun #amsshsu”

Photo courtesy of Washington State University

Photo courtesy of Sam Houston State University

Photo courtesy of University of Mississippi 

Photo courtesy of University of Georgia

Photo courtesy of Clemson University

Photo courtesy of University of Mississippi 
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Photo courtesy of Southern Illinois University, Carbondale

Photo courtesy of Central Michigan University

Photo courtesy of Michigan State University

Photo courtesy of University of Toledo

AMS Chapter at Southern Illinois University, Carbondale
“We organized a mathematics workshop in the 28th annual “Expanding 
Your Horizons” conference.  The main purpose of the conference is to 
give girls from the Southern Illinois region a chance to envision the 
career possibilities open to them in Science, Engineering, Technology and 
Mathematics.”

AMS Chapter at Central Michigan University 
“This year’s AMS Chapters’ Integration Bee was another huge success.  
Undergraduate and graduate students competed for title of grand integrator. 
In the undergraduate bracket, the integrator was freshman Shashwat 
Maharjan and the runner-up was Austin Konkel. In the graduate bracket, the 
grand integrator was Kati Moug and the runner-up was 
Panakaj Kumar Singh.”

AMS Chapter at Michigan State University
“We have had a lot of fun with three very successful events so far. We have 
had two faculty colloquiums (one of which was jointly organized with the 
AWM Student Chapter), and one potluck trivia night.”

AMS Chapter at University of Toledo
“Our “Student Seminar” was geared toward undergraduates/early graduate 
students interested in mathematics research. Dr. Trieu Le gave a talk titled, 
“How I think about my 4th grader’s math homework”. In this talk, Dr. 
Le selected some problems from his son’s math work from school, and 
explained how he as a mathematician thinks about these problems and how 
to generalize them. He eventually generalized the problems enough to teach 
the audience some new and useful mathematical tools!”

Photo courtesy of Michigan State University

GRADUA
STUDENT CHAPTERS
GRADUA
STUDENT CHAPTERS

Photo courtesy of University of ToledoPhoto courtesy of University of ToledoPhoto courtesy of University of Toledo

For information about starting an AMS 
Graduate Student Chapter, please visit:

www.ams.org/studentchapters



An Invitation to Gabor Analysis

Kasso A. Okoudjou
Introduction
Using the ubiquitous theory of Fourier series, one can de-
compose and reconstruct any 1-periodic and square inte-
grable function in terms of complex exponential functions
with frequencies at the integers. More specifically, for any
such function 𝑓 we have

𝑓(𝑥) =
∞
∑

𝑛=−∞
𝑐𝑛𝑒2𝜋𝑖𝑛𝑡

Kasso A. Okoudjou is a professor of mathematics at the University of Maryland
and Martin Luther King Jr. Visiting Professor at MIT. His email addresses are
kasso@math.umd.edu and kasso@mit.edu.

Communicated by Notices Associate Editor Reza Malek-Madani.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti1894

where the coefficients {𝑐𝑛}𝑛∈ℤ are square summable and
the series converges in mean square, that is

lim
𝑁→∞

∫
1

0
|𝑓(𝑡) −

𝑁
∑

𝑛=−𝑁
𝑐𝑛𝑒2𝜋𝑖𝑛𝑡|

2
𝑑𝑡 = 0.

The significance of this simple fact is that 𝑓 is completely
determined by the coefficients {𝑐𝑛}, and, conversely, each
square summable sequence gives rise to a unique 1-period-
ic and square integrable function. This fact is equivalent
to saying that the set {𝑒𝑛(𝑡) ∶= 𝑒2𝜋𝑖𝑛𝑡}∞𝑛=−∞ forms an or-
thonormal basis (ONB) for 𝐿2([0, 1)). We shall consider
these functions as the building blocks of Fourier analysis
on the space of 1-periodic square integrable functions.

In his celebrated work [12], Dennis Gabor sought to
decompose any square integrable function on the real line
in a similar manner. To this end, he proposed to “local-
ize” the Fourier series decomposition of such a function,
by first using translates of an appropriate window function
to restrict the function to time intervals that cover the real
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line. The next step in the process is to write the Fourier
series of each of the “localized functions,” and finally, one
superimposes all these local Fourier series. Putting this
into practice, Gabor chose the Gaussian as a window and
claimed that every square integrable function 𝑓 on ℝ has
the following (nonorthogonal) expansion

𝑓(𝑥) = ∑
𝑛∈ℤ

∑
𝑘∈ℤ

𝑐𝑛𝑘 𝑒−
𝜋(𝑥−𝑛𝛼)2

2𝛼2 𝑒2𝜋𝑖𝑘𝑥/𝛼 (1)

where 𝛼 > 0. Furthermore, he argued on how to find the
coefficients (𝑐𝑛𝑘)𝑛,𝑘∈ℤ ∈ ℂ using successive local approx-
imations by Fourier series. In fact, in 1932, John von Neu-
mann already made a related claim, when he stipulated
that the system of functions

𝒢(𝜑,1, 1) = {𝜑𝑛𝑘(⋅) ∶= 𝑒2𝜋𝑖𝑘⋅𝜑(⋅ − 𝑛) ∶ 𝑛, 𝑘 ∈ ℤ}
(2)

where 𝜑(𝑥) = 𝑒−𝜋𝑥2
spans a dense subspace of 𝐿2(ℝ),

see [16] for details.
Both of these claims were positively established in the

70s, and it follows that both statements hint at the fact that
any square integrable function 𝑓 is completely determined
in the time-frequency plane by the coefficients {𝑐𝑛𝑘}𝑘,𝑛∈ℤ,
see [16] and the references therein for a historical account.
In contrast to the theory of Fourier series, the building
blocks in this process are the time and frequency shifts of
a function such as the Gaussian: {𝜑𝑛𝑘(𝑥) = 𝑒2𝜋𝑖𝑘⋅𝜑(⋅−
𝑛) ∶ 𝑛, 𝑘 ∈ ℤ}. But as we shall see later, we could consider
time-frequency shifts of other square integrable functions
along a lattice 𝛼ℤ × 𝛽ℤ leading to {𝑒2𝜋𝑖𝛽𝑘⋅𝑔(⋅ − 𝛼𝑛) ∶
𝑘, 𝑛 ∈ ℤ}. The main point here is that the building blocks
can depend on three parameters: 𝛼 > 0 corresponding to
shifts in time/space,𝛽 > 0 representing shifts in frequency,
and a square integrable window function 𝑔.

In some sense, both Gabor and von Neumann’s state-
ments can also be thought of as the foundations of what
is known today as Gabor analysis, an active research field
at the intersection of (quantum) physics, signal process-
ing, mathematics, and engineering. In broad terms, Ga-
bor analysis seeks to develop (discrete) joint time/space-
frequency representations of functions (distributions, or
signals) initially defined only in time or frequency, and it
re-emerged with the advent of wavelets [7]. For a more
complete introduction to the theory and applications of
Gabor analysis we refer to [11,13].

The goal of this paper is to give an overview of some in-
teresting open problems in Gabor analysis that are in need
of solutions. But first, in “Gabor Frame Theory” we re-
view some fundamental results in Gabor analysis. In “The
Frame Set Problem for Gabor Frames,” we consider the
problem of characterizing the set of all “good” parameters
𝛼,𝛽 for a fixed window function 𝑔. In “Wilson Bases” we
consider the problem of constructing orthonormal bases

for𝐿2(ℝ) by taking appropriate (finitelymany) linear com-
binations of time-frequency shifts of𝑔 along a lattice𝛼ℤ×
𝛽ℤ. Finally, in “HRT” we elaborate on a conjecture that
asks whether any finite set of time-frequency shifts of a
square integrable function is linearly independent.

Gabor Frame Theory
We start with a motivating example based on the 𝐿2 theory
of Fourier series. In particular, we would like to exhibit a
set of building blocks {𝑔𝑛𝑘}𝑘,𝑛∈ℤ that can be used to de-
compose every square integrable function. To this end, let
𝑔(𝑥) = 𝜒[0,1)(𝑥), where 𝜒𝐼 denotes the indicator func-
tion of the measurable set 𝐼. Any 𝑓 ∈ 𝐿2(ℝ) can be local-
ized to the interval [𝑛, 𝑛+1) by considering its restriction
𝑓(⋅) 𝑔(⋅ − 𝑛) to this interval. By superimposing all these
restrictions over all integers𝑛 ∈ ℤ, we recover the function
𝑓. That is, we can write

𝑓(𝑥) =
∞
∑

𝑛=−∞
𝑓(𝑥)𝑔(𝑥 − 𝑛) (3)

with convergence𝐿2. But since the restriction of 𝑓 to [𝑛, 𝑛+
1) is square integrable, it can be expanded into its 𝐿2 con-
vergent Fourier series leading to

𝑓(𝑥)𝑔(𝑥 − 𝑛) = ∑
𝑘∈ℤ

𝑐𝑛𝑘𝑒2𝜋𝑖𝑥𝑘 (4)

where for each 𝑘 ∈ ℤ,
𝑐𝑛𝑘 = ⟨𝑓(⋅)𝑔(⋅ − 𝑛), 𝑒2𝜋𝑖𝑘⋅⟩𝐿2([𝑛,𝑛+1))

= ∫
∞

−∞
𝑓(𝑥)𝑔(𝑥 − 𝑛)𝑒−2𝜋𝑖𝑘𝑥 𝑑𝑥 = ⟨𝑓, 𝑔𝑛𝑘⟩

with 𝑔𝑛𝑘(𝑥) = 𝑔(𝑥 − 𝑛)𝑒2𝜋𝑖𝑘𝑥. Here and in the sequel,
⟨⋅, ⋅⟩ denotes the inner product on either 𝐿2(ℝ), the space
of Lebesgue measurable square integrable functions on ℝ,
or ℓ2(ℤ2) the space of square summable sequences on ℤ2.
In addition, we use the notation ‖ ⋅ ‖ ∶= ‖ ⋅ ‖2 to denote
the corresponding norm. The context will make it clear
which of the two spaces we are dealing with.

Substituting this in (4) and (3) leads to

𝑓(𝑥) =
∞
∑

𝑛=−∞
𝑓(𝑥)𝑔(𝑥 − 𝑛)

=
∞
∑

𝑛=−∞

∞
∑

𝑘=−∞
𝑐𝑛𝑘𝑒2𝜋𝑖𝑘𝑥𝑔(𝑥 − 𝑛) (5)

=
∞
∑

𝑘,𝑛=−∞
⟨𝑓, 𝑔𝑛𝑘⟩𝑔𝑛𝑘(𝑥).

This expansion of 𝑓 is similar to Gabor’s claim (1), with
the following key differences:
• The coefficients in (5) are explicitly given and are linear
in 𝑓.
• (1) is based on the Gaussian while (5) is based on the
indicator function of [0, 1).
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• Finally, the expansion given in (5) is an orthonormal
decomposition while the one given by (1) is not.

One of the goals of this section is to elucidate the differ-
ence in behavior between the two building blocks appear-
ing in (1) and (5). In addition, we shall elaborate on the
existence of orthonormal bases of the form {𝑒2𝜋𝑖𝛽𝑘⋅𝑔(⋅−
𝛼𝑛) ∶ 𝑘, 𝑛 ∈ ℤ}.

The two systems of functions in (1) and (2) are exam-
ples of Gabor (or Weyl-Heisenberg) systems. More specif-
ically, for 𝑎,𝑏 ∈ ℝ and a function 𝑓 defined on ℝ, let
𝑀𝑏𝑓(𝑥) = 𝑒2𝜋𝑖𝑏𝑥𝑓(𝑥) and 𝑇𝑎𝑓(𝑥) = 𝑓(𝑥−𝑎) be, respec-
tively, the modulation operator and the translation opera-
tor. The Gabor system generated by a function 𝑔 ∈ 𝐿2(ℝ),
and parameters 𝛼,𝛽 > 0, is the set of functions [13]

𝒢(𝑔,𝛼,𝛽) = {𝑀𝑘𝛽𝑇𝑛𝛼𝑔(⋅)
= 𝑒2𝜋𝑖𝑘𝛽⋅𝑔(⋅ − 𝑛𝛼) ∶ 𝑘, 𝑛 ∈ ℤ}.

Given 𝑔 ∈ 𝐿2(ℝ), and 𝛼,𝛽 > 0, the Gabor system
𝒢(𝑔,𝛼,𝛽) is called a frame for 𝐿2(ℝ) if there exist con-
stants 0 < 𝐴 ≤ 𝐵 < ∞ such that

𝐴‖𝑓‖2 ≤ ∑
𝑘,𝑛∈ℤ

|⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼𝑔⟩|2

≤ 𝐵‖𝑓‖2 ∀𝑓 ∈ 𝐿2(ℝ). (6)

The constant 𝐴 is called a lower frame bound, while 𝐵 is
called an upper frame bound. When 𝐴 = 𝐵 we say that
the Gabor frame is tight. In this case, the frame bound
𝐴 is referred to as the redundancy of the frame. Loosely
speaking, the redundancy 𝐴 measures by how much the
Gabor tight frame is overcomplete. A tight Gabor frame
for which 𝐴 = 𝐵 = 1 is called a Parseval frame. Clearly,
if 𝒢(𝑔,𝛼,𝛽) is an ONB then it is a Parseval frame, and
conversely, if 𝒢(𝑔,𝛼,𝛽) is a Parseval frame and ‖𝑔‖ = 1,
then it is a Gabor ONB.

More generally, a Gabor frame is a “basis-like” system
that can be used to decompose and/or reconstruct any
square integrable function. As such, it will not come as
a surprise that generalizations of certain tools from linear
algebra might be useful in analyzing Gabor frames. We re-
fer to [7, 13] for more background on Gabor frames, and
summarize below some results needed in the sequel.

Suppose we would like to analyze 𝑓 using the Gabor
system 𝒢(𝑔,𝛼,𝛽). We are then led to consider the corre-
spondence that takes any square integrable function 𝑓 into
the sequence {⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼𝑔⟩}𝑘,𝑛∈ℤ. This correspondence
is sometimes called the analysis or decomposition operator
and denoted by

𝐶𝑔 ∶ 𝑓 → {⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼𝑔⟩}𝑘,𝑛∈ℤ.
Its (formal) adjoint𝐶∗

𝑔 , called the synthesis or reconstruction
operator, maps sequences 𝑐 = {𝑐𝑘𝑛}𝑘,𝑛∈ℤ to

𝐶∗
𝑔 𝑐 = ∑

𝑘,𝑛∈ℤ
𝑐𝑘𝑛𝑀𝑘𝛽𝑇𝑛𝛼𝑔.

The composition of these two operators is called the (Ga-
bor) frame operator associated to theGabor system𝒢(𝑔,𝛼,𝛽)
and is defined by

𝑆𝑓 ∶= 𝑆𝑔,𝛼,𝛽𝑓 = 𝐶∗
𝑔 𝐶𝑔(𝑓) = ∑

𝑛,𝑘∈ℤ
⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼𝑔⟩𝑀𝑘𝛽𝑇𝑛𝛼𝑔.

(7)
It follows that, given 𝑓 ∈ 𝐿2(ℝ), we can (formally)

write that

⟨𝑆𝑓, 𝑓⟩ = ⟨𝐶∗
𝑔 𝐶𝑔𝑓, 𝑓⟩

= ⟨𝐶𝑔𝑓,𝐶𝑔𝑓⟩ = ∑
𝑘,𝑛∈ℤ

|⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼𝑔⟩|2.

Therefore, 𝒢(𝑔,𝛼,𝛽) is a frame for 𝐿2 if and only if there
exist constants 0 < 𝐴 ≤ 𝐵 < ∞ such that

𝐴‖𝑓‖2
2 ≤ ⟨𝑆𝑓, 𝑓⟩ ≤ 𝐵‖𝑓‖2

2 ∀𝑓 ∈ 𝐿2(ℝ).

In particular, 𝒢(𝑔,𝛼,𝛽) is a frame for 𝐿2 if and only if the
self-adjoint frame operator 𝑆 is bounded and positive def-
inite. Furthermore, the optimal upper frame bound 𝐵 is
the largest eigenvalue of 𝑆 while the optimal lower bound
𝐴 is its smallest eigenvalue. In addition, 𝒢(𝑔,𝛼,𝛽) is a
tight frame for 𝐿2 if and only if 𝑆 is a multiple of the iden-
tity.

Viewing a Gabor frame as an overcomplete “basis-like”
object suggests that any square integrable function can be
written in a non-unique way as a linear combination of
the Gabor atoms {𝑀𝑘𝛽𝑇𝑛𝛼𝑔}𝑘,𝑛∈ℤ. Akin to the role of the
pseudo-inverse in linear algebra, we single out one expan-
sion that results in a somehow canonical representation
of 𝑓 as a linear combination of {𝑀𝑘𝛽𝑇𝑛𝛼𝑔}𝑘,𝑛∈ℤ. To ob-
tain this decomposition we need a few basic facts about
the frame operator.

Suppose that 𝒢(𝑔,𝛼,𝛽) is a Gabor frame for 𝐿2, and
let 𝑓 ∈ 𝐿2. For all (ℓ,𝑚) ∈ ℤ2 the frame operator 𝑆 and
𝑀ℓ𝛽𝑇𝑚𝛼 commute. That is

𝑆(𝑀ℓ𝛽𝑇𝑚𝛼𝑓) = 𝑀ℓ𝛽𝑇𝑚𝛼(𝑆(𝑓)) for all (ℓ,𝑚) ∈ ℤ2.

It follows that 𝑆−1 and 𝑀ℓ𝛽𝑇𝑚𝛼 also commute for all
(ℓ,𝑚) ∈ ℤ2. As a consequence, given 𝑓 ∈ 𝐿2(ℝ) we
have

𝑓 = 𝑆(𝑆−1𝑓) = ∑
𝑘,𝑛∈ℤ

⟨𝑆−1𝑓,𝑀𝑘𝛽𝑇𝑛𝛼𝑔⟩𝑀𝑘𝛽𝑇𝑛𝛼𝑔

= ∑
𝑘,𝑛∈ℤ

⟨𝑓, 𝑆−1𝑀𝑘𝛽𝑇𝑛𝛼𝑔⟩𝑀𝑘𝛽𝑇𝑛𝛼𝑔

= ∑
𝑘,𝑛∈ℤ

⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼 ̃𝑔⟩𝑀𝑘𝛽𝑇𝑛𝛼𝑔

where ̃𝑔 = 𝑆−1𝑔 ∈ 𝐿2(ℝ) is called the canonical dual of
𝑔. Similarly, by writing 𝑓 = 𝑆−1(𝑆𝑓) we get that

𝑓 = ∑
𝑘,𝑛∈ℤ

⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼𝑔⟩𝑀𝑘𝛽𝑇𝑛𝛼 ̃𝑔.
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The coefficients {⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼 ̃𝑔⟩}𝑘,𝑛∈ℤ give the least
square approximation of 𝑓. Indeed, for 𝑓 ∈ 𝐿2, let ̃𝑐 =
(⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼 ̃𝑔⟩)𝑘,𝑛∈ℤ ∈ ℓ2(ℤ2). Given any (other)
sequence (𝑐𝑘,𝑛)𝑘,𝑛∈ℤ ∈ ℓ2(ℤ2) such that

𝑓 = ∑
𝑘,𝑛∈ℤ

̃𝑐𝑘,𝑛𝑀𝑛𝛽𝑇𝑘𝛼𝑔 = ∑
𝑘,𝑛∈ℤ

𝑐𝑘,𝑛𝑀𝑘𝛽𝑇𝑛𝛼𝑔,

we have

‖ ̃𝑐‖2
2 = ∑

𝑘,𝑛∈ℤ
|⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼 ̃𝑔⟩|2 = ⟨𝑆−1𝑓, 𝑓⟩

= ∑
𝑘,𝑛∈ℤ

𝑐𝑘,𝑛⟨𝑆−1𝑀𝑘𝛽𝑇𝑛𝛼𝑔, 𝑓⟩

= ∑
𝑘,𝑛∈ℤ

𝑐𝑘,𝑛 ̃𝑐𝑘,𝑛 = ⟨𝑐, ̃𝑐⟩.

Consequently, ⟨𝑐 − ̃𝑐, ̃𝑐⟩ = 0, leading to

‖𝑐‖2
2 = ‖𝑐− ̃𝑐‖2

2 + ‖ ̃𝑐‖2
2 ≥ ‖ ̃𝑐‖2

2

with equality if and only if 𝑐 = ̃𝑐. In other words, for a Ga-
bor frame𝒢(𝑔,𝛼,𝛽), and given 𝑓 ∈ 𝐿2, among all expan-
sions 𝑓 = ∑𝑘,𝑛∈ℤ 𝑐𝑘,𝑛𝑀𝑘𝛽𝑇𝑛𝛼𝑔, with 𝑐 = (𝑐𝑘,𝑛)𝑘,𝑛∈ℤ ∈
ℓ2(ℤ2), the coefficient ̃𝑐 = (⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼 ̃𝑔⟩)𝑘,𝑛∈ℤ ∈
ℓ2(ℤ2) has the least norm.

Because the frame operator 𝑆 is positive definite, 𝑆1/2

is well defined and positive definite as well. Thus, we can
write

𝑓 = 𝑆−1/2𝑆𝑆−1/2𝑓
= ∑

𝑘,𝑛
⟨𝑓, 𝑆−1/2𝑀𝑘𝛽𝑇𝑛𝛼𝑔⟩𝑆−1/2𝑀𝑘𝛽𝑇𝑛𝛼𝑔

= ∑
𝑘,𝑛

⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼𝑔†⟩𝑀𝑘𝛽𝑇𝑛𝛼𝑔†

where 𝑔† = 𝑆−1/2𝑔 ∈ 𝐿2. In other words, 𝒢(𝑔†, 𝛼, 𝛽) is
a Parseval frame.

Finally, assume that 𝐴,𝐵 are the optimal frame bounds
for 𝒢(𝑔,𝛼,𝛽). Then, for all 𝑓 ∈ 𝐿2, we have

∑
𝑘,𝑛∈𝑍

|⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼 ̃𝑔⟩|2 = ⟨𝑆−1𝑓, 𝑓⟩ = ⟨𝑆−1𝑓, 𝑆(𝑆−1𝑓)⟩

≤ 𝐵‖𝑆−1𝑓‖2 ≤ ̃𝐵‖𝑓‖2

and similarly, we have the lower bound

⟨𝑆−1𝑓, 𝑓⟩ = ⟨𝑆−1𝑓, 𝑆(𝑆−1𝑓)⟩ ≥ 𝐴‖𝑆−1𝑓‖2 ≥ ̃𝐴‖𝑓‖2.

Therefore, if 𝒢(𝑔,𝛼,𝛽) is a Gabor frame for 𝐿2(ℝ), then
so is 𝒢( ̃𝑔,𝛼, 𝛽) where ̃𝑔 = 𝑆−1𝑔 ∈ 𝐿2(ℝ). We summa-
rize all these facts in the following result.

Proposition 1 (Reconstruction formulas for Gabor frame).
Let 𝑔 ∈ 𝐿2(ℝ) and 𝛼,𝛽 > 0. Suppose that 𝒢(𝑔,𝛼,𝛽) is a
frame for 𝐿2(ℝ) with frame bounds 𝐴,𝐵. Then the following
statements hold.

(a) The Gabor system 𝒢( ̃𝑔,𝛼, 𝛽) with ̃𝑔 = 𝑆−1𝑔 ∈ 𝐿2

is also a frame for 𝐿2 with frame bounds 1/𝐵, 1/𝐴. Fur-
thermore, for each 𝑓 ∈ 𝐿2 we have the following recon-
struction formulas:

𝑓 = ∑
𝑘,𝑛∈ℤ

⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼 ̃𝑔⟩𝑀𝑘𝛽𝑇𝑛𝛼𝑔

= ∑
𝑘,𝑛∈ℤ

⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼𝑔⟩𝑀𝑘𝛽𝑇𝑛𝛼 ̃𝑔.

In addition, among all sequences 𝑐 = (𝑐𝑘,𝑛)𝑘,𝑛∈ℤ ∈
ℓ2(ℤ2) such that 𝑓 = ∑𝑘,𝑛∈ℤ 𝑐𝑘,𝑛𝑀𝑘𝛽𝑇𝑛𝛼𝑔, the se-
quence ̃𝑐 = (⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼 ̃𝑔⟩)𝑘,𝑛∈ℤ ∈ ℓ2(ℤ2) satisfies

‖ ̃𝑐‖2
2 = ∑

𝑘,𝑛∈ℤ
|⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼 ̃𝑔⟩|2 ≥ ∑

𝑘,𝑛∈ℤ
|𝑐𝑘,𝑛|2 = ‖𝑐‖2

2

with equality if and only if 𝑐 = ̃𝑐.
(b) The Gabor system𝒢(𝑔†, 𝛼, 𝛽), where 𝑔† = 𝑆−1/2𝑔
∈ 𝐿2, is a Parseval frame. In particular, each 𝑓 ∈ 𝐿2 has
the following expansion:

𝑓 = ∑
𝑘,𝑛

⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼𝑔†⟩𝑀𝑘𝛽𝑇𝑛𝛼𝑔†.

It is worth pointing out that the coefficients
(⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼𝑔⟩)𝑘,𝑛 appearing in (6) and in (7) are sam-
ples of the Short-Time Fourier Transform (STFT) of 𝑓 with
respect to 𝑔. This is the function 𝑉𝑔 defined on ℝ2 by

𝑉𝑔𝑓(𝑥, 𝜉) = ⟨𝑓,𝑀𝜉𝑇𝑥𝑔⟩ = ∫
ℝ
𝑓(𝑡)𝑔(𝑡 − 𝑥)𝑒−2𝜋𝑖𝑡𝜉 𝑑𝑡.

When 𝑔 ∈ 𝐿2(ℝ) is chosen such that ‖𝑔‖ = 1, then 𝑉𝑔 is
an isometry from 𝐿2(ℝ) onto a closed subspace of 𝐿2(ℝ2)
and for all 𝑓 ∈ 𝐿2(ℝ)

∫
ℝ
|𝑓(𝑡)|2 𝑑𝑡 = ∬

ℝ2
|𝑉𝑔𝑓(𝑥, 𝜉)|2 𝑑𝑥𝑑𝜉. (8)

Furthermore, for any ℎ ∈ 𝐿2 such that ⟨𝑔, ℎ⟩ ≠ 0

𝑓(𝑡) = 1
⟨𝑔,ℎ⟩ ∬ℝ2

𝑉𝑔𝑓(𝑥, 𝜉)𝑀𝜉𝑇𝑥ℎ(𝑡)𝑑𝑥𝑑𝜉 (9)

where the integral is interpreted in theweak sense. We refer
to [13, Chapter 3] for more on the STFT and related phase-
space or time-frequency transformations.

The reconstruction formulas in Proposition 1 can be
viewed as discretizations of the inversion formula for the
STFT (9). In particular, sampling the STFT on the lattice
𝛼ℤ×𝛽ℤ and using the weights ̃𝑐 = (⟨𝑓,𝑀𝑘𝛽𝑇𝑛𝛼 ̃𝑔⟩)𝑘,𝑛∈ℤ
= (𝑉 ̃𝑔𝑓(𝛼𝑘,𝛽𝑛))𝑘,𝑛∈ℤ ∈ ℓ2(ℤ2) perfectly reconstructs 𝑓.
As such one can expect that in addition to the quality of the
window 𝑔 (and hence ̃𝑔), the density of the lattice must
play a role in establishing these formulas. Thus, it must
not come as a surprise that the following results hold.

Proposition 2 (Density theorems for Gabor frames). Let
𝑔 ∈ 𝐿2(ℝ) and 𝛼,𝛽 > 0.
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(a) If 𝒢(𝑔,𝛼,𝛽) is a Gabor frame for 𝐿2(ℝ) then 0 <
𝛼𝛽 ≤ 1.

(b) If 𝛼𝛽 > 1, then 𝒢(𝑔,𝛼,𝛽) is incomplete in 𝐿2(ℝ).
(c) 𝒢(𝑔,𝛼,𝛽) is an orthonormal basis for 𝐿2(ℝ) if and
only if 𝒢(𝑔,𝛼,𝛽) is a tight frame for 𝐿2(ℝ), ‖𝑔‖ = 1,
and 𝛼𝛽 = 1.

These results were proved using various techniques rang-
ing from operator theory to signal analysis illustrating the
multi-origin of Gabor frame theory. For a complete histor-
ical perspective on these density results we refer to [16].

At this point some questions arise naturally. For ex-
ample, can one classify 𝑔 ∈ 𝐿2(ℝ) and the parameters
𝛼,𝛽 > 0 such that 𝒢(𝑔,𝛼,𝛽) generates a frame or an
ONB for 𝐿2(ℝ)? Despite some spectacular results both in
the theory and the applications of Gabor frames [11], these
problems have not been completely resolved. “The Frame
Set Problem for Gabor Frames” will be devoted to address-
ing the frame set problem for Gabor frames. That is, given
𝑔 ∈ 𝐿2(ℝ), characterize the set of all (𝛼,𝛽) ∈ ℝ2

+ such
that𝒢(𝑔,𝛼,𝛽) is a frame. On the other hand, and as seen
from part (c) of Proposition 2, Gabor ONB can only occur
when 𝛼𝛽 = 1. In addition to this restriction, there does
not exist a Gabor ONB with 𝑔 ∈ 𝐿2 such that

∫
∞

−∞
|𝑥|2 |𝑔(𝑥)|2 𝑑𝑥∫

∞

−∞
|𝜉|2 | ̂𝑔(𝜉)|2 𝑑𝜉 < ∞

where

̂𝑔(𝜉) = ∫
∞

−∞
𝑔(𝑡)𝑒−2𝜋𝑖𝑡𝜉𝑑𝑡

is the Fourier transform of 𝑔. This uncertainty principle-
type result known as the Balian-Low Theorem (BLT) pre-
cludes the existence of Gabor ONBs with well-localized
windows. We refer to [2] and the references therein for
a complete overview and the history of the BLT. We use
the term well-localized window to describe functions 𝑔 that
behave well in both time/space and frequency. For exam-
ple, functions in certain Sobolev spaces, and more gener-
ally in the so-called modulation spaces, can be thought of
as well-localized [13, Chapter 11]. With this in mind, the
following result holds.

Proposition 3 (The Balian-Low Theorem). Let 𝑔 ∈ 𝐿2(ℝ)
and 𝛼 > 0. If 𝒢(𝑔,𝛼, 1/𝛼) is an orthonormal basis for
𝐿2(ℝ) then

∫
∞

−∞
|𝑥|2 |𝑔(𝑥)|2 𝑑𝑥 ∫

∞

−∞
|𝜉|2 | ̂𝑔(𝜉)|2 𝑑𝜉 = ∞.

In “Wilson Bases” we will introduce a modification of
Gabor frames that will result in an ONB called Wilson ba-
sis with well-localized (or regular) window functions 𝑔.
These ONBs were introduced by K. G. Wilson [20] under
the name of generalized Wannier functions. The fact that
these are indeedONBswas later established byDaubechies,

Jaffard, and Journé [9] who developed a systematic con-
struction method for these kinds of systems. The method
starts with constructing a tight Gabor frame of redundancy
𝐴 = 2 and a well-localized window 𝑔. By then taking ap-
propriate linear combinations of at most twoGabor atoms
from this tight Gabor frame, the authors removed the origi-
nal redundancy and obtained anONB.While it is clear that
tight Gabor frames with well-localized generators and ar-
bitrary redundancy can be constructed, it remains an open
question how or if one can get ONBs from these systems.
We survey this question in “Wilson Bases,” and mention
that an interesting application involving the Wilson bases
is the recent detection of the gravitational waves [4].

The Frame Set Problem for Gabor Frames
As mentioned in the Introduction, a Gabor system is deter-
mined by three parameters: the shift parameters 𝛼,𝛽, and
the window function 𝑔. Ideally, one would like to classify
the set of all these three parameters for which the resulting
system is a frame. However, and in general, this is a diffi-
cult question and we shall only consider the special case in
which the window function 𝑔 is fixed and one seeks the set
of all parameters 𝛼,𝛽 > 0 for which the resulting system
is a frame.

In this setting, the frame set of a function 𝑔 ∈ 𝐿2(ℝ) is
defined as

ℱ(𝑔) = {(𝛼,𝛽) ∈ ℝ2
+ ∶ 𝒢(𝑔,𝛼,𝛽) is a frame} .

In general, determiningℱ(𝑔) for a given function𝑔 is also
an open problem. However, it is known that ℱ(𝑔) is an
open subset of ℝ2

+ if 𝑔 ∈ 𝐿2(ℝ) belongs to the modula-
tion space 𝑀1(ℝ) ([13]), i.e.,

∬
ℝ2

|𝑉𝑔𝑔(𝑥, 𝜉)| 𝑑𝑥𝑑𝜉 < ∞.

Examples of functions in this space include𝑔(𝑥) = 𝑒−𝜋|𝑥|2

or 𝑔(𝑥) = 1
cosh𝑥 . In fact, for these specific functions more

is known. Indeed,

ℱ(𝑔) = {(𝛼,𝛽) ∈ ℝ2
+ ∶ 𝛼𝛽 < 1}

if 𝑔 ∈ {𝑒−𝜋𝑥2 , 1
cosh𝑥 , 𝑒

−𝑥𝜒[0,+∞](𝑥), 𝑒−|𝑥|}, [14]. On the
other hand when 𝑔(𝑥) = 𝜒[0,𝑐](𝑥), 𝑐 > 0, ℱ(𝑔) is a
rather complicated set that has only been fully described
in recent years by Dai and Sun [6].

Let 𝑔(𝑥) = 𝑒−|𝑥| and observe that ̂𝑔(𝜉) = 2
1+4𝜋2𝜉2 ,

whichmakes 𝑔(𝑥) = 𝑒−|𝑥| an example of a totally positive
function of type 2. More generally, 𝑔 ∈ 𝐿2(ℝ) is a totally
positive function of type 𝑀, where 𝑀 is a natural number,
if its Fourier transform has the form ̂𝑔(𝜉) = ∏𝑀

𝑘=1(1 +
2𝜋𝑖𝛿𝑘𝜉)−1 where 𝛿𝑘 ≠ 𝛿ℓ ∈ ℝ for 𝑘 ≠ ℓ. It was proved
that for all such functions 𝑔,

ℱ(𝑔) = {(𝛼,𝛽) ∈ ℝ2
+ ∶ 𝛼𝛽 < 1} .
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A similar result holds for the class of totally positive func-
tions of Gaussian type, which are functions whose Fourier
transforms have the form ̂𝑔(𝜉) = ∏𝑀

𝑘=1(1 + 2𝜋𝑖𝛿𝑘𝜉)−1

× 𝑒−𝑐𝜉2
where 𝛿1 ≠ 𝛿2 ≠ … ≠ 𝛿𝑀 ∈ ℝ and 𝑐 > 0. We

refer to [14] for a survey of the structure of ℱ(𝑔) not only
for the rectangular lattices we consider here, but more gen-
eral Gabor frames on discrete (countable) sets Λ ⊂ ℝ2.

However, there are other “simple” functions𝑔 for which
determiningℱ(𝑔) remains largely a mystery. In the rest of
this section we consider the frame set for the 𝐵 splines 𝑔𝑁
given by

{𝑔1(𝑥) = 𝜒[−1/2,1/2], and

𝑔𝑁(𝑥) = 𝑔1 ∗ 𝑔𝑁−1(𝑥) for 𝑁 ≥ 2.
The characterization of ℱ(𝑔𝑁) for 𝑁 ≥ 2 is considered as
one of the six main problems in frame theory. Due to the
fact that 𝑔𝑁 ∈ 𝑀1(ℝ) for 𝑁 ≥ 2, we know that ℱ(𝑔𝑁)
is an open subset of ℝ2

+. The current description of points
in this set can be found in [1,5,18].

For example, consider the case 𝑁 = 2 where

𝑔2(𝑥) = 𝜒[−1/2,1/2] ∗𝜒[−1/2,1/2](𝑥) = max (1 − |𝑥|, 0)

= { 1+ 𝑥 if 𝑥 ∈ [−1, 0]
1 − 𝑥 if 𝑥 ∈ [0, 1].

The known results on ℱ(𝑔2) can be summarized as fol-
lows.

Proposition 4 (Frame set of the 2-spline, 𝑔2). The follow-
ing statements hold.

(a) If (𝛼,𝛽) ∈ ℱ(𝑔2), then 𝛼𝛽 < 1 and 𝛼 < 2 [8].
This is illustrated by the green region in Figure 1.

(b) Assume that 1 ≤ 𝛼 < 2 and 0 < 𝛽 < 1
𝛼 . Then,

(𝛼,𝛽) ∈ ℱ(𝑔2) [5]. This is illustrated by part of the
yellow region in Figure 1.

(c) Assume that 0 < 𝛼 < 2, and 0 < 𝛽 ≤ 2
2+𝛼 . Then,

(𝛼,𝛽) ∈ ℱ(𝑔2), and there is a unique dual ℎ ∈ 𝐿2(ℝ)
∩𝐿∞(ℝ) such that suppℎ ⊆ [−𝛼

2 ,
𝛼
2 ] [5]. This is illus-

trated by the blue region in Figure 1.
(d) Assume that 0 < 𝛼 < 2, and 2

2+𝛼 < 𝛽 ≤ 4
2+3𝛼 .

Then, (𝛼,𝛽) ∈ ℱ(𝑔2), and there is a unique dual ℎ ∈
𝐿2(ℝ) ∩ 𝐿∞(ℝ) such that suppℎ ⊆ [−3𝛼

2 , 3𝛼
2 ] [18].

This is illustrated by the magenta region in Figure 1.
(e) Assume that 0 < 𝛼 < 1/2, and 4

2+3𝛼 < 𝛽 ≤ 2
1+𝛼 .

Then, (𝛼,𝛽) ∈ ℱ(𝑔2), and there is a unique dual ℎ ∈
𝐿2(ℝ) ∩ 𝐿∞(ℝ) such that suppℎ ⊆ [−5𝛼

2 , 5𝛼
2 ] [1].

This is illustrated by the cyan region in Figure 1.
(f) Assume that 1

2 ≤ 𝛼 ≤ 4
5 , and

4
2+3𝛼 < 𝛽 ≤ 6

2+5𝛼 ,
with 𝛽 > 1. Then, (𝛼,𝛽) ∈ ℱ(𝑔2), and there is a
unique dual ℎ ∈ 𝐿2(ℝ) ∩ 𝐿∞(ℝ) such that suppℎ ⊆
[−5𝛼

2 , 5𝛼
2 ] [1]. This is illustrated by the cyan region in

Figure 1.

(g) Assume that 2
3 ≤ 𝛼 ≤ 1, and 4

2+3𝛼 < 𝛽 < 1.
Then, (𝛼,𝛽) ∈ ℱ(𝑔2), and there is a unique compactly
supported dual ℎ ∈ 𝐿2(ℝ) ∩ 𝐿∞(ℝ) [1]. This is illus-
trated by the cyan region in Figure 1.

(h) If 0 < 𝛼 < 2, 𝛽 = 2, 3,…, and 𝛼𝛽 < 1, then
(𝛼,𝛽) ∉ ℱ(𝑔2) [14]. This is illustrated by the red hori-
zontal lines in Figure 1.

These results are illustrated in Figure 1, where except for
the red regions, all other regions are contained in ℱ(𝑔2).
For the proofs we refer to [1, 5, 14, 18], and the references
therein. But we point out that the main idea in establish-
ing parts (c–g) is based on the following result. Before
stating it we recall that for 𝛼,𝛽 > 0 and 𝑔 ∈ 𝐿2(ℝ), the
Gabor system 𝒢(𝑔,𝛼,𝛽) is called a Bessel sequence if only
the upper bound in (6) is satisfied for some 𝐵 > 0.
Proposition 5 (Sufficient and necessary condition for dual
Gabor frames). Let 𝛼,𝛽 > 0 and 𝑔, ℎ ∈ 𝐿2(ℝ). The Bessel
sequences 𝒢(𝑔,𝛼,𝛽) and 𝒢(ℎ,𝛼,𝛽) are dual Gabor frames
if and only if

∑
𝑘∈ℤ

𝑔(𝑥 − 𝑛/𝛽− 𝑘𝛼)ℎ(𝑥 − 𝑘𝛼) = 𝛽𝛿𝑛,0

a.e.𝑥 ∈ [0,𝛼].
Using this result with 𝑔 = 𝑔𝑁 and imposing that ℎ is

also compactly supported leads one to seek an appropriate
(finite) square matrix from the (infinite) linear system

∑
𝑘∈ℤ

𝑔𝑁(𝑥 − ℓ
𝛽 + 𝑘𝛼)ℎ(𝑥 + 𝑘𝛼) = 𝛽𝛿ℓ

for almost every𝑥 ∈ [−𝛼
2 ,

𝛼
2 ].

In particular, the region {(𝛼,𝛽) ∈ ℝ2
+ ∶ 0 < 𝛼𝛽 < 1}

can be partitioned into subregions 𝑅𝑚, 𝑚 ≥ 1, such that
a (2𝑚−1)×(2𝑚−1) matrix 𝐺𝑚 can be extracted from
the above system leading to

𝐺𝑚(𝑥)
⎡⎢⎢⎢⎢⎢
⎣

ℎ(𝑥 + (1 −𝑚)𝛼)
⋮

ℎ(𝑥)
⋮

ℎ(𝑥 + (𝑚− 1)𝛼)

⎤⎥⎥⎥⎥⎥
⎦

=
⎡⎢⎢⎢⎢⎢
⎣

0
⋮
𝛽
⋮
0

⎤⎥⎥⎥⎥⎥
⎦

for almost every 𝑥 ∈ [−𝛼/2,𝛼/2].
Choosing 𝑁 = 2 results in parts (c–g) of Proposition 4,
for the cases 𝑚 = 1,2, and 3. For these cases, one proves
that the matrix 𝐺𝑚(𝑥) is invertible for almost every𝑥 ∈
[−𝛼/2,𝛼/2].However, only a subregion for the case𝑚 =
3 has been settled in [1]. It is also known that the re-
maining part of this subregion contains some obstruction
points, for example the line 𝛽 = 2 in Figure 1. Nonethe-
less, it seems that one should be able to prove that the
region

{(𝛼,𝛽) ∶ 1
2 ≤ 𝛼 < 1, 6

2+5𝛼 ≤ 𝛽 < 2
1+𝛼 , 𝛽 > 1}
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is also contained in ℱ(𝑔2). But this is still open.

Figure 1. A sketch of ℱ(𝑔2). The red region contains points
(𝛼,𝛽) for which 𝒢(𝑔2, 𝛼, 𝛽) is not a frame. All other colors
indicate the frame property. The green region is the classical:
“painless expansions” [8]. For the yellow and magenta
regions see [5]. The blue and the cyan regions are
respectively from [18] and [1].

We end this section by observing that the frame set prob-
lem is a special case of the more general question of char-
acterizing the full frame set ℱfull(𝑔) of a function 𝑔, where

ℱfull(𝑔) = {Λ ⊂ ℝ2 ∶ 𝒢(𝑔,Λ) is a frame}

where Λ is the lattice Λ = 𝐴ℤ2 ⊂ ℝ2 with det𝐴 ≠ 0. The
only general result known in this case is for𝑔(𝑥) = 𝑒−𝑎|𝑥|2

with 𝑎 > 0 in which case

ℱfull(𝑔) = {Λ ⊂ ℝ2 ∶ VolΛ < 1},

where the volume ofΛ is defined by Vol(Λ) = |det𝐴|, see
[14].

Wilson Bases
By the BLT (Proposition 3) and Proposition 2(c), we know
that𝒢(𝑔,𝛼, 1/𝛼) cannot be an ONB if 𝑔 is well-localized
in the time-frequency plane. To overcome the BLT, K. G.
Wilson introduced anONB {𝜓𝑛,ℓ, 𝑛 ∈ ℕ0, ℓ ∈ ℤ}, where
𝜓0,ℓ(𝑥) = 𝜓ℓ(𝑥) and for 𝑛 ≥ 1, 𝜓𝑛,ℓ(𝑥) = 𝜓ℓ(𝑥 − 𝑛),
and such that 𝜓̂𝑛,ℓ is localized around ±𝑛, that is, 𝜓𝑛,ℓ
is a bimodal function. Wilson presented numerical evi-
dence that this system of functions is an ONB for 𝐿2(ℝ).
In 1992, Daubechies, Jaffard, and Journé formalized Wil-
son’s ideas and constructed examples of bimodal Wilson
bases generated by smooth functions. To be specific, the
Wilson system associated with a given function 𝑔 ∈ 𝐿2 is

𝒲(𝑔) = {𝜓𝑗,𝑚 ∶ 𝑗 ∈ ℤ,𝑚 ∈ ℕ0} where

𝜓𝑗,𝑚(𝑥) =
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑔(𝑥 − 𝑗) if𝑗 ∈ ℤ
1
√2𝑇𝑗

2
(𝑀𝑚 + (−1)𝑗+𝑚𝑀−𝑚)𝑔(𝑥)

if (𝑗,𝑚) ∈ ℤ×ℕ,
(10)

which can simply be rewritten as

𝜓𝑗,𝑚(𝑥) = {√2cos2𝜋𝑚𝑥 𝑔(𝑥 − 𝑗
2), if𝑗 +𝑚 is even

√2sin2𝜋𝑚𝑥 𝑔(𝑥 − 𝑗
2), if𝑗 +𝑚 is odd.

It is not hard to see {𝜓𝑗,𝑚} is an ONB for 𝐿2(ℝ) if and
only if

{‖𝜓𝑗,𝑚‖ = 1 for all (𝑗,𝑚) ∈ ℕ0 ×ℤ
⟨𝑓, ℎ⟩ = ∑𝑗,𝑚⟨𝑓,𝜓𝑗,𝑚⟩⟨ℎ,𝜓𝑗,𝑚⟩ for all 𝑓, ℎ ∈ 𝐿2.

Assuming that 𝑔 and ̂𝑔 are smooth enough, ̂𝑔 real-valued,
one can show that this is equivalent to

∑
𝑚∈ℤ

̂𝑔(𝜉 −𝑚) ̂𝑔(𝜉 −𝑚+ 2𝑗) = 𝛿𝑗,0

for almost every𝜉, and for each𝑗 ∈ ℤ.

It follows that one can construct compactly supported ̂𝑔
that will solve this system of equations. On the other hand,
one can convert these equations into a single one by using
another time-frequency analysis tool, the Zak transform
which we now define. For 𝑓 ∈ 𝐿2(ℝ) we let𝑍𝑓 ∶ [0, 1)×
[0, 1) → ℂ be given by

𝑍𝑓(𝑥, 𝜉) = √2 ∑
𝑗∈ℤ

𝑓(2(𝑥 − 𝑗))𝑒2𝜋𝑖𝑗𝜉.

𝑍 is a unitary map from 𝐿2(ℝ) onto 𝐿2([0, 1)2) and en-
joys some periodicity-like properties [13, Chapter 8]. Us-
ing the Zak transform, and under suitable regularity as-
sumptions on 𝑔 and ̂𝑔, one can show that {𝜓𝑗,𝑚} is an
ONB if and only if

|𝑍 ̂𝑔(𝑥, 𝜉)|2 + |𝑍 ̂𝑔(𝑥, 𝜉 + 1
2)|

2 = 2
for almost every (𝑥, 𝜉) ∈ [0, 1]2.

Real-valued functions 𝑔 solving this equation can be
constructed with the additional requirement that both 𝑔
and ̂𝑔 have exponential decay.

To connect this Wilson system to Gabor frames, we use
once again the Zak transform, and observe that the frame
operator of the Gabor system 𝒢(𝑔, 1, 1/2) is a multiplica-
tion operator in the Zak transform domain, that is

𝑍𝑆𝑔𝑓(𝑥, 𝜉) = 𝑀(𝑥, 𝜉)𝑍𝑓(𝑥, 𝜉)
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where 𝑀(𝑥,𝜉) = |𝑍𝑔(𝑥, 𝜉)|2 +|𝑍𝑔(𝑥, 𝜉− 1
2)|

2. Conse-
quently, 𝒢(𝑔, 1, 1/2) is a tight frame if and only if

𝑀(𝑥,𝜉) = |𝑍𝑔(𝑥, 𝜉)|2 + |𝑍𝑔(𝑥, 𝜉 − 1
2)|

2 = 𝐴
for almost every (𝑥, 𝜉) ∈ [0, 1]2,

where 𝐴 is a constant. These ideas were used in [9] result-
ing in the following.

Proposition 6 ([9]). There exist unit-norm real-valued func-
tions 𝑔 ∈ 𝐿2(ℝ) with the property that both 𝑔 and ̂𝑔 have ex-
ponential decay and such that the Gabor system 𝒢(𝑔, 1, 1/2)
is a tight frame for 𝐿2(ℝ) if and only if the associated Wilson
system 𝒲(𝑔) is an orthonormal basis for 𝐿2(ℝ).

Proposition 6 also provides an alternate view of theWil-
son ONB. Indeed, each function in (10) is a linear combi-
nation of at most two Gabor functions from a tight Gabor
frame 𝒢(𝑔, 1, 1/2) of redundancy 2. Furthermore, such
Gabor systems can be constructed so that the generators
are well-localized in the time-frequency plane. Suppose
now that we are given a tight Gabor system 𝒢(𝑔,𝛼,𝛽)
where (𝛼𝛽)−1 = 𝑁 ∈ ℕ where 𝑁 > 2. Hence, the re-
dundancy of this tight frame is𝑁. Can aWilson-type ONB
(generated by well-localized window) be constructed from
this system by taking appropriate linear combinations?
This problem was posed by Gröchenig for the case 𝛼 = 1
and 𝛽 = 1/3 [13, Section 8.5], and to the best of our
knowledge it is still open. If one is willing to give up on
the orthogonality, one can prove the existence of Parse-
val Wilson-type frames for 𝐿2(ℝ) from Gabor tight frames
of redundancy 3. More recently, explicit examples have
been constructed starting from Gabor tight frames of re-
dundancy 1

𝛽 ∈ ℕ where 𝑁 ≥ 3.

Proposition 7. [3] For any 𝛽 ∈ [1/4, 1/2) there exists a
real-valued function 𝑔 ∈ 𝑆(ℝ) such that the following equiv-
alent statements hold.

(i) 𝒢(𝑔, 1, 𝛽) is a tight Gabor frame of redundancy 𝛽−1.
(ii) The associated Wilson system given by

𝒲(𝑔,𝛽) = {𝜓𝑗,𝑚 ∶ 𝑗 ∈ ℤ,𝑚 ∈ ℕ0} (11)

where

𝜓𝑗,𝑚(𝑥)

=

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

√2𝛽𝑔2𝑗,0(𝑥) = √2𝛽𝑔(𝑥 − 2𝛽𝑗)
if 𝑗 ∈ ℤ,𝑚 = 0,

√𝛽[𝑒−2𝜋𝑖𝛽𝑗𝑚𝑔𝑗,𝑚(𝑥) + (−1)𝑗+𝑚𝑒2𝜋𝑖𝛽𝑗𝑚𝑔𝑗,−𝑚(𝑥)]
if (𝑗,𝑚) ∈ ℤ×ℕ

(12)

is a Parseval frame for 𝐿2(ℝ).

If in addition 𝛽 = 1
2𝑛 where 𝑛 is any odd natural number, then

we can choose 𝑔 to be real-valued such that both 𝑔 and ̂𝑔 have
exponential decay.

To turn these Parseval (Wilson) systems into ONBs, one
needs to ensure that ‖𝜓𝑗,𝑚‖2 = 1 for all 𝑗,𝑚. This re-
quires in particular that ‖𝑔‖ = 1

√2𝛽 , which seems to be
incompatible with all the other conditions imposed on 𝑔.
It has then been suggested in [3] that to obtain a Wilson
ONB with redundancy different from 2, one must modify
in a fundamental way (12). For example, if we want to
have a Wilson ONB with 𝛼 = 1,𝛽 = 1/3, it seems that
one should take linear combinations of three Gabor atoms
instead of the two in Proposition 7. While we have no
proof of this claim, it seems to be supported by a
recent construction of multivariate Wilson ONBs that is
not a tensor product on 1-Wilson ONBs. In this new ap-
proach a relationship between these bases and the theory
of Generalized Shift Invariant Spaces (GSIS) was used to
construct (non-separable) well-localized Wilson ONBs for
𝐿2(ℝ𝑑) starting from tight Gabor frames of redundancy 2𝑘

where 𝑘 = 0, 1, 2,…𝑑−1. In particular, the functions in
the correspondingWilson systems are linear combinations
of 2𝑘 elements from the tight Gabor frame.

HRT
In any application involving Gabor frames, a truncation is
needed, and one considers only a finite number of Gabor
atoms. As such, and from a numerical point of view, de-
termining the condition number of the projection matrix

𝑃𝑁,𝐾 =
𝑁
∑

𝑛=−𝑁

𝐾
∑

𝑘=−𝐾
⟨⋅,𝑀𝑘𝛽𝑇𝑛𝛼𝑔⟩𝑀𝑘𝛽𝑇𝑛𝛼𝑔

for 𝑁,𝐾 ≥ 1 is useful. In fact, and beyond any numerical
considerations, one could ask if this operator is invertible,
which will be the case if {𝑀𝑘𝛽𝑇𝑛𝛼𝑔, |𝑛| ≤ 𝑁, |𝑘| ≤ 𝐾}
was linearly independent. Clearly this is the case if the
starting Gabor frame was an ONB. However, and in gen-
eral, this is not known. In fact, this is a special case of
a broader problem that we consider in this last section.
This fascinating (due in part to the simplicity of its state-
ment) open problem was posed in 1990 by C. Heil, J. Ra-
manathan, and P. Topiwala, and is now referred to as the
HRT conjecture [17].

Conjecture 1 (The HRT Conjecture). Given any 0 ≠ 𝑔 ∈
𝐿2(ℝ) and Λ = {(𝑎𝑘, 𝑏𝑘)}𝑁𝑘=1 ⊂ ℝ2, 𝒢(𝑔,Λ) is a linearly
independent set in 𝐿2(ℝ), where

𝒢(𝑔,Λ) = {𝑒2𝜋𝑖𝑏𝑘⋅𝑔(⋅ − 𝑎𝑘), 𝑘 = 1, 2,… ,𝑁}.

To bemore explicit, the conjecture claims the following:
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Given 𝑐1, 𝑐2,… , 𝑐𝑁 ∈ ℂ such that

𝑁
∑
𝑘=1

𝑐𝑘𝑀𝑏𝑘𝑇𝑎𝑘𝑔(𝑥) =
𝑁
∑
𝑘=1

𝑐𝑘𝑒2𝜋𝑖𝑏𝑘𝑥𝑔(𝑥 − 𝑎𝑘) = 0

for almost every𝑥 ∈ ℝ ⟹ 𝑐1 = 𝑐2 = … = 𝑐𝑁 = 0.
(13)

The conjecture is still generally open even if one assumes
that 𝑔 ∈ 𝑆(ℝ), the space of𝐶∞ functions that decay faster
than any polynomial.

Observe that for a given Λ = {(𝑎𝑘, 𝑏𝑘)}𝑁𝑘=1 ⊂ ℝ2,
and 𝑔 ∈ 𝐿2(ℝ), we can always assume that (𝑎1, 𝑏1) =
(0, 0); if not, applying 𝑀−𝑏1𝑇−𝑎1 to 𝒢(𝑔,Λ) results in
𝒢(𝑀−𝑏1𝑇−𝑎1𝑔,Λ′) where Λ′ will include the origin. In
addition, by rotating and scaling if necessary, we may also
assume that Λ contains (0, 1). This will result in unitarily
changing 𝑔. Finally, by applying a shear matrix, we may
assume that Λ contains (𝑎, 0) for some 𝑎 ≠ 0. Conse-
quently, given Λ = {(𝑎𝑘, 𝑏𝑘)}𝑁𝑘=1 ⊂ ℝ2 with 𝑁 ≥ 3, we
shall assume that {(0, 0), (0, 1), (𝑎, 0)} ⊆ Λ, for some
𝑎 ≠ 0.

To illustrate some of the difficulties arising in investigat-
ing this problem, we would like to give some ideas of the
proof of the conjecture when 𝑁 ≤ 3 and 0 ≠ 𝑔 ∈ 𝐿2(ℝ).
Let us first consider the case𝑁 = 2, and from the above ob-
servations we can assume that Λ = {(0, 0), (0, 1)}. Sup-
pose that 𝑐1, 𝑐2 ∈ ℂ such that 𝑐1𝑔 + 𝑐2𝑀1𝑔 = 0. This is
equivalent to

(𝑐1 + 𝑐2𝑒2𝜋𝑖𝑥)𝑔(𝑥) = 0.
Since 𝑔 ≠ 0 and 𝑐1 + 𝑐2𝑒2𝜋𝑖𝑥 is a trigonometric polyno-
mial, we see that 𝑐1 = 𝑐2 = 0.

Now consider the case 𝑁 = 3, and assume that Λ =
{(0, 0), (0, 1), (𝑎, 0)} where 𝑎 > 0 is such that 𝒢(𝑔,Λ)
is linearly dependent. Thus there are non-zero complex
numbers 𝑐1, 𝑐2 such that

𝑔(𝑥−𝑎) = (𝑐1+𝑐2𝑒2𝜋𝑖𝑥)𝑔(𝑥) = 𝑃(𝑥)𝑔(𝑥) ∀𝑥 ∈ 𝑆
where 𝑆 ⊂ supp(𝑔) ∩ (0, 1) has positive Lebesgue mea-
sure. Note that 𝑃(𝑥) is a 1-periodic trigonometric poly-
nomial that is nonzero almost everywhere. We can now
iterate this last equation along ±𝑛𝑎 for 𝑛 > 0 to obtain

⎧⎪⎪
⎨⎪⎪⎩

𝑔(𝑥 − 𝑛𝑎) = 𝑔(𝑥)∏𝑛−1
𝑗=0 𝑃(𝑥 − 𝑗𝑎) = 𝑔(𝑥)𝑃𝑛(𝑥)

𝑔(𝑥 + 𝑛𝑎) = 𝑔(𝑥 − 𝑎)∏𝑛
𝑗=0 𝑃(𝑥 + 𝑗𝑎)−1

= 𝑔(𝑥)𝑄𝑛(𝑥).
Consequently, 𝑔(𝑥 + 𝑛𝑎) = 𝑔(𝑥)𝑄𝑛(𝑥) = 𝑔(𝑥)𝑃𝑛(𝑥 +
𝑛𝑎)−1 implying that

𝑄𝑛(𝑥) = 𝑃𝑛(𝑥 + 𝑛𝑎)−1 𝑥 ∈ 𝑆. (14)

In addition, using the fact that 𝑔 ∈ 𝐿2(ℝ) one can con-
clude that

lim
𝑛→∞

𝑃𝑛(𝑥) = lim
𝑛→∞

𝑄𝑛(𝑥) = 0 𝑎.𝑒. 𝑥 ∈ 𝑆. (15)

However, one can show that (14) and (15) cannot hold
simultaneously by distinguishing the case 𝑎 ∈ ℚ and the
case 𝑎 is irrational. Hence, the HRT conjecture holds when
#Λ = 3. We refer to [17] for details.

In addition to the fact that the HRT conjecture is true for
any set of three distinct points, the known results generally
fall into the following categories, see [15] and [19, Propo-
sition 1] for details.

Proposition 8 (HRT for arbitrary set Λ ⊂ ℝ2). Suppose
that Λ ⊂ ℝ2 is a finite subset of distinct points. Then the HRT
conjecture holds in each of the following cases.

(a) 𝑔 is compactly supported, or just supported within a
half-interval (−∞,𝑎], or [𝑎,∞).

(b) 𝑔(𝑥) = 𝑝(𝑥)𝑒−𝜋𝑥2
where 𝑝 is a polynomial.

(c) 𝑔 is such that lim𝑥→∞ |𝑔(𝑥)|𝑒𝑐𝑥2 = 0 for all 𝑐 > 0.
(d) 𝑔 is such that lim𝑥→∞ |𝑔(𝑥)|𝑒𝑐𝑥 log𝑥 = 0 for all
𝑐 > 0.

Proposition 9 (HRT for arbitrary 𝑔 ∈ 𝐿2(ℝ)). Suppose
that 0 ≠ 𝑔 ∈ 𝐿2(ℝ) is arbitrary. Then the HRT conjecture
holds in each of the following cases.

(a) Λ is a finite set with Λ ⊂ 𝐴(ℤ2) + 𝑧 where 𝐴 is
a full rank 2 × 2 matrix and 𝑧 ∈ ℝ2. In particular,
Conjecture 1 holds when #Λ ≤ 3.

(b) #Λ = 4 where two of the four points inΛ lie on a line
and the remaining two points lie on a second parallel line.
Such a set Λ is called a (2, 2) configuration, see Figure 2
for an illustrative example.

(c) Λ consists of collinear points.
(d) Λ consists of 𝑁−1 collinear and equi-spaced points,
with the last point located off this line.

Figure 2. Example of a (2, 2) configuration.

We observe that whenΛ consists of collinear points, the
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HRT conjecture reduces to the question of linear indepen-
dence of (finite) translates of 𝐿2 functions.

To date and to the best of our knowledge Proposition 8
and Proposition 9 are the most general known results on
the HRT conjecture. Nonetheless, we give a partial list of
known results when one makes restrictions on both the
function 𝑔 and the set Λ.

Proposition 10 (HRT in special cases). The HRT conjecture
holds in each of the following cases.

(a) 𝑔 ∈ 𝑆(ℝ), and #Λ = 4 where three of the four
points in Λ lie on a line and the fourth point is off this line.
Such a set Λ is called a (1, 3) configuration, see Figure 3
for an illustrative example.

(b) 𝑔 ∈ 𝐿2(ℝ) is ultimately positive, and Λ
= {(𝑎𝑘, 𝑏𝑘)}𝑁𝑘=1 ⊂ ℝ2 is such that {𝑏𝑘}𝑁𝑘=1 are in-
dependent over the rationals ℚ.

(c) #Λ = 4, when 𝑔 ∈ 𝐿2(ℝ) is ultimately positive,
𝑔(𝑥) and 𝑔(−𝑥) are ultimately decreasing.

(d) 𝑔 ∈ 𝐿2(ℝ) is real-valued, and #Λ = 4 is a (1, 3)
configuration.

(e) 𝑔 ∈ 𝑆(ℝ) is a real-valued function in 𝒮(𝑅) and
#Λ = 4.

Figure 3. Example of a (1, 3) configuration.

Recently, some of the techniques used to establish the
HRT for (2, 2) configurations were extended to deal with
some special (3, 2) configurations [19]. From these re-
sults, and when restricting to real-valued functions, it was
concluded that theHRTholds for certain sets of four points.
We briefly describe this method here.

Let Λ = {(0, 0), (0, 1), (𝑎0, 0), (𝑎, 𝑏)}, and assume
that Λ is neither a (1, 3) nor a (2, 2) configuration. Let
0 ≠ 𝑔 ∈ 𝐿2(ℝ) be a real-valued function. Suppose that
𝒢(𝑔,Λ) is linearly dependent. Then there exist 0 ≠ 𝑐𝑘 ∈

ℂ, 𝑘 = 1, 2, 3 such that

𝑇𝑎0𝑔 = 𝑐1𝑔+ 𝑐2𝑀1𝑔+ 𝑐3𝑀𝑏𝑇𝑎𝑔.
Taking the complex conjugate of this equation leads to

𝑇𝑎0𝑔 = 𝑐1𝑔+ 𝑐2𝑀−1𝑔+ 𝑐3𝑀−𝑏𝑇𝑎𝑔.
Taking the difference of these two equations gives

(𝑐1−𝑐1)𝑔+𝑐2𝑀1𝑔−𝑐2𝑔+𝑐3𝑀𝑏𝑇𝑎𝑔−𝑐3𝑀−𝑏𝑇𝑎𝑔 = 0.
Since 𝑐2, 𝑐3 ≠ 0 we conclude that 𝒢(𝑔,Λ′), where Λ′ =
{(0, 0), (0, 1), (0,−1), (𝑎, 𝑏), (𝑎,−𝑏)} is a (symmetric)
(3, 2) configuration, is linearly dependent. Consequently,
we have proved the following result.

Proposition 11. Let 0 ≠ 𝑔 ∈ 𝐿2(ℝ) be a real-valued func-
tion. Suppose that (𝑎, 𝑏) ∈ ℝ2 is such that 𝒢(𝑔,Λ0) is
linearly independent where Λ0 = {(0, 0), (0, 1), (0,−1),
(𝑎, 𝑏), (𝑎,−𝑏)}. Then for all 0 ≠ 𝑐 ∈ ℝ, 𝒢(𝑔,Λ) is lin-
early independent whereΛ = {(0, 0), (0, 1), (𝑐, 0), (𝑎, 𝑏)}.

In [19, Theorem 6, Theorem 7] it was proved that the
hypothesis of Proposition 11 is satisfied when 𝑔 ∈ 𝐿2(ℝ)
(not necessarily real-valued) for certain values of 𝑎 and 𝑏.
These results were viewed as a restriction principle for the
HRT, whereby proving the conjecture for special sets of
𝑁+1 points one can establish it for certain related sets of
𝑁 points. In addition, a related extension principle that can
be viewed as an induction-like technique was introduced.
The premise of this principle is based on the following
question. Suppose that the HRT conjecture holds for all
𝑔 ∈ 𝐿2(ℝ) and a setΛ = {(𝑎𝑘, 𝑏𝑘)}𝑁𝑘=1 ⊂ ℝ2. For which
points (𝑎, 𝑏) ∈ ℝ2\Λ will the conjecture remain true for
the same function 𝑔 and the new set Λ′ = Λ∪ {(𝑎, 𝑏)}?

We elaborate on this method for #Λ = 3. Let 𝑔 ∈
𝐿2(ℝ) with ‖𝑔‖2 = 1 and suppose that Λ = {(0, 0),
(0, 1), (𝑎0, 0)}. We denote Λ′ = Λ∪{(𝑎, 𝑏)} = {(0, 0),
(0, 1), (𝑎0, 0), (𝑎, 𝑏)}. Since 𝒢(𝑔,Λ) is linearly indepen-
dent, the Gramian of this set of functions is a positive defi-
nitematrix. We recall that theGramian of a set of𝑁 vectors
{𝑓𝑘}𝑁𝑘=1 ⊂ 𝐿2(ℝ) is the (positive semi-definite)𝑁×𝑁ma-
trix (⟨𝑓𝑘, 𝑓ℓ⟩)𝑁𝑘,ℓ=1. In the case at hand, the 4×4Gramian
matrix 𝐺 ∶= 𝐺𝑔(𝑎, 𝑏) of 𝒢(𝑔,Λ′) can be written in the
following block structure:

𝐺 = [ 𝐴 𝑢(𝑎, 𝑏)
𝑢(𝑎, 𝑏)∗ 1 ] (16)

where 𝐴 is the 3 × 3 Gramian of 𝒢(𝑔,Λ) and

𝑢(𝑎, 𝑏) = ⎡⎢
⎣

𝑉𝑔𝑔(𝑎, 𝑏)
𝑉𝑔𝑔(𝑎, 𝑏 − 1)

𝑒−2𝜋𝑖𝑎0𝑏𝑉𝑔𝑔(𝑎 − 𝑎0, 𝑏)
⎤⎥
⎦

and 𝑢(𝑎, 𝑏)∗ is the adjoint of 𝑢(𝑎, 𝑏). By construction 𝐺
is positive semi-definite for all (𝑎, 𝑏) ∈ ℝ2, and we seek
the set of points (𝑎, 𝑏) ∈ ℝ2\Λ such that 𝐺 is positive
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definite. We can encode this information into the deter-
minant of this matrix, or into a related function 𝐹 ∶ ℝ2 →
[0,∞) given by

𝐹(𝑎, 𝑏) = ⟨𝐴−1𝑢(𝑎, 𝑏), 𝑢(𝑎, 𝑏)⟩. (17)

The following was proved in [19].

Proposition 12 (The HRT Extension function). Given the
above notations the function 𝐹 satisfies the following properties.

(i) 0 ≤ 𝐹(𝑎, 𝑏) ≤ 1 for all (𝑎, 𝑏) ∈ ℝ2, and moreover,
𝐹(𝑎, 𝑏) = 1 if (𝑎, 𝑏) ∈ Λ.

(ii) 𝐹 is uniformly continuous and lim|(𝑎,𝑏)|→∞ 𝐹(𝑎, 𝑏)
= 0.

(iii) ∬ℝ2 𝐹(𝑎, 𝑏)𝑑𝑎𝑑𝑏 = 3.
(iv) det𝐺𝑔(𝑎, 𝑏) = (1 − 𝐹(𝑎, 𝑏))det𝐴.

Consequently, there exists 𝑅 > 0 such that the HRT conjec-
ture holds for 𝑔 and Λ′ = Λ ∪ {(𝑎, 𝑏)} = {(0, 0), (0, 1),
(𝑎0, 0), (𝑎, 𝑏)} whenever |(𝑎, 𝑏)| > 𝑅.

We conclude the paper by elaborating on the case Λ =
4. Let Λ ⊂ ℝ2 contain four distinct points, and assume
without loss of generality thatΛ = {(0, 0), (0, 1), (𝑎0, 0),
(𝑎, 𝑏)}.

When 𝑏 = 0 and 𝑎 = −𝑎0 or 𝑎 = 2𝑎0, then Λ is a
(1, 3) configuration with the additional fact that its three
collinear points are equi-spaced. This case is handled by
Fouriermethods as was done in [17]; see Proposition 9 (d).
But, for general (1, 3) configurations, the Fourier methods
are ineffective. Nonetheless, this case was considered by
Demeter [10], who proved that the HRT conjecture holds
for all (1, 3) configurations when 𝑔 ∈ 𝒮(ℝ), and for a
family of (1, 3) configurations when 𝑔 ∈ 𝐿2(ℝ). It was
later proved that in fact, the HRT holds for all functions
𝑔 ∈ 𝐿2(ℝ) and for almost all (in the sense of Lebesgue
measure) (1, 3) configurations. In fact, more is true, in
the sense that for 𝑔 ∈ 𝐿2(ℝ), there exists at most one
(equivalence class of) (1, 3) configuration Λ0 such that
𝒢(𝑔,Λ0) is linearly dependent [19]. Here, we say that two
sets Λ1 and Λ2 are equivalent if there exists a symplectic
matrix 𝐴 ∈ 𝑆𝐿(2,ℝ) (the determinant of 𝐴 is 1) such
that Λ2 = 𝐴Λ1. However, it is still not known if the HRT
holds for all (1, 3) configurations when 𝑔 ∈ 𝐿2.

Next if 𝑏 = 1 with 𝑎 ∉ {0, 𝑎0}, or if 𝑎 = 𝑎0 with
𝑏 ≠ 0 then Λ is a (2, 2) configuration, for which the HRT
was established, see [10].

Consequently, to establish the HRT conjecture for all
sets of four distinct points and all 𝐿2 functions, one needs
to focus on
• showing that there is no equivalence class of (1, 3) con-
figurations for which the HRT fails; and
• proving the HRT for sets of four points that are neither
(1, 3) configurations nor (2, 2) configurations.

For illustrative purposes we pose the following ques-
tion.

Question 1. Let 0 ≠ 𝑔 ∈ 𝐿2(ℝ). Prove that 𝒢(𝐺,Λ) is
linearly independent in each of the following cases:

(a) Λ = {(0, 0), (0, 1), (1, 0), (√2,√2)}.
(b) Λ = {(0, 0), (0, 1), (1, 0), (√2,√3)}.
To be more explicit, the question is to prove that each of the

following two sets are linearly independent:

{𝑔(𝑥), 𝑔(𝑥 − 1), 𝑒2𝜋𝑖𝑥𝑔(𝑥), 𝑒2𝜋𝑖√2𝑥𝑔(𝑥 −√2)}
and

{𝑔(𝑥), 𝑔(𝑥 − 1), 𝑒2𝜋𝑖𝑥𝑔(𝑥), 𝑒2𝜋𝑖√3𝑥𝑔(𝑥 −√2)}.

When 𝑔 is real-valued, then part (a) was proved in [19],
but nothing can be said for part (b). On the other hand,
[19, Theorem 7] establishes part (b) when 𝑔 ∈ 𝒮(ℝ).
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Suppose that 𝑘 is a field and 𝑅 = 𝑘[𝑥1,… , 𝑥𝑛]/𝐼 is a
commutative polynomial ring over 𝑘 modulo an ideal 𝐼.
In other words, it is a finitely generated commutative 𝑘-
algebra. Additionally assume that 𝑅 is also an integral do-
main. Emmy Noether’s celebrated Normalization Theo-
rem proves that inside 𝑅, there always exists a polynomial
subring

𝐴 = 𝑘[𝑡1,… , 𝑡𝑑] ⊆ 𝑅
where the 𝑡𝑖 are algebraically independent (have no rela-
tions between them) satisfying the following property: the
extension of rings 𝐴 ⊆ 𝑅 makes 𝑅 into a finitely generated
module over the polynomial ring 𝐴 = 𝑘[𝑡1,… , 𝑡𝑑]. For
example, in 𝑅 = 𝑘[𝑥,𝑦]/(𝑦2 − 𝑥3) we have the subring
𝐴 = 𝑘[𝑥] (or 𝐵 = 𝑘[𝑦]).

Consider the induced finite extension of fraction fields

𝑘(𝑡1,… , 𝑡𝑑) = 𝐾(𝐴) ⊆ 𝐾(𝑅).
By viewing 𝐾(𝑅) as a vector space over 𝐾(𝐴), each ele-
ment 𝑢 of 𝐾(𝑅) acts via multiplication

×𝑢 ∶ 𝐾(𝑅) ⟶ 𝐾(𝑅)
and so we can take its trace, which is then an element of
𝐾(𝐴). This induces a map

Tr ∶ 𝐾(𝑅) ⟶ 𝐾(𝐴).
It is not difficult to verify Tr(𝑅) ⊆ 𝐴, and so one obtains
a map

Tr ∶ 𝑅 ⟶ 𝐴 = 𝑘[𝑡1,… , 𝑡𝑑].
Since the trace is a sum of the diagonal matrix entries, the
composition

𝐴 ⊆ 𝑅 Tr⟶ 𝐴
is multiplication by the extension degree 𝑛 ∶= [𝐾(𝑅) ∶
𝐾(𝐴)]. If 𝑘 has characteristic zero (or more generally if
the characteristic does not divide the extension degree𝑛 =
[𝐾(𝑅) ∶ 𝐾(𝐴)]), then the composition

𝐴 ⊆ 𝑅
1
𝑛 ⋅Tr⟶ 𝐴
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is the identity. Hence, if 𝑀 = ker( 1
𝑛 ⋅ Tr), then 𝑅 ≅

𝐴⊕𝑀 as an 𝐴-module. In this case, we say that 𝑅 has an
𝐴-summand and that 𝐴 ⊆ 𝑅 splits.

Consider now a more general setup. Suppose that

(*) 𝐴 ⊆ 𝑅
is a finite extension of Noetherian integral domains. We
ask when 𝑅 has an 𝐴-summand, i.e., when is 𝑅 ≅ 𝐴 ⊕
𝑀 for some 𝑀? In [Hoc73] Hochster conjectured that
if 𝐴 is a Noetherian regular ring1 and 𝑅 ⊇ 𝐴 is any ex-
tension ring that is finite as an 𝐴-module (henceforth, a
finite extension), then 𝑅 has an 𝐴-summand.

Melvin Hochster.

This was the direct sum-
mand conjecture, now André’s
theorem [And18a], and it was
one of the central and guiding
questions of commutative alge-
bra over the past half-century.

Theorem 1 (Direct Summand
Theorem). Suppose 𝐴 is a Noe-
therian regular ring and 𝑅 ⊇ 𝐴
is a finite extension, then 𝐴 ↪
𝑅 splits as a map of 𝐴-modules.
In other words, 𝑅 has an 𝐴-
summand.

We observed above that the
theorem holds if𝐴 is a polynomial ring over a field of char-
acteristic zero. In fact, the same argument works if𝐴 is any
regular domain (or even normal2 domain) containing the
rational numbersℚ. Hochster proved in [Hoc73] that The-
orem 1 also holds if𝐴 is a regular ring containing the finite
field 𝔽𝑝 = ℤ/𝑝ℤ (e.g., 𝐴 = 𝔽𝑝[𝑥1,… , 𝑥𝑑]). The methods
that go into this and the areas of research they spawned are
the topic of ”The Direct Summand Conjecture and Singu-
larities in Characteristic 𝑝.”

Example 2. The finite extension 𝐴 = ℚ[𝑡2, 𝑡3] ↪ 𝑅 =
ℚ[𝑡] does not split. If there was a splitting 𝜙 ∶ 𝑅 ⟶ 𝐴,
it must send 1 ↦ 1 and therefore it must also send 𝑡2 and
𝑡3 to themselves. But 𝑡3 = 𝜙(𝑡3) = 𝜙(𝑡2 ⋅ 𝑡) = 𝑡2𝜙(𝑡)
and so 𝜙(𝑡) = 𝑡, which does not exist in 𝐴. Note 𝐴 is not
normal.

In a recent breakthrough [And18b, And18a], André
solved the conjecture in themixed characteristic3 case, using
Scholze’s theory of perfectoid algebras and spaces [Sch12].
This will be the topic of the section “Perfectoid Algebras
and Ingredients in the Mixed Characteristic Proof.”

1Regular rings are natural generalizations of polynomial rings over fields and also include
rings such as ℤ[𝑥1,… , 𝑥𝑑].
2Meaning 𝐴 is integrally closed in its fraction field 𝐾(𝐴). In particular, if 𝑓 ∈ 𝐾(𝐴)
satisfies a monic polynomial with coefficients in 𝐴, then 𝑓 ∈ 𝐴.
3A ring 𝐴 has mixed characteristic if it contains the integers ℤ as a subring, and there is
some prime 𝑝 ∈ ℤ ⊆ 𝐴 that is not invertible in 𝐴.

JUNE/JULY 2019 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 821



Yves André.

Previously, the best case that
was known was the case when
𝐴 is a regular ring of di-
mension ≤ 3, which is due
to Heitmann [Hei02]. In
the mixed characteristic setting,
Bhargav Bhatt and Ofer Gabber
also made substantial contribu-
tions to these circles of ideas
[Bha14a,Bha18,Gab18].

Themethods of André’s proof
have also been used to prove
generalizations of the direct
summand theorem, notably the

existence of big Cohen–Macaulay algebras and the derived
direct summand theorem, see [And18a, And18c, Bha18,
Gab18, HM18, Shi17]. We expect that the existence of
big Cohen–Macaulay algebras will stimulate further study
of 𝑓 in mixed characteristic: In fact, they can be thought
of as a tool that replaces certain aspects of Hironaka’s
resolution of singularities from characteristic zero alge-
braic geometry, as explained in [MS18b]. We will dis-
cuss big Cohen–Macaulay algebras and singularities in
mixed characteristic in the section “Big Cohen–Macaulay
Algebras and Singularities in Mixed Characteristic.” As an
application of these ideas, in our final section, “An Appli-
cation to Symbolic Powers,” we discuss a result on uniform
growth of symbolic powers of ideals [MS18a].
Homological Conjectures. TheHomological Conjectures in
commutative algebra are a network of conjectures relating

Ofer Gabber.

various homological properties
of a commutative ring with its
internal ring structure. They
have generated a tremendous
amount of activity over the
last fifty years. The follow-
ing is a diagram of homo-
logical conjectures, which is
part of Hochster’s 2004 dia-
gram [Hoc04] (one sees that
the Direct Summand Conjec-
ture/Theorem lies in the heart).
Most of these conjectures are
now completely resolved thanks
to the work of André and oth-

ers.
Some of these implications are highly nontrivial: For

example, the fact that the Direct Summand Theorem im-
plies the Syzygy Theorem and the Intersection Theorem
was due to Hochster [Hoc83],4 and that the Intersection
Theorem implies Bass’ Question and Auslander’s Conjec-

4See also [Dut87] for other interesting connections between the homological conjectures.

Existence of Big
Cohen–Macaulay
Algebras [And18a]

Existence of Small
Cohen–Macaulay

Modules

Existence of Big
Cohen–Macaulay

Modules

Serre’s Positivity
Conjecture

Direct Summand
Theorem [And18a]

Monomial
Conjecture
(Theorem)

Syzygy
Theorem

Intersection Theorem
[PS73,Hoc75,Rob87,Rob89]

Bass’ Question
(Theorem)

Auslander’s
Zerodivisor
Conjecture
(Theorem)

ture was proved by Peskine–Szpiro [PS73]. We note that
many of the early homological conjectures are solved in
mixed characteristic, thanks to Roberts’ proof of the Inter-
section Theorem using localized Chern characters [Rob87,
Rob89]. We also mention that there are various stronger
forms of some of these conjectures that are proved based
on André’s work, see for example [And18c,AIN18,Gab18,
HM18].

We want to highlight that, despite the recent
breakthroughs in mixed characteristic, Serre’s Positivity
Conjecture on intersection multiplicity is still wide open
in the ramified mixed characteristic case. To this date, the

Paul C. Roberts.

most important progress to-
wards Serre’s Conjecture is due
to Gabber, see [Hoc97]. We
refer the reader to [Hoc17] for
a recent extensive survey on
Serre’s Conjecture and other
(old and new) homological
conjectures and theorems.

We end the introduction by
briefly discussing one of the ho-
mological theorems in the dia-
gram above.

Theorem 3 (The Syzygy Theo-
rem). Let (𝑅,𝔪) be a Cohen–

Macaulay (or even regular) local domain and let 𝑀 be a non-
free finitely generated 𝑅-module. If 𝑀 is a 𝑘-th syzygy module
of finite projective dimension,5 then the rank of 𝑀 is at least 𝑘.

For instance, the first syzygy module is a submodule of

5This means 𝑀 ≅ Image(𝛿𝑘) in a finite free resolution 0 ⟶ 𝐹𝑛 ⟶ ⋯ ⟶ 𝐹𝑘
𝛿𝑘⟶

⋯ ⟶ 𝐹0 ⟶ 𝑁 ⟶ 0 of a finitely generated 𝑅-module 𝑁.
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a free module 𝐹0, so its rank is at least one (i.e., it cannot
be torsion). Theorem 3 is a huge generalization to higher
syzygy modules.

Theorem 3 was first proved by Evans–Griffith when 𝑅
contains a field [EG81] based on earlier work of Hochster
[Hoc75]. The fact that it follows from Theorem 1 in mixed
characteristic is a result of Hochster [Hoc83]. So this is
now a theorem by André’s work.

Theorem 3 itself has many unexpected consequences.
For instance, it has connections to Horrock and
Hartshorne’s question on the cohomology of vector bun-
dles of small rank on ℙ𝑛 [Har79].

The Direct Summand Conjecture and Singulari-
ties in Characteristic 𝑝
Suppose now that 𝐴 is a regular Noetherian domain and
𝑅 ⊇ 𝐴 is a finite extension that is also a domain. The
fraction field extension

𝐾(𝐴) ⊆ 𝐾(𝑅)
is separable if and only if themapTr ∶ 𝑅 ⟶ 𝐴 is nonzero.
So to solve the direct summand conjecture, we cannot ex-
pect to use the field trace as we did when 𝐴 contains ℚ.

For an arbitrary ring 𝐴 that contains 𝔽𝑝, we have the
Frobenius map (which is a ring homomorphism):

𝐹 ∶ 𝐴 // 𝐴 𝑎 � // 𝑎𝑝.
We can iterate the Frobenius map: we label the 𝑒-fold self-
composition 𝐹𝑒 ∶ 𝐴 ⟶ 𝐴 and observe it sends 𝑎 ↦ 𝑎𝑝𝑒

.
One of the first issues one runs into when working with
the Frobenius is that it can be difficult to distinguish the
source and target of the map as they are the same ring. We
explain one way to handle this issue. In the case that 𝐴 is
an integral domain, we let 𝐴1/𝑝𝑒

denote the ring of 𝑝𝑒th
roots of elements of 𝐴 embedded inside the algebraic clo-
sure of the fraction field, in other words:

𝐴1/𝑝𝑒 ∶= {𝑥 ∈ 𝐾(𝐴) | 𝑥𝑝𝑒 ∈ 𝐴}.
The ring 𝐴1/𝑝𝑒

is abstractly isomorphic to 𝐴 via the map
𝐴1/𝑝𝑒 ⟶ 𝐴 which sends 𝑏 ↦ 𝑏𝑝𝑒

. This isomorphism
identifies the inclusion

𝐴 ⊆ 𝐴1/𝑝𝑒

with Frobenius, and it provides us with a convenient way
of distinguishing the source and target of the Frobenius
map.

The proof of the direct summand conjecture in charac-
teristic 𝑝 > 0 we present here follows from [Hoc73] in
spirit. We begin by proving the following lemma (we use
formal power series instead of the polynomial ring, but
the idea is the same); this lemma also motivates further
investigations on characteristic 𝑝 > 0 singularities.

Lemma 4. Suppose 𝑘 is a perfect field of positive characteristic
and 𝐴 = 𝑘J𝑥1,… , 𝑥𝑑K is the formal power series ring. Then

for every nonzero 𝑐 ∈ 𝐴, there exists an 𝑒 > 0 such that the

𝐴-module map 𝐴 1↦𝑐1/𝑝𝑒⟶ 𝐴1/𝑝𝑒
splits.

Proof. For any nonzero 𝑐 ∈ 𝐴, by looking at terms of 𝑐 of
minimal degree, there exists an 𝑒 so that

𝑐 ∉ (𝑥𝑝𝑒

1 ,… , 𝑥𝑝𝑒

𝑑 ).

In other words, 𝑐1/𝑝𝑒 ∉ (𝑥1,… , 𝑥𝑑) ⋅ 𝐴1/𝑝𝑒
. Thus the

image of 𝑐1/𝑝𝑒
is nonzero in the 𝑘-vector space

𝐴1/𝑝𝑒

(𝑥1,… , 𝑥𝑑) ⋅ 𝐴1/𝑝𝑒 .

By Nakayama’s lemma, 𝑐 can be chosen as part of a basis
for the free6 𝐴-module 𝐴1/𝑝𝑒

. Hence there is a map 𝜓 ∶
𝐴1/𝑝𝑒 ⟶ 𝐴 such that 𝜓(𝑐1/𝑝𝑒) = 1, which proves the
lemma. □

Rings that satisfy the conclusion of Lemma 4 are called
strongly 𝐹-regular (see Definition 7). We will discuss them
more in what follows.

Theorem 5. If 𝐴 is a Noetherian regular ring of characteristic
𝑝 > 0, then any finite ring extension 𝐴 ⊆ 𝑅 splits.

Proof. By standard commutative algebra techniques, we
may assume that𝐴 ≅ 𝑘J𝑥1,… , 𝑥𝑑K where 𝑘 is perfect and
that 𝑅 is an integral domain.

For any integer 𝑒 > 0 and any 𝐴-linear map 𝜙 ∶ 𝐴1/𝑝𝑒

⟶ 𝐴 we consider the commutative diagram:

Hom𝐴1/𝑝𝑒 (𝑅1/𝑝𝑒 , 𝐴1/𝑝𝑒)

eval@1
��

// Hom𝐴(𝑅,𝐴)

eval@1
��

𝐴1/𝑝𝑒 𝜙 // 𝐴.
The top horizontal map is obtained by restricting to 𝑅 the
domain of an element 𝜓 ∈ Hom𝐴1/𝑝𝑒 (𝑅1/𝑝𝑒 , 𝐴1/𝑝𝑒) and
then post-composing with 𝜙. Since the vertical maps are
evaluation at 1, to show that 𝐴 ⟶ 𝑅 splits it is enough
to show that the right vertical map surjects (then there
exists 𝜓 ∈ Hom𝐴(𝑅,𝐴) so that 𝜓(1) = 1). Because

Hom𝐴(𝑅,𝐴) eval@1⟶ 𝐴 surjects generically, i.e., it is surjec-
tive if we tensor with the fraction field of𝐴, we can choose

a nonzero 𝑐 in the image of Hom𝐴(𝑅,𝐴) eval@1⟶ 𝐴. It fol-
lows that 𝑐1/𝑝𝑒

is in the image of the left vertical map (for
any 𝑒 > 0). Next, using Lemma 4, we choose 𝑒 > 0 and an
𝐴-linear map 𝜙 ∶ 𝐴1/𝑝𝑒 ⟶ 𝐴 sending 𝑐1/𝑝𝑒 ⟶ 1. The
commutative diagram implies that the composition from
the upper left to the lower right surjects, and hence so does

Hom𝐴(𝑅,𝐴) eval@1⟶ 𝐴. □

6One common choice of basis is that made up of all elements 𝑥𝑗1/𝑝𝑒
1 ⋯𝑥𝑗𝑑/𝑝𝑒

𝑑 where each
𝑗𝑖 varies between 0 and 𝑝𝑒 − 1.
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Philosophy. We take a step back to think through this
proof. In characteristic 𝑝 > 0, the trace map does not al-
ways lead to splittings, even for separable extensions due
to the presence of what is calledwild ramification. Roughly
speaking, we get around this by choosing an element 𝑐 ∈
𝐴 over which 𝐴 ⊆ 𝑅 is ramified. By taking 1/𝑝𝑒th roots
of 𝑐 (or in other words using Frobenius), we minimize the
ramification until it almost goes away and so that exten-
sion 𝐴 ⊆ 𝑅 splits.

We also give a new example of a ring with a non-split
extension.

Example 6. Consider 𝑘 = 𝔽𝑝, the algebraic closure of the
finite field 𝔽𝑝 = ℤ/𝑝ℤ. We form the ring 𝐴 = 𝑘[𝑥,𝑦, 𝑧]/
(𝑧𝑦2 − 𝑥(𝑥 − 𝑧)(𝑥 + 𝜆𝑧)), defining the affine cone over
a (projective) elliptic curve 𝐸 (for example, one could take
𝜆 = 1). If the characteristic 𝑝 > 0 is such that the curve
is supersingular, then the (absolute) Frobenius map 𝐹 ∶
𝐴 ⟶ 𝐴 (which sends 𝑟 ↦ 𝑟𝑝 for all 𝑟 ∈ 𝑅) does not
split. If 𝑝 > 0 is such that the curve is ordinary, then there
exists a degree𝑝 étalemap𝐸′ ⟶ 𝐸 between elliptic curves
[Sil09, Chapter V, Theorem 3.1]. This gives a finite exten-
sion 𝐴 ↪ 𝐴′ of the rings corresponding to the cones. This
extension is not étale at the cone point(s) and in fact is not
split. In either case 𝐴 has a finite extension 𝐴 ↪ 𝑅 that is
not split.

Singularities in characteristic 𝑝 > 0. The techniques we
used to prove the direct summand conjecture in character-
istic 𝑝 > 0 have led to a vigorous study of singularities
in characteristic 𝑝 > 0 (typically under the names tight
closure theory and Frobenius splitting theory).

Definition 7 (Strongly𝐹-regular singularities). ANoether-
ian domain 𝑆 containing 𝔽𝑝 such that 𝑆1/𝑝 is a finitely
generated 𝑆-module is called strongly 𝐹-regular if for any
nonzero 𝑐 ∈ 𝑆, there is an 𝑒 > 0 and 𝜙 ∶ 𝑆1/𝑝𝑒 ⟶ 𝑆
such that 𝜙(𝑐1/𝑝𝑒) = 1. In this case, the singularities of
Spec𝑆 are called strongly 𝐹-regular singularities.

The proof we gave in Theorem 5 shows that strongly 𝐹-
regular rings are direct summands of all their finite exten-
sions. In fact, a Noetherian domain that is a direct sum-
mand of every finite extension is called a splinter. Thus we
have:

(Strongly 𝐹-regular ring) ⇒ (Splinter)

The converse is open except in the case that the ring is
(close to) Gorenstein [HH94,Sin99]. In fact, the converse
would imply arguably the most studied question in char-
acteristic 𝑝 > 0 commutative algebra: that a weakly 𝐹-
regular ring7 is strongly 𝐹-regular.

7A ring is called weakly 𝐹-regular if all of its ideals are tightly closed [HH90]; we will not
delve into these definitions here, however.

Example 8. In Example 6, we saw that the affine cone over
an elliptic curve is not a splinter. The ring 𝔽𝑝[𝑥, 𝑦, 𝑧]/
(𝑥𝑦 − 𝑧2) is strongly 𝐹-regular, and hence it is a splin-
ter. The fact that it is strongly 𝐹-regular most easily follows
from the fact that it is a direct summand of a regular ring.

Karen E. Smith.

Strongly 𝐹-regular singulari-
ties are intimately tied to singu-
larities that appear in complex
algebraic geometry. Roughly
speaking, a complex algebraic
variety 𝑋 has rational singulari-
ties if its line bundles have the
same sheaf cohomology as the
pullbacks of those line bundles
to a resolution of singularities.8

A refinement of rational sin-
gularities is log terminal sin-
gularities (rational singularities
whose finite étale9 in codimen-
sion 1 covers also have rational

singularities). Rational singularities are exactly the same
as log terminal singularities on hypersurfaces (and more
generally, on Gorenstein varieties).

What is really surprising, given their completely disjoint
definitions, is that log terminal singularities are essentially
the same as strongly𝐹-regular singularities, modulo reduc-
tion to characteristic 𝑝 > 0. Specifically, suppose that a
chart𝑈 on𝑋 is given as the spectrum of𝑅ℂ=ℂ[𝑥1,… , 𝑥𝑑]
/𝐼ℂ. Suppose for simplicity that all the coefficients of the
generators of the ideal 𝐼ℂ live in ℤ. We can reduce 𝑅ℂ to
characteristic 𝑝 > 0 by taking the coefficients of the gener-
ators of the ideal 𝐼ℂ modulo some 𝑝 > 0. For example:

𝑓 = 𝑥2 + 101𝑥𝑦− 7 mod5 ///o/o/o/o/o/o/o 𝑥2 + 𝑥𝑦+ 3.

For each𝑝 > 0, this gives us a ring𝑅𝑝=𝔽𝑝[𝑥1,… , 𝑥𝑑]/𝐼𝑝.
Theorem9 ([HW02,Har98,Smi97,MS97]). 𝑈 = Spec𝑅ℂ
has log terminal singularities if and only if for all 𝑝 ≫ 0, 𝑅𝑝
has strongly 𝐹-regular singularities.

In fact, this connection is a small part of a large dic-
tionary where notions from higher dimensional complex
algebraic geometry correspond to concepts involving the
Frobenius map.

Definition 10 (Derived splinters). A Noetherian domain
𝑆 is called a derived splinter if for every proper surjective
map 𝜋 ∶ 𝑌 ⟶ 𝑋 = Spec𝑆, the induced map 𝒪𝑋 ⟶
𝑅𝜋∗𝒪𝑌 splits in the derived category of 𝒪𝑋-modules.

8A resolution of singularities is a proper map 𝜋 ∶ 𝑌 ⟶ 𝑋 of varieties such that 𝑌 is non-
singular and 𝜋 is birational, which means it is an isomorphism “almost everywhere” (i.e.,
on a Zariski open and dense subset).
9essentially covering spaces
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Kei-ichi Watanabe.

It is a theorem of Bhatt that
for rings of finite type over
fields of characteristic zero, ra-
tional singularities are exactly
derived splinters [Bha12] (and
also see [Kov00]). But, in
[Bha12], Bhatt also shows that
derived splinters in character-
istic 𝑝 > 0 are exactly the
same as splinters. Both these
results strongly suggest that reg-
ular rings should be derived
splinters in general. This de-
rived statement is an extension
of the direct summand conjec-

ture (since any finite extension of ring 𝐴 ⊆ 𝑅 induces a
proper surjective map Spec𝑅 ⟶ Spec𝐴). In [Bha18],
applying some of André’s ideas, Bhatt gives a simplified
proof of Theorem 1 and also proves this derived version.

Theorem 11 (The Derived Direct Summand Theorem).
Any Noetherian regular ring is a derived splinter.

Perfectoid Algebras and Ingredients in theMixed
Characteristic Proof

Bhargav Bhatt.

Now we move to the discus-
sion of the proof of the Di-
rect Summand Theorem (The-
orem 1) in mixed characteris-
tic, which uses perfectoid tech-
niques. Consider a Noetherian
local ring𝐴withmaximal ideal
𝔪. As before, we say that 𝐴 has
mixed characteristic (0, 𝑝) if 𝐴
has characteristic 0 and 𝐴/𝔪
has prime characteristic 𝑝 > 0.
For example, the ring of 𝑝-adic
integers ℤ𝑝 (the ring of formal
power series in 𝑝) has maximal
ideal generated by𝑝, its residue

field is 𝔽𝑝, while its fraction field ℚ𝑝 has characteristic 0.
We use ℚ𝑝 to construct our first example of a perfec-

toid ring. Begin by adjoining all 𝑝𝑒th roots of 𝑝 to ℚ𝑝
to form ℚ𝑝(𝑝1/𝑝∞). We 𝑝-adically complete and call the

resulting ring 𝐾 = ̂ℚ𝑝(𝑝1/𝑝∞). This field 𝐾 is a typical
example of a perfectoid field. The field𝐾 contains a subring

𝐾∘ = ̂ℤ𝑝[𝑝1/𝑝∞], which is its “ring of integers.” 𝐾∘ is a
typical example of an integral perfectoid ring. For the rest
of this section, we fix 𝐾 and 𝐾∘ as above. We now give a
definition of a perfectoid algebra.

Definition 12 (Perfectoid algebras [Sch12, BMS18,
And18c]). A perfectoid 𝐾-algebra is a Banach 𝐾-algebra

𝑅 such that the set of power-bounded elements10 𝑅∘ ⊆ 𝑅
is bounded and the Frobenius is surjective on 𝑅∘/𝑝. A
𝐾∘-algebra 𝑆 is called integral perfectoid if it is 𝑝-adically
complete, 𝑝-torsion free, and the Frobenius induces an
isomorphism 𝑆/𝑝1/𝑝 ⟶ 𝑆/𝑝.

If 𝑅 is a perfectoid 𝐾-algebra, then the ring of power-
bounded elements 𝑅∘ is integral perfectoid, and if 𝑆 is in-
tegral perfectoid, then 𝑆[1/𝑝] is a perfectoid 𝐾-algebra,
see [Sch12, Theorem 5.2].

We give examples of integral perfectoid algebras. It is
important to note that these algebras are never Noetherian.
As before, •̂ denotes the 𝑝-adic completion of •.

Example 13. (a) 𝐾∘ = ̂ℤ𝑝[𝑝1/𝑝∞].
(b)

𝐾∘⟨𝑥1/𝑝∞

2 ,… , 𝑥1/𝑝∞

𝑑 ⟩

∶= ℤ𝑝[𝑝1/𝑝∞][𝑥1/𝑝∞

2 ,… , 𝑥1/𝑝∞

𝑑 ]
⋀

.

(c) 𝑅+, where (𝑅,𝔪) is a Noetherian complete local
domain of mixed characteristic (0, 𝑝) and 𝑅+ is the
integral closure of 𝑅 in an algebraic closure of its frac-
tion field.

Although we will not use it in this survey, a key idea in
the theory of perfectoid algebras (and spaces) is that nu-
merous questions can be studied via tilting. This can turn
a mixed characteristic question (or ring) into one in pos-
itive characteristic, and vice versa. This principle is used
extensively (behind the scenes) in what follows. For more
discussion, see for instance [Bha14b,Sch12].

A key part of the general theory of perfectoid rings is that
we can talk about “almost mathematics” (appearing orig-
inally in the work of Faltings, [Fal88], also see the work
of Gabber and Ramero [GR03]). Roughly speaking, we
treat modules that are annihilated by the ideal (𝑝, 𝑝1/𝑝,
𝑝1/𝑝2 ,… ) =∶ (𝑝1/𝑝∞) ⊆ 𝐾∘ as if they were zero (since
𝑝1/𝑝𝑒

is almost 1 for 𝑒 ≫ 0).

Definition 14. Let 𝑆 be an integral perfectoid 𝐾∘-algebra.

(a) An 𝑆-module 𝑀 is almost zero if (𝑝1/𝑝∞)𝑀 = 0.
(b) An 𝑆-module 𝑀 is almost flat if

(𝑝1/𝑝∞)Tor𝑆1(𝑀,𝑁) = 0

for all 𝑆-modules 𝑁.
(c) A short exact sequence of 𝑆-modules 0 ⟶ 𝑀 ⟶

𝑁 ⟶ 𝑁/𝑀 ⟶ 0 represented by a class 𝜂 ∈
Ext1𝑆(𝑁/𝑀,𝑀) is almost split if

(𝑝1/𝑝∞)𝜂 = 0 in Ext1𝑆(𝑁/𝑀,𝑀).

10Elements 𝑥 such that the norm of 𝑥𝑛 is bounded independent of 𝑛.
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The most crucial result that is relevant to the proof of
Theorem 1 is the following theorem, proved by Scholze
[Sch12] and independently by Kedlaya–Liu [KL15]. Spe-
cial cases were first obtained by Faltings [Fal88,Fal02] and
Gabber–Ramero [GR04].

Theorem 15 (The Almost Purity Theorem). Suppose 𝑆 is
integral perfectoid and𝑆[1/𝑝] ⟶ 𝑇 is a finite étale extension.
Then the integral closure 𝑆′ of 𝑆 in 𝑇 is an almost finite étale
extension of 𝑆. In particular, 𝑆 ⟶ 𝑆′ is almost split.

Here, almost finite étale roughly means that the obstruc-
tions to being finite étale are annihilated by (𝑝1/𝑝∞). For
our purposes however, we will only need the weaker fact
that the map 𝑆 ⟶ 𝑆′ is almost split.

We sketch the proof of the Direct Summand Theorem
(Theorem 1) in mixed characteristic. For simplicity, we set

𝐴 = ℤ𝑝[𝑥2,… , 𝑥𝑑]
⋀

. Our goal is to show that every finite
extension 𝐴 ⊆ 𝑅 splits.
The case 𝐴[1/𝑝] ⟶ 𝑅[1/𝑝] is finite étale. We let

𝐴∞ = ℤ𝑝[𝑝1/𝑝∞][𝑥1/𝑝∞

2 ,… , 𝑥1/𝑝∞

𝑑 ]
⋀

;
this is an integral perfectoid algebra. Consider the follow-
ing diagram:

𝐴 //

��

𝑅

�� ''NN
NNN

NNN
NNN

N

𝐴∞ // 𝐴∞ ⊗𝑅 // (𝐴∞ ⊗𝑅)′

where (𝐴∞ ⊗ 𝑅)′ denotes the normalization of 𝐴∞ ⊗ 𝑅
in 𝐴∞[1/𝑝] ⊗ 𝑅. Since 𝐴∞[1/𝑝] ⟶ 𝐴∞[1/𝑝] ⊗ 𝑅 is
a finite étale extension by base change, Theorem 15 says
that the composition

𝐴∞ ⟶ 𝐴∞ ⊗𝑅 ⟶ (𝐴∞ ⊗𝑅)′

is almost split and hence 𝐴∞ ⟶ 𝐴∞ ⊗𝑅 is almost split.
This implies 𝐴 ⟶ 𝑅 is split, since 𝐴 is Noetherian and

Craig Huneke.

𝐴 ⟶ 𝐴∞ is faithfully flat (we
omit the details here, this fol-
lows from a standard commuta-
tive algebra argument).

The argument above was
first observed by Bhatt
[Bha14a]. Notice that we
only used Theorem 15 for
the integral perfectoid algebra

𝐴∞ = ℤ𝑝[𝑝1/𝑝∞][𝑥1/𝑝∞

2 ,… ,
⋀

𝑥1/𝑝∞

𝑑 ]. This version is due to
Faltings [Fal02].
General case. We now assume
that 𝐴[1/𝑝] ⟶ 𝑅[1/𝑝] is

not necessarily étale. But since 𝐴 ⟶ 𝑅 is “generically
étale” (i.e., the extension of the fraction field 𝐾(𝐴) ⟶

𝐾(𝑅) is finite étale, i.e., separable), we can invert some
other element to make 𝐴 ⟶ 𝑅 étale. Thus we sup-
pose that 𝐴[1/𝑝𝑔] ⟶ 𝑅[1/𝑝𝑔] is finite étale for some
nonzero element 𝑔. The main obstruction to “running”
the above argument is that Theorem 15 no longer works:
𝐴∞[1/𝑝]⊗𝑅 is no longer finite étale over 𝐴∞[1/𝑝]. We
only know that it becomes finite étale when we further
invert 𝑔. To overcome this difficulty, André proved two
remarkable theorems using Scholze’s theory of perfectoid
spaces:

Theorem 16 ([And18a]). Suppose 𝑆 is an integral perfectoid
algebra and𝑔 ∈ 𝑆. Then there exists a map𝑆 ⟶ 𝑆 of integral
perfectoid algebras, such that 𝑔 admits a compatible system of
𝑝-power roots {𝑔1/𝑝𝑒}∞𝑒=1 in 𝑆 (i.e., (𝑔1/𝑝𝑒+1)𝑝 = 𝑔1/𝑝𝑒

for
all 𝑒) and that 𝑆 ⟶ 𝑆 is almost faithfully flat modulo powers
of 𝑝.
Theorem 17 ([And18b]). Suppose 𝑆 is integral perfectoid
such that 𝑔 ∈ 𝑆 has a compatible system of 𝑝-power roots
in 𝑆, and 𝑆[1/𝑝𝑔] ⟶ 𝑇 is a finite étale extension. Then the
integral closure of 𝑆 in 𝑇 is (𝑝𝑔)1/𝑝∞

-almost finite étale over
𝑆 modulo powers of 𝑝.

We return to the proof of Theorem 1. As before, we

set 𝐴∞ = ℤ𝑝[𝑝1/𝑝∞][𝑥1/𝑝∞

2 ,… , 𝑥1/𝑝∞

𝑑 ]
⋀

. We apply Theo-

rem 16 to construct 𝐴∞ ⟶ 𝐴∞,∞ ∶= 𝑆 such that 𝑔 has
a compatible system of 𝑝-power roots in 𝐴∞,∞ and such
that 𝐴∞,∞ is almost faithfully flat over 𝐴∞ mod powers of
𝑝. Consider the following diagram:

𝐴 //

��

𝑅

�� ''PP
PPP

PPP
PPP

PP

𝐴∞,∞ // 𝐴∞,∞ ⊗𝑅 // (𝐴∞,∞ ⊗𝑅)′

where (𝐴∞,∞⊗𝑅)′ denotes the normalization of𝐴∞,∞⊗
𝑅 in (𝐴∞,∞ ⊗ 𝑅)[1/𝑝𝑔]. Applying Theorem 17 we find
that the composition map

𝐴∞,∞ ⟶ 𝐴∞,∞ ⊗𝑅 ⟶ (𝐴∞,∞ ⊗𝑅)′

is (𝑝𝑔)1/𝑝∞
-almost split modulo powers of 𝑝. It follows

that 𝐴∞,∞ ⟶ 𝐴∞,∞ ⊗ 𝑅 is (𝑝𝑔)1/𝑝∞
-almost split mod

powers of 𝑝. This is enough to conclude that 𝐴 ⟶ 𝑅 is
split by the Noetherianity and 𝑝-adic completeness of 𝐴,
the faithful flatness of 𝐴∞ over 𝐴, and the almost faithful
flatness of 𝐴∞,∞ over 𝐴∞ mod powers of 𝑝 (again some
work is required here, but we omit the details).

Big Cohen–Macaulay Algebras and Singularities
in Mixed Characteristic
Let (𝑅,𝔪) be a Noetherian local ring. Recall that a sys-
tem of parameters 𝑥1,… , 𝑥𝑑 in (𝑅,𝔪) is a collection of
𝑑 = dim𝑅 elements that generate the maximal ideal up
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to radical, i.e., 𝔪 = √(𝑥1,… , 𝑥𝑑). An 𝑅-algebra 𝐵 is
called big Cohen–Macaulay if every system of parameters

Raymond C. Heitmann.

𝑥 = 𝑥1,… , 𝑥𝑑 of 𝑅 is a regu-
lar sequence on 𝐵. This means
𝑥𝑖+1 is a nonzero divisor on
𝐵/(𝑥1,… , 𝑥𝑖) and that 𝔪𝐵 ≠
𝐵.

Now suppose that 𝐴 ⟶
𝑅 is a module-finite extension
of Noetherian local rings such
that 𝐴 is regular and 𝑅 ad-
mits a big Cohen–Macaulay al-
gebra. We claim that the map
𝐴 ⟶ 𝑅 splits. So suppose that
𝐵 is a big Cohen–Macaulay 𝑅-
algebra; it is easy to see that𝐵 is
also a big Cohen–Macaulay 𝐴-

algebra (since every system of parameters of 𝐴 becomes
a system of parameters of 𝑅). Because 𝐵 is big Cohen–
Macaulay and 𝐴 is regular, 𝐵 is faithfully flat over 𝐴 (see
[HH92, p.77]). It then follows from the factorization
𝐴 ⟶ 𝑅 ⟶ 𝐵 that 𝐴 ⟶ 𝑅 is split (this is similar to
the final arguments of the last section).

Therefore the existence of big Cohen–Macaulay algebras
implies Theorem 1 for local rings. The general case of The-
orem 1 follows from the local case: the evaluation at 1
map Hom𝐴(𝑅,𝐴) ⟶ 𝐴 is surjective if and only if it is
surjective locally. This explains that the existence of big
Cohen–Macaulay algebras sits at the top of the diagram at
the end of the introduction.

In the case that 𝑅 contains a field ℚ or ℤ/𝑝ℤ, the ex-
istence of big Cohen–Macaulay algebras was established
by Hochster–Huneke [HH92,HH95]. Hochster had also
shown that big Cohen–Macaulay algebras exist in mixed
characteristic in dimension three [Hoc02], using ideas of
Heitmann’s proof of the direct summand conjecture in di-
mension three [Hei02]. André [And18a] completed this
program and showed they exist in mixed characteristic in
all dimensions.

We roughly sketch the strategy of the construction of
big Cohen–Macaulay algebras following [Hoc94, Hoc02,
And18a,HM18]. Suppose that 𝑇 is an 𝑅-algebra and that
𝑥1,… , 𝑥𝑘+1 is part of a systemof parameters for𝑅. Further
assume that 𝑡1,… , 𝑡𝑘+1 are elements of 𝑇 satisfying

(⋆) 𝑥𝑘+1𝑡𝑘+1 =
𝑘
∑
𝑖=1

𝑥𝑖𝑡𝑖 but 𝑡𝑘+1 ∉ (𝑥1,… , 𝑥𝑘)𝑇.

In other words, 𝑥𝑘+1 is a zero divisor in 𝑇/(𝑥1,… , 𝑥𝑘)𝑇
and so 𝑇 is not (big) Cohen–Macaulay over 𝑅. We there-
fore call (⋆) a bad relation.

Let 𝑋1,… ,𝑋𝑘 be indeterminates over 𝑇. We consider

the extension

𝑇 ⟶ 𝑇′ = 𝑇[𝑋1,… ,𝑋𝑘]/⎛
⎝
𝑡𝑘+1 −

𝑘
∑
𝑖=1

𝑥𝑖𝑋𝑖⎞
⎠
.

We have forced 𝑡𝑘+1 to be inside (𝑥1,… , 𝑥𝑘)𝑇′, and so the
bad relation is trivialized. Such a 𝑇′ is called an algebra
modification of 𝑇. Repeat this process to trivialize all bad
relations on 𝑇 and we obtain a total algebra modification of
𝑇; call it 𝑇1. Now we might have new bad relations on
𝑇1, but we can repeat the whole process above and take a
(huge) direct limit. More precisely, we set

𝐵 ∶= lim−→(𝑅 = 𝑇 ⟶ 𝑇1 ⟶ 𝑇2 ⟶ ⋯).
The above construction guarantees that for every sys-

tem of parameters 𝑥1,… , 𝑥𝑑 of 𝑅, 𝑥𝑖+1 is a nonzero di-
visor on 𝐵/(𝑥1,… , 𝑥𝑖−1). However, one must show that
𝔪𝐵 ≠ 𝐵. In characteristic 𝑝 > 0, this can be proved us-
ing the Frobenius map. If 𝑅 contains ℚ, a reduction to
characteristic 𝑝 > 0 technique can be applied (basically
by noticing that if 𝔪𝐵 = 𝐵 then this must happen at a
finite level). Later Hochster [Hoc02] essentially observed
that 𝔪𝐵 ≠ 𝐵 as long as we can map 𝑇 to a certain “almost
Cohen–Macaulay algebra”11 (e.g., in characteristic 𝑝 > 0,
we have 𝑅 ⟶ 𝑅1/𝑝∞

). Finally in mixed characteristic,
André replaced𝑅1/𝑝∞

by (𝐴∞,∞⊗𝑅)′, which is the object
that appears in the argument in the proof of Theorem 1,
to prove 𝔪𝐵 ≠ 𝐵.

It turns out that big Cohen–Macaulay algebras have
deep connections with singularities. In fact, as we men-
tioned at the start of the section, if 𝐴 is regular, then a
big Cohen–Macaulay 𝐴-algebra 𝐵 is faithfully flat over 𝐴.
From one perspective the role of𝐵 is analogous to a resolu-
tion of singularities in equal characteristic zero. Suppose
that 𝑆 is (essentially) of finite type over a field 𝑘 of charac-
teristic zero. Let 𝜋 ∶ 𝑌 ⟶ 𝑋 = Spec𝑆 be a resolution of
singularities. Grauert–Riemenschneider vanishing [GR70]
(a relative version of Kodaira or Kawamata–Viehweg van-
ishing [Kaw82,Vie82,EV92]) tells us that the higher direct
images of the canonical sheaf

𝑅𝑖𝜋∗𝜔𝑌 = 0
vanish for 𝑖 > 0. By local duality [Har66], this vanishing
is equivalent to the following vanishing of local cohomol-
ogy,

𝐻𝑗
𝑥(𝑅𝜋∗𝒪𝑌) = 0

where 𝑗 < dim𝑋, 𝑥 ∈ 𝑋 is any closed point, and ℍ𝑗
𝑥 de-

notes sheaf cohomology with support at 𝑥. In other words,
the local cohomology of the complex𝑅𝜋∗𝒪𝑌 vanishes ex-
cept in the top degree. For finitely generated modules, this
property of vanishing local cohomology is equivalent to

11This means systems of parameters on 𝑅 are “almost regular sequences”; we omit the de-
tailed definition.
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the Cohen–Macaulay property. In other words, the com-
plex

𝑅𝜋∗𝒪𝑌
is a Cohen–Macaulay algebra, except that it is not an alge-
bra: it lives in the derived category! This was first observed
by Roberts [Rob80] (and we omit the non-triviality condi-
tion analogous to𝔪𝐵 ≠ 𝐵 for simplicity). Many common
local applications of Grauert–Riemenschneider vanishing
can be proved using the vanishing of local cohomology of
𝑅𝜋∗𝒪𝑌. Tied up closely with this vanishing are log termi-
nal singularities, which we define in a special case:

Definition 18. A Gorenstein variety 𝑋 in characteristic
zero is called log terminal if the canonical map

𝐻𝑑
𝑥 (𝒪𝑋) ⟶ 𝐻𝑑

𝑥 (𝑅𝜋∗𝒪𝑌)
injects for every 𝑥 ∈ 𝑋 and for some (equivalently every)
resolution of singularities 𝜋 ∶ 𝑌 ⟶ 𝑋.

Of course, for a big Cohen–Macaulay algebra 𝐵 over a
local ring 𝑆, we also have the vanishing

𝐻𝑖
𝔪(𝐵) = 0

for the maximal 𝔪 ∈ Spec𝑆, and all 𝑖 < dim𝑆. Further-
more, it follows from work of Smith [Smi94] that in char-
acteristic 𝑝 > 0, a Gorenstein local ring (𝑆,𝔪) is strongly
𝐹-regular if and only if

𝐻𝑑
𝔪(𝑆) ⟶ 𝐻𝑑

𝔪(𝐵)
is injective for every big Cohen–Macaulay 𝑅-algebra 𝐵.

Inspired by this, we introduce the following definition
in [MS18b].

Definition 19. Let (𝑅,𝔪) be a Gorenstein local ring of di-
mension 𝑑 and let 𝐵 be a big Cohen–Macaulay 𝑅-algebra.
Then we say 𝑅 is big-Cohen–Macaulay-regular with respect to
𝐵 (or more compactly is BCM𝐵-regular) if the natural map
𝐻𝑑

𝔪(𝑅) ⟶ 𝐻𝑑
𝔪(𝐵) is injective.

It turns out that BCM𝐵-regular singularities share many
analogous properties of log terminal singularities in equal
characteristic 0 or strongly 𝐹-regular singularities in equal
characteristic 𝑝 > 0 (again, all based on this vanishing).
Furthermore, we apply this to study singularities when the
characteristic varies, e.g., families of singularities defined
over Specℤ. We refer to [MS18b] for more results in this
direction.

An Application to Symbolic Powers
We discuss another commutative algebraic application of
integral perfectoid big Cohen–Macaulay algebras inmixed
characteristic [MS18a]. In fact, our proof strategy is di-
rectly inspired by the connection between big Cohen–
Macaulay algebras and resolution of singularities and the
vanishing theorems discussed above. Let us state the prob-
lem.

Suppose 𝐴 is a Noetherian regular ring (e.g., a polyno-
mial ring over a field or over ℤ). Suppose 𝑄 ⊆ 𝐴 is a
prime ideal. For any integer 𝑛 > 0 we define the 𝑛th sym-
bolic power of 𝑄 to be

𝑄(𝑛) ∶= (𝑄𝑛𝐴𝑄) ∩ 𝐴.

In other words, 𝑄(𝑛) is the set of elements of 𝐴 (or func-
tions on Spec𝐴) that vanish to order𝑛 at the generic point
of 𝑉(𝑄) ⊆ Spec𝐴.

Evidently, 𝑄𝑛 ⊆ 𝑄(𝑛) but they are not always equal. A
very extensively explored question in commutative algebra
studies the difference between 𝑄(𝑛) and 𝑄𝑛. For example,
when𝑄 is generated by (part of) a regular sequence, a clas-
sical result in commutative algebra says that 𝑄𝑛 = 𝑄(𝑛)

for all 𝑛. However 𝑄(𝑛) can be much bigger than 𝑄𝑛.

Example 20. Let 𝑅 = 𝑘[𝑥,𝑦, 𝑧]/(𝑥𝑦 − 𝑧𝑚). Then 𝑄 =
(𝑥, 𝑧) is a prime ideal of height one and 𝑥 ∉ 𝑄𝑚 (in fact,
𝑥 is not even in 𝑄2). However, we see that 𝑥 ∈ 𝑄(𝑚)

because 𝑥 ∈ 𝑄𝑚𝑅𝑄 (𝑦 is a unit in 𝑅𝑄).

Although the above example shows that 𝑄𝑛 and 𝑄(𝑛)

can be quite different, a surprising result was obtained by
Swanson [Swa00] (see also [HKV09]), who proved essen-
tially that, for any complete local domain (𝑅,𝔪) and any
prime ideal 𝑄 ⊆ 𝑅, there is a constant 𝑘 (depending on
𝑅 and 𝑄) such that 𝑄(𝑘𝑛) ⊆ 𝑄𝑛 for all positive integers
𝑛. In other words, the difference between 𝑄𝑛 and 𝑄(𝑛) is
bounded “linearly.”

For complete regular local rings, we have an even
stronger result. The following theorem was proved when
our ring contains a field, by Hochster–Huneke [HH02]
(see also Ein–Lazarsfeld–Smith [ELS01]), and recently it
was extended to mixed characteristic in [MS18a]. Com-
pared with Swanson’s result mentioned above, the theo-
rem shows that for regular rings the constant 𝑘 can be cho-
sen to be the dimension of the ring. In particular it is in-
dependent of the ideal 𝑄!

Theorem 21. Let 𝐴 be a complete regular local ring of dimen-
sion 𝑑. Then for every prime ideal 𝑄 ⊆ 𝐴 and every 𝑛, we
have 𝑄(𝑑𝑛) ⊆ 𝑄𝑛.

We briefly explain the strategy of the proof of Theo-
rem 21 in mixed characteristic. The idea is to construct
a multiplier ideal like object in mixed characteristic and
then use the same strategy as in Ein–Lazarsfeld–Smith
[ELS01].12

For themoment suppose that𝐴 is a regular ring of finite
type over a field of characteristic0 (e.g.,𝐴=ℚ[𝑥1,… , 𝑥𝑑]).
Suppose that 𝔞 ⊆ 𝐴 is an ideal and 𝑡 ∈ ℝ≥0 a formal
exponent for 𝔞. In this setting we can take a log resolution

12A similar object exists in characteristic 𝑝 > 0 and is called the test ideal.
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𝜋 ∶ 𝑌 ⟶ Spec𝐴13 with 𝔞𝒪𝑌 = 𝒪𝑌(−𝐺) and define the
multiplier ideal at a maximal ideal 𝔪 ⊆ 𝐴14:

𝒥(𝐴𝔪, 𝔞𝑡) = Ann𝐴𝔪{𝜂 ∈ 𝐻𝑑
𝔪(𝐴) ∣ 𝜂 ↦ 0

∈ ℍ𝑑
𝔪(𝑅𝜋∗𝒪𝑌(⌊𝑡𝐺⌋))}.

This is an ideal of 𝐴𝔪 that measures the singularities of
𝑉(𝔞) ⊆ Spec𝐴, scaled by 𝑡, at𝔪 ∈ Spec𝐴. Crucially, for
the applications to the result on symbolic powers, the mul-
tiplier ideal satisfies the following “subadditivity” property
[DEL00]:

(†) 𝒥(𝐴𝔪, 𝔞𝑡𝑛) ⊆ 𝒥(𝐴𝔪, 𝔞𝑡)𝑛 for all positive integers 𝑛.

This essentially follows from the Kawamata–Viehweg type
vanishing result that accompanies the multiplier ideals
[Laz04], which can be stated dually as:

ℍ𝑖
𝔪(𝑅𝜋∗𝒪𝑌(⌊𝑡𝐺⌋)) = 0 for 𝑖 < 𝑑.

Philosophy. We examine the definition again. Roughly
speaking, the multiplier ideals associated to the pair (𝐴, 𝔞𝑡)
are elements of 𝐴𝔪 that annihilate all elements in the top
local cohomology module 𝐻𝑑

𝔪(𝐴) whose image in

𝐻𝑑
𝔪(𝑅𝜋∗𝒪𝑌)

is “almost annihilated” by 𝔞𝑡 (this is made precise in the
above definition as 𝔞 in 𝒪𝑌 is just 𝒪𝑌(−𝐺)).

Therefore, in order to extend the definition to mixed
characteristic and still have the nice properties such as the
subadditivity, one needs an object 𝐵 like 𝑅𝜋∗𝒪𝑌, which
has good vanishing properties and such that one canmake
sense of, or at least approximate, 𝔞𝑡 in 𝐵. It turns out that a
sufficiently large integral perfectoid big Cohen–Macaulay
(or almost big Cohen–Macaulay) algebra will do the job!
Below we give a definition of perfectoid multiplier ideal
[MS18a] for 𝐴 = ℤ𝑝J𝑥2,… , 𝑥𝑑K.

Using the fact that ideals aremade up of principal ideals,
one can essentially reduce the definition to the case where
𝔞 = (𝑔) is principal (we are absolutely hiding subtleties
here to keep the definitions cleaner). Let 𝐴∞ denote the

𝑝-adic completion of 𝐴[𝑝1/𝑝∞ , 𝑥1/𝑝∞

2 ,… , 𝑥1/𝑝∞

𝑑 ]; this is
the same as the definition of 𝐴∞ we used in the proof of
Theorem 1 in the second section. We then form 𝐴∞,∞ us-
ing Theorem 16 for our fixed element 𝑔 (or in the non-
principal case, to the generators of 𝔞). Then for a fixed
real number 𝑡 > 0, we can approximate 𝑡 (from above) by
rational numbers of the form 𝑎/𝑝𝑒, and observe we can
identify elements 𝑔𝑎/𝑝𝑒 ∈ 𝐴∞,∞ by construction. These
𝑔𝑎/𝑝𝑒

approximate 𝑔𝑡.

13This means 𝜋 ∶ 𝑌 ⟶ Spec𝐴 is proper birational, 𝑌 is regular, and 𝔞 ⋅ 𝒪𝑌 defines a
SNC divisor.
14This is not the usual definition of multiplier ideals as in [Laz04], but it is equivalent to
the usual definition via local and Grothendieck’s duality [Har66], see [MS18b, Section 2]
for a detailed explanation.

In the multiplier ideal definition, we extend 𝔞 to 𝒪𝑌
and then multiply the associated divisor by 𝑡 (and round
as appropriate). We do the same thing here: we define

𝜏(𝐴, (𝑔)𝑡)

=Ann𝐴 {𝜂∈𝐻𝑑
𝔪(𝐴) ∣ 𝑝1/𝑝∞𝑔𝑎/𝑝𝑒𝜂=0 in 𝐻𝑑

𝔪(𝐴∞,∞)}

where 𝑎/𝑝𝑒 > 𝑡 approximates 𝑡 from above.
Although this definition looks a bit technical, it turns

out that it satisfiesmany properties (including the subaddi-
tivity property (†)) similar to the multiplier ideal 𝒥(𝐴, 𝔞𝑡)
in characteristic 0. This allows us to prove Theorem 21.
Moreover, the crucial reason that the subadditivity holds
for 𝜏(𝐴, 𝔞𝑡) is because 𝐴∞,∞ is almost big Cohen–
Macaulay. We refer the interested reader to [MS18a, Sec-
tion 4] for details.
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Introduction
Over half a century ago, a groundbreaking technology, the
microchip, started appearing in computers and research
facilities around the world. Today there is no question of
its importance. Yet in 1968, ten years after its invention,
it was still a novelty to some: An IBM engineer famously
asked, “But what... is it good for?”1 Recent advances in the
development of quantum computers in some ways mirror
this evolution, though time, experience, and feverish me-
dia coverage ensure that few will ask the same naive ques-
tion. The similarity comes from the observation that quan-
tum computers are on a similar cusp, that of having broad
societal impact, as the microchip was in the last century.

After some reflection, mathematicians and scientists
may find themselves asking related questions. For instance,
What are quantum computers good for today? As a mathemati-
cian, what’s in it for me? and of course, How do they do
work? Other than the last question, there are few defini-
tive answers available. This article attempts to guide the
reader towards her own intuition regarding the first two
questions, but limits the “how” to a cursory glance and a
host of references.

This article covers quantum computing from the angle
of adiabatic quantum computing [7,13], which has proven to
have the shortest horizon to real-world applications, partly
due to a slightly easier path to development2 than alterna-
tive approaches such as gate-model quantum computers.

In this article we cover background on quantum anneal-
ing computing generally, the canonical problem formula-
tion necessary to program the D-Wave quantum process-
ing unit (QPU), and discuss how such a problem is com-
piled onto the QPU. We also cover recent joint work solv-
ing a problem from topological data analysis on the D-
Wave quantum computer. The goal of the article is to cover
the above from a mathematical viewpoint, accessible to a
wide range of levels, and introduce as many people as pos-
sible to a small portion of the mathematics encountered
in this industry.

Quantum Computing Background
Historical background. Richard Feynman is creditedwith
the initial ideas for computing with quantum mechanics,
presented in a seminal talk and subsequent paper from
1982, titled “Simulating Physics with Computers” [8]. Sig-
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nificant progress over the past decade has brought the
quantum computer industry into what some term the noisy
intermediate-scale quantum (NISQ) era [19]. While quan-
tum computers have yet to show an undeniable advantage
over classical systems, their theoretical advantages are well
documented. Particularly noteworthy are Shor’s algorithm
[20] and Grover’s search algorithm [10] for gate-model
quantum computers. Quantum annealing, the model
adopted by D-Wave Systems, also promises quantum
speedup [22]. Already, in a number of narrowly defined
use cases, improvements over classical computers have
been observed on theD-Wave quantum computer [16, and
references therein; 22].

Recalling Feynman’s famous quote from [8], “Nature
isn’t classical... and if you want to make a simulation of
Nature, you’d better make it quantum mechanical,” pre-
cise control over annealing properties, as exists on the D-
Wave quantum computer, allows for novel quantum mate-
rial simulation. Recent work by Harris, et al. [11, and refer-
ences therein] on phase transitions in spin glasses; and by
King, et al. [15] on Kosterlitz-Thoulless phase transitions
in exotic forms of matter show manifestations of the cen-
tral thesis of Feynman’s original paper.
Technical background. We absorb the majority of the
technical description of quantum annealing into this sec-
tion, saving a mathematical reformulation of certain as-
pects for the next two sections. The discussion below is
general to quantum annealing.

To lay the groundwork, we briefly describe D-Wave’s
specific implementation of a QPU, though much of the
technology described here is used by others exploring
quantum computers using superconductivity. The D-Wave
quantum computer is a programmable quantum computer
whose QPU is composed of a network of superconducting
flux qubits, each of which acts as a programmable Ising
spin. Electrical current may travel in either direction in
the qubit bodies, corresponding to up and down spins.
Tunablemutual inductances between pairs of qubit bodies
allow for in situ adjustment of magnetic coupling energy
between these pairs. On the current model, the D-Wave
2000Q, the grid of qubits is arranged in tiles of 𝐾4,4 bi-
partite graphs, known as unit cells. Qubits are connected
across unit cells, giving each qubit a degree of at most six
on the current hardware.

The D-Wave quantum computer implements a process
known as quantum annealing [7, 13], which is indepen-
dent of the chip architecture. The goal of a quantum an-
nealing computer is to find a low-energy state of a problem
Hamiltonian, 𝐻𝑃. The key is to initialize the system in a
ground state of a driver Hamiltonian, 𝐻𝐷, that is compu-
tationally trivial to obtain, then evolve the system from
that known state to the unknown ground state of 𝐻𝑃. The
quantumadiabatic theorem guarantees that if the time evo-

JUNE/JULY 2019 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 833



0 1

s

E
ne

rg
y

sc
al

e
(a

rb
it
ra

ry
un

it
s)

A(s)

B(s)

Figure 1. A typical annealing schedule. Scales are arbitrary.
The parameter 𝑠 evolves from 0 to 1, typically on the scale of
microseconds. At 𝑠 = 0 the system is in a ground state of the
driver Hamiltonian, 𝐻𝐷, in which 𝐴(0) ≫ 𝐵(0) and is then
evolved to a classical state such that 𝐵(1) ≫ 𝐴(1).

lution of a closed quantum system is slow enough, then
the system will remain in its ground state throughout the
process. Thus, at the end of a slow anneal process the
ground state of the quantum state will also be the global
minimum of the classical problem Hamiltonian. (See [7]
for more details.) Note that the D-Wave computer actually
runs the quantum annealing algorithm on an open quan-
tum system, that is, one that is coupled to a thermal envi-
ronment. Even with a slow annealing process, thermal ex-
citations can result in a distribution of states with energies
above the ground state. Sampling the system many times
helps to mitigate such effects, which are fundamental to
any open quantum system.

While not critical to understanding the mathematics in
the following sections, we state the adiabatic theorem
more precisely and describe its use in computation as this
provides important context for the goal of a quantum an-
nealing computer in general. Suppose the evolution of our
quantum system is governed by the time-dependent Schrö-
dinger equation [7],

𝑖 𝑑𝑑𝑡 |𝜓(𝑡)⟩ = 𝐻(𝑡) |𝜓(𝑡)⟩ ,

where |𝜓(𝑡)⟩ is a state vector in a complex 𝑛-dimensional
Hilbert space. Studying the ground state of |𝜓(𝑡)⟩ boils
down to an eigenstate problem. We consider certain in-
stantaneous eigenstates of 𝐻, 𝐸0(𝑡) ≤ 𝐸1(𝑡) ≤ ⋯ ≤
𝐸𝑛−1(𝑡), for fixed 0 ≤ 𝑡 ≤ 𝑇.3 In the language of eigen-
states, the adiabatic theorem guarantees that if |𝜓(0)⟩ is
the ground state of 𝐻(0), with eigenvalue 𝐸0(0), and if

3The exact value of 𝑇 is critical to the success of quantum annealing. A good derivation
can be found in [7] and references therein.

the spectral gap between the ground state and first excited
state is positive for all 𝑡 ∈ [0,𝑇], that is, |𝐸0(𝑡)−𝐸1(𝑡)| >
0, then the probability that |𝜓(𝑇)⟩ is in the ground state
is arbitrarily close to one. For technical caveats, see [7].

Consider the Hamiltonian,

𝐻(𝑠) =1
2𝐴(𝑠)𝐻𝐷 + 1

2𝐵(𝑠)𝐻𝑃, (1)

that contains the problem Hamiltonian, 𝐻𝑃, a driver
Hamiltonian, 𝐻𝐷, whose ground state is relatively easy to
construct,4 and 𝑠 ∈ [0, 1] (units are arbitrary). Typical
curves,𝐴(𝑠) and𝐵(𝑠), governing the evolution, or anneal-
ing schedule, of the system are shown in Fig. 1. Eq. (1) al-
lows us to leverage the adiabatic theorem for computation:
At 𝑠 = 0 the ground state is a global superposition of all
computational basis states, obtained through application
of a precise transverse magnetic field. From there the sys-
tem is evolved to the ground state of the classical system,
defined by 𝐻𝑃, at 𝑠 = 1.

We now describe the problem Hamiltonian in greater
detail. The structure of the operator

𝐻𝑃 =∑
𝑖
ℎ𝑖𝜎𝑧

𝑖 +∑
𝑖,𝑗

𝐽𝑖,𝑗𝜎𝑧
𝑖 𝜎𝑧

𝑗 (2)

is defined physically by manipulating local, real-valued
fields ℎ𝑖 and 𝐽𝑖,𝑗 on the QPU; the 𝜎𝑧 are Pauli spin matri-
ces. In quantum computation, the 𝑖th bit 𝑧𝑖 is replaced by
a qubit, |𝑧𝑖⟩. Each |𝑧𝑖⟩ represents the eigenstate of the 𝜎𝑧

𝑖
operator, an observable state of the 𝑖th physical flux qubit
in a D-Wave quantum computer. The eigenstates take val-
ues |↑⟩ or |↓⟩, with eigenvalues+1 and−1, indicating the
“spin” of the quantum system to be either “up” or “down.”
Hence, a problem space with 𝑛 qubits is spanned by a 2𝑛-
dimensional Hilbert space.

Some Examples, Broadly Described
Wenowdivorce ourselves from the physics and focus solely
on the problem Hamiltonian, 𝐻𝑃, going forward. In the
following subsections we discuss 𝐻𝑃 from three distinct
viewpoints. These short sections are meant to motivate
mathematicians by highlighting areas of deepermathemat-
ical formalism lurking behind quantum algorithms in gen-
eral, and quantum annealing formulations in particular.
In the first subsection, we consider 𝐻𝑃 as a polynomial
and point out some of the interesting consequences of this
perspective. Next, we discuss one of the fundamental ques-
tions that arises with a limited, and rather sparse, chip
topology: Howdoes one fit the graphical structure of a gen-
eral problem Hamiltonian onto the fixed graphical struc-
ture of the QPU? Lastly, we briefly follow up on the state-
ment made in the subsection about sampling, and argue

4This in no way implies that construction of a quantum computing device is trivial, only
that obtaining the ground state for 𝐻𝐷 is easier than finding the ground state of 𝐻𝑃
through non-adiabatic means.
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that there are possible benefits to this form of error correc-
tion.
Example 1: A polynomial viewpoint. Assume we have a
quantum annealing computer, such as the D-Wave quan-
tum computer, that is designed to seek a minimum energy
solution to an Ising problem, Eq. (2), or equivalently a
combinatorial optimization problem known as a quadratic
unconstrained binary optimization (QUBO) problem. A sim-
ple transformation takes the variables in an Ising formula-
tion to binary variables in aQUBO setting, using𝑦 ↦ 𝑦+1

2 ,
where 𝑦 is a spin variable in 𝐻𝑃 taking values in {−1, 1}.

We now describe the QUBO formulation of the prob-
lem Hamiltonian in more detail. We begin with a couple
of definitions.

Definition 3. Let 𝔹𝑛 ∶= ℤ𝑛
2 , the 𝑛-dimensional hypercube of

binary vectors.

After a transformation of variables, we can define the
problem Hamiltonian as a QUBO taking arguments from
𝔹𝑛.

Definition 4. Let

𝐻𝑃(𝐱) ∶=
𝑛
∑
𝑖=1

ℎ𝑖𝑥𝑖 +
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝐽𝑖,𝑗𝑥𝑖𝑥𝑗

be a real-valued polynomial with arguments 𝐱 ∈ 𝔹𝑛.

The polynomial 𝐻𝑃 is an interesting mathematical ob-
ject: The coefficients of 𝐻𝑃 live in ℚ, yet the variables are
restricted to 𝔹𝑛. To deal with this, at least notationally, we
define a restriction to the polynomials over the rationals.5

Definition 5. Define the set of polynomials with rational co-
efficient and binary variables, 𝐱 = (𝑥1,… , 𝑥𝑛) ∈ 𝔹𝑛, as
ℚ[𝐱|𝔹𝑛] ⊂ ℚ[𝐱].
Remark 6. We can regard ℚ[𝐱|𝔹𝑛] as a quotient ring,
ℚ[𝑥1,… , 𝑥𝑛]/⟨𝑥2

1 − 𝑥1,… , 𝑥2
𝑛 − 𝑥𝑛⟩. The ideal ⟨𝑥2

1 − 𝑥1,
… , 𝑥2

𝑛 − 𝑥𝑛⟩ absorbs all polynomials in ℚ[𝐱] for which the
binary constraint, 𝑥2

𝑖 = 𝑥𝑖, holds.

This remark points to an elegant area of research. Dridi
et al. [4] have leveraged the algebraic properties of 𝐻𝑃 in
developing a number of applications using the D-Wave
quantum computer. For instance, in [4] they leverage
Groebner bases to reduce the size of the problem prior
to sending it to the quantum computer. In [5], Dridi et
al. leverage computational algebraic geometry for the im-
portant problem of embedding the problem Hamiltonian
onto the QPU, a topic described in the subsection “Tech-
nical background.”

With Definition 3 and Definition 5, we can now state
the problem solved by the quantum computer more pre-
cisely.

5We could also take coefficients over ℝ.

Definition 7. Suppose we are given a Hamiltonian 𝐻𝑃 ∈
ℚ[𝐱|𝔹𝑛] and a quantum computer,𝒬, designed to implement
the adiabatic theorem using the time-dependent Schrödinger
equation Eq. (1). Then 𝒬 solves the combinatorial optimiza-
tion problem

ℋ ≡ argmin
𝐱∈𝔹𝑛

𝐻𝑃(𝐱), (8)

given proper assumptions on the evolution of the system 𝐻.

The combinatorial optimization problemdefined byℋ
represents, abstractly, the problem to be solved. These are,
in general, NP-hard problems, making the prospect of a
quantum annealing computer that can solve the class of
problems described by ℋ enticing. Lucas [17] provides a
thorough overview of methods for formulating a number
of NP-hard problems as QUBOs.
Example 2: Compiling 𝐻𝑃 – a graph minor embedding
problem. Much like a classical computer converts high-
level, abstract, and human-readable languages to machine
instructions, Eq. (8) must be converted to a quantum ma-
chine instruction (QMI) that will run on the quantum com-
puter. There are numerous steps in this process, one of
which, embedding, we touch on briefly in this section. It
is convenient to view the problem Hamiltonian, 𝐻𝑃, as a
weighted graph. In the subsection “The Wasserstein Graph
as a QUBO,” we construct a specific problem Hamiltonian
to make this connection more clear. Define 𝐺 = ⟨𝑉,𝐸⟩,
where the node set

𝑉 = {(𝑥1, ℎ1),… , (𝑥𝑛, ℎ𝑛) ∣ ℎ𝑖 ≠ 0}
is composed of nodes that are in direct correspondence
with each binary variable 𝑥𝑖, where 𝐱 = (𝑥1,… , 𝑥𝑛) ∈
𝔹𝑛. Each node is weighted by the bias on the qubit, ℎ𝑖.
Similarly, the edge set is composed of weighted edges de-
fined by the coupling terms in 𝐻𝑃, so that

𝐸 = {(𝑥𝑖, 𝑥𝑗, 𝐽𝑖,𝑗) ∣ 𝑥𝑖, 𝑥𝑗 ∈ 𝑉 and 𝐽𝑖,𝑗 ≠ 0}.
This definition of 𝐸 encodes the variable coupling in 𝐻𝑃.

The graph 𝐺 must be embedded onto the hardware to
solve 𝐻𝑃. Embedding the logical graph, 𝐺, onto the hard-
ware graph, 𝐾, amounts to finding a minor embedding. A
minor of a graph 𝐾 is a subgraph of 𝐾 obtained by con-
tracting or deleting edges, and omitting isolated vertices.
A minor embedding is a function that maps the vertices of
𝐺 to the power set of the vertices of 𝐾,

𝜓 ∶ 𝑉𝐺 → 2𝑉𝐾 ,
such that for each 𝑢 ∈ 𝑉𝐺, the graph induced in 𝐾 by
𝜓(𝑢) ∈ 𝑉𝐾 is connected. These connected components
within the hardware graph are termed chains. Embeddings
for which𝜓(𝑢) is a singleton for all 𝑢 are called native em-
beddings. Lastly, there exists an edge between 𝜓(𝑢) and
𝜓(𝑣) whenever 𝑢 and 𝑣 are adjacent in the logical graph.
The map 𝜓 is the minor embedding we seek. Whether
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Figure 2. The topological data analysis pipeline for persistent
homology (PH). Transformations containing portions
amenable to quantum computation are highlighted in the
green ovals.

𝐺 can be embedded as a minor contained in 𝐾 is known
to be NP-hard. Elegant, polynomial-time algorithms exist
for embedding problem Hamiltonians onto the the QPU
architecture [2]. The more efficient the embedding—the
shorter the chains—the larger the problem that can be
solved on the QPU.
Example 3:Distributions of solutions through sampling.
Quantum computers are inherently probabilistic, with
samples being drawn from an approximate Boltzmann dis-
tribution in the case of D-Wave’s implementation. Hence,
it is necessary to sample the energy landscape of the prob-
lem many times to obtain a distribution of solutions. This
is one form of error correction. For example, Shor’s algo-
rithm [20] is designed to return the prime factors of a num-
ber with high probability. Repeated sampling will provide
many possible factor pairs, leaving the final confirmation
of a much smaller set of possibilities up to a classical com-
puter.

On a quantum annealing computer, once the energy
landscape is defined by 𝐻, and the QUBO is embedded
on theQPU, a collection of hundreds or thousands of sam-
ples, {𝐱𝑖}, can be gathered quickly by repeatedly anneal-
ing the problem and reading out the answer. Each of the
𝐱𝑖 could be located at or near a local minimum, using
Hamming distance as a metric; or one may find solutions
with similar energy at opposite corners of the hypercube
𝔹𝑁. Combined with reverse annealing, a local search ca-
pability available on the D-Wave quantum computer, this
feature provides a powerful avenue to explore regions of
high probability (low energy) in multimodal systems, es-
pecially in the realm of neural networks and genetic algo-
rithms as discussed in [3]. We provide a brief example
of the sampling aspect of quantum computation applied
to Wasserstein distance in the subsection “Sampling solu-
tions.”

A Mathematical Application
Many users of the D-Wave quantum computer in recent
years have focused on hybrid workflows. In the context
of quantum computing, these are software pipelines that
use classical computers for a majority of their work, in-

serting quantum computation at compute-intensive bot-
tlenecks [18, 24]. This is a fruitful area to focus research
efforts as there will always be vast amounts of pre- and
post-processing within real-world pipelines. Much of that
processing is not amenable to quantumacceleration, yet al-
leviating bottlenecks has the potential to yield significant
computational gains.

In general, users seeking quantum speedup tend to iso-
late the tight “inner loop” of their problem, the bottle-
neck where computing this loop in one step will reduce
the complexity of the problem by orders of magnitude.
Recent work has looked at specific methods to speed up
the inner loop of topological data analysis pipelines [12,
25]. In Fig. 2, we show a typical topological data analy-
sis (TDA) pipeline. The blue boxes on the left represent
various potential data sources, while the pink boxes in the
middle, labeled 1, 2, 2′, and 3, show computational bot-
tlenecks in the TDA pipeline. The green ovals highlight
the algorithms that could potentially run on the quantum
computer to alleviate bottlenecks. Lastly, the final box on
the right assumes further processing using the features ex-
tracted by the TDApipeline. We used the scikit-tda package
for the TDA portion of our analysis. In the next two sub-
sections we provide a brief summary of persistent homol-
ogy (PH) and Wasserstein distance. In the subsection “The
Wasserstein Graph as a QUBO,” we translate the Wasser-
stein distance to a QUBO to compare the topological sig-
nature of point clouds. While not a bottleneck per se—
polynomial-time algorithms exist to compute Wasserstein
distance—it provides an instructive case for translating a
general problem to a QUBO and hence into a quantum
annealing framework. Our work shows the interplay be-
tween the underlying mathematics of the Wasserstein dis-
tance, the construction of a QUBO to solve the combina-
torial optimization problem in Definition 7, and provides
an example of the additional configurations returned as a
result of the probabilistic nature of quantum computation.
Persistent homology. Our interest in computing Wasser-
stein distances is rooted in the search for robust features
in noisy, real-world data. This section provides a brief
overview of the PH pipeline [6]. PH, one of the most
widely used tools in the field of TDA, is based on the idea
that analyzing noisy data through a sequence of resolu-
tions enables one to robustly identify and quantify struc-
ture in such data. Suppose we have a set of data points in
a metric space. PH uses a filtered topological space, such
as a simplicial or cubical complex, to study these data at
various resolutions. A typical assumption in PH is that the
data under study represents a random sample of points
taken from some distribution on a manifold embedded in
a nice ambient space likeℝ𝑑. It is the job of PH to discover
the homology of the underlying manifold from the data.
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Figure 3. Snapshots of a filtration, with the associated persistence diagram on the right. The original data set in the left figure is
generated by sampling points from two circles. A couple of steps in the filtration are shown with disks of radius 𝑟 = 0, 𝑟 = 0.25,
and 𝑟 = 0.65. For 𝐻0, at 𝑟 ≈ 0.55 we are left with a single connected component that persists forever. In the case of 𝐻1, the
persistence diagram shows two long-lived generators, both born shortly after 𝑟 = 1. When 𝑟 is just under 3 the central holes fill
in completely, causing each to become homeomorphic to a solid disk, and killing off those generators.

As an example, consider the point cloud, 𝐿, on the left
of Fig. 3. We take this as a collection of points in ℝ2 sam-
pled from two copies of 𝑆1 and then perturbed. The con-
cept of resolution is parameterized through the length pa-
rameter 𝑟. Given any 𝑟, we produce a Vietoris-Rips complex,
𝑉𝑟, from the data. A 1-simplex, or edge, is added between
two points, 𝑥,𝑦 ∈ 𝐿, whenever 𝑑(𝑥,𝑦) < 𝑟. Supposing
𝑥 and 𝑦 are not part of the same connected component al-
ready, this effectively merges two connected components
into one, with the corresponding disappearance of a gener-
ator in the zeroth simplicial homology group,𝐻0. Higher-
dimensional simplices of dimension 𝑘 > 0 are also in-
cluded in our accounting when all 𝑘 + 1 vertices of the
simplex, {𝑥0,… , 𝑥𝑘}, are within distance 𝑟 of each other.
As is clear from Fig. 3, we get that 𝑉𝑟 ⊂ 𝑉𝑟′ , for 𝑟 < 𝑟′.
This inclusion allows the PH algorithm to track the birth
and death of homology generators in 𝐻𝑘 as 𝑟 grows (see
[6]).

Given a fixed dimension 𝑘, we obtain a set (possibly a
multiset) of intervals, 𝐼𝑘 = {(𝑏,𝑑) ∣ 𝑏, 𝑑 ∈ ℝ}, defining
the birth and death (appearance and disappearance) of ho-
mology classes in 𝐻𝑘 as 𝑟 increases. The lifetime, 𝑏 − 𝑑,
of a generator is used to infer the robustness of the corre-
sponding topological feature. We visualize each 𝐼𝑘 by plot-
ting the points on a persistence diagram. The persistence
diagram on the right-hand side of Fig. 3 shows intervals
for 𝐻0 and 𝐻1, denoted by and▴, respectively. All con-
nected components are born at 𝑟 = 0, and merge into
one component at 𝑟 ≈ 1.2. This component lives for-
ever, as indicated by the line representing infinity. The di-
agram for𝐻1 indicates two long-lived homology classes at
(1.2, 2.7) and (1.1, 2.9). These correspond to generators
for the two large circles. The points just off the diagonal
represent short-lived generators that correspond to small,
insignificant cycles that had short lifetimes. These are of-
ten treated as noise. The intuition underlying PH is that
a point in the persistence diagram far from the diagonal
represents a homology class that appeared early in the fil-
tration and died late. Such a homology class represents a

robust topological feature within the noisy data.
Due to its abstract nature, PH tends towards a broad

user base, with successful applications showing up in a
wide variety of fields. For instance, mathematics and mate-
rial engineering merge nicely in the analysis of time series
obtained from rotating machines in [14]; financial crashes
produce persistence landscapes different from stable market
periods, as shown in [9]; and in [21] the authors describe
a robust method for detecting holes in sensor networks.

All of these studies rely on the ability to understand
trends and structures in data, which in turn requires a met-
ric with which to compare two or more data sets. Two pri-
mary metrics used in PH are the bottleneck distance and the
Wasserstein distance. For a finite dimension 𝑘, these met-
rics compute the distance between two data sets by com-
paring their persistence diagrams. We focus on the Wasser-
stein distance as we formulate an example of a quantum
annealing-enabled algorithm below.
Wasserstein distance as a graph matching problem. In
full generality, a persistence diagram is a finite multiset of
points in the plane. First, define the region in the plane
occupied by the persistence intervals as ℝ2

+ ∶= {(𝑏, 𝑑) ∣
𝑑 > 𝑏 and 𝑏 ≥ 0}. Second, for technical reasons, each
diagram also includes an additional set of countably infi-
nite copies of each point on the diagonal, Δ ∶= {(𝑑,𝑑) ∣
𝑑 ≥ 0}. The reason for this becomes clear when we de-
fine the Wasserstein distance for discrete data sets. Com-
bining these two sets, a persistence diagram is a collection
of points {𝑎1,⋯ , 𝑎𝑛}∪Δ, where each𝑎𝑖 ∈ ℝ2

+ may occur
repeatedly.

As mentioned above, in the analysis of data sets we are
often interested in the distance between two persistence di-
agrams, 𝑋 and 𝑌. The metric used is a discrete analog of
the more general Wasserstein metric, which computes the
minimal work required to transport the mass of one (con-
tinuous) probability distribution to another probability
distribution. In the discrete case, we are tasked withmatch-
ing points from opposing diagrams most efficiently so as
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to minimize the work6 necessary to transport the configu-
ration of points in 𝑋 to match the configuration of points
in 𝑌. In this case, we model the 𝑝-Wasserstein distance as

𝑑𝑝(𝑋,𝑌) = inf
𝜙∶𝑋→𝑌

( ∑
𝑎∈𝑋

‖𝑎−𝜙(𝑎)‖𝑝
𝑞)

1/𝑝

, (9)

where the infimum is taken over all bijections 𝜙 between
points in diagrams 𝑋 and 𝑌, 𝑝,𝑞 ∈ [1,∞), and ‖ ⋅ ‖𝑞
is the Euclidean 𝑞-norm [1]. It is convenient to use 𝑝 =
𝑞 = 2. Given a specific 𝜙, define the cost of the matching
induced by 𝜙 as

𝐶(𝑋,𝑌) = ∑
𝑎∈𝑋

‖𝑎−𝜙(𝑎)‖𝑝
𝑞, (10)

where we omit reference to 𝜙, 𝑝, and 𝑞 on the left-hand
side.

In practice, this is often solved by translating the bijec-
tion problem to a matching problem on a bipartite graph.
Suppose 𝑋 and 𝑌 are two persistence diagrams. We de-
scribe a method to represent the possible bijections be-
tween the diagrams 𝑋 and 𝑌 as a weighted bipartite graph
representation, that we then use to reformulate the cost
function Eq. (10) as a portion of a problem Hamiltonian.

First, denote by 𝑋0 and 𝑌0 the off-diagonal points in 𝑋
and 𝑌. Define the orthogonal projections of points in 𝑋0
and 𝑌0 onto the diagonal Δ by 𝑋′

0 and 𝑌′

0, respectively. In
the discrete setting, unequal numbers of points or indivis-
ibility of mass make some matchings infeasible or impos-
sible. In such cases the diagonal acts to absorb points in
𝑋0 or𝑌0 that cannot be matched. Then we can denote our
diagrams by 𝑋 = 𝑋0 ⊔ 𝑋′

0 and 𝑌 = 𝑌0 ⊔ 𝑌′

0, where we
have abused notation by redefining 𝑋 and 𝑌 to only con-
sider the finite collection of points we will use to compute
the Wasserstein distance. We now specify the graph used
to construct a QUBO that we embed on the D-Wave QPU.

Definition 11. Define the Wasserstein Graph 𝑊 ∶=
⟨𝑋∪𝑌,𝐸⟩, where the weighted edges 𝐸 ∶= 𝐸1 ∪ 𝐸2 ∪ 𝐸3
such that

𝐸1 ={(𝑢,𝑣, 𝜃𝑢𝑣) ∣ 𝑢 ∈ 𝑋0, 𝑣 ∈ 𝑌0}
𝐸2 ={(𝑢,𝑢′, 𝜃𝑢𝑢′) ∣ 𝑢 ∈ 𝑋0, 𝑢′ ∈ 𝑋′

0}
𝐸3 ={(𝑣,𝑣′, 𝜃𝑣𝑣′) ∣ 𝑣 ∈ 𝑌0, 𝑣′ ∈ 𝑌′

0},
and the edge weights are defined by

𝜃𝑢,𝑣 = {‖𝑢− 𝑣‖∞ if 𝑣 = 𝑢′

‖𝑢− 𝑣‖𝑞 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (12)

We abbreviate edge membership, writing 𝑢𝑣 ∈ 𝐸 for the edge
(𝑢, 𝑣, 𝜃𝑢𝑣).

6In the general case, the mass is variable, so transport between distributions involves the
traditional work = mass × distance formulation. We still use this terminology, except
mass = 1, so we neglect it.
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Δb0

Δb1

Δb2

Δa0

Δa1

Δa2

Δa3

b0

b1

b2

Figure 4. Bipartite graph with nodes on the left from 𝑋0 and
𝑌′

0, respectively (labeled by ’s and ▴’s); and nodes on the
right from 𝑌0 and 𝑋′

0, respectively (labeled by ’s and ▴’s).
The graph is complete only among off-diagonal points. (Edge
weights are omitted to reduce clutter.)

Fig. 4 shows an exampleWasserstein Graph for two per-
sistence diagrams. In this case, |𝑋0| = 4 and |𝑌0| = 3.
Notice that off-diagonal and diagonal projection nodes are
placed on opposing sides of the bipartite graph. Only the
subgraph containing off-diagonal points in 𝑋0 and 𝑌0 is
complete. This limits the number of possible bijections
between the two diagrams, a fact that helps to reduce the
complexity of the QUBO as will be seen in the next section.
We do not label edge weights in this example.
The Wasserstein Graph as a QUBO. The Wasserstein
Graph provides a succinct example of how one might
bridge mathematics and quantum computers. Given two
persistence diagrams, we construct a QUBO from the asso-
ciatedWasserstein Graph, 𝑊. The approach is straightfor-
ward. The QUBO must encode an objective function that
minimizes the work, or cost, 𝐶, by “turning on” specific
edges, while also enforcing certain constraints.

To make this precise, first we enumerate the edges that
will map to the logical qubits. The number of edges in 𝑊
is 𝑁 = 𝑚𝑛+𝑚+𝑛, where 𝑚 = |𝑋0| and 𝑛 = |𝑌0|. The
weighted edges in 𝑊 map to a set of tuples, {(𝑥𝑢𝑣, 𝜃𝑢𝑣) ∣
𝑥𝑢𝑣 ∈ ℤ2}. An edge𝑢𝑣 is activated if𝑥𝑢𝑣 = 1, otherwise it
is inactivated. We now rewrite Eq. (10) in terms that include
the logical qubits,

𝐻cost(𝐱) = ∑
𝑢𝑣∈𝐸

𝜃𝑢𝑣𝑥𝑢𝑣,

where 𝐱 = (𝑥𝑢𝑣) ∈ 𝔹𝑁. Each 𝐱 equates to a particular
matching between diagrams induced by 𝜙.

To avoid the case where setting𝐱 = 𝟎minimizes the ob-
jective, we must add constraints. Each 𝑢 ∈ 𝑋0 ∪𝑌0 must
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have degree exactly one in order to avoid duplication of
mass and to assure that every point is transported some-
where, either between diagrams or projected to the diago-
nal. The diagonal nodes can have degree zero or one, de-
pending on whether or not their off-diagonal partner con-
nects to another off-diagonal node. From these require-
ments we obtain

𝐻constraint(𝐱) = ∑
𝑢∈𝑋0

⎛
⎝
1− ∑

𝑢𝑣∈𝐸1∪𝐸2

𝑥𝑢𝑣⎞
⎠

2

+ ∑
𝑣∈𝑌0

⎛
⎝
1− ∑

𝑢𝑣∈𝐸1∪𝐸3

𝑥𝑢𝑣⎞
⎠

2

,

where the two outer summations consider only edges em-
anating from off-diagonal nodes. The summand, (1−∗),
enforces the requirement that off-diagonal nodes have de-
gree one. If each node in 𝑋0 ∪ 𝑌0 has degree one, then
𝐻constraint = 0; otherwise, one or both of the terms in the
expression will be positive, adding a penalty to the objec-
tive function.

The restriction of edges in 𝐻constraint reduces the com-
plexity of the discrete problem significantly in both the
classical and quantum computing cases by limiting the
number of possible bijections. It is especially beneficial
in quantum situations where physical qubits are at a pre-
mium.

Combining 𝐻cost and 𝐻constraint, we arrive back at the
general definition of the problem in Eq. (8) with

𝐻𝑃 ∶= 𝐻cost +𝛾𝐻constraint, (13)

where we have inserted the Lagrangian parameter 𝛾 to bal-
ance the magnitude of the terms. Quantum computers
are analog physical devices that have limited accuracy and
ranges for their parameters. Thus, determining correct pa-
rameters is essential for accurate solutions.

At this point, we can study 𝐻𝑃 ∈ ℚ[𝐱|𝔹𝑛], and also
note that the linear and quadratic terms in𝐻𝑃 define a log-
ical graph 𝐺 as discussed in the section “Example 2: Com-
piling 𝐻𝑃 – a graph minor embedding problem.” Quan-
tum annealing requires that 𝐻𝑃 be compiled to a QMI,
so at this point software converts the logical graph to the
hardware graph—the grid of qubits described earlier in
this section—through a minor embedding.

Eq. (13) contains an important question. While the de-
termination of the objective function and its constituent
constraints is straightforward, it is not entirely clear that
minimizing Eq. (13) yields the same value as Eq. (9). In
[1, Sec. 4], we prove that minimizing Eq. (13) computes
the 𝑝-Wasserstein distance, with the caveat that the mini-
mizer of ℋ provides an equivalent solution to Eq. (9) iff
𝛾 satisfies

Figure 5. Frequency of costs, 𝐻𝑃, computed on the D-Wave
quantum computer for different matchings between two
persistence diagrams. The diagrams were computed from a
torus and an annulus. For this example, 𝛾 = 1. Each distance
on the 𝑥-axis corresponds to a specific 𝐱 ∈ 𝔹𝑁. The
occurrences on the 𝑦-axis denote the number of times a
unique 𝐱 was sampled. The matching corresponding to the
Wasserstein distance, 1.03, is sampled most frequently.

𝛾 > max
𝑢𝑣∈𝐸

𝜃𝑢𝑣.

By keying the analysis of the quantum computational
problem off of a known computable metric, we are able
to determine exactly how to set hyperparameters properly.
By contrast, it is often necessary in general problems to per-
form searches of the parameter space before a reasonable
energy landscape, defined by 𝐻𝑃, can be processed accu-
rately by the QPU.
Sampling solutions. As mentioned in the section “Exam-
ple 3: Distributions of solutions through sampling,” so-
lutions returned by a quantum computer are probabilistic
in nature. We obtain many samples by running the an-
nealing procedure multiple times. In Fig. 5, the suite of
samples we gather represents the cost of different possible
matchings between the persistence diagrams of a torus and
an annulus. We use 𝐻𝑃(𝐱) to compute the cost. The low-
energy solutions represent valid matchings that do not vi-
olate constraints, e.g., 𝐻constraint(𝐱) = 0. The minimum
cost, 1.03, is the square of the Wasserstein distance, i.e.,
the infimum over all the possible valid matchings.

The different matchings and distances represent a dis-
tribution of low-energy solutions, each sample of which
comes from a different 𝜙 and produces a different cost us-
ing Eq. (10). In fact, Fig. 5 represents a distribution of 𝜙’s
sampled from an approximate Boltzmann distribution. In
future work we plan to study the implications for statis-
tics on persistence diagrams, along the lines outlined by
Turner et al. in their work on Fréchet means in [23].
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Conclusion
In this article we covered a number of mathematical as-
pects of quantum computing from a high level. Never-
theless, we have hardly scratched the surface of the sub-
ject. Interesting problems can be found in many different
areas, from physical applications, to theoretical improve-
ment of embedding QUBOs on the QPU, to decomposi-
tion of large problems into QPU-sized chunks.

Mathematicians and physicists have spent many years
developing algorithms designed to run faster on quantum
computers. The subtlety is that many of these methods re-
quire far more qubits than are available even on the 2000-
qubit D-Wave quantum computer. Luckily, even before
we reach that technological state, there is still exciting and
effective research that can be accomplished in the current
NISQ era. We hope that in touching on the mathematics
involved in programming a D-Wave quantum computer
we motivate interest in the myriad problems stemming
from using this novel computational tool.
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approximate groups. However, its roots go back to Robin-
son’s formalization of the infinitesimal approach to calcu-
lus. After first illustrating its very basic uses in calculus
in “Calculus with Infinitesimals,” we go on to highlight a
selection of its more serious achievements in “Selected
Classical and Recent Applications,” including the afore-
mentioned work of Jin and Breuillard–Green–Tao. After
presenting a simple axiomatic approach to nonstandard
analysis in “Axioms for Nonstandard Extensions” we ex-
amine Jin’s theorem in more detail in “The Axioms in Ac-
tion: Jin’s Theorem.” Finally, in “The Ultraproduct Con-
struction” we discuss how these axioms can be justified
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with a particular concrete construction (akin to the verifica-
tion of the axioms for the real field using Dedekind cuts or
Cauchy sequences), and in “Other Approaches” we com-
pare our axiomatic approach to other approaches. While
brief, our hope is that this survey can quickly give the read-
er a sense of both how nonstandard methods are being
used today and how these methods can be rigorously pre-
sented and justified.

Calculus with Infinitesimals
Every mathematician is familiar with the fact that the
founders of calculus such as Newton and Leibniz made
free use of infinitesimal and infinite quantities, e.g., in ex-
pressing the derivative 𝑓′(𝑎) of a differentiable function
𝑓 at a point 𝑎 as being the real number that is infinitely
close to 𝑓(𝑎+𝛿)−𝑓(𝑎)

𝛿 for every nonzero infinitesimal “quan-
tity” 𝛿. Here, when we say that 𝛿 is infinitesimal, we mean
that |𝛿| is less than 𝑟 for every positive real number 𝑟.

Of course, the mathematical status of such quantities
was viewed as suspect and the entirety of calculus was put
on firm foundations in the nineteenth century by the likes
of Cauchy and Weierstrass, to name a few of the more
significant figures in this well-studied part of the history
of mathematics. The innovations of their “𝜖-𝛿 method”
(much to the chagrin of many real analysis students today)
allowed one to give rigor to the naïve arguments of their
predecessors.

In the 1960s, Abraham Robinson realized that the ideas
and tools present in the area of logic known as model the-
ory could be used to give precisemathematicalmeanings to
infinitesimal quantities. Indeed, one of Robinson’s stated
aimswas to rescue the vision ofNewton and Leibniz ([20]).
While there are complicated historical and philosophical
questions about whether Robinson succeeded entirely in
this (cf. [5]), our goal is to discuss some recent applica-
tions of the methods Robinson invented.

To this end, let us turn now to the basics of Robinson’s
approach. On this approach, an infinitesimal 𝛿 is merely
an element of an ordered field 𝐑∗ properly containing
the ordered field 𝐑 of real numbers. While such nonar-
chimedean fields were already present in, for example, al-
gebraic number theory, the new idea that allowed one to
correctly apply the heuristics from the early days of calcu-
lus was that 𝐑∗ is logically similar to 𝐑, in that any ele-
mentary statement true in the one is also true in the other.
(Formally, elementary statements are defined using first-
order logic: see “Axioms for Nonstandard Extensions” for
a self-contained presentation.) A particular feature of this
approach is that one functorially associates to every func-
tion 𝑓 ∶ 𝐑 → 𝐑 an extension 𝑓 ∶ 𝐑∗ → 𝐑∗ (and similarly
for relations). In this light, 𝐑 is referred to as the standard
field of real numberswhilst𝐑∗ is referred to as a nonstandard
field of real numbers or a hyperreal field.

To illustrate this method, let us say that two elements
𝑎 and 𝑏 of 𝐑∗ are infinitely close to one another, denoted
𝑎 ≈ 𝑏, if their difference is an infinitesimal. Then one has:

Theorem 1. Suppose that 𝑓 ∶ 𝐑 → 𝐑 is a function and 𝑎 ∈
𝐑. Then 𝑓 is continuous at 𝑎 if and only if: whenever 𝑏 ∈ 𝐑∗

and 𝑎 ≈ 𝑏, then 𝑓(𝑎) ≈ 𝑓(𝑏). Likewise, 𝑓 is differentiable
at 𝑎 with derivative 𝐿 if and only if: whenever 𝑏 is a nonzero
infinitesimal in 𝐑∗, one has that 𝑓(𝑎+𝑏)−𝑓(𝑎)

𝑏 ≈ 𝐿.
Proof. We only discuss the continuity statement, since the
differentiability statement is entirely analogous. Suppose
that the assumption of the “if” direction holds and fix 𝜖 >
0 in 𝐑. In 𝐑∗, by choosing an infinitesimal 𝛿 > 0, the
following elementary statement about 𝜖 is true: “there is
𝛿 > 0 such that, for all 𝑏, if |𝑎 − 𝑏| < 𝛿, then |𝑓(𝑎) −
𝑓(𝑏)| < 𝜖.” The logical similarity mentioned above then
implies that this elementary statement about 𝜖 is also true
in 𝐑. But this is precisely what is needed to prove that 𝑓 is
continuous at 𝑎. The other direction is similar. □

Every finite element 𝑎 of ℝ∗ is infinitely close to a unique
real number, called its standard part, denoted st(𝑎). Thus,
the first part of the above theorem reads: 𝑓 is continuous
at 𝑎 if and only if: whenever st(𝑏) = 𝑎, then st(𝑓(𝑏)) =
𝑓(𝑎). In these circumstances, one can then write 𝑏 = 𝑎+
𝛿𝑥 and 𝑓(𝑏) = 𝑓(𝑎)+𝛿𝑦where𝛿𝑥,𝛿𝑦 are infinitesimals.
In his elementary calculus textbook based on nonstandard
methods, Keisler pictured this as a “microscope” by which
one can zoom in and study the local behavior of a function
at a point.

Besides extensionally characterizing familiar concepts
such as continuity and differentiability, the use of infinites-
imals can help to abbreviate proofs. To illustrate, let us
prove the following, noting how we can avoid the usual
“ 𝜖
2” argument and instead appeal to the simple fact that

finite sums of infinitesimals are again infinitesimal:

Corollary 2. Suppose that 𝑓 ∶ 𝐑 → 𝐑 and 𝑔 ∶ 𝐑 → 𝐑 are
both continuous at 𝑎 ∈ 𝐑. Then 𝑓 + 𝑔 is also continuous at
𝑎.
Proof. Consider 𝑏 ≈ 𝑎. By assumption, we have 𝑓(𝑏) ≈
𝑓(𝑎) and 𝑔(𝑏) ≈ 𝑔(𝑎). Then since the sums of two in-
finitesimals is infinitesimal, we have

(𝑓+𝑔)(𝑏) = 𝑓(𝑏)+𝑔(𝑏) ≈ 𝑓(𝑎)+𝑔(𝑎) = (𝑓+𝑔)(𝑎).
Since 𝑏 was arbitrary, we see that 𝑓 + 𝑔 is continuous at
𝑎. □

Selected Classical and Recent Applications
The primary reason for the contemporary interest in non-
standard analysis lies in its capacity for proving new re-
sults. In this section, we briefly describe a handful of the
more striking results that were first proven using nonstan-
dardmethods. We remark that nonstandardmethods have
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proven useful in nearly every area of mathematics, includ-
ing algebra, measure theory, functional analysis, stochas-
tic analysis, and mathematical economics to name a few.
Here, we content ourselves with a small subset of these ap-
plication areas.
Bernstein-Robinson theorem on invariant subspaces.
The famous Invariant Subspace Problem asks whether every
bounded operator 𝑇 on a separable Hilbert space 𝐻 has
a 𝑇-invariant closed subspace besides {0} and 𝐻. In the
1930s, von Neumann proved that compact operators have
nontrivial closed invariant subspaces. (Recall an operator
is compact if it is the norm-limit of finite-rank operators.)
Little progress was made on the Invariant Subspace Prob-
lem until:

Theorem 3 (Bernstein-Robinson [3]). If 𝑇 is a polynomi-
ally compact operator on 𝐻 (meaning that there is a nonzero
polynomial 𝑝(𝑍) ∈ ℂ[𝑍] such that 𝑝(𝑇) is a compact oper-
ator), then 𝑇 has a nontrivial closed invariant subspace.

One of the main ideas of the proof is to use the nonstan-
dard version of the basic fact that operators on finite-
dimensional spaces have upper-triangular representations
to find many hyperfinite-dimensional subspaces of 𝐻∗

which are 𝑇∗-invariant. (Upon seeing the Berenstein-
Robinson theorem, Halmos proceeded to give a proof that
did not pass through nonstandard methods and the two
papers were published together in the same volume.) We
should point out that the Berenstein-Robinson theorem
was later subsumed by Lomonosov’s theorem from 1973,
which says that an operator that commutes with a nonzero
compact operator satisfies the conclusion of the Invariant
Subspace Problem.
Asymptotic cones. In [11], Gromov proved the following
theorem, which is one of the deepest and most beautiful
theorems in geometric group theory:

Theorem 4. If 𝐺 is a finitely generated group of polynomial
growth, then 𝐺 is virtually solvable.

Here, a finitely generated group has polynomial growth if the
set of group elements that can be written as a product of at
most 𝑑 generators and their inverses grows polynomially
in𝑑. The polynomial growth condition is a geometric con-
dition describing the growth of the sizes of balls centered
at the identity in the Cayley graph of the group and the
amazing fact represented in this theorem is that this geo-
metric condition has serious algebraic consequences. (The
converse of the theorem is also true and much easier to
prove.)

A key construction in the proof of Gromov’s theorem is
that of an asymptotic cone of a metric space. Roughly speak-
ing, an asymptotic cone of a metric space is the result of
looking at the metric space from “very far away” retaining

only the large-scale geometry of the space. The prime ex-
ample of this phenomenon is that an asymptotic cone of
the discrete space 𝐙 is the continuum 𝐑.

In [8], van den Dries and Wilkie used the nonstandard
perspective to give a much cleaner account of the asymp-
totic cone construction. Indeed, given ametric space (𝑋,𝑑),
a fixed point 𝑥0 ∈ 𝑋, and an infinite hyperreal number
𝑅 ∈ 𝐑∗, one can look at the subspace

𝑋𝑅 ∶= {𝑥 ∈ 𝑋∗ ∶ 𝑑(𝑥, 𝑥0)
𝑅 is finite} .

One can then place the metric 𝑑𝑅 on𝑋𝑅 given by 𝑑𝑅(𝑥, 𝑦)
∶= st(𝑑(𝑥,𝑦)

𝑅 ). When 𝑋 is the Cayley graph associated to a
group, then the polynomial growth condition on Γ allows
one to find 𝑅 so that 𝑋𝑅 is locally compact; the verifica-
tion of this and other important properties of 𝑋𝑅 are very
clear from the nonstandard perspective. While Gromov’s
original proof did not use nonstandard methods, the non-
standard perspective on asymptotic cones has now in fact
become the one that is presented in courses and textbooks
on the subject. See, for instance, [18].
Jin’s Sumset Theorem. In additive combinatorics, the fo-
cus is often on densities and structural properties of sub-
sets of 𝐍. Given 𝐴 ⊆ 𝐍, we define the Banach density of 𝐴
to be BD(𝐴) ∶= lim𝑛→∞max𝑥∈𝐍 |𝐴∩[𝑥,𝑥+𝑛)|

𝑛 . If BD(𝐴) >
0, then we think of 𝐴 as a “large” subset of 𝐍. An impor-
tant structural property of sets of natural numbers is that
of being piecewise syndetic, where 𝐴 is piecewise syndetic if
there is 𝑚 ∈ 𝐍 such that 𝐴+ [0,𝑚] contains arbitrarily
long intervals. Renling Jin [14] used nonstandard analysis
to prove the following:

Theorem 5. If 𝐴,𝐵 ⊆ 𝐍 both have positive Banach density,
then 𝐴+𝐵 is piecewise syndetic.

Jin’s theorem has paved the way for further applications of
nonstandard methods in additive combinatorics, which is
now a very active area; see the monograph [6]. In “The
Axioms in Action: Jin’s Theorem,” we discuss the proof
of Jin’s theorem, using the formal framework for nonstan-
dard analysis that we set out in “Axioms for Nonstandard
Extensions.”
The structure of approximate groups. Fix 𝐾 ≥ 1. A sym-
metric subset 𝐴 of a finite group 𝐺 is said to be a 𝐾-
approximate subgroup of 𝐺 if 𝐴 ⋅ 𝐴 is contained in 𝐾 (left)
translates of 𝐴. Approximate subgroups are generaliza-
tions of subgroups (since a 1-approximate group is simply
a subgroup of 𝐺). The Freiman theorem for abelian groups
classifies𝐾-approximate subgroups of abelian groups (they
are, in some sense, built from generalized arithmetic pro-
gressions and group extensions). It was an open problem
whether or not a similar result held for𝐾-approximate sub-
groups of arbitrary (not necessarily abelian) groups.
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In [13], using sophisticated methods from model the-
ory, Hrushovski made a major breakthrough in the above
so-called nonabelian Freiman problem. While he did not
completely solve the problem, his breakthrough paved the
way for the work of Breuillard, Green, and Tao [4], who
reduced the use of sophisticated model theory in favor of
mere nonstandard analysis (while using more intricate
combinatorics) and, in the process, succeeded in provid-
ing a complete classification of arbitrary approximate
groups.

The key insight of Hrushovski (which is also present
in the Breuillard–Green–Tao work) is that a nonstandard
(infinite) approximate group can be “modelled” by a lo-
cally compact group, which, by the structure theory of lo-
cally compact groups, can in turn be modeled by finite-
dimensional Lie groups. (This is not unrelated to the use
of nonstandard methods in the proof of Gromov’s theo-
rem described above.) Thus, in attacking this problem of
finite combinatorics, one can use the infinitary tools from
differential geometry and Lie theory. Blurring the distinc-
tion between the finite and the infinite is a cornerstone
of many applications of nonstandard methods, allowing
one to leverage tools from either side of the divide when-
ever it proves convenient. Indeed, this is present even in
the characterization of differentiability from Theorem 1,
where the infinitary process of taking a limit is replaced by
the discretized finite quotient.

We mention in passing that the structure theory of lo-
cally compact groups, due to Gleason, Montgomery, and
Zippin, solved the fifth problem of Hilbert. Hirschfeld
[12] used nonstandard analysis to give a conceptually sim-
pler account of this solution. The first-named author gen-
eralized Hirschfeld’s account to solve the local version of
Hilbert’s fifth problem [10]; this was, in turn, a part of the
Breuillard–Green–Tao work mentioned above.

Axioms for Nonstandard Extensions
In this section, we describe an approach to nonstandard
analysis using three axioms (NA1)-(NA3). This follows
and elaborates on the treatment in the appendix of the
first-named author’s earlier coauthored work [7]. How-
ever, when specialized to the real numbers, axioms (NA1)-
(NA2) are very similar to Goldblatt’s [9] presentation of
nonstandard methods.

The approach through (NA1)-(NA3) should remind the
reader of the beginning of measure theory, where one sets
out carefully a class of sets that form the building blocks of
the subject-matter one is interested in. The most basic sets
are those built into what we call the structures in (NA1)—
and then we expand upon this class with the definable sets
of axiom (NA2). This is similar to how, in measure the-
ory, one might pass from basic half-opens on the real line

to the 𝜎-algebra generated by them. However, in nonstan-
dard analysis, we build up more complicated sets from ba-
sic sets simultaneously in a structure and a nonstandard
extension, similar to how one might look at varieties both
over a field and over various of its field extensions. Finally,
for our applications, we need a final axiom (NA3) that en-
sures that our class of definable sets in the nonstandard
extension has certain compactness properties.
Structures and axiom (NA1).

Definition 6. A structure 𝐒 = ((𝑆𝑖), (𝑅𝑗)) is a collection
of sets (𝑆𝑖 ∶ 𝑖 ∈ 𝐼), often called the basic sets of 𝐒, to-
gether with a collection (𝑅𝑗 ∶ 𝑗 ∈ 𝐽) of distinguished
relations on the basic sets, that is, for each 𝑗 ∈ 𝐽, there
are 𝑖(1),… , 𝑖(𝑛) ∈ 𝐼 such that 𝑅𝑗 ⊆ 𝑆𝑖(1) × ⋯ × 𝑆𝑖(𝑛).
Distinguished relations are also called primitives of 𝐒.

Later, it will be convenient to speak of the complete structure
on (𝑆𝑖), which is simply the structure with basic sets (𝑆𝑖)
and where we take all relations as the basic relations.

We can now state the first axiom of nonstandard exten-
sions, which simply explains what makes them extensions:

(NA1) Each basic set𝑆𝑖 is extended to a set𝑆∗
𝑖 ⊇ 𝑆𝑖 and,

to each distinguished relation 𝑅𝑗 as above, we associate a
corresponding relation

𝑅∗
𝑗 ⊆ 𝑆∗

𝑖(1) ×⋯×𝑆∗
𝑖(𝑛)

whose intersection with 𝑆𝑖(1) × ⋯ × 𝑆𝑖(𝑛) is the original
relation 𝑅𝑗.
Definable sets and axiom (NA2). Let 𝐒 be a structure.
Some notation: given 𝑖 ∶= (𝑖(1),… , 𝑖(𝑛)), we set 𝑆𝑖 ∶=
𝑆𝑖(1) × ⋯ × 𝑆𝑖(𝑛). It will also be necessary to declare 𝑆∅
to be a one-element set. For the sake of readability, if 𝑖
and 𝑗 are two finite sequences, then we write 𝑖 𝑗 for the
concatenation of the two sequences; if 𝑖 = (𝑖), then we
simply write 𝑖 𝑗 and similarly for when 𝑗 is a one-element
sequence.

We define the collection of 𝐒-definable sets to be the
Boolean algebras 𝒟𝐒(𝑖) (or simply 𝒟(𝑖) if 𝐒 is clear from
context) of subsets of 𝑆𝑖 with the following properties:

(1) ∅,𝑆𝑖 ∈ 𝒟(𝑖).
(2) For any 𝑖, {(𝑥, 𝑦) ∈ 𝑆𝑖 ×𝑆𝑖 ∶ 𝑥 = 𝑦} ∈ 𝒟(𝑖, 𝑖).
(3) If 𝑎 ∈ 𝑆𝑖, then {𝑎} ∈ 𝒟(𝑖).
(4) If 𝑅𝑗 ⊆ 𝑆𝑖 is a basic relation, then 𝑅𝑗 ∈ 𝒟(𝑖).
(5) If 𝐴 ∈ 𝒟(𝑖), then 𝐴× 𝑆𝑗 ∈ 𝒟(𝑖 𝑗) and 𝑆𝑗 ×𝐴 ∈

𝒟(𝑗 𝑖).
(6) If 𝐴 ∈ 𝒟(𝑖) and 𝑖⃗ = 𝑖1 𝑗 𝑖2 and 𝜋 ∶ 𝑆𝑖 → 𝑆𝑖1 𝑖2 is

the canonical projection, then 𝜋(𝐴) ∈ 𝒟(𝑖1 𝑖2).
While the closure properties of a Boolean algebra encode
propositional operations such as conjunction and disjunc-
tion, the additional postulates on the definable sets en-
code the operations of predicate logic: the identity relation
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is homophonically encoded in (2), while the last condi-
tion (6) encodes existential quantification since 𝑎1 𝑎2 is
in the projection 𝜋(𝐴) iff there is 𝑏 in 𝑆𝑗 with 𝑎1 𝑏 𝑎2
belonging to 𝐴.

Now, if 𝐷 ∈ 𝒟(𝑖) is an 𝐒-definable set, then define
the 𝐒∗-definable set 𝐷∗ simply by replacing all instances
of basic relations 𝑅𝑗 used in the construction of 𝐷 by 𝑅∗

𝑗 .
Note that not every 𝐒∗-definable set is of the form 𝐷∗ for
an 𝐒-definable set, e.g., {𝑎} for 𝑎 ∈ 𝑆∗

𝑖 \𝑆𝑖. And we will
soon see that such elements exist.

We can now explain the second axiom of nonstandard
analysis, the so-called transfer principle, which in the ter-
minology of definable sets simply says that the property
of basic relations from (NA1) also holds for arbitrary 𝐒-
definable sets:

(NA2) For any𝐒-definable set𝐷 ∈ 𝒟(𝑖), we have𝐷∗∩
𝑆𝑖 = 𝐷.

Axiom (NA2) states precisely what it means for the non-
standard extension to be logically similar to the original
structure. It is saying that any statement about elements
of the original structure that can be phrased in terms of de-
finable sets also holds within the nonstandard extension.
Compactness and richness (NA3). Our final axiom asks
that our nonstandard extensions contain sufficiently many
“ideal” elements analogous to the infinitesimal elements
added to 𝐑∗ in “Calculus with Infinitesimals.” Here is the
precise statement:

The structure 𝐒 is said to be countably rich if for all 𝑖⃗
and every countable family (𝑋𝑚)𝑚∈ℕ of elements of𝒟(𝑖)
with the finite intersection property, we have ⋂𝑚 𝑋𝑚
≠ ∅. Here the “finite intersection property” means that
𝑋𝑚1 ∩⋯∩𝑋𝑚𝑘 ≠ ∅ for all 𝑚1,… ,𝑚𝑘 ∈ ℕ.

Countable richness can be seen as a logical compactness
property when stated in its contraposed form: if 𝐒 is count-
ably rich and an 𝐒-definable set 𝑋 ∈ 𝒟(𝑖) is covered by
countably many 𝐒-definable sets 𝑋𝑚 ∈ 𝒟(𝑖), then 𝑋 is
already covered by finitely many of these 𝑋𝑚.

Here is the final axiom of nonstandard extensions:
(NA3) 𝐒∗ is countably rich.
Note that, as an ordered set, 𝐑 is not countably rich,

since ⋂𝑛(𝑛,+∞) = ∅. Thus our initial structure 𝐒 will
usually not be rich, which is why we consider now an ex-
tension 𝐒∗ of 𝐒 such that (NA1), (NA2), and (NA3) hold,
so 𝐒∗ is countably rich. One consequence is that if 𝑋 is
countable and infinite, then 𝑋∗ will have elements that
are not in 𝑋.

Richness is the precise formulation of asking that our
nonstandard extension have certain ideal elements analo-
gous to the infinitesimal elements of 𝐑∗. For example, if
𝐺 is a topological group, we will want there to be elements
𝑎 ∈ 𝐺∗ that are infinitely close to the identity element of
𝐺 in the sense that 𝑎 ∈ 𝑈∗ for every neighborhood 𝑈 of

the identity in 𝐺. If 𝐺 is first countable, then countable
richness will ensure the existence of such elements.

We should note that, for certain applications of non-
standardmethods, countable richness is not a strong enough
assumption. For example, we may want the analogous ver-
sion of countable richness to hold for families of definable
sets indexed by the real numbers rather than the natural
numbers. (Such richness is desirable, for example, in ap-
plications to combinatorial number theory; see [6].) In
this latter scenario, one would then assume that the non-
standard extension is 𝔠-rich, where 𝔠 is the cardinality of
the real numbers. One can of course speak of greater as-
sumptions of richness, but we will refrain from dwelling
too much on this point.

This concludes the list of our axioms for nonstandard
analysis. We remark that we could have also added distin-
guished functions in our definition of a structure, and then
a requirement in (NA2) for extensions of distinguished
functions. But working with graphs of functions, it is rou-
tine to see that such a set-up can be encoded in a purely
relational structure as above.

We now stress: all applications of nonstandard analysis can
proceed from the above three axioms alone.

Power sets and internal sets. The reader already familiar
with nonstandard analysis will notice that we have yet to
speak about a notion that is of central importance, namely
the notion of internal sets. We remedy that now.

For certain basic sets 𝑆 of our structure 𝐒, we often in-
clude also its power set 𝒫(𝑆) as a basic set, and the mem-
bership relation ∈𝑆∶= {(𝑥,𝑌) ∈ 𝑆 × 𝒫(𝑆) ∶ 𝑥 ∈ 𝑌}
as a primitive. This allows us to quantify over elements
of 𝒫(𝑆), and thus gives enormous expressive power. For
example, with 𝐑 and 𝒫(𝐑) as basic sets, together with the
membership relation between them and the ordering on𝐑
as primitives, we can express by an elementary statement
the fact that every nonempty subset of 𝐑 with an upper
bound in 𝐑 has a least upper bound in 𝐑 (i.e., the com-
pleteness of the real line).

Given 𝑌 ∈ 𝒫(𝑆), the formula 𝑣 ∈𝑆 𝑌 (with 𝑣 a vari-
able ranging over 𝑆) defines the subset 𝑌 of 𝑆, so 𝑌 is
not only an element in our structure 𝐒, but also an 𝐒-
definable subset of𝑆. In particular, every subset of𝑆 is now
𝐒-definable (while not every subset of𝒫(𝑆) is𝐒-definable).

Next, let an extension 𝐒∗ of 𝐒 be given that satisfies
(NA1) and (NA2). Then 𝑆∗ and 𝒫(𝑆)∗ are basic sets of
𝐒∗, and the star extension ∈∗

𝑆 of ∈𝑆 is among the prim-
itives. There is no reason for the elements of 𝒫(𝑆)∗ to
be actual subsets of 𝑆∗, or for ∈∗

𝑆 to be an actual mem-
bership relation, but we always arrange this to be the case:
just replace 𝑃 ∈ 𝒫(𝑆)∗ by the subset {𝑎 ∈ 𝑆∗ ∶ 𝑎 ∈∗

𝑆
𝑃} of 𝑆∗. This procedure is traditionally called Mostowski
collapse, and it identifies 𝒫(𝑆)∗ with a subset of 𝒫(𝑆∗).
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The subsets of 𝑆∗ that belong to 𝒫(𝑆)∗ via this identifica-
tion are traditionally called internal subsets of 𝑆∗. They are
in fact exactly the 𝐒∗-definable subsets of 𝑆∗, as is easily
checked.

The Axioms in Action: Jin’s Theorem
In this section, we give some details into the proof of Jin’s
theorem from “Jin’s Sumset Theorem.”
A few words on ℕ∗. First, it behooves us to give a pic-
ture of ℕ∗. We begin by noting that, by transfer, every
element 𝑁 of ℕ∗\ℕ is above every element ℕ in the or-
dering. Transfer implies that any element 𝑁 in ℕ∗\ℕ has
a predecessor in ℕ∗, which we denote by 𝑁 − 1; clearly
𝑁 − 1 is also infinite, whence we may consider its prede-
cessor 𝑁 − 2, another infinite element, and so on. Con-
sequently, 𝑁 is contained in a copy of the integers (called
a ℤ-chain), the entirety of which is contained in the infi-
nite part of ℕ∗. Note that 2𝑁 is an infinite number that
is contained in a strictly larger ℤ-chain, and that 𝑁

2 is an
infinite number contained in a strictly smaller ℤ-chain. Fi-
nally, note that if 𝑁 < 𝑀 are both infinite, then 𝑁+𝑀

2 is
contained in a ℤ-chain strictly in-between the ℤ-chains de-
termined by 𝑁 and 𝑀. We summarize:

Lemma 7. The set of ℤ-chains determined by infinite elements
of ℕ∗ is a dense linear order without endpoints.

By an interval 𝐼 ⊆ ℕ∗, we mean a subset of the form

(𝑎, 𝑏) ∶= {𝑥 ∈ ℕ∗ ∶ 𝑎 < 𝑥 < 𝑏}
for 𝑎 < 𝑏 in ℕ∗. The interval is said to be infinite if 𝑏−𝑎
is infinite.

Given a (finite) interval 𝐼 ⊆ ℕ, every subset 𝐷 of 𝐼,
being itself finite, of course has a cardinality that is an el-
ement of [0, |𝐼|). Analogously, given an infinite interval
𝐼 in ℕ∗ and a definable subset 𝐷 of 𝐼, there is a natural
notion of the definable cardinality |𝐷| of 𝐷, which is an
element of [0, |𝐼|). Indeed, we can view the cardinality
function | ⋅ | as a function on the product of basic sets
𝒫(ℕ) × ℕ × ℕ given by | ⋅ |(𝐷,𝑎, 𝑏) ∶= |𝐷 ∩ (𝑎, 𝑏)|
if 𝑎 < 𝑏 (and some other default value otherwise); the
nonstandard extension of this function then assigns a car-
dinality to definable subsets of intervals inℕ∗. By transfer,
the definable cardinality of an interval is simply its length.
Piecewise syndeticity. Our next order of business is to
give a nonstandard description of piecewise syndeticity,
which we introduced in “Jin’s Sumset Theorem.” Given
𝐶 ⊆ ℕ∗, a gap of 𝐶 on 𝐼 is a subinterval 𝐽 of 𝐼 such that
𝐶∩ 𝐽 = ∅.

Theorem 8. 𝐶 ⊆ ℕ is piecewise syndetic if and only if there is
an infinite interval 𝐼 ⊆ ℕ∗ such that 𝐶∗ has only finite gaps
on 𝐼.
Proof. We only prove the “if” direction. Suppose that 𝐼 is
an infinite interval such that 𝐶∗ has only finite gaps on 𝐼.

We first note that there is 𝑚 ∈ ℕ such that 𝐶∗ has only
gaps of length at most 𝑚 on 𝐼, whence 𝐼 ⊆ 𝐶∗ + [0,𝑚].
Indeed, if this were not the case, then the set 𝑋𝑚 ∶= {𝑥 ∈
𝐼 ∶ [𝑥, 𝑥+𝑚)∩𝐶∗ = ∅} is a nonempty definable subset
of ℕ∗ for each 𝑚, whence by countable saturation, there
is 𝑥 ∈ ⋂𝑚 𝑋𝑚; we then have that 𝑥, 𝑥+1, 𝑥+2,… ∉ 𝐶∗,
contradicting that 𝐶∗ has only finite gaps on 𝐼.

Now, given 𝑘 ∈ ℕ, let 𝑌𝑘 ∶= {𝑥 ∈ ℕ ∶ [𝑥, 𝑥 +
𝑘) ⊆ 𝐶+ [0,𝑚]}. By the last paragraph and transfer, we
have that 𝑌∗

𝑘 ≠ ∅, whence, by transfer again, we have
that 𝑌𝑘 ≠ ∅. Since 𝑘 was arbitrary, this proves that 𝐶 is
piecewise syndetic. □

As an aside, we invite the reader to use the previous the-
orem to give a quick nonstandard proof that the class of
piecewise syndetic subsets of ℕ is partition regular, mean-
ing that if 𝐴 is piecewise syndetic and 𝐴 = 𝐵 ∪ 𝐶, then
at least one of 𝐵 or 𝐶 is piecewise syndetic. Partition reg-
ularity is a crucial notion in Ramsey theory, and the fact
that the class of piecewise syndetic sets is partition regular
indicates that it is a robust structural notion of largeness.

For 𝑥,𝑦 ∈ ℕ∗, we write 𝑥 ∼ℕ 𝑦 if and only if |𝑥 − 𝑦|
is finite. This is an equivalence relation on ℕ∗ and we set
𝒞ℕ for the set of equivalence classes: per Lemma 7, this is
just the equivalence class of ℕ together with the ℤ-chains.
We let 𝜋ℕ ∶ ℕ∗ → 𝒞ℕ denote the canonical projection.
Again by Lemma 7, the linear order on ℕ∗ descends to a
dense linear order on𝒞ℕ. We can thus restate the previous
theorem as: 𝐶 is piecewise syndetic if and only if 𝜋ℕ(𝐶)
contains an interval.
Cuts. We now consider a different equivalence relation on
ℕ∗. Fix an infinite 𝑁 ∈ ℕ∗ and consider instead the re-
lation ∼𝑁 on ℕ∗ given by 𝑥 ∼𝑁 𝑦 if and only if |𝑥−𝑦|

𝑁
is infinitesimal. We let 𝒞𝑁 denote the set of equivalence
classes and 𝜋𝑁 ∶ ℕ∗ → 𝒞𝑁 the canonical projection. This
time, something interesting happens: as a linear order, an
initial segment of 𝒞𝑁 is isomorphic to the set of positive
reals (in particular, the initial segment consists of those
𝑥 such that 𝑥

𝑁 is finite, and the isomorphism is given by
sending 𝑥 to st( 𝑥

𝑁)).
The equivalence relations∼ℕ and∼𝑁 are instances of a

more general notion. We call an initial segment𝑈 ofℕ∗ a
cut if 𝑈 is closed under addition. Note that ℕ is the small-
est cut. Another example of a cut is the cut 𝑈𝑁 ∶= {𝐾 ∈
ℕ∗ ∶ 𝐾

𝑁 is infinitesimal}, where 𝑁 is infinite. As above,
for a cut 𝑈, defining 𝑥 ∼𝑈 𝑦 if |𝑥 − 𝑦| ∈ 𝑈 yields an
equivalence relation on ℕ∗ with set of equivalence classes
𝒞𝑈 and projection map 𝜋𝑈. (We chose ∼𝑁 and 𝜋𝑁 as
opposed to ∼𝑈𝑁 and 𝜋𝑈𝑁 for notational cleanliness.) As
before, the usual order on ℕ∗ descends to a linear order
on 𝒞𝑈.

We now recall a classical theorem of Steinhaus: if 𝐸 and
𝐹 are subsets ofℝ of positive Lebesguemeasure, then𝐸+𝐹
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contains an interval. Given that reals are simply equiva-
lence classes modulo the cut 𝑈𝑁 and in proving Jin’s theo-
remwe are looking for sums of cuts modulo𝑈ℕ to contain
an interval, it raises the question as to whether or not there
is a natural measure on any cut space 𝒞𝑈 for which the
analogue of Steinhaus’ theorem is true and which yields
Lebesgue measure in the case of the cut space 𝒞𝑁.

Earlier, we saw that every definable subset of an interval
𝐼 in ℕ∗ has a definable cardinality. This procedure leads
to a natural measure 𝜇𝐼 on the algebra of definable subsets
of 𝐼 given by 𝜇𝐼(𝐷) ∶= st( |𝐷|

|𝐼| ). The usual Carathéodory
extension procedure shows that 𝜇𝐼 can be extended to a𝜎-
additive probability measure on the 𝜎-algebra generated
by the definable subsets of 𝐼. Indeed, countable richness of
the nonstandard extension ensures that the hypotheses of
the Carathéodory’s extension theorem apply. The resulting
measure is called the Loeb measure on 𝐼with corresponding
𝜎-algebra of Loeb measurable sets.

If we are in the situation that 𝐼 = [0,𝑁) for 𝑁 infinite
and 𝑈 is a cut contained in 𝐼, then we can push forward
the Loeb measure to a probability measure on 𝒞𝑈, which
we also refer to as Loeb measure.

This procedure does in fact agree with Lebesgue mea-
sure in the case of the cuts 𝑈𝑁:

Theorem 9. Given an infinite 𝑁, the pushforward via 𝜋𝑁 of
the Loeb measure on [0,𝑁) is the Lebesgue measure on [0, 1].

Motivated by the preceding discussion, Keisler and Leth
asked whether the analog of Steinhaus’ result holds for ar-
bitrary cut spaces. Renling Jin answered this question affir-
matively:

Theorem 10 ([14]). Suppose that 𝐼 = [0,𝑁) is an infinite
interval and 𝑈 is a cut contained in 𝐼. If 𝐴 and 𝐵 are defin-
able subsets of 𝐼 with positive Loeb measure, then 𝜋𝑈(𝐴 + 𝐵)
contains an interval.

Technically speaking, in order for this to literally be true,
one needs to assume that𝐴 and𝐵 are contained in the first
half of 𝐼; otherwise, one needs to view 𝐼 as a nonstandard
cyclic group and then look at 𝐴 + 𝐵 in the group sense.
Without going into toomuch detail, the theorem is proven
by contradiction, taking a “maximal” counterexample, and
performing some nontrivial nonstandard counting.
Finishing the proof of Jin’s theorem. We now have all of
the pieces necessary to prove the sumset theorem. Suppose
that𝐴 and 𝐵 are subsets ofℕwith positive Banach density.
By the nonstandard characterization of limit, there is some
infinite interval 𝐼 such that BD(𝐴) is approximately equal
to |𝐴∗∩𝐼|

|𝐼| . In other words, BD(𝐴) = 𝜇𝐼(𝐴∗∩𝐼). Likewise,

there is an infinite interval 𝐽 such that BD(𝐵) = 𝜇𝐽(𝐵∗ ∩
𝐽). Without loss of generality, we may assume that |𝐼| =
|𝐽| = 𝑁 for some infinite 𝑁. Let 𝑎 and 𝑏 denote the left
endpoints of 𝐼 and 𝐽 respectively and set 𝐶 ∶= (𝐴∗ ∩

𝐼) − 𝑎 and 𝐷 ∶= (𝐵∗ ∩𝐽) − 𝑏. Note then that 𝐶 and 𝐷
are definable subsets of [0,𝑁) of positive Loeb measure.
Without loss of generality, we may assume that 𝐶 and 𝐷
belong to the first half of [0,𝑁). Then by Jin’s theorem
mentioned above, 𝜋ℕ(𝐶+𝐷) contains an interval in 𝒞ℕ.
Translating back by 𝑎+𝑏, one finds an infinite hyperfinite
interval on which 𝐴∗ + 𝐵∗ has only finite gaps, whence,
by the nonstandard characterization described earlier, we
see that 𝐴+𝐵 is piecewise syndetic.

The Ultraproduct Construction
Of course, the lingering question remains: given a struc-
ture 𝐒, is there a structure 𝐒∗ satisfying (NA1)-(NA3)?
Model theorists know these axioms to be consistent by
basic model-theoretic facts. However, in this section, we
present a construction that is much more “mainstream”
and easy to describe to nonlogicians.
Obtaining 𝐑∗ as an ultrapower. As in the passage from
any number system to an extension where we are trying
to add desired elements (e.g., the passage from 𝐍 to 𝐙 to
𝐐 to 𝐑 to 𝐂), we simply formally add the new desired
elements and then see what technicalities we need to in-
troduce to make this formal passage precise. In this case,
in passing from 𝐑 to 𝐑∗, we are trying to add infinite ele-
ments. Following the Cauchy sequence construction of 𝐑
from 𝐐, we can simply add the sequence 1, 2, 3,… to 𝐑
and view this sequence as an infinite element of 𝐑∗. Of
course, just as in the case of the passage from𝐐 to𝐑, many
sequences should represent the same element of 𝐑∗, e.g.,
the sequence −32,𝜋, 46, 4, 5, 6… should represent the
same sequence as 1, 2, 3,…. In general, we should iden-
tify two sequences if they agree on a big number of indices,
where two sequences (𝑥𝑛) and (𝑦𝑛) agree on a big num-
ber of terms if the set of 𝑛 for which 𝑥𝑛 = 𝑦𝑛 is a large
subset of 𝐍. Admittedly, the words “big” and “large” are
rather vague here, so we need to isolate some properties
that large subsets of 𝐍 should have; the resulting notion
is that of a filter on 𝐍. Since the definition makes perfect
sense for an arbitrary index set ℐ, we do so:

Definition 11. Suppose that ℐ is a set. A (proper) filter on
ℐ is a collection ℱ of subsets of ℐ satisfying:

• ∅ ∉ ℱ, ℐ ∈ ℱ;
• if 𝐴 ∈ ℱ and 𝐴 ⊆ 𝐵 ⊆ ℐ, then 𝐵 ∈ ℱ;
• if 𝐴,𝐵 ∈ ℱ, then 𝐴∩𝐵 ∈ ℱ.

Denoting the set of ℐ-sequences by 𝐑ℐ, the above defini-
tion of a filter was engineered so that the relation ∼ℱ on
𝐑ℐ defined by 𝑥 ∼ℱ 𝑦 if and only if {𝑖 ∈ ℐ ∶ 𝑥𝑖 = 𝑦𝑖} ∈
ℱ is an equivalence relation. We denote the equivalence
class of an ℐ-sequence 𝑥 from 𝐑𝐼 by [𝑥], and the set of all
such equivalence classes by𝐑ℱ. By identifying an element
𝑟 ∈ 𝐑 with the constant sequence 𝑐𝑟 = (𝑟, 𝑟, 𝑟,…), we
get a natural inclusion of 𝐑 into 𝐑ℐ, and by passing to the
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equivalence class we obtain the natural inclusion of𝐑 into
𝐑ℱ. In a diagram:

𝐑 𝑟↦𝑐𝑟 // 𝐑ℐ 𝑥↦[𝑥] // 𝐑ℱ

Note also that𝐑ℱ has a natural field structure on it extend-
ing the field structure on 𝐑.

There are now two problems with leaving things at this
level of generality. The first can be motivated by the desire
to turn 𝐑ℱ into an ordered field. The natural thing to do
would be to declare [𝑥] < [𝑦] if and only if {𝑖 ∈ ℐ ∶ 𝑥𝑖 <
𝑦𝑖} ∈ ℱ. However, it is entirely possible that, under the
above definition, wemay have∼ℱ-inequivalent sequences
𝑥 and 𝑦 for which [𝑥] ≮ [𝑦] and [𝑦] ≮ [𝑥]. We can
remedy this by adding one further requirement:

Definition 12. A filter 𝒰 on ℐ is called an ultrafilter if, for
every𝐴 ⊆ ℐ, we have that either𝐴 ∈ 𝒰 or ℐ\𝐴 ∈ 𝒰 (but
not both).

Here is the other problem: suppose that 𝒰37 is the col-
lection of subsets of 𝐍 defined by declaring 𝐴 ∈ 𝒰37 if
and only if 37 ∈ 𝐴. Although this hardly matches the in-
tuition of gathering large subsets of 𝐍, it is easy to see that
𝒰37 is in fact an ultrafilter on 𝐍, called the principal ultra-
filter on 𝐍 generated by 37. Now notice that in 𝐑𝒰37 , every
sequence is equivalent to the real number given by its 37th
entry. In other words, the infinite element 1, 2, 3,… that
we tried to add is not infinite at all, but rather is identified
with the very finite number 37. To avoid this triviality, we
add the following requirement:

Definition 13. If ℐ is an index set and 𝑖 ∈ 𝐼, we call𝒰𝑖 ∶=
{𝐴 ⊆ 𝐼 ∶ 𝑖 ∈ 𝐴} the principal ultrafilter on 𝐼 generated by
𝑖. An ultrafilter 𝒰 on 𝐼 is called principal if it is of the form
𝒰𝑖 for some 𝑖 ∈ 𝐼 and is otherwise called nonprincipal.

We may now summarize: for any nonprincipal ultrafil-
ter𝒰 on any index set ℐ,𝐑𝒰 is a proper ordered field exten-
sion of𝐑. Now, the ultrafilter on a set 𝐼may also be viewed
as a finitely additive {0, 1}-valued measure on ℐ, which,
moreover, gives points measure 0 precisely when the ultra-
filter is nonprincipal. In this way, the ultrapower construc-
tion of𝐑 bearsmuch resemblance to the practice common
in measure theory of identifying measurable functions if
they agree almost everywhere.
Ultrapowers of structures. The approach of the previous
subsection works to obtain, given an initial structure 𝐒,
structures 𝐒∗ satisfying (NA1) and (NA2). Indeed, given
any basic set 𝑆𝑖, we can set 𝑆∗

𝑖 ∶= 𝑆𝒰
𝑖 and given any ba-

sic relation 𝑅𝑗, we can set 𝑅∗
𝑗 ∶= 𝑅𝒰

𝑗 and 𝐒∗ = 𝐒𝒰. In
this case, 𝐒∗ is called the ultrapower rather than an ultra-
product. As before, we have the natural inclusions, and it
is clear that 𝐒∗ satisfies (NA1). The fact that (NA2) holds
in this context is an instance of a result in model theory

known as Łos’ theorem, which is easily proven by induction
on the “complexity” of definable sets. Further, that this
construction works for any initial structure 𝐒 is the fact
that one invokes to show that certain axiomatic theories
of nonstandard methods are conservative over certain ax-
iomatic theories of real numbers: i.e., anything that the
former theory proves the latter theory also proves (cf. [5]).
Getting richer. It turns out that obtaining countable rich-
ness via ultrapowers is quite straightforward:

Theorem 14 (Keisler [15]). Suppose that𝒰 is a nonprincipal
ultrafilter on a countably infinite index set ℐ. Then for any
structure 𝐒, 𝐒𝒰 is countably rich.

What about higher richness? If one insists on only using
ultraproducts as a means of producing nonstandard exten-
sions, then one can indeed obtain nonstandard universes
with higher richness properties at the expense of dealing
with some messy infinite combinatorics. Indeed, Keisler
isolated a combinatorial property of ultrafilters, called good-
ness, and proved the following theorem:

Theorem 15 (Keisler [16], [17]). Let 𝒰 be an ultrafilter on
a set ℐ. Then 𝒰 is good if and only if: for every structure 𝐒,
𝐒𝒰 is maximally rich.

Here, we are using the admittedly vague term maximally
rich to mean that the structure is as rich as the cardinality
of its underlying domain allows. In order for this theo-
rem to be useful, one needs to know that good ultrafilters
exist. This is indeed the case: Keisler first proved, under
the assumption of the Generalized Continuum Hypothe-
sis, that any infinite set possesses a good ultrafilter; later,
Kunen proved this fact without any extra set-theoretic as-
sumption.

Other Approaches
Ever since its inception, a slew of different frameworks for
approaching nonstandard analysis have been presented.
Many of these approaches can be viewed as attempts to
axiomatize different aspects of the ultraproduct construc-
tion. In this section, we briefly describe the differences be-
tween these approaches and our preferred approach using
(NA1)-(NA3).

One alternative approach is just to axiomatize the be-
havior of the embedding of the original structure in its
nonstandard extension. Depending on how formal one
sought to be, onemight then replace informal descriptions
of the original structure by some axiomatic characteriza-
tion of it. However, as the ultraproduct construction it-
self shows, first-order axioms cannot describe infinite struc-
tures up to isomorphism. Hence, if one sought first-order
axiomatic characterizations, one might seek to add on ax-
ioms suggestive of the way in which the original structure
was more canonical than its nonstandard extension. For
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instance, in the case of reals, one might add on first-order
axioms to the effect that any bounded subset of 𝐑 first-
order definable by recourse to𝐑∗ had a least-upper bound
(e.g., Nelson’s [19, 1166] principle of standardization).
Similar expressive difficulties emergewhen one tries to find
first-order axiomatic renditions of the richness conditions
(e.g., Nelson’s [19, 1166] principle of idealization, and
Hrbacek’s principle of bounded idealization). Since (NA1)
-(NA3) makes no pretense to be a first-order axiomatiza-
tion, it can avoid these niceties and just be content with
our informal understanding of the real numbers and the
richness conditions. In this, (NA1)-(NA3) is similar to
the superstructure approach of Robinson–Zakon (cf. the
Chang–Keisler model theory book), which additionally
builds in theMostowski collapsementioned in “Power Sets
and Internal Sets” and adopts a formulation of richness
which does not require the notion of definable set.

A particularly influential axiomatic approach was that
of Nelson’s internal set theory ([19]). Nelson’s aim was
to create an overall set theory for nonstandard methods.
In addition to the usual set-theoretic axioms, it also con-
tained the aforementioned principles of standardization
and idealization. Nelson’s approach seems natural given
that much of mathematics can be replicated in set theory.
However, as we have sought to stress in the applications in
“Selected Classical and Recent Applications,” many of the
most exciting applications of nonstandard analysis are to
local areas of mathematics. Hence, as far as applications
go, little seems to be gained by adopting the very global
perspective of set theory.

Another recent approach pioneered by Benci and di
Nasso [1] is to axiomatize the inclusion of the set of 𝐑-
valued sequences into the ultraproduct𝐑∗. Their theory is
called 𝛼-theory because they axiomatize the map 𝑥 ↦ [𝑥]
sending a sequence to its equivalence class (cf. the diagram
after Definition 11). They use the notation 𝑥 ↦ 𝑥[𝛼],
since this notation reminds one of field extensions. For in-
stance, it follows from the ultraproduct construction that
the operation sending 𝑥 to 𝑥[𝛼] commutes with addition
and multiplication:

𝑥[𝛼]+𝑦[𝛼] = (𝑥+𝑦)[𝛼], 𝑥[𝛼]⋅𝑦[𝛼] = (𝑥⋅𝑦)[𝛼]

The idea of𝛼-theory is to take these identities—and others
pertaining to sets of reals—as axioms, and to derive trans-
fer from these. The choice between 𝛼-theory and (NA1)-
(NA3) is similar then to the choice between Dedekind cuts
andCauchy sequences: they are both equally good descrip-
tions of their subject matter, but they just differ in which
basic properties are derived and which are taken as primi-
tive. One reason traditionally given for preferring Cauchy
sequences over Dedekind cuts is that it more readily gen-
eralizes to other situations, e.g., complete metric spaces.
Much the same is true of (NA1)-(NA3): since we can take

extensions of any structure, the approach works just the
same for, e.g., nonstandard 𝑝-adic analysis as for nonstan-
dard real-analysis. By contrast, with 𝛼-theory, in each case
one has to isolate some basic axioms that suffice for the
derivation of the full transfer principle, and in each case
one has to reprove the full transfer principle.

Another recent approach due to Benci and di Nasso [2]
seeks to characterize the nonstandard extensions of the re-
als as images of certain rings (they also have similar re-
sults for certain classes of spaces). While they state their
ring-theoretic results for the reals, their proof generalizes
as follows (recall the notion of complete structure given
immediately after Definition 6):

Theorem 16. Suppose that 𝐊 is the complete structure of an
uncountable ordered field. Then 𝐊∗ satisfies (NA1)-(NA2) if
and only if 𝐊∗ is the image under a ring homomorphism of a
composable ring over 𝐊.

In this, the ring is said to be composable over 𝐊 if it is a sub-
ring of the ring 𝐊ℐ of all functions from some index set ℐ
to the original field 𝐊 which is closed under taking com-
positions with functions from𝐊 to𝐊 (and which contains
all the constant functions). However, this of course is not
to say that studying composable rings is always the best
way to study nonstandard methods. After all, any group
is the image of a free group, but it would be a mistake to
approach all problems in group theory through the lens of
free groups.

A unifying motivation behind these recent approaches
is the desire for a more mathematically natural framework
for nonstandard analysis. By contrast, Robinson himself
was an instrumentalist about the methods he developed
(cf. [5]): He thought that their worth was tied less to any
notions of naturalness andmore to their proven track record
in obtaining results about standard structures, such as we
have surveyed in “Selected Classical and Recent Applica-
tions.” As we have sought to emphasize throughout, non-
standard methods such as (NA1)-(NA3) are easy to state
and use, and their consistency is easily verifiable via the
ultraproduct construction. In describing the ultraproduct
construction we mentioned the analogy with the Lebesgue
integral. Here is another respect in which they are simi-
lar: to use the Lebesgue integral correctly, one does not
need to keep its measure-theoretic construction constantly
in view, but rather one can just work with characteristic
properties of it, like theDominated Convergence Theorem.
Likewise, to use nonstandard methods correctly, one does
not need to keep the ultraproduct construction constantly
in mind. Rather, as we sought to illustrate with Jin’s Theo-
rem in “The Axioms in Action: Jin’s Theorem” one can do
nonstandard analysis just using the three simple axioms
(NA1)-(NA3).
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EARLY CAREER
The Early Career Section is a new community project, featured here in the Notices. This compilation of articles will provide  
information and suggestions for graduate students, job seekers, early career academics of all types, and those who 
mentor them. Angela Gibney serves as the editor of this section. This month’s theme is Getting Ready for the Academic 
Job Market. Next month’s theme will be Teaching.

Cultivating an Online 
Presence for the 
Academic Job Market

Holly Krieger
When you’re on the market, time is your most valuable 
commodity. Maybe you’re rushing to finish and write a nice 
result before your applications go out. Perhaps you’re busy 
expanding your knowledge of the literature and thinking 
deeply about where you might take your work in the next 
five years to make your research statement as compelling as 
possible. There are so many time-consuming ways to invest 
your valuable time in improving your application that be-
fore going any further, I should explain why cultivating an 
online presence is worth the effort. Some mathematicians 
deride the notion that such a presence is necessary when on 
the market; however, these are often the same people who 
strongly encourage their students and postdocs to build 
reputation by “getting themselves out there” at conferences 
and via email.

An easily discoverable and informative online presence 
is the modern supplement to conference introductions 
and mathematical correspondence. Hiring committees 
are not passive entities that sit back and wait for the best 
candidates to approach them. Well before any deadlines 
arrive, some departments with open positions are seeking 
out and contacting qualified candidates who are most likely 
to suit their subject-area needs. The names that arise this 
way are often people unfamiliar to most or all members 
of a hiring committee, and the first step taken is to gather 
more information about these potential applicants by 
searching online. By curating an online presence, you lead 
them directly to your research and answer basic questions 
about your field of study, whether you’re on the market, 
your inclination toward teaching or a research focus, and 
so on. Making this information easily available can lead to 
your application being solicited by universities you never 

For permission to reprint this article, please contact: reprint-permission 
@ams.org.
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to your successes, and including content (such as videos or 
paper summaries) that highlight your abilities.

Actively engaging. A basic professional webpage is a 
good starting point, but a more active online engagement 
can be worth the effort. Math communication and other 
online outreach are increasingly valued by universities, 
and can connect not just the general public but also other 
mathematicians (who might be involved in hiring) to your 
work. Maintaining a mathematical blog, Twitter, or You-
Tube account increases both your professional network and 
your online professional content. This content showcases 
your communication, outreach, and teaching abilities as 
no paper application can.

Now go and do it! In the academic job search, your 
goal is not only to be an excellent candidate, but also to 
communicate that fact as widely as possible. By cultivating 
an online presence, you easily and effectively disseminate 
the most impressive features of your application, and open 
lines of communication that can result in unexpected op-
portunities. You’ve worked for years building the profes-
sional experience to prepare you for this job search—now 
go and make sure everyone knows it.

Credits
Photo of Holly Krieger is courtesy of the author.

dreamed might have interest in you, and by departments 
you didn’t realize would be an excellent fit.

Solicited application or not, online content can give 
you an edge in presenting the strongest aspects of your 
file. In application files, a candidate’s features and ac-
complishments are all presented equally dryly, and in no 
particular order. On the other hand, your website, blog, 
or social media can (and should) draw attention to your 
most outstanding features. Are you particularly proud of a 
recent paper? Include a summary for non-experts on your 
webpage that communicates the importance of the work. 
Are you an excellent speaker or teacher? Embed a video of 
your talks or lectures on your page, start a YouTube channel, 
or promote your videos or course development on social 
media. By creating content, you control and direct the 
searcher’s attention to your best attributes.

The bare minimum. One effort you must make is to 
ensure that your online presence doesn’t work against you. 
Not having a professional website is unusual (and frustrat-
ing) enough that it counts as a negative against you! Even if 
it is bare-bones, have a departmental website. It’s also criti-
cal that your pages are up-to-date. Both a nonexistent and a 
very old site not only fail to provide useful information to 
searchers but also communicate that you are probably not 
on the job market (and possibly no longer in academia).

It is in your best interest to communicate only profes-
sional information to potential employers. If you have 
any social media, blogs, or websites that contain offensive, 
embarrassing, or controversial opinions or images, or 
are purely personal, you are better off making them only 
privately accessible. This is a matter of directing your audi-
ence’s attention beneficially rather than censoring yourself. 
If making such content private offends your sensibilities, or 
it is externally hosted and cannot be made private, at least 
be sure that you do not link to it on any professional pages.

Your professional webpage. Once you’ve mitigated any 
negative online presence, the most fundamental tool to de-
velop is your professional webpage. Your webpage should at 
a minimum provide your contact details and field of study, 
your CV, and information on or links to your research and 
teaching experience. If you come to a department’s atten-
tion via word of mouth, there may not be anyone on the 
faculty who knows whether you’re on the market or not. A 
seemingly uncommon but vastly useful line to add to the 
top of your webpage is: “I am on the job market in [year].” 
A photo on your site can make it, and your application, 
more memorable. A photo related to professional activities 
is a better choice than one from a night out drinking ten 
years ago—and yes, that latter happens more frequently 
than you might think.

Once the basics are in place, give some thought to how 
your webpage might emphasize your strengths; if you 
don’t know what the strengths of your application are, ask 
someone! This information will tell you how to order and 
organize your website to your advantage, drawing attention 

Holly Krieger
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automatically rank a candidate higher than a well-qualified 
applicant coming right out of a PhD.)

CT: At liberal arts institutions, teaching is nearly always 
the top institutional priority, and this priority may create 
opportunities to work closely with students and make a 
significant impact on their educational experiences. Ad-
ditionally, some liberal arts school careers might involve 
a good deal of formal and/or informal interaction with 
faculty from other departments. If working closely with 
students appeals to you, and if you are intrigued by think-
ing about how mathematics complements and connects to 
other disciplines, a liberal arts career could be a rewarding 
one for you.

Q: What is the most common mistake you see in applications?

CT: Generic cover letters. Cover letters addressed to the 
wrong college. Egregious typos or, even worse, misspelled 
names of people at my institution. Most of all, no attempt 
to address the liberal arts.

JR: Anyone who doesn’t tailor their application has little 
chance of making it into our top twenty. 

RK: I don’t expect everything to be customized, but if 
someone mischaracterizes my school or our students, that 
is going to reduce the chance that I perceive them to be a 
good fit. 

Q: What makes a strong cover letter?
 
RK: The cover letter is where you make a first impression, 
establish connections with a particular school, and con-
vince a committee that this is a conversation they want 
to continue. If there are specific criteria mentioned in a 
job ad, be sure to address them, and if you don’t fit the 
requirements in an obvious way, use your letter to make a 
compelling case for why you still believe that you’re a good 
fit. Be clear that you value the kind of school that you are 
addressing—the category of “liberal arts institution” covers 
a wide range of colleges and student demographics, and you 
should demonstrate an awareness and appreciation for the 
one mentioned in the specific letter. If there is something 
unique in your experiences, highlight it here so that it won’t 
get overlooked in a quick skim of your CV.

JR: I like to see that you’ve taken the time to get to know our 
school. The best cover letters I’ve seen also show evidence 
that you’re someone who takes initiative. Tell us something 
you’ve done with your teaching/research/outreach/service 
that goes above and beyond, and talk about how that fits 
into your future with us. 

Interested in Applying 
to a Liberal Arts 
Institution?: 
Perspectives from Reva 
Kasman, Julie Rana, 
and Chad Topaz
Linda Chen
What follows was extracted from conversations with Reva 
Kasman, Julie Rana, and Chad Topaz about applying to 
faculty jobs at liberal arts institutions.

General Comments:
RK: There is a wide spectrum of schools in terms of aca-
demic standards, student demographics, class size, expec-
tations for faculty teaching load and research/scholarship, 
even within the broad category of “liberal arts colleges” or 
liberal arts-focused comprehensive universities. Applicants 
should have an open mind when looking at the different 
options for jobs and consider what will genuinely be a good 
fit, both professionally and personally.

JR: The most important thing you can do is to educate 
yourself about the types of jobs available: public/private, 
religiously-affiliated/secular, liberal arts/technical/R1, 
undergraduate-only vs. masters granting vs. PhD granting. 
Talk to people at these different types of institutions. Make 
sure you understand what liberal arts colleges actually are 
and why you want to go in that direction.

RK: Some liberal arts schools can have heavy teaching loads 
(3–4 courses in a semester), but some will also have very 
high research standards. So if your goal is a tenure-track 
job at a school with significant expectations for research 
output, consider whether you will be better positioned for 
such a job by doing a research postdoc first. (On the flip 
side, a research postdoc is not essential for every liberal 
arts tenure-track position, and having done one will not 
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cation materials appropriately. You might talk to people at 
smaller conferences about their jobs or read journals like 
MAA FOCUS or PRIMUS to increase your understanding of 
what is innovative in undergraduate teaching, and the kinds 
of scholarship and service that liberal arts faculty often do 
beyond traditional math research. Finally, start your job 
application materials early in the summer before you go 
on the market and get more than one person’s feedback, 
ideally from someone at the type of school where you think 
you might like to work.

JR: Other ways to show interest in working with undergrad-
uates: help a professor at your institution advise a summer 
undergraduate student (whether as part of an REU or not), 
get involved with your university’s Putnam exam group 
or math club, organize outreach/enrichment activities, or 
help mentor an undergraduate’s senior project. I would 
also encourage you to experiment with your teaching, and 
get feedback from your university’s center for teaching and 
learning. You might also attend some sessions at MAA 
MathFest or the JMM specifically about teaching, and think 
critically about how you can incorporate some of these 
ideas into your own classes.
 
Q: What do you look for in a teaching statement?

JR: Above all, I’d rather see an anecdote than a philosoph-
ical description. More specifically, I look for evidence that 
you’re truly interested in experimenting with your teaching. 
It’s also important to me and to my institution that you’ve 
thought about and made progress toward managing diver-
sity in the classroom. Be honest and thoughtful about what 
you do well, moments of failure and what you learned from 
them, and what you’d like to explore in the future.

CT: I look for authenticity, enthusiasm, organization, and 
pedagogy. I have hundreds of statements to read, and the 
best ones make clear for me what the main messages are 
by providing organization and by highlighting key points. 
The candidates who impress me the most are the ones who 
educate themselves about effective practices and put these 
practices into use.

RK: Avoid using trendy pedagogical “buzzwords” for their 
own sake, but if you genuinely subscribe to a particular 
philosophy or technique, then make sure to show how it 
tangibly appears in your classroom teaching. Your teaching 
statement should emphasize student learning of mathe-
matics (which may include content knowledge acquisition, 
problem solving, critical thinking, applications, etc.) and 
how you strive to foster these skills effectively. Ideally, a 
teaching statement demonstrates an awareness that class-
rooms include students with a diversity of mathematical 
knowledge, interest levels, and career goals, and addresses 
the ways that you endeavor to create successful students 

CT: The most effective letters I’ve read are the ones that 
followed directions, sounded genuinely enthusiastic, and 
were specific about my liberal arts institution and the 
reasons that the applicant wanted to come be a faculty 
member there.

Q: What can I do one to two years before going on the job market 
to be better positioned at application time?

CT: Search committees will evaluate you based on your 
teaching effectiveness, your interest in and/or commitment 
to the liberal arts, and, possibly, your research contributions 
and your ability to advise student research. Make sure you 
have a portfolio of evidence along these axes. For teaching, 
the strongest applicants will have experience as instructor 
of record for at least one or two courses. If you are a grad-
uate student and the opportunity to serve as instructor 
of record isn’t available to you, make sure you serve as a 
TA frequently so that you build the group of courses with 
which you are familiar. Search committees are often im-
pressed by candidates with well-rounded course portfolios 
that demonstrate experience with courses for non-majors, 
introductory courses for the major, upper-division core 
courses, and courses on specialized topics. Educate yourself 
about how to be a successful teacher and document your 
success by saving your teaching evaluations and by asking 
long-term faculty in the department and/or the director 
of your campus’s teaching center to observe you so that 
they can write specific things about you at application 
time. To demonstrate interest in the liberal arts, take every 
opportunity to network with faculty at liberal arts colleges 
and volunteer to come visit them to give a talk and/or do 
outreach. To amass a convincing research portfolio, try 
to get a paper or two into print before you apply. Give as 
many conference talks as you can. Network with researchers 
outside of your institution who then might be able to write 
detailed and convincing letters about you at application 
time. Finally, seek the opportunity to supervise student 
research as part of a summer program, independent study, 
or thesis experience.

RK: While every liberal arts school is different, all of them 
will be looking to hire someone who demonstrates a com-
mitment to high quality undergraduate teaching. Consider 
whether your teaching experience might seem sparse or lack 
diversity. If you are a graduate student who has had primar-
ily research-based funding, it may be worth requesting a 
semester of teaching to add to your CV. If your teaching has 
been fairly limited in scope (e.g., only running discussion 
sections if you are a TA or only having taught calculus), 
ask your department if there are opportunities to teach a 
course or work with a student population that will broaden 
your experiences. Expand your knowledge of the range of 
schools that are out there so that you have a better sense of 
what jobs might be a good fit, and then tailor your appli-
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Q: What are some characteristics of a good teaching recom-
mendation?
 
RK: The best recommendations are likely to come from 
someone with whom you have an established and ongoing 
relationship about your teaching. This can be a formal su-
pervisor or simply a faculty member who has both seen you 
teach and had conversations with you about your course 
planning, assessment, and things that challenged you. Such 
a person has the material to write a well-rounded letter 
about who you are as a teacher, rather than just giving a 
quick summary of a single class observation or student eval-
uation data. If you don’t have a long-standing relationship 
with a teaching mentor or colleague, it is still worth being 
proactive about obtaining an informative letter: invite a 
faculty member to come to your current class at least once 
and have follow-up discussions with that person. Remem-
ber that outside of your institution, no one will know if 
there is a person who typically writes everyone’s teaching 
letters (e.g. a director of undergraduate studies), so it is 
more important to get an insightful and personalized letter 
from an educator you trust than to get a formulaic letter 
from someone designated to this role.

JR: In a nutshell, I look for any evidence that you’re a 
productive colleague who’s thoughtful about your teach-
ing. The most helpful teaching recommendations make 
it clear that the letter writer has observed many different 
instructors and has observed you multiple times over one 
or two courses. This makes any comparison with your 
peers more convincing. I also appreciate reading recom-
mendations from letter writers who are aware of modern 
teaching practices.
 
CT: They are specific and enthusiastic. For graduate stu-
dents, letters from a professor or administrator who has 
supervised a course that say little more than “so-and-so 
was a good teaching assistant” convey little information 
and might even be read as lukewarm. As with most types 
of writing, specificity really matters. I get the most infor-
mation from letter writers who have observed a candidate 
teaching and spoken to them about their pedagogical goals. 
From these letters, I learn how the candidate structures their 
course or discussion section, what they do in and out of the 
classroom, and how students respond to them. You, as a 
candidate, can encourage your letter writer to include this 
type of information. “Here's my assessment scheme for this 
course, and here’s how it aligns with effective practice,” you 
could say. “It would be so helpful if you could mention this 
in the letter you write for me.”

across this spectrum. Remember that a faculty position at a 
liberal arts college can involve teaching up to four courses 
at a time, so consider whether the highlighted characteris-
tics of your teaching style are going to be replicable—for 
instance, talking about how you spend hours with indi-
vidually struggling students may seem admirable, but can 
convey a lack of realism about what your job will entail and 
what students need inside the classroom. Finally, while I 
expect that a teaching statement will focus on a candidate’s 
strengths, I look for evidence that someone is reflective 
about what is challenging in teaching mathematics, and 
where they perceive themselves to have room for future 
growth.

Q: What do you look for in a research statement?
 
CT: The weakest research statements are ones where appli-
cants say “this is the problem I work on” but give me no 
sense of why or of how it fits in to a bigger picture. The 
very best ones provide context for how the research fits into 
mathematics (or other fields) more broadly and also leave 
me with a fairly concrete sense of the candidate’s plan. No 
matter how technical your research is, I will look for at least 
a part of the research statement that explains the work in 
a way that I (and even better, someone outside my depart-
ment) can understand. I love when a candidate discusses 
research with students in the research statement, and I love 
when a candidate mentions potential connections to other 
areas of the liberal arts.

RK: It is fine if the main body of the statement is techni-
cal and beyond the scope of my knowledge, but I want 
to see that a candidate has made an effort, at least in the 
early paragraphs, to value me as a reader and introduce 
their research area in an accessible, big picture way. This 
introductory section should avoid notation whenever pos-
sible, and if there are necessary technical terms, then they 
should be defined casually at this point. Be transparent 
about your own contribution to the field, and include your 
plans for continued research. Finally, I expect that research 
statements for a liberal arts school be about two to three 
pages. If a longer, more detailed one is required for research 
postdocs or similar jobs, then a candidate should write two 
versions and submit each to the appropriate places.

JR: I look primarily for evidence that you can continue 
your research in a teaching-intensive, undergraduate-only 
environment. I also look for evidence that you’re starting 
to think beyond your thesis. If you can include well-for-
mulated ideas for projects with undergraduates, that’s a 
huge bonus.
 



Early Career

858    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 6

Q: Besides a generic cover letter, what are other common mis-
takes you see?

RK: I am rarely impressed by quotes from student evalu-
ations or dramatically positive student evaluation data—
hearing that someone was called “the best teacher ever” 
is not helpful in assessing potential as a full-time faculty 
member, and can sometimes be off-putting. If student 
evaluation quotes are included, then they should highlight 
something specific from a candidate’s experience that en-
hanced student learning.

Applicants can inadvertently minimize a school’s stu-
dents and the courses they will teach. There is a tendency 
for candidates to sound like they are most excited about 
teaching upper-level major courses and that they put the 
greatest value on students who love mathematics and/
or are heading to graduate school. They may talk about 
“lower-level classes” and mean Calculus II, or imply that 
struggling students are “problems” who can be fixed in-
dividually in office hours. At many schools, “lower-level” 
means a variety of pre-calculus, service, or remedial courses, 
and most of your teaching audience may be non-majors. 
Many mathematics majors will not be graduate school 
bound. Don’t accidentally shoot yourself in the foot by 
diminishing the majority of students at a school or those 
that won’t follow the same educational path as you did.

CT: In the teaching statement, do not vehemently express 
ideas that are incorrect. For instance, I have seen candidates 
write sentences such as, “Students learn best when mate-
rial is explained clearly and multiple example problems 
are presented.” Says who!? There exists a wide variety of 
effective pedagogical models (though they all share some 
common general principles grounded in learning science). 
The candidate’s statement makes me fear that they are not 
open to examining and refining their teaching based on 
theory and evidence.

JR: We’ve had a few applicants from the same school apply 
for the same job. This is bound to happen, but it can mean 
that two applications look nearly identical, especially if 
everyone is helping out with the same enrichment events, 
attending the same conferences, teaching the same courses, 
etc. To make yourself stand out, take initiative to organize 
something on your own, and point this out in your cover 
letter.

Q: The focus of this article is not the interview process, but do 
you have recommendations for resources for how to prepare for 
interviews, or for job advice more generally?

JR: I used the interview prep materials on theprofessorisin 
.com. But whichever resources you use, make sure you 
practice, practice, practice! Be sure you read up a lot on the 
institution you’re visiting, and ask a lot of questions. Be 

Q: What advice do you have for candidates when discussing 
diversity, either in a separate diversity statement or in other 
materials?

CT: A strong diversity statement might include one or 
more of the following components: a discussion of why 
equity, diversity, and inclusion (EDI) issues are important; 
disclosure of your own identities along various axes of 
diversity; presentation of any formal knowledge you have 
about EDI; examples of EDI issues at play in teaching you’ve 
done; descriptions of professional activities related to 
EDI; and other relevant personal or professional thoughts 
and experiences. Whether you choose from among these 
components or include others, a committee will want to 
see some thoughtful discussion of and genuine interest 
in EDI. An excellent diversity statement can really make a 
candidate stand out.

RK: Issues related to diversity are going to be present in your 
job. Your application should demonstrate an awareness of 
equity issues that may be present in your classroom (or 
broader school environment) and indicate that you take 
seriously your responsibility for creating an inclusive and 
supportive learning environment for students coming from 
vastly different circumstances. If you have personal experi-
ence that impacts your professional perspective, enhances 
your ability to mentor and support students, or that you 
hope to use in outreach efforts, then you are most welcome 
to include it, but you are under no obligation to disclose 
characteristics of your identity for the sake of making an 
impact in a diversity statement. Moreover, it is important 
not to stereotype students by their racial, socioeconomic, 
or other characteristics, to present yourself as “saving” 
certain groups of students from their circumstances, or 
to draw what may be uninformed parallels between your 
own experiences and those of others. As with the teaching 
statement, be genuine and concrete in the views and exam-
ples you share in a diversity statement, avoid throwing in 
keywords that you think a committee wants to hear, and be 
reflective about your own potential for growth in this area.

JR: I like to see that you’ve both read and thought about 
issues of equity and inclusion, especially in the con-
text of teaching. For example, check out the fabulous 
AMS inclusion/exclusion blog, https://blogs.ams.org 
/inclusionexclusion/. If you are considering including 
information about your personal background, think care-
fully about how your statement puts your experience into 
the context of these larger issues. If you can’t address this, 
you may not want to include this information. 

https://blogs.ams.org/inclusionexclusion/
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JR: I’ll reiterate Chad and Reva’s comments: Educate your-
self about the types of jobs out there, and be honest with 
yourself about what you want in a career. If you do that 
and it shows through in your application, you’re on the 
right track!

Credits
Photos of Linda Chen, Reva Kasman, Julie Rana, and Chad 

Topaz are courtesy of the interviewer and the interviewees.

honest while you’re visiting. Ask the questions you really 
want to know the answers to!

CT: One resource is people who have served on search 
committees at liberal arts colleges. If you have access to any 
such person, ask them if they’d be willing to do a 20-min-
ute mock interview with you and give you feedback on it.

RK: Do practice interviews, ideally with someone who is at 
the type of school where you hope to work. Ask someone 
at a conference if they will do a mock interview with you 
on Skype, for example. Look at the kinds of questions you 
might get asked (there are good resources online) and 
practice giving your answers out loud, even when you’re 
alone. Have good examples on hand to answer questions 
like “what was something you did well in a class” or “what 
was something you’d like to do differently” so that you 
won’t go blank in an interview, or worse, come up with a 
spontaneous anecdote that reflects poorly on you or your 
teaching. Have questions ready to ask of the school—
something simple like “Tell me what you like most about 
working in your department” can provide deep information 
about a potential job.

For example, some practice questions can be found at 
https://blogs.ams.org/onthemarket/2013/02/04 
/preparing-for-an-interview-questions-by-sarah 
-ann-stewart-fleming-belmont-university/.

LC: The November issue of the Notices will include advice 
on preparing for the Employment Center and Joint Meet-
ings interviews for tenure track jobs.

Other Comments:
RK: As you put together your application materials, keep 
the perspective that every item in some way showcases who 
you are as a teacher, communicator, and future professional 
colleague. Let that influence the tone and style you use to 
present information and engage with your audience in 
each document, from your cover letter through to your CV.

Remember that your job search and your goals—both 
professional and personal—are your own. Don’t let anyone 
else try to define them for you. Ask many people the same 
questions as you go through this process. Know that you are 
going to get well-meaning advice from some people that is 
not always about you or reflective of your needs and wants, 
and you are free to ignore anything that doesn’t feel right.

CT: If your goal is to have a fulfilling career, you should 
think deeply about what matters to you in life, and hold 
those values up against every single job you apply for—ac-
ademic or otherwise—to see if your priorities align with 
those of the job.

Linda Chen Reva Kasman

Julie Rana Chad  Topaz

https://blogs.ams.org/onthemarket/2013/02/04/preparing-for-an-interview-questions-by-sarah-ann-stewart-fleming-belmont-university/
https://blogs.ams.org/onthemarket/2013/02/04/preparing-for-an-interview-questions-by-sarah-ann-stewart-fleming-belmont-university/
cav
Rectangle

cav
Rectangle

cav
Rectangle



Early Career

860    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 6

Opportunities feature prominently.] The most common 
funding for most mathematicians comes from either the 
National Science Foundation (NSF) or, more recently, the 
Simons Foundation. The Simons Foundation offers various 
types of grants, details of which can be found at https://www 
.simonsfoundation.org/funding-opportunities. 
The NSF also has various opportunities from research and 
CAREER grants, to workforce and FRG grants; see https:// 
www.nsf.gov/div/index.jsp?div=DMS.

The rest of this article will primarily focus on NSF re-
search grants, though much of the discussion will apply to 
other grants as well, especially other NSF grants. 

First and foremost, every grant will have a grant solicita-
tion that describes all the particular issues about the grant, 
such as who may apply, what funding may be requested, 
criteria for reviewing the grant, and other essential infor-
mation. Read and carefully follow the grant solicitation 
when preparing your grant proposal. Secondly, for whatever 
grant you are applying for, ask colleagues if they can share 
examples of successful grants of that type. Reading as many 
such examples as possible is a great way to get a sense of 
the structure of a successful grant proposal. 

As with all writing, one needs to keep the audience in 
mind. Typically, your NSF grant proposal will be evaluated 
with forty or more other grants in a similar area by a panel 
of ten or more experts. The panel will put them into some 
rough order, and then the NSF program directors will take 
these orderings and evaluations and combine them with 
other panels’ evaluations for nearby areas of mathematics 
to determine which grants will be funded. Your grant will 
typically be read by three people on the panel, then their 
evaluations will be read to the rest of the panel, who will 
then discuss, give your proposal a collective evaluation, and 
rank it with the other proposals. It is important to keep 
in mind that of the three people who carefully read your 
proposal, most, and maybe all, are probably not experts 
in your specific research area. They will be in some nearby 
research field, and probably know something about your 
field, but that is all you can assume. In particular, they will 
probably not know the intricacies of some of the important 
questions of your field or why they are important. You need 
to explain that to them. That is, the target audience for your 
proposal is someone broadly working in an area similar to 
your own, but not necessarily an expert in the area. As such, 
your proposal needs to appeal to this audience, so carefully 
explain your terms, why your problems are interesting, and 
how your work fits into the broad field as a whole.  

Also, keep in mind that each panelist is reading a large 
number of proposals, so make it easy for them to read yours 
and see the merits without any difficulty. It is good to make 
sure some non-technical indication of the main goals of 
your proposal and its impact on the field are included in 
the first page or two of the proposal. This should help keep 
all of your reviewers carefully reading and give them ideas 
to use while arguing for a better ranking for your proposal. 

Applying for Grants: 
Why and How?
John Etnyre
Applying for grants is an important part of an academic 
research mathematician’s career. There are myriad reasons 
why, from the obvious—directly supporting your research 
and pleasing your employer (or future employer) if you 
get the grant—to the less obvious—refocusing yourself 
on where your research fits into the greater mathematical 
world and why you are doing it, even if you do not get the 
grant.

Before moving on to the actual application process, let’s 
flesh out a bit more “why you should apply.” Grants will 
typically support some or all of the following: your travel 
to conferences and workshops; your ability to bring collab-
orators to you; a summer salary that allows you to focus on 
research; the undergraduate and graduate students working 
with you; computer and other supplies; and, in some cases, 
the postdocs working with you. All of these things are of 
course highly beneficial to your research program. In ad-
dition, university administrators are interested in faculty 
obtaining grant support, so demonstrating that you can 
do this can be advantageous to a job search or to building 
a case for promotion. This alone is ample reason to apply 
for grants. But even if you do not get a grant when you first 
try, the application process can be very favorable to your 
research. Specifically, research problems can frequently be 
highly specialized, and while working on them it can be 
easy to lose sight of why one is working on the problem. 
Without some reflection on what you are working on, it can 
be easy to head down a rabbit hole that no one really cares 
about. Writing a grant makes you step back and think about 
the big picture. Why are the problems I am working on 
interesting to the mathematical, or broader, community? 
What should I be trying to work on over the next few years? 
While trying to answer these questions, you can frequently 
come up with whole new interesting lines of research, in 
addition to having a better and deeper appreciation for 
problems on which you are already working. 

There are numerous organizations that fund various 
types of research mathematics. Consider applying for several 
grants; even small grants, like grants to support travel, can 
have a big impact on your career, and they can be a stepping 
stone to larger grants. [The AMS website has a convenient 
list of many of these opportunities at https://www.ams 
.org/opportunities, and the Notices prints a Mathemati-
cal Opportunities section in every issue, where Early Career 

John Etnyre is a professor of mathematics at the Georgia Institute of Tech-
nology. His email address is etnyre@math.gatech.edu

DOI: https://dx.doi.org/10.1090/noti1898
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that much on the broader impacts front, don’t worry. The 
panelist reading your proposal knows that it takes some 
time to develop a good track record; but it is not hard to 
start doing several things to improve the mathematical 
community around you, and doing so will give you some 
good broader impact; so, get out there and get started now!

Preparing a grant proposal can be a very rewarding en-
deavor, helping you to broaden and deepen your research 
program. And, of course, being awarded a grant can be a real 
boon to your research program. Therefore, now is the time 
to start looking into your grant options and start thinking 
about writing a grant proposal.

Credits
Photo of John Etnyre is by Renay San Miguel of Georgia Tech 

College of Sciences.

If your grant is not funded—typically less than one third 
are, so you are in good company—then you will receive 
feedback on your proposal. Carefully take this feedback 
into account and resubmit your grant the next year. Your 
proposal will hopefully be stronger for this and there will 
be a new panel evaluating the proposal, both of which can 
affect how your proposal is ranked.

NSF grant proposals must discuss “intellectual merit” 
and “broader impacts.” Most people are fairly clear on 
the intellectual merit of their proposal; this is usually the 
research that will be done if the grant is funded. Broader 
impacts are not as well understood by many. The NSF has 
a good discussion of broader impacts at https://www.nsf 
.gov/pubs/2007/nsf07046/nsf07046.jsp.

In mathematics, broader impacts usually involve your 
impact on other people. For example, your educational 
efforts beyond your standard teaching duties—such as 
preparing notes to introduce young mathematicians to 
your area of study and mentoring undergraduates, grad-
uate students, or people at any level; your efforts to build 
STEM infrastructure—such as organizing seminars and 
conferences, developing new curricula, and partnering with 
researchers in industry; and your outreach activities—such 
as participating in math circles, giving public lectures, 
broadening participation in math of people from under-
represented groups, and writing general audience articles. 
While younger mathematicians might not have done all 

John Etnyre
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Society Governance
The American Mathematical Society has a bicameral governance structure consisting of the Council (created when 
the Society’s constitution was ratified in December 1889) and the Board of Trustees (created when the Society was 
incorporated in May 1923). These bodies have the ultimate responsibility and authority for representing the AMS 
membership and the broader mathematical community, determining how the AMS can best serve their collective needs, 
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MEMORIAL TRIBUTE

We have lost Gaunce Lewis and Mark Steinberger, two 
excellent algebraic topologists, to early deaths. Both were 
students, collaborators, and friends of mine, and Mark was 
also my nephew. Both were struck down by brain cancer, 
Gaunce dying on May 17, 2006, and Mark on September 
15, 2018.

Gaunce and Mark, along with other students of mine 
from the early 1970s, especially Bob Bruner and Jim 
McClure, were in at the beginning of two major current 
directions in algebraic topology, equivariant stable homo-
topy theory and structured ring spectra. I will try to give 
something of the flavor of the work of Gaunce and Mark, 
focusing in part on the two books Equivariant Stable Homo-
topy Theory [11] and H∞ Ring Spectra and their Applications [3] 
before going on to separate accounts of their later work. The 
first book, [11], was written by Gaunce, Mark, Jim, and me, 
and the second, [3], was written by Bob, Jim, Mark, and me. 
Both were published in 1986, based on a decade’s worth 
of prior collaborative work. The first includes the results 
of Gaunce’s 1978 thesis, and the two together include the 
results of Mark’s 1977 thesis. Although Gaunce was older, 
Mark arrived at Chicago earlier, in 1972, so I will start with 
him back then.

I knew Mark as a child, although not well. His father’s 
mother was my father’s sister. That side of our family 
escaped from Nazi Germany in the 1930s. As teenagers, 
Mark’s father Herbert and Herbert’s brother Jack were 
sent to the United States on the first Kindertransport out 
of Germany in 1934. Their parents and younger brother 

Rudi followed in 1937. My father got out in 1936. They all 
started off in Chicago, strangely enough. Herbert died in 
1994, Rudi in 2017, but Jack is still alive, age ninety-seven. 
Jack is a Nobel laureate in physics who befriended me and 
was my childhood role model, very much responsible for 
where I went to college and how I’ve spent my life, but that 
is another story.

Mark had already made up his mind to work with me be-
fore he entered graduate school, and I never knew whether 
that was more because of his mathematical interests or be-
cause of the family connection. He helped convince others 
to work in algebraic topology, spearheading a wonderful 
group of eight people who obtained their PhDs in just 
the three years 1977–79, including Gaunce, Bruner (PhD, 
1977), and McClure (PhD, 1978).

Bruner wrote to me about Mark that “the first thing that 
comes to mind is his laugh and his ability to see things 
in a humorous light.” Jeff Caruso (PhD, 1979) wrote, “I 
didn’t know him very well but in our conversations he was 
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was resurrected by the extraordinary and unexpected role 
of equivariant stable homotopy theory in the remarkable 
solution by Mike Hill, Mike Hopkins, and Doug Ravenel 
of the Kervaire invariant problem [8] (published in 2016). 
To quote from Paul Goerss’s Mathematics Reviews of [8], 
“This paper marks the renaissance and reinvigoration of 
equivariant stable homotopy theory. While this has been an 
important subfield since at least the 1970s, the unexpected 
application of equivariant techniques to such an important 
problem has brought the study of group actions in stable 
homotopy theory to the front of the stage. ... The foun-
dation text remains [11].” His praise of [11] in his review 
of an earlier expository paper [9] was still more effusive.1

Gaunce’s expertise, especially his remarkable application 
of Freyd’s adjoint functor theorem to construct an adjunc-
tion between the prespectra and spectra of [11], is what 
made the original construction and analysis of the equiva-
riant stable homotopy category possible. It is paradoxical 
that this abstract idea played this crucial role in building 
the approach to the stable homotopy category with the 
most precise point-set level description of the homotop-
ically meaningful objects (technically, these are the strict 
Ω G-CW-spectra). I never had to take point-set topology 
questions seriously in our joint work, although there were 
serious issues to be sorted out, since I could just go to him 
for the answers. Several of his papers answer point-set 
questions of interest to algebraic topologists.

Gaunce’s thesis was largely devoted to the development 
of highly structured Thom spectra, which are now very 
widely used; equivariant examples play a major role in 
[8]. That work and an early paper axiomatizing transfer 
operations were expanded and incorporated in [11]. With 
McClure and me, Gaunce proved that the equivariant and 
nonequivariant versions of the Segal conjecture are equiv-
alent, which turned out to be a necessary step in Carlsson’s 
proof. We also generalized that result to a result about 
classifying G-spaces that has since been used to study maps 
between classifying spaces. A short early paper by Gaunce 
has been particularly influential. It showed that a very nat-
ural set of axioms for a “convenient” category of spectra is 
inconsistent, meaning that to construct the best possible 
concrete category of spectra, one has to sacrifice having the 
best possible relationship to the category of spaces.

Gaunce’s later work remained focused mostly on equi-
variant homotopy theory, both stable and unstable. He 
brought to it a powerful and unusual blend of categorical 
and computational thinking. Many fundamental features 
of nonequivariant algebraic topology require rethinking 
equivariantly. Gaunce wrote the definitive equivariant 
treatment of the Hurewicz theorem, the construction of 
Eilenberg–Mac Lane G-spaces associated to representations 

always helpful. He enjoyed explaining things, and helped 
me to learn about moduli spaces and other topics. I still 
remember vividly his witty portrayal of Prof. Rothenberg 
in the 1976 Beer Skit.” Mark was charismatic and had a 
bubbling but caustic sense of humor. He was then still a 
teenager at heart. He had to be bailed out after one esca-
pade, when he was caught for driving too slowly, but the 
details are hazy in my memory. Mathematically, he was 
quick, sharp, and incisive.

Gaunce, in contrast, was incredibly careful, precise, and 
methodical. McClure wrote to me, “Mark was a character, 
of course, and Gaunce was a man of great integrity.” At a 
time when many young men were trying desperately to 
escape the draft, Gaunce volunteered for and served in the 
navy in the years 1972 to 1975 before entering graduate 
school. He made up for lost time by finishing his PhD in 
three years. In later life, Gaunce was long a teacher at the 
First United Methodist Church of Oswego, where he served 
as liturgy coordinator. He too had a great sense of humor.

To discuss their work, it seems best to start with [11] 
and Gaunce’s contributions. It is no exaggeration to say 
that this book first consolidated the study of equivariant 
stable homotopy theory as a major branch of algebraic 
topology. Interest in it spiked early with Gunnar Carls-
son’s use of equivariant stable homotopy theory to prove 
the Segal conjecture [5] (also published in 1984), and it 

Figure 2. Gaunce Lewis in his college years.

1It is unfortunate that, as the senior author in many collaborations, my 
name is often cited alone, giving me disproportionate credit for joint work.
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ously, related to recent work by Andrew 
Blumberg and Mike Hill [1] that grew out 
of the solution to the Kervaire invariant 
problem. With Halvard Fausk and me, 
he computed the Picard group, that is the 
group of invertible objects, of the equivar-
iant stable homotopy category. With Mike 
Mandell, he made a systematic study of 
the equivariant universal coefficient and 
Künneth theorems, and they went on to 
give a valuable study of modules over a 
monoid in a general monoidal category.

Turning to Mark’s work, we return to 
[11]. In preparing this tribute, I was star-
tled to find that I had forgotten the contri-
butions by Mark that are direct precursors 
to current work on equivariant infinite 
loop space theory. Operads of G-spaces 
are no more difficult to understand than 

operads of spaces, but they were first taken seriously in 
[11], where Mark was the first to consider actions of such 
G-operads on G-spectra. Even today some of the results 
obtained there seem surprising. Such operad actions are 
now understood to be fundamental to the study of equi-
variant stable homotopy theory. A plethora of examples 
were predicted to exist in [1] and were shown to exist in 
three 2017 preprints by different authors. Nonequivariantly, 
Mark studies operad actions on spectra homologically via 
chain complexes associated to extended powers of spectra.

This work established the foundations for Mark’s study 
of Dyer Lashof operations on highly structured ring spectra, 
called E∞-ring spectra or, in their weaker up-to-homotopy 
version, H∞-ring spectra. This work appears in [3]. These 
operations are homology analogues of the classical Steen-
rod operations on the cohomology of spaces. In partic-
ular, he computed these operations on the homology of 
Eilenberg–Mac Lane spectra. I foolishly had expected such 
operations to be trivial, but Mark proved how very wrong 
I was. One highlight gives very general criteria for when a 
p-local, H2-ring spectrum splits as a wedge of Eilenberg–
Mac Lane spectra HZp, or more generally EM spectra HZ(pr), 
or Brown-Peterson spectra BP.

Mark’s calculations were quickly used in Bökstedt’s cele-
brated calculation of the topological Hochshild homology 
of Z/pZ [2]. To quote a referee who objected that this work 
deserves more credit than I gave it, these calculations “un-
derlie all the research on THH and its cousins.” They have 
also gained interest from their use in Tyler Lawson’s remark-
able proof [10] (published in 2018) that BP at p=2 is not 
an E12-ring spectrum, answering a long-studied question 
that I asked in 1975. The book [3] as a whole (especially 
McClure’s part) is the starting point of the study of power 
operations in stable homotopy theory, which now pervade 
that subject.

of G, the van Kampen theorem, and the 
Freudenthal suspension theorem in the 
papers [14, 13]. A comment by Bruner is 
relevant: “Gaunce found complications 
where people might not have expected 
them (or at least hoped there wouldn’t 
be any), then found ways (often again 
surprising) to cope with them.”

Gaunce pioneered the study of equi-
variant cohomology. People unfamiliar 
with modern algebraic topology think 
of equivariant cohomology with coeffi-
cients in an abelian group A as H* (EG×G 
X;A). That is Borel cohomology. While it 
is powerful and useful, it is only a very 
special case of Bredon cohomology, the 
equivariant cohomology theory that sat-
isfies the dimension axiom. With McClure 
and myself, Gaunce introduced RO(G)-graded Bredon co-
homology. That requires Mackey functor coefficients, and 
it is now understood to be central to equivariant algebraic 
topology. For example, for the obvious reason that one 
cannot embed a G-manifold equivariantly in any Rq with 
trivial G-action, one cannot even make sense of Poincaré 
duality without RO(G)-grading. However, RO(G)-graded 
cohomology is extraordinarily difficult to compute. It is a 
stroke of luck that the only actual equivariant calculation in 
the solution to the Kervaire invariant problems is flukishly 
easy; the genius is in the reduction to that calculation.

In the papers [12, 6], Gaunce and his student Kevin 
Ferland carried out what to this day are some of the most 
difficult and interesting calculations in equivariant alge-
braic topology. To the best of my memory, Gaunce was the 
first to have the idea that equivariant cohomology should 
not only be RO(G)-graded but should also be Mackey 
functor valued. That is, instead of an abelian group for each 
integer, as in classical algebraic topology, one has a Mackey 
functor for each element of RO(G); these Mackey functors 
are interrelated by multiplicative structure. That rich struc-
ture raised foundational questions about the homological 
behavior of Mackey functors, which Gaunce addressed in 
the full generality of compact Lie groups rather than just 
finite groups and, still more generally, in an illuminating 
categorical framework for the relevant homological alge-
bra. He shows that standard results, like projective implies 
flat for modules over a ring, can actually fail in such more 
general contexts.2

In two large-scale papers [15, 16], Gaunce made great 
progress in understanding equivariant stable homotopy 
theory for incomplete universes, which involves using 
parts, but not all of, RO(G); that is closely, but mysteri-

Figure 3. Gaunce Lewis in his mature 
years.

2Unfortunately, much influential work of his in this direction remains 
unpublished.
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respect this combinatorial or cellular struc-
ture. It was important to find a formulation 
of simple homotopy theory that was invariant 
under topological homeomorphisms. Tom 
Chapman did this, using earlier work of mine, 
when he showed that the entire theory could 
be interpreted as the homeomorphism theory 
of compact Hilbert cube manifolds.

Mark arrived at Cornell excited by the idea 
of working with me to apply this extension in 
contexts where the classical formulation was 
difficult or impossible to apply. We discovered 
that the equivariant homeomorphism theory 
of locally linearizable actions of finite groups 
on (finite dimensional) manifolds was exactly 
such a situation. We had a very fruitful collab-
oration which involved, among other things, 
developing an equivariant surgery theory for 
locally linearizable actions. I think it would be 
fair to say that our work opened this subject for 
further research. The high points of our research 
were Mark’s Inventiones paper [20] and the joint 
paper with Cappell and Shaneson in the Ameri-
can Journal titled “Non-linear similarity begins 
in dimension 6” [4]. I was congratulated very 
warmly in person on the latter result by Georges 
De Rham and by Ed Floyd.

In this collaboration, we were definitely 
equal partners. Mark was the strategist. He 
was usually the one who came up with the 
applications that might be accessible using our 
techniques. Technically, he made all the alge-
braic calculations, while I concentrated on the 
controlled infinite processes.

To give a better idea of what this is all about, nonlinear 
similarity asks when linearly inequivalent representations 
of G can be G-homeomorphic. Analysis of the Picard group 
of the equivariant stable homotopy category is somewhat 
analogous, since in part it concerns the classification of 
representation spheres up to G-homotopy type.

Shmuel Weinberger wrote to me about the work of 
Mark and Jim:

My main mathematical interactions with 
Mark were about the work that he had done, 
partly with West, on topological simple ho-
motopy theory for G-manifolds. Unlike the 
beautiful work of Chapman and Kirby–Sieben-
mann, which shows that topological manifolds 
behave just like smooth manifolds as far as 
their handlebody theory was concerned, this is 
not true with a group action. There were many 
examples and it looked like a complete mess 
before the work of Steinberger and West, and 

In contrast to Gaunce, Mark went in a different direction 
after his early work in algebraic topology. While his later 
work was still largely equivariant, it was now in geometric 
topology. It was done mostly in collaboration with James 
West and partly also with Sylvain Cappell, Julius Shaneson, 
and Shmuel Weinberger. I’ll let Jim tell the story.

From Jim West:
Mark’s most important body of work with 

me was, broadly speaking, in applications of 
topological simple homotopy theory. Simple 
homotopy theory is a fundamental ingredient 
in the study of the structure of manifolds. 
Equivariant versions of simple homotopy the-
ory are essential to the study of the structure 
of group actions on manifolds. The classical 
formulations of simple homotopy theory are 
dependent on the combinatorial (or cellular) 
structure of simplicial (or CW) complexes. 
Homeomorphisms and group actions that are 
not differentiable or piecewise linear need not 

Figure 4. Mark Steinberger and Jim West, math and art; late 
1970s.
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He also hoped that new journals like the NYJM might 
dent the hold of the top-ranked journals. He hated snob-
bishness in general and the rankings of journals in partic-
ular. He would have nodded in agreement with the article 
[7] about the tyranny of the top five journals in economics, 
which could just as well have been written about mathe-
matics. In fact, as he knew, both [3] and [11] are in large 
part shotgun marriages of articles unpublishable in top 
journals at the time, hence their late appearance.

Mark was very much focused on the technical potential 
of electronic journals, and he wrote two informative (if per-
haps technically dated) articles that focus on the creation 
of the NYJM [19] and on the existing and potential relevant 
technology [18]. One interesting technical innovation in 
the NYJM can be found at nyjm.albany.edu/search/j 
/ghindex.html where one can search all past publications 
of the NYJM at once for key strings of symbols or words. 
However, the focus of the journal is on quality and exper-
tise, as its very strong editorial board attests.4

I wish I had words to do justice to the personalities of 
so many friends and colleagues now gone. I can hear both 
Mark and Gaunce laughing at me as I try.
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COMMUNICATION

Schafer Prize nominees must be either US citizens 
or have a school address in the United States and be an 
undergraduate when nominated. The award is presented 
at the AWM Reception at the Joint Mathematics Meetings 
(JMM) each January and at the JMM Awards Presentation. 
Recipients receive a $1000 prize, an honorary plaque, and 
are featured in an article in the AWM newsletter. The charge 
to the three-person AWM selection committee is, “To recog-
nize talented young women to be evaluated on the ability 
for independent work in mathematics, demonstration of 
real interest in mathematics, quality of performance in 
advanced mathematics courses and special programs, and 
(when relevant) performance in mathematical competi-
tions at the local or national level.” To encourage multiple 
worthy nominees, each year there are one or two winners, 
up to two named runners-up, and up to three named hon-
orable mentions.

In this article we provide a brief overview of the career 
paths of the first twenty-five Schafer Prize winners.

The  Winners
1990: Linda Green (co-winner) is a teaching assistant 
professor of mathematics at University of North Carolina 
at Chapel Hill. She obtained a bachelor’s degree from the 
University of Chicago and a PhD at Princeton in 1996 
under Cynthia Louise Curtis. Her research interests include 
math and statistics education, mathematical modeling of 
disease, and topology and geometry of three-dimensional 
manifolds. She has published seven papers in medical 
journals. In 2018 she received the UNC Goodman–Petersen 
Award for Excellence in Teaching.

1990: Elizabeth Wilmer (co-winner) is a professor of math-
ematics and former department head at Oberlin College. 

The Origins
The Alice T. Schafer Mathematics Prize For Excellence in 
Mathematics by an Undergraduate Woman was established 
in 1990 by the executive committee of the Association for 
Women in Mathematics (AWM) and is named for its second 
president and one of its founding members, Alice T. Schafer, 
who oversaw the incorporation of the AWM and champi-
oned opportunities for women in mathematics throughout 
her career. She retired as the Helen Day Gould Professor 
of Mathematics at Wellesley College in 1980. Schafer’s 
honors include being elected a Fellow of the American 
Association for the Advancement of Science in 1985 and 
receiving the MAA Yueh-Gin Gung and Dr. Charles Y. Hu 
Award for Distinguished Service to Mathematics in 1998. 
Schafer died in 2009.

The First Twenty-Five 
Winners of the AWM 
Alice T. Schafer Prize
Joseph A. Gallian

Joseph A. Gallian is a professor of mathematics at the University of Min-
nesota Duluth. His email address is jgallian@d.umn.edu.

For permission to reprint this article, please contact: reprint-permission 
@ams.org.

DOI: https://dx.doi.org/10.1090/noti1892

It is a wonderful honor to be awarded the Alice T. Schafer 
Prize from the Association for Women in Mathematics. I 
would like to thank those who established the award for 
their vision to recognize and encourage young women math-
ematicians. Mathematics, though extremely rewarding, is 
a difficult career to pursue, and thus it is so important for 
young mathematicians to feel support from the community 
as they pursue their careers. I want to thank the Association 
for Women in Mathematics for showing me such support 
and recognizing me among such outstanding young women 
mathematicians.

—Melanie Matchett Wood, 2002 Co-winner
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2017 (see [1]). O’Neil’s book Weapons of Math Destruction 
was long-listed for the 2016 National Book Award for 
Nonfiction. At the 2019 Joint Math Meetings she received 
the MAA’s Euler Book Prize and gave the MAA-AMS-SIAM 
Porter Public Lecture.
1993: Dana Pascovici is a biostatistician at the Australian 
Proteome Analysis Facility at Macquarie University, where 
she focuses on generating reliable methods of interpreting 
and analyzing data on plasma proteomics and plant pro-
teomics. She received a bachelor’s degree from Dartmouth 
and a PhD from MIT in 2000 under David Vogan. Pascovici 
was the first recipient of the Elizabeth Lowell Putnam Prize 
for a high score in the Putnam Competition, finishing 
sixteenth out of 2,356 participants.

1994: Jing Rebecca Li is a research scientist at Institut Na-
tional de Recherche en Informatique et en Automatique in 
France. She received her bachelor’s degree from Michigan 
and PhD degree from MIT in 2000 under Jacob White. Li 
has published more than twenty-five papers in applied 
math and physics journals.

1995: Ruth Britto-Pacumio (now Britto) is an associate 
professor in theoretical physics at Trinity College Dublin. 
She earned a bachelor’s degree in mathematics from MIT 
and a PhD in physics from Harvard in 2002. She has held 
research positions at the Institute for Advanced Study, the 
University of Amsterdam, the Fermi National Accelerator 
Laboratory, and the Commissariat à l’énergie atomique. 
Britto is best known for her work on scattering ampli-
tudes in high-energy collider experiments designed for 
discovering and analyzing new particles and new physical 
behaviors. Her 2005 paper with Cachazo, Feng, and Witten, 
which provided a recursion method for calculating scat-
tering amplitudes, has been cited more than 1,100 times. 
She coauthored two other papers in 2005 which have been 
cited more than 1,600 times. Britto has also published six 
papers on black holes. She was the second winner of the 
Elizabeth Lowell Putnam Prize.

1996: Ioana Dumitriu is a professor of mathematics at the 
University of Washington at Seattle. In September 2019 she 
will join the math department at UC San Diego as a pro-
fessor. Her research interests include the theory of random 
matrices, numerical analysis, and scientific computing. She 
received her bachelor’s degree from NYU and a PhD from 
MIT in 2003 under Alan Edelman. She was the first woman 
Putnam Fellow (top five) and is a Fellow of the American 
Mathematical Society. Dumitriu has received the Leslie Fox 
Prize for Numerical Analysis, an NSF CAREER Award, and 
won the Elizabeth Lowell Putnam Prize three times. She is 
the author of twenty-five published papers.

1997: No award given due to calendar change.

She received a bachelor’s degree from Harvard and a PhD 
from Harvard in 1999 under Persi Diaconis. Wilmer is a 
coauthor of the 2008 AMS book Markov Chains and Mixing 
Times and has published five papers in combinatorics and 
probability.

1991: Jeanne Nielsen Clelland is a professor of mathemat-
ics at the University of Colorado at Boulder. She received 
her bachelor’s degree from Duke and PhD from Duke in 
1996 under Robert Bryant. Her research area is differential 
geometry and its applications to differential equations. 
In 2018 she received the Burton W. Jones Distinguished 
Teaching Award from the Rocky Mountain Section of the 
MAA. Clelland has published more than twenty papers.

1992: Zvezdelina E. Stankova was a professor of math-
ematics at Mills College for sixteen years and is currently 
teaching mathematics at Berkeley. She received a bache-
lor’s degree from Bryn Mawr and a PhD from Harvard in 
1997 under Joe Harris. She has published seven papers 
in enumerative combinatorics that have been cited more 
than 250 times and is coeditor of two books on problem 
solving. Stankova is founder of the Berkeley Math Circle, 
an inaugural winner of the MAA Henry L. Alder Award 
for Distinguished Teaching by a Beginning College or 
University Mathematics Faculty Member in 2004, and the 
recipient of the MAA Deborah and Franklin Tepper Haimo 
Award for Distinguished College or University Teaching of 
Mathematics in 2011.

1993: Cathy O’Neil is an author and data science consul-
tant. She received her bachelor’s degree from Berkeley and 
a PhD from Harvard in 1999 under Barry Mazur. Following 
five years as a math postdoc at MIT, she took a position 
at Barnard College. From 2007–2011 she worked in the 
finance industry. A PBS Frontline episode about Wall Street 
featured a 38-minute interview with her. She is the author 
of the blog mathbabe.org and was a TED talk speaker in 

Figure 1. Cathy O’Neil.
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at MIT from 2007–2009. She has received an NSF CAREER 
Award, given more than thirty-five invited talks, and pub-
lished eight articles in math and physics journals.

2002: Melanie Matchett Wood (co-winner) is the Vilas 
Distinguished Achievement Professor of Mathematics at the 
University of Wisconsin at Madison. In September 2019 she 
will join the Berkeley math department as a Chancellor’s 
Professor. She received a bachelor’s degree from Duke and 
a PhD from Princeton in 2009 under Manjul Bhargava. 
Wood was the first American woman to be a Putnam Fellow 
and the first woman to win the AMS-MAA-SIAM Frank and 
Brennie Morgan Prize for Outstanding Research by an Un-
dergraduate Student. Her many awards include AMS Fellow, 
NSF CAREER Award, AWM-Microsoft Research Prize, an 
American Institute of Mathematics Five-Year Fellowship, 
a Sloan Research Fellowship, and a Packard Fellowship. 
The website “The Best Schools” has her on the list “The 
Top 50 Women in STEM.” She has published more than 
thirty-five papers in number theory and given more than 
100 invited talks.

2003: Kate Gruher Mattison is vice president of curricu-
lum at IXL Learning, an American educational technology 
company whose website offers educational practice for 
K–12 students. Mattison leads the content design team that 
creates interactive, engaging, challenging practice skills for 
math, English language arts, science, social studies, and 
Spanish. She received a bachelor’s degree from Chicago and 
a PhD from Stanford in 2007 under Ralph Cohen.

2004: Kimberly Spears Hopkins is the owner of a real 
estate investment company specializing in industrial multi-
tenant buildings. She received a bachelor’s degree from 
UC Santa Barbara and a PhD in 2010 from Texas under 
Fernando Rodriguez-Villegas.

1998: Sharon Ann Lozano Gretencord (co-winner) re-
ceived her bachelor’s degree from the University of Texas in 
1998 and a master of science in computational and applied 
mathematics from Texas in 2000. She then spent two years 
as a lecturer in the mathematics department at UT while de-
veloping math and science curricula for a non-profit. Since 
then Gretencord has been home-schooling her six children.

1998: Jessica Shepherd Purcell (co-winner) is an associate 
professor of mathematics at Monash University in Austra-
lia. She received her bachelor’s degree from the University 
of Utah and a PhD in 2004 from Stanford under Steven 
Kerckhoff. She has published thirty-nine papers on low-di-
mensional topology and has given more than seventy-five 
invited talks. Purcell has received an NSF CAREER Award 
and a Sloan Research Fellowship.

1999: Caroline J. Klivans is an associate professor of 
applied mathematics at Brown University. She received 
a bachelor’s degree from Cornell and a PhD from MIT in 
2003 under Richard Stanley. Klivans has published more 
than twenty papers in combinatorics.

2000: Mariana E. Campbell Levin is an assistant professor 
of mathematics, specializing in mathematics education, at 
Western Michigan University. Her research concerns how 
people think about and learn mathematics with the goal 
of fostering meaningful learning experiences and broad 
participation in mathematics. She received a bachelor’s 
degree from the UC San Diego, a PhD in math education 
from Berkeley in 2011 under Alan Schoenfeld, and had a 
postdoctoral research position in the Program in Mathe-
matics Education (PRIME) at Michigan State University. 
Levin has a book in press titled Conceptual and Procedural 
Knowledge During Strategy Construction: A Complex Knowledge 
Systems Perspective.

2001: Jaclyn Kohles Anderson received a bachelor’s degree 
from the University of Nebraska and a PhD from Wiscon-
sin in 2006 under Ken Ono. After finishing her PhD, she 
raised two children while working on mathematics as time 
permitted. Recently, Anderson has returned to school to 
study operations research and data science. She has pub-
lished four papers in number theory and one in discrete 
dynamical systems.

2002: Kay Kirkpatrick (co-winner) is Blackwell Scholar in 
Mathematics and an associate professor of mathematics 
and physics at the University of Illinois at Urbana–Cham-
paign. She received a bachelor’s degree from Montana 
State and a PhD from Berkeley in 2007 under Fraydoun 
Rezakhanlou. Her research interests include statistical me-
chanics, PDEs, condensed matter physics, and biological 
computation. Kirkpatrick was an NSF Postdoctoral Fellow 

Figure 2. Melanie Matchett  Wood.
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sentation theory. Caraiani was an L. E. Dickson Instructor 
and NSF Postdoctoral Fellow at Chicago (2012–2013), a 
Veblen Research Instructor and NSF Postdoctoral Fellow at 
Princeton University and the Institute for Advanced Study 
(2013–2016), and a Bonn Junior Fellow at the Hausdorff 
Center for Mathematics (2016–2017). She has received the 
Whitehead Prize given by the London Mathematical Soci-
ety. Caraiani has nine published papers with three running 
more than one hundred pages and has given more than one 
hundred invited talks. A paper she coauthored with nine 
other authors posted on arXiv in December 2018 ran 193 
pages. The website “The Best Schools” has her on a list of 
“The Top 50 Women in STEM.”

2008: Galyna Dobrovolska (co-winner) is an NSF Post-
doctoral Fellow in mathematics at Columbia University. 
She obtained her bachelor’s degree at MIT and a PhD from 
Chicago in 2014 under Roman Bezrukavnikov and Victor 
Ginzburg. In 2015–2016 she was a postdoc at the Max 
Planck Institute for Mathematics in Bonn. Dobrovolska’s 
research interests lie in geometric representation theory and 
related areas of algebra, geometry, and combinatorics. She 
has published six papers.

2008: Alison Miller (co-winner) is a Benjamin Peirce 
Fellow and NSF Postdoctoral Fellow in mathematics at 
Harvard with research interests in algebraic number theory, 
arithmetic invariant theory, and their connections with 
classical knot invariants. She received a bachelor’s degree 
from Harvard and a PhD degree from Princeton in 2014 
under Manjul Bhargava. She is a three-time winner of the 
Elizabeth Lowell Putnam Prize finishing in the top fifteen 
each time. In 2018 Miller received a Harvard Excellence 
in Teaching Award. She has four published papers. The 
website “The Best Schools” has her on a list of “The Top 
50 Women in STEM.”

2009: Maria Monks Gillespie is an NSF Postdoctoral 
Fellow and a Krener Assistant Professor of Mathematics 
at UC Davis. In September 2019 she will be an assistant 
professor at Colorado State. She received a bachelor’s de-
gree from MIT and a PhD in 2016 from UC Berkeley under 
Mark Haiman. She is a winner of the Frank and Brennie 
Morgan Prize for Outstanding Research in Mathematics 
by an Undergraduate Student, a Churchill Scholar, a Hertz 
Fellow, and an NSF Graduate Research Fellow. Gillespie’s 
research interests lie in algebraic combinatorics. She has 
eight published papers and has given more than thirty 
invited lectures.

2010: Hannah Alpert (co-winner) is a Zassenhaus Assistant 
Professor of Mathematics at Ohio State University and an 
NSF Postdoctoral Fellow. She received a bachelor’s degree 
from Chicago and PhD from MIT in 2016 under Larry Guth. 

2005: Melody Chan is an assistant professor at Brown Uni-
versity. She received a bachelor’s degree in computer science 
and mathematics from Yale and a PhD from Berkeley in 
2012 under Bernd Sturmfels. From 2012 to 2015 she was an 
NSF Postdoctoral Fellow and Lecturer in the mathematics 
department at Harvard. Her research interests are com-
binatorial algebraic geometry, graph theory, and tropical 
geometry. From 2000–2001 Chan studied the violin at the 
Juilliard School with Itzhak Perlman and Dorothy DeLay. 
She has more than twenty publications, more than 500 
citations, and has given more than ninety invited talks. She 
is a Sloan Research Fellow.

2006: Alexandra Ovetsky Fradkin is the dean of mathe-
matics, science, and technology at the Main Line Classical 
Academy, an elementary school in Bryn Mawr, where she 
develops their math curriculum and teaches children in 
grades K–5. After receiving her 2006 bachelor’s degree and 
a 2011 PhD in mathematics from Princeton under Maria 
Chudnovsky, Fradkin worked for several years as a profes-
sional mathematician publishing ten papers in combina-
torics. Before her present position she taught enrichment 
math at the Golden Key Russian School to children ages 
4–10. In 2017 she published Funville Adventures, a math-in-
spired children’s fantasy adventure that introduces kids to 
the concept of mathematical functions.

2007: Ana Caraiani is a Royal Society University Research 
Fellow and senior lecturer in mathematics at Imperial Col-
lege London. She received a bachelor’s degree at Princeton 
where her senior thesis advisor was Andrew Wiles. She was 
a two-time Putnam Fellow and a member of the first place 
2006 Putnam Competition Team, the only year Princeton 
has ever won the team competition. She won the William 
Lowell Putnam Fellowship for Graduate Study at Harvard, 
where she received a PhD in 2012 under Richard Taylor. 
Her research interests include the Langlands program, 
algebraic number theory, arithmetic geometry, and repre-

Figure 3. Ana Caraiani.
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In 2016–2017 she was a postdoctoral fellow at the Institute 
for Computational and Experimental Research in Mathe-
matics (ICERM) at Brown University. Alpert has published 
eleven papers in geometric topology and combinatorics.

2010: Charmaine Sia (co-winner) is clinical assistant pro-
fessor of mathematics at NYU. She received her bachelor’s 
in mathematics and physics from MIT and a PhD from 
Harvard in 2015 under Michael Hopkins. Sia’s research 
interests include algebraic topology, homotopy theory, 
the theory of topological modular forms, structured ring 
spectra, and forms of K-theory. Prior to joining NYU, Sia 
was the Zorn Postdoctoral Fellow in the department of 
mathematics at Indiana University Bloomington. She has 
published five papers.

Comments
Eighteen of the first twenty-five Schafer Prize winners 
received the award as a senior. Remarkably, Pascovici and 
Dumitriu won as sophomores. All winners profiled here 
participated in an REU-like summer program and did 
original research. All but one winner earned a PhD. Five 
schools have had multiple Schafer Prize winners: MIT (4), 
Chicago (3), Duke (2), Harvard (2), and Princeton (2). Five 
schools have had more than one Schafer Prize winner who 
obtained a PhD degree at their institution: Harvard (6), 
MIT (5), Berkeley (4), Princeton (4), and Stanford (2). The 
criterion “quality of performance in advanced mathematics 
courses” gives a decided advantage to students from PhD 
granting institutions. All of the winners profiled here were 
from such schools. Five women from non-PhD granting 
institutions received runner-up designation. The highly 
positive reaction in the math community to the Schafer 
Prize motivated the MAA to establish the Morgan Prize in 
1995 with the AMS and SIAM joining as cosponsors.

It is important to note that the Schafer Prize honors 
more than just the women selected. It recognizes the 
mentors, the departments, and the research programs that 
provide support, nurturing, guidance, and inspiration. The 
following response from 2002 co-winner Kay Kirkpatrick at 
the AWM reception for award winners typifies the appreci-
ation they have for those who provide support.

I feel extremely honored to be numbered among 
today’s rising women in math. The Association for 
Women in Mathematics is doing a wonderful thing 
to encourage and support aspiring mathematicians. 
I’ll spend the rest of my life repaying this debt to 
AWM and to all of my professors and mentors. You 
all have not only supported me, but also have been 
true inspirations.

ACKNOWLEDGMENT. The author is grateful to the 
referees for their careful reading of the drafts and their 
valuable comments.

Joseph A. Gallian
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On November 3, 1992, the citizens of Colorado passed 
an amendment to the state constitution that invalidated 
local ordinances in Denver, Boulder, and Aspen banning 
discrimination on the basis of sexual orientation. More 
importantly, it prohibited the passage of any further laws of 
this sort at the state or local level. When Colorado’s Amend-
ment 2 passed, the Joint Mathematics Meetings (JMM) 
were scheduled to be held in Denver in January 1995. 
Two mathematicians, acting independently, felt strongly 
that this meeting should be moved and wrote individual 
letters to the leadership of the American Mathematical So-
ciety (AMS) and the Mathematical Association of America 
(MAA) urging them to take this unprecedented action.

This article tells the story of what happened after Colora-
do’s Amendment 2 passed and how our professional societ-
ies responded. The national consequences were profound, 
leading to a landmark decision in 1996 by the United States 
Supreme Court. Despite the prospect of serious financial 
consequences and possible opposition by members, the 
brave decision to move the 1995 JMM from Denver1 to San 
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Francisco affirmed to lesbian, gay, bisexual, and transgen-
der (LGBT2) mathematicians that they mattered.

An informal get-together at that meeting led to annual 
events, and ultimately to the creation of Spectra, an orga-
nization for LGBT mathematicians and their allies. It is a 
story worth knowing, even a quarter-century later.

Prologue and Colorado’s Amendment 2
Today it may be difficult for some to imagine the plight 
of sexual minorities in the 1970s and 1980s. LGBT people 
faced the reality of being fired, denied housing, forcibly 
outed, abandoned by their families, or even imprisoned 
should their sexual orientation become known—or sus-
pected—by others [16].

Many adopted secrecy and self-censorship to cope, often 
with very destructive outcomes. One measure of the level of 
anti-LGBT stigma in our society at the time is that for years 
the law treated gay men and lesbians as criminals, although 
this was only selectively enforced. In 1986 the United States 
Supreme Court ruled in Bowers v. Hardwick that Georgia’s 
anti-sodomy statute was constitutional [3]. Georgia’s law 
criminalized sexual behavior between consenting adults of 
the same sex in the privacy of their home, with penalties of 
up to twenty years in jail.

Overlaying this damning judicial decision was the enor-
mous tragedy of AIDS, a time when finding a small sore 
or spot on one’s skin could well mean a relentless descent 
to a painful death from a disease with no effective treat-
ment [29]. In 1992, the year that Colorado’s Amendment 

2We have adopted the acronym LGBT throughout this article to reflect the 
terminology and labels that were often chosen in the 1990s to describe the 
people who were targeted and impacted by Amendment 2. Today, more 
inclusive terms can be used to describe the full spectrum of members of 
this community.
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Letter Writing
When David Pengelley, a mathematician then at New 
Mexico State University, learned of the passage of Amend-
ment 2, he immediately connected this with the Joint 
Mathematics Meetings scheduled for Denver in January 
1995. Although these meetings are planned years ahead, 
he decided to write to the members of the AMS Council 
and the MAA Board of Governors, urging them to move 
the meeting out of Colorado. His letter [21] reads in part:

 • It would be both unfair and insulting to the many 
homosexual members of the AMS and MAA to be 
asked to attend an annual meeting in an openly 
hostile and potentially more dangerous place.

 • It is important that this dangerous and intolerant 
action in Colorado not become a national trend, 
and the AMS and MAA, along with many other 
organizations, can help ensure this by not being 
accomplices. Already many organizations like ours 
are making such decisions by cancelling conven-
tion bookings. One might hope that this will also 
influence the people of Colorado to change their 
actions, if not their prejudices.

 • Finally, many heterosexual members, like myself, 
would also be unwilling to be accomplices to this 
trend by attending an annual meeting in Colo-
rado, and thus attendance and program quality in 
Denver would suffer, and many members would 
be alienated.

At the same time, James Humphreys at the Univer-
sity of Massachusetts, Amherst, had similar misgivings. 
Although he felt that Denver was more progressive than 
most parts of the state, he thought that the symbolism of 
having thousands of mathematicians spend lots of money 
in Colorado was important to avoid. Unaware of Pengel-
ley’s efforts, he also decided to write individual letters to 
all AMS officers and members of the AMS Council urging 
them to consider moving the JMM. This was a time when 
a newfangled method of communication called electronic 

2 passed, 23,411 people in the United States died from 
AIDS [31].

In response to the oppression faced by many LGBT 
people at the time, gay rights groups in the US started 
advocating for legal protections from the sort of blatant 
discrimination many had experienced [13]. In Colorado, 
the cities of Denver, Boulder, and Aspen all passed ordi-
nances in the early 1980s protecting gays and lesbians 
from discrimination in housing, employment, and public 
accommodations.

A number of groups opposed to civil rights for LGBT 
people were either begun in or moved to Colorado. These 
included the Family Research Institute, Christian Civil 
Rights Watch, and Mass Resistance. One such organization, 
a nonprofit founded in Colorado Springs in 1991, was 
Colorado for Family Values (CFV). According to its mission 
statement, its role is to “pro-actively lead and assist those 
opposing the militant homosexual attack on traditional 
family values” [26].

CFV sponsored an initiative to amend the state con-
stitution and gathered enough signatures to include it 
on the November 1992 ballot. The initiative, known as 
Amendment 2, read:

Neither the State of Colorado, through any 
of its branches or departments, nor any of its 
agencies, political subdivisions, municipalities 
or school districts, shall enact, adopt or enforce 
any statute, regulation, ordinance or policy 
whereby homosexual, lesbian or bisexual ori-
entation, conduct, practices or relationships 
shall constitute or otherwise be the basis of or 
entitle any person or class of persons to have or 
claim any minority status, quota preferences, 
protected status or claim of discrimination. 
This Section of the Constitution shall be in all 
respects self-executing.

The sweeping language of this initiative was extraordi-
nary. As US Supreme Court Justice Sandra Day O’Connor 
later observed [25] during oral arguments about its consti-
tutionality, “The literal language would seem to indicate, 
for example, a public library could refuse to allow books 
to be borrowed by homosexuals and there would be no 
relief from that.” The proponents of this measure often 
summarized their argument as No Special Rights, claiming 
that they were only interested in prohibiting “special rights” 
for sexual minorities [13, 26]. Although surveys showed 
that the majority of Colorado residents opposed discrimi-
nation based on sexual orientation, the “no special rights” 
argument convinced enough people, and Amendment 2 
passed by 53% to 47% [8].

Figure 1. Attendees at the 2019 JMM Spectra reception in 
Baltimore, including David Pengelley (second from right), his 
first time attending a Spectra reception.
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mail was just starting to become widespread. However, it 
was quite difficult to find email addresses for a group of 
people as large as the AMS Council and MAA Board of 
Governors. So both Pengelley and Humphreys put their 
letters into individually addressed and stamped envelopes 
and mailed them off (more than a hundred altogether) in 
the first week of December 1992. They understood that the 
governing boards of the professional societies would be 
meeting shortly at the January 1993 JMM in San Antonio, 
and wanted this issue on their radar. Neither was optimistic 
his letter would result in concrete action. They were wrong.

Societies React
This was not the first time that mathematicians had urged 
the professional societies to become more inclusive. There 
is, for example, a rich history of activism on the part of 
African-American mathematicians and allies against seg-
regation [14].

The letters from Pengelley and Humphreys created a 
flurry of responses and activity. Time was short. The holi-
days were fast approaching, and the JMM was convening in 
early January. Nevertheless, a series of email exchanges be-
tween Pengelley and some of those contacted showed there 
was strong support for the idea of moving the JMM away 
from Colorado, and that this would be put on the agenda 
at the governance meetings of both the AMS and MAA.

The schedule of governance meetings was crucial. First 
up was the MAA Executive and Finance Committee, then 
the full MAA Board of Governors, and finally the AMS 
Council. Deborah Tepper Haimo, then president of the 
MAA, made sure this was on the agenda of the first meet-
ing. She thought a move would have strong support and, 
indeed, said that no one she had talked with thought there 
would be any question about moving the JMM meeting 
site, despite added costs and difficulties with the relocation. 
She was right. The MAA Executive and Finance Committee 
recommended the move to their Board of Governors, which 
was meeting the next day. After that, the AMS Council 
convened and also was in general agreement to move the 
meeting.

At an unprecedented joint meeting of the governing 
boards arranged by AMS President Michael Artin and MAA 
President Haimo, there was strong sentiment for moving 
the 1995 JMM out of Colorado [9]. However some partic-
ipants were opposed, citing both the unknown financial 
consequences and whether professional organizations 
should take political stands on this issue. After an hour and 
a half of discussion, parallel motions were prepared and 
voted on by the AMS Council and MAA Board. The AMS 
resolution [1] read:

The Council of the AMS believes that the actions 
taken by the majority of those voting in Col-
orado in November 1992 with respect to dis-

crimination against homosexuals were wrong. 
The Council of the AMS recommends that the 
Joint Meetings not take place in Colorado while 
language similar to that in Amendment 2 of the 
November 1992 General Election passed by the 
voters of Colorado remains in the Colorado 
constitution. One of the reasons for this reso-
lution is that the AMS has the duty to protect 
all participants at their meetings from possible 
discrimination.

The Council of the AMS delegates the re-
sponsibility for final action to the AMS Board 
of Trustees and the MAA Executive and Finance 
Committee, who will instruct the Joint Meetings 
Committee to make every effort to find a site 
for the January 1995 meeting in a state other 
than Colorado.

The Council of the AMS requests that the 
sentiments of this resolution be communicated 
to the Governor of Colorado.

The AMS Council passed their version unanimously, and 
the MAA Board approved theirs by a vote of thirty-six in 
favor to seven against with two abstentions. The executive 
bodies reconvened and the votes were announced. Accord-
ing to Devlin [9], President Haimo’s update at an MAA 
meeting two days later received a “large and spontaneous 
round of applause.”

Meanwhile the AMS Meetings staff had been working 
with their MAA counterparts to find an alternative venue 
that could be part of these discussions. They recommended 
San Francisco—always a popular choice, and it had clear 
symbolic value as well. Four days after these resolutions 
passed, the Joint Meetings Committee met and agreed to 
move the meeting from Denver to San Francisco. They also 
resolved to obtain convention cancellation insurance for 
all future JMM meetings, and to alert the mayors, chambers 
of commerce, and convention bureaus in the future sites of 
JMMs about their intentions and history regarding anti-civil 
rights legislation. All future hotel contracts for the JMM 
now include a “Change of Legislation” clause.

A Denver Negotiating Team handled the terms of the 
cancellation in Denver. Two Denver hotels made claims 
on the AMS and MAA for damages. All parties settled for 
a total of $35,000 in damages, half paid by AMS and half 
paid by MAA [22]. Although not certain, it seems likely 
that increased attendance due to the change in location 
from Denver to San Francisco made up most, if not all, of 
this amount.

MAA FOCUS received six letters opposing the move. 
FOCUS Editor Keith Devlin decided to publish three 
[20], explaining in a preceding editorial that although 
he thought that these represented a minority view, they 
deserved to be heard.
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Colorado Boycott 
The passage of Amendment 2 
was the first major success of 
a series of similar anti-LGBT 
rights activities at the time in 
many other states, including 
Arizona, California, Florida, 
Georgia, Idaho, Iowa, Maine, 
Michigan, Minnesota, Mis-
souri, Montana, Ohio, Ore-
gon, and Washington [12]. 
The strategy and tactics of 
Colorado for Family Values, 
especially their No Special 
Rights slogan, provided a 
template for similar groups 
nationwide.

Alarmed by these developments, a number of indi-
viduals and groups considered ways to fight back against 
this wave of attacks on anti-discrimination laws. The idea 
of an economic boycott of Colorado gained steam, and 
by early 1993 the group Boycott Colorado formed as a 
clearinghouse to publicize and organize these efforts. The 
boycott sought to deter similar anti-LGBT efforts elsewhere, 
even encouraging business and political leaders to actively 
oppose copycat initiatives [2, 26]. The boycott idea proved 
controversial—boycotts are blunt instruments that can 
harm those sympathetic to its goals—but it also proved 
effective.

Three months into the boycott, about three dozen 
conventions scheduled for Colorado had been cancelled, 
including the 1995 JMM. By June 1993, Boycott Colorado 
had enlisted more than one hundred organizations and 
individuals to endorse this effort, including municipalities 
such as Chicago, Los Angeles, and New York, resulting in 
cancelled contracts for Colorado businesses [4]. NBC even 
changed the locale of its new television series Frasier from 
Denver to Seattle [26].

Estimates of the economic impact on Colorado from 
the boycott range from $40 million to $120 million, but, 
even assuming the highest estimate, this represented only 
2% of the state’s tourism budget [26].

More importantly, the boycott took a serious toll on 
Colorado’s reputation. From innumerable newspaper 
articles and other publicity, Colorado acquired the epithet 
“The Hate State.” Within the state, many companies and 
individuals did what they could to counteract this. They 
adopted and publicized nondiscrimination policies cover-
ing sexual orientation, and some required any vendors they 
did business with to adopt similar policies. Among these 
efforts was the Colorado Alliance for Restoring Equality, a 
Denver-based group of businesses and community groups 
devoted to overturning Amendment 2 [26].

In December 1994 the Col-
orado Supreme Court struck 
down Amendment 2 as un-
constitutional [7]. The activi-
ties of Boycott Colorado were 
suspended, as they awaited 
further legal developments 
[26].

Initial LGBT Reception
In the fall months of 1994, 
Don Goldberg of Occidental 
College in Los Angeles con-
tacted others interested in 
organizing a social event at 
the January 1995 meetings, 
rescheduled for San Fran-

cisco. The organizers shared the belief that, in the wake 
of the decision by the AMS and MAA governing bodies to 
relocate the 1995 meetings, this was an appropriate time for 
mathematicians belonging to sexual minorities to establish 
a visible presence within the profession. The steering com-
mittee that organized the event consisted of Robert Bryant 
(Duke University), Don Goldberg (Occidental College), 
Concha Gomez (University of California, Berkeley), Steven 
Hillion (University of California, Berkeley), James Hum-
phreys (University of Massachusetts at Amherst), Nadine 
Kowalsky (Institute for Advanced Study), Janet Ray (Seattle 
Central Community College), and Sandra Rhoades (now 
Gokey) (Smith College) [10].

The AMS staff was helpful in arranging for an announce-
ment of an LGBT reception to be listed with other informal 
events in the Meetings Daily Newsletter. It was held at the 
Iron Horse, a nearby restaurant and bar, with nearly one 
hundred attendees. As at most social occasions at the 
meetings, the discussion ranged over research problems, 
teaching methods, mutual friends and colleagues, job-
hunt networking, the forging of new friendships, and the 
renewal of old ones. One man, in his sixties, remarked 
that at meetings years ago he thought he was the only gay 
mathematician in attendance and was gratified by the size 
of the gathering. One graduate student was pleasantly sur-
prised to see the author of a favorite book at the reception. 
Frank Farris [11] has recently written a personal account 
describing the significance of this event to him.

Many people expressed the desire to have such a gath-
ering at every national meeting. It also became apparent 
that discussion of sexual orientation issues related to the 
mathematics profession should be continued beyond the 
debate over the location of a single meeting. Two email lists 
were set up to continue communications. These receptions 
became annual events at the JMM, initially organized by 
George Bradley of Duquesne University, who scheduled 
them at the conference hotel, supported them with his own 

Figure 2. Boycott Colorado was formed as a way to fight back 
against attacks on anti-discrimination laws.
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funds, and gathered donations until 2009, when others 
agreed to take over these duties.

Supreme Court Decision
Amendment 2 was challenged in the courts nine days after 
passage by a group consisting of individuals and muni- 
cipalities. The lead plaintiff was Richard Evans, a gay man 
who worked for the mayor of Denver. Jean Dubofsky, well 
known in Colorado legal circles as the youngest person and 
first woman appointed to the Colorado Supreme Court 
where she served until 1987, led the legal team. A perma-
nent injunction prevented the measure from taking effect. 
On October 11, 1994, almost two years after its passage, 
the Colorado Supreme Court ruled 2–1 that Amendment 
2 was unconstitutional [7].

Supporters of the amendment then appealed to the US 
Supreme Court, which accepted the case in February 1995. 
Although the Colorado Governor Roy Romer had opposed 
the initiative, he was obligated to defend it in court. And so 
the case became known as Romer v. Evans [23, 24].

Dubofsky again led the team challenging the amend-
ment, this time in federal court. The stakes were enormous, 
especially since a definitive ruling would have serious im-
pacts on similar anti-LGBT initiatives that were at various 
stages of legal challenge around the country. As the team 
prepared, they were helped by John Roberts, then an ap-
pellate attorney and now Chief Justice of the US Supreme 
Court, as part of his pro bono work. Dubofsky later said that 
Roberts was “terrifically helpful in meeting with me and 
spending some time on the issue. He seemed to be very 
fair-minded and very astute” [28].

Oral arguments were heard on October 10, 1995. For 
a vivid account of the chaotic scene outside the Supreme 
Court building (with long lines of people trying to secure 
one of the few seats to witness the historic case) and the 
tense, dramatic legal exchanges that occurred inside, see 
Casey [5, 6].

The audio recording of the hour-long hearing (together 
with the transcript) is available at [25] and is fascinating to 
listen to. Justice Ruth Bader Ginsberg asked the lead lawyer 
for the state, “I would like to know whether in all of US 
history there has been any legislation like this that earmarks 
a group and says, you will not be able to appeal to your 
State legislature to improve your status.” Justice Antonin 
Scalia hammered away on special-rights arguments. He also 
asked Dubofsky point-blank, “Are you asking us to overrule 
Bowers v. Hardwick?,” referring to the earlier decision that 
justices were loath to revisit. She deftly showed the justices 
how they could find Amendment 2 unconstitutional with-
out overturning Bowers.

On May 10, 1996, the US Supreme Court announced its 
decision in Romer v. Evans [23]. By a 6–3 majority, it ruled 
Amendment 2 unconstitutional, although for different 
reasons than those given by the Colorado Supreme Court.

Justice Kennedy, writing for the majority (with Justices 
Stevens, O’Connor, Souter, Ginsburg, and Breyer concur-
ring), said that the law “is at once too narrow and too broad. 
It identifies persons by a single trait and then denies them 
protection across the board. The resulting disqualification 
of a class of persons from the right to seek specific protec-
tion from the law is unprecedented in our jurisprudence” 
and “Its sheer breadth is so discontinuous with the reasons 
offered for it that the amendment seems inexplicable by 
anything but animus toward the class that it affects; it lacks 
a rational relationship to legitimate state interests.” He also 
addressed the No Special Rights argument head-on, saying, 
“We find nothing special in the protections Amendment 
2 withholds. These are protections taken for granted by 
most people either because they already have them or do 
not need them” [23].

A dissenting opinion authored by Justice Scalia (joined 
by Justice Thomas and Chief Justice Rehnquist) began, 
“The Court has mistaken a Kulturkampf for a fit of spite.” It 
continued, “In holding that homosexuality cannot be sin-
gled out for disfavorable treatment, the Court contradicts 
a decision, unchallenged here, pronounced only 10 years 
ago, see Bowers v. Hardwick … , and places the prestige of 
this institution behind the proposition that opposition 
to homosexuality is as reprehensible as racial or religious 
bias.” It also said that “Amendment 2 is designed to prevent 
piecemeal deterioration of the sexual morality favored by 
a majority of Coloradans, and is not only an appropriate 
means to that legitimate end, but a means that Americans 
have employed before” [23].

The Romer decision to strike down Amendment 2 
marked a turning point in the legal battles to secure the 
civil rights of LGBT people. At least temporarily, it also 
turned back the tide of similar efforts to challenge and re-

Figure 3. Headline announcing the US Supreme Court decision 
striking down Amendment 2.
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email list. It also has links to resources, including primary 
source materials used to prepare this article.

The first official Spectra event was a panel discussion at 
the 2015 JMM in San Antonio called “Out in Mathematics: 
LGBTQ Mathematicians in the Workplace.” David Crom-
becque (University of Southern California) moderated a 
lively and well-attended discussion featuring Andrew Ber-
noff (Harvey Mudd College), Julie Blackwood (Williams 
College), Kristina Garrett (St. Olaf College), Mike Hill 
(UCLA), and Marie Vitulli (University of Oregon).

A similar panel discussion took place at the 2018 JMM 

in San Diego, moderated by Lily Khadjavi (Loyola Ma-
rymount University), and with panelists Shelly Bouchat 
(Indiana University of Pennsylvania), Juliette Bruce (Uni-
versity of Wisconsin–Madison), Ron Buckmire (National 
Science Foundation), Frank Farris (Santa Clara University), 
and Emily Riehl (Johns Hopkins University). Participants 
shared their experiences and perspectives. Gathered in a 
large and supportive audience, attendees raised a wide 
range of concerns: Should a graduate student on the job 
market avoid even applying for work in states where adop-
tion would be a legal struggle for him and his husband? 
How does a graduate student or faculty member get an 
institution and colleagues to respectfully recognize their 
gender identity, from day-to-day interactions to official doc-
uments? How does one navigate working with an advisor 
who may not understand or be mindful of these issues? 
Reactions and responses illustrated that the environment 
still varies tremendously from institution to institution, as 
does the legal landscape from state to state. For example, 
a majority of states in the US do not have prohibitions 
against employment discrimination based on sexual ori-
entation and gender identity [30].

Spectra held a Town Hall meeting at the 2019 JMM in 
Baltimore, where participants divided into small groups 
focused on topics that included teaching and job search 
issues, together with how Spectra can help raise the visi-
bility of the LGBT community within their departments.

strict LGBT civil rights, although later these have resurfaced 
using subtler tactics.

The reverberations from this decision continue to be 
felt. In its 2003 decision Lawrence v. Texas, the US Supreme 
Court ruled 6–3 that Bowers v. Hardwick had been wrongly 
decided, effectively decriminalizing same-sex relationships 
nationwide by invalidating the sodomy laws that still re-
mained on the books in sixteen states at the time [15]. In 
the 2015 decision Obergefell v. Hodges, the Court ruled 5–4 
that the fundamental right to marry is guaranteed to same-
sex couples by both the Due Process Clause and the Equal 
Protection Clause of the Constitution [18, 19]. As in Romer 
and Lawrence, the majority opinion here was authored by 
Justice Kennedy, while Chief Justice Roberts dissented.

On November 6, 2018, the citizens of Colorado elected 
Jared Polis as governor, the first time in US history that an 
openly gay person was elected a state governor [27].

Creation of Spectra
For many years George Bradley continued to organize and 
support receptions for LGBT mathematicians at both the 
Joint Meetings in the winter and MAA’s MathFests in the 
summer. In 2007 Bradley organized an LGBT Math Cau-
cus within the National Organization of Gay and Lesbian 
Scientists and Technical Professionals (NOGLSTP [17]), a 
nonprofit organization led by Rochelle Diamond and Bar-
bara Belmont to support LGBT STEM professionals. Since 
then, NOGLSTP has provided financial and administrative 
support for the annual JMM reception, as well as serving 
as the place individuals can send tax-deductible donations 
for the reception.

At an informal meeting of LGBT mathematicians at the 
2010 JMM in San Francisco, faced with Bradley’s under-
standable desire for others to take over this role, several 
participants pledged some on-going financial support. 
Christopher Goff (University of the Pacific) stepped up to 
be the primary organizer of the annual JMM receptions, 
while Mark MacLean (Seattle University) continued as orga-
nizer of the informal off-site receptions. The sense also grew 
over the next few years that a more formal organization 
could not only sustain this activity but also provide other 
valuable ways to support LGBT mathematicians.

David Crombecque had already taken over for Bradley 
in the LGBT Math Caucus. A small group, serving as a 
steering committee, started brainstorming ideas of what 
other things could be done to support mathematicians 
regardless of sexual orientation, gender expression, or 
gender identity. Searching for a good name for the nascent 
organization, Robert Bryant (Duke University) and Mike 
Hill (University of California, Los Angeles) suggested the 
colorful term “Spectra,” with both mathematical and cul-
tural associations. The Spectra website at www.lgbtmath 
.org has information about the people involved and spon-
sored events, as well as a way to subscribe to the Spectra 

Figure 4. Discussion leaders at the Spectra Town Hall meeting at 
the 2019 JMM, l to r:  Christopher Goff, Douglas Lind, Alexander 
Hoover, Ron Buckmire, and David Crombecque.
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There will be many challenges ahead. But we hope that 
the publication of this story serves as an inspirational 
example of how individuals, working together with their 
professional societies, can advance the inclusiveness of 
the mathematical community in important, concrete, and 
visible ways.
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Looking Ahead
With generous contributions from several donors, Spectra 
has been able to continue the tradition of annual JMM 
receptions, organized in recent years by Christopher Goff 
(University of the Pacific) and currently Douglas Lind 
(University of Washington). Everyone is warmly welcome 
to attend these events and to contribute any ideas or sug-
gestions they may have for future Spectra activities, as well 
as to donate funds to support these events.

Throughout, the leadership and staff at our professional 
societies have been extremely receptive and supportive. 
Both societies have strong anti-discrimination policies. 
In 2015 Christopher Goff was appointed the inaugural 
At-Large Member for Inclusion in the MAA’s Council on 
the Profession, where he still serves. In 2016 Helen G. 
Grundman was named the inaugural Director of Education 
and Diversity at the AMS, and she has given Spectra gen-
erous encouragement and support. As a recent example, at 
Spectra’s urging the Joint Mathematics Meetings will now 
provide some well-labeled “All Gender” bathrooms. We 
are very grateful to all those individuals who have helped 
Spectra over the years.

The 2020 Joint Math Meetings will be held in Denver, 
the first time the JMM will be in Colorado since the events 
recounted here. We encourage participants to celebrate 
the progress already made and the role our professional 
organizations play in creating an inclusive environment 
for all attendees.

The visible presence of LGBT, nonbinary, and gender 
nonconforming people among mathematicians is an im-

portant sign of the diversity of the mathematics commu-
nity. As educators, all mathematicians should be aware of 
the challenges facing our students and colleagues. Despite 
advances in recent years, the societal and professional 
environment is not as welcoming as it could be to those 
who are underrepresented mathematicians. Often they 
feel like they cannot participate fully in the mathematics 
community while simultaneously expressing all aspects of 
their identity. The ability to do so should be a goal of all 
our professional societies.

Figure 5. Pins that Spectra supporters could wear during the 
2019 JMM to increase their visibility.
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To promote community among LGBTQ+ mathematicians, who 
are often scattered and isolated, Harrison Bray and Autumn 
Kent established LG&TBQ, a conference at the University of 
Michigan this summer to foster collaboration and mentoring 
in geometry, topology, and dynamical systems. They hope this 
will spur similar efforts in other scientific areas.
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“In a curious way, the advancement of pure mathematics 
very effectively combines extensive cooperation with rug-
ged individualism.”

–George Mackey, “What do mathematicians do?” 

Introduction
The mathematician George Mackey (1916–2006) is often 
remembered both for his scholarly contributions and his 
methodical, solitary work habits, tempered by an eager 
affinity for discussing mathematics with all who took an 
interest. His broad view of the subject inspired his con-
tributions in infinite-dimensional group representations, 
ergodic theory, and mathematical physics. 

In 1982, Mackey’s daughter Ann was a student at Yale 
University. Her friend, Stephanie Frank Singer, was a 
sophomore in college trying to decide whether to major 
in math or physics. Mackey had faced a similar dilemma 
as an undergraduate, and throughout his career the two 
disciplines competed for his attention. To help Singer with 
her decision-making process, Mackey wrote two letters1 to 
her in September and October of 1982. He also sent her the 
text of a talk he had delivered on “What do mathematicians 
do?” in Paris in March, 1978.2

Extensive Cooperation 
with Rugged Individualism

George Mackey’s guide for 
practitioners of mathematics

Della Dumbaugh

Della Dumbaugh is a professor of mathematics at the University of Richmond 
and an associate editor of the Notices. Her email address is ddumbaugh 
@richmond.edu.
1To read the letters in full see https://www.ams.org/notices.
2Mackey delivered a talk at the Harvard Club of France, located in Paris 
during his sabbatical there in March, 1978. It seems likely that “What do 
mathematicians do?” (see p. 890 for full speech) is the talk he delivered 
on that occasion and sent to Singer later [1, 2].

For permission to reprint this article, please contact: reprint-permission 
@ams.org.

DOI: https://dx.doi.org/10.1090/noti1891

First page of Mackey’s letter to Stephanie Frank Singer. 

1Mackey dSee the letters in full at https://www.ams.org/notices 
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how to be a mathematician from him,” Mackey’s student 
Calvin Moore claimed in his NAS biography. Richard Palais 
described Mackey as a “pivotal influence” on his life: “my 
contacts with him, early and late, determined who I was, 
what I would become and how my life and career would 
play out” [7, p. 841]. Roger Howe took a novel approach 
in his measurement of Mackey’s influence. He observed 
that of Euler’s 40,000 mathematical descendants, about 
300 of them come from Mackey [7, p. 832]. Mackey “made 
an indelible impression” on his last PhD student, Judith 
Packer, who reported that he improved her life as both the-
sis advisor and friend [7, p. 837]. These testimonies suggest 
the far-reaching influence of Mackey’s practice of both the 
private and public aspects of the profession.

Mackey at Home
The early 1960s formed an especially exciting time in 
Mackey’s life.  In December 1960, just weeks before he 
turned forty-five, he set aside his bachelor lifestyle of a 
sparse apartment with a single chair and stereo (presum-
ably his clipboard served as his desk?) and “surprised” his 
colleagues by marrying Alice Willard [14, p. 11]. A Wellesley 
graduate, Alice had worked as a buyer for the Jordan Marsh 
department store in Boston. Together they welcomed many 
members of the mathematical community to their home 
on Coolidge Hill Road for elegant dinners and vibrant 
conversation. In 1961, Mackey delivered the prestigious 
Colloquium Lectures at the Annual Summer Meeting of 
the AMS. On this occasion, he summarized his theory of 
unitary representations and his ergodic theory.6 In 1962, 
Mackey was elected to the National Academy of Sciences. 
George and Alice’s daughter Ann was born in 1963. “George 
persisted in many of his bachelor habits,” Moore wrote of 
Mackey’s transition to marriage and family life, “while also 
adapting them in order to become a dutiful husband and 

The current article provides an introduction to George 
Mackey, including excerpts from his letters to Singer, and 
the complete text of his “What do mathematicians do?”3 
With an undergraduate query forming the inspiration for 
Mackey’s letters to Singer, this work aims to shed new light 
on the life of this celebrated American mathematician by 
considering his contributions to undergraduate education.4 

Mackey at  Work
Mackey adhered to a disciplined lifestyle that began with 
focus on his mathematical research each morning.5 In 
the afternoons, he would normally walk the mile or so 
to Harvard (to his office or the “long table” at the faculty 
club for lunch). He ended his days with an early bedtime. 
He carried a clipboard at all times. He wore a seersucker 
jacket in warm months and a tweed jacket in cooler ones. 
He wrote letters about his “latest discoveries” [7, p. 847]. 
For Mackey, the advancement of mathematics hinged on 
what he described as an “extensive cooperation with rugged 
individualism” [4, p. 2]. He seemed to protect time for the 
“rugged individualism” in the morning and foster “exten-
sive cooperation” in the form of teaching and mathematical 
discussions later in the day.

This combination helped Mackey make a “lasting im-
pact” on students and colleagues  [7, p. 824]. “I learned 

3The Notices would like to thank Ann Mackey and Stephanie Frank 
Singer for bringing these letters to our attention and granting permission 
to publish them.
4Stephanie Frank Singer graduated from Yale and earned her PhD in 
mathematics from the Courant Institute in 1991 under the supervision of 
Nicholas Ercolani. She has published two books in mathematics: Symmetry 
in Mechanics: A Gentle, Modern Introduction and Linearity, Sym-
metry, and Prediction in the Hydrogen Atom [17, 18]. She currently 
protects democracy as a data scientist with the Verified Voting Foundation. 
She and Mackey’s daughter Ann were roommates at Yale, and remain close 
friends to this day.
5“[O]ne cannot imagine,” his student Caroline Series would later observe, 
how Mackey managed to “avoid teaching in the mornings” [7, p. 844].

Stephanie Frank Singer and George Mackey in Berkeley, CA, 
circa 1984.

Mackey in Beijing, China, circa 1990.

6See [14, pp. 12–13] for the details of these lectures and the subsequent 
manuscripts.
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father” [14, p. 11]. For example, Mackey sat on a park bench 
with his clipboard while Ann and Alice explored local at-
tractions.7 His family seemed to understand his disciplined 
adherence to his work schedule. Ann and Alice served as 
“his wonderful support system…his lifeline” [7, p. 837].

Mackey: Early Life
Born on February 1, 1916, in St. Louis, Missouri, George 
Mackey moved to Houston with his parents, brother, and 
sister in 1926 after a one-
year stint in Florida whose 
last days included surviving 
the infamous Great Miami 
Hurricane of 1926, a dramatic 
tale that all three siblings re-
told for the rest of their lives. 
Although only ten years old 
at the time, this move would 
have significant consequences 
for Mackey. After attending 
public schools, Mackey en-
rolled in what was then Rice 
Institute, now Rice University, 
in the fall of 1934. That Rice 
did not charge tuition at the 
time made it an especially ad-
vantageous opportunity since 
Mackey’s family did not have 
money to spare for college 
[2]. Initially, he planned to 
study chemical engineering 
in an effort to align his fa-
ther’s business aims for his 
life with his own interest in 
chemistry. It did not take long 
for his professors to iden-
tify and encourage his talent 
in mathematics. He found a 
compromise with a degree 
in physics—officially that is. 
Mackey described his under-
graduate experience as a triple major in mathematics, phys-
ics, and chemistry, although this sort of official recognition 
of multiple majors did not exist at the time.

While at Rice, however, Mackey had the good fortune to 
learn from Professor Walter Leighton, who had only just 
earned his Harvard PhD in 1935 under the direction of 
Marston Morse. Leighton offered Mackey two suggestions 
that would markedly influence his life. He encouraged 
Mackey to consider studying at Harvard with John Van 

Vleck, a theoretical physicist with a joint appointment in 
the mathematics and physics departments. He also bol-
stered Mackey’s confidence to believe he could find success 
at Harvard. As Mackey later put it, Leighton “assured me 
that I was ‘good enough’ for Harvard and urged me to 
apply” [13, p. 16]. Take a moment to consider this thought. 
The young George Whitelaw Mackey, who would ultimately 
become the distinguished American mathematician by the 
same name, benefitted from a faculty member’s belief in 

him as an undergraduate.
Leighton also informed 

Mackey about the inaugu-
ral “William Lowell Putnam 
Competition” in his senior 
year in 1937–1938. Concur-
rently, Leighton promoted 
Mackey as the “most promis-
ing” of the mathematics stu-
dents at Rice and convinced 
the mathematics department 
to nominate Mackey as their 
Putnam entry that year. Leigh-
ton may have understood the 
relationship between these 
two suggestions. The grand 
prize of the Putnam Compe-
tition included a full schol-
arship to Harvard graduate 
school. Mackey earned one of 
the top five scores on the Put-
nam that year out of 163 par-
ticipants.8 He did not win the 
Putnam grand prize, however. 
That award went to Irving 
Kaplansky. Although Har-
vard had accepted Mackey, 
they had not initially offered 
him any funding. Once they 
learned of his top-five perfor-
mance on the Putnam, Har-
vard offered Mackey financial 

aid, including full tuition. The chairman at the University 
of California at Berkeley mathematics department, Griffith 
C. Evans, who had previously served as chair of the math-
ematics department at Rice, allowed Mackey to rescind his 
acceptance there and pursue his graduate work at Harvard.

In 2004, when Mackey was eighty-eight and not in good 
health, he revised his 1989 Notices obituary of Marshall 
Stone to serve as part of the introduction to Operator Alge-
bras, Quantization, and Noncommutative Geometry: A Centen-

7Here, Mackey’s lifestyle calls to mind Leonard Dickson’s equally legendary 
insight about his honeymoon. When a colleague asked, “how was your 
honeymoon?” Dickson replied, “it was great, except I only got 2 papers 
written” [9, p. 398]. 

8Gallian includes the entire 1938 Putnam exam in his [10] and the online 
updated version “The Putnam Competition from 1938–2013,” www.d.umn 
.edu/~jgallian/putnam.pdf. Mackey also wrote on the Putnam in [11].

Mackey and daughter Ann in Cambridge, MA, circa 1964.

Mackey with wife Alice in Cambridge, MA, mid-1960s.
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nial celebration honoring John von Neumann and Marshall H. 
Stone.9 In this tribute ostensibly dedicated to Stone, Mackey 
writes about his own undergraduate experience at Rice. 
This choice tells us something about the value of his time 
at Rice in his life. He had nearly the entire arc of his life in 
view at that moment. Perhaps Mackey paused then, as we 
can do now, to reflect on the people he came into contact 
with as an undergraduate. There was Leighton, a student of 
Marston Morse at Harvard, who would ultimately lead the 
mathematics department at Washington University in St. 
Louis.  Leighton recommended John Van Vleck, son of Ed-
ward Burr Van Vleck. The senior Van Vleck had studied with 
Felix Klein at Göttingen and later served as president of the 
American Mathematical Society. John Van Vleck would win 
the Nobel Prize in 1977. There was Evans, who would go on 
to become President of the American Mathematical Society 
in 1939–1940. After earning a PhD from Harvard in 1910 
with a dissertation on Volterra’s Integral Equation written 
under the direction of Maxime Bôcher, Evans was awarded 
a Sheldon Fellowship from Harvard to study in Rome with 
Vito Volterra. Evans joined the Rice faculty in 1912 and 
remained there until 1934, bringing remarkably talented 
mathematicians, including Benoit Mandelbrot, Tibor Rado, 
and Carl Menger as visiting professors. Although Evans left 
Rice shortly before Mackey arrived, he had helped estab-
lish a strong research tradition there. He was subsequently 
hired by Berkeley to do the same with their mathematics 
department [15, p. 127]. Mackey became acquainted with 
the name of Irving Kaplansky through the Putnam compe-
tition. Thus before he ever left Rice, whether he realized it 
or not, Mackey had come into contact with seminal figures 
and/or their ideas in American mathematics. 

Mackey at Harvard: Graduate Student 
Mackey arrived at Harvard in the fall of 1938. “I meant to 
go with physics but applied to the mathematics department 
for admission,” Mackey later described it to Singer.

My intention was to learn some more math-
ematics and then come back and do physics 
“right.” I had found physics extremely interest-
ing—especially because of the rather advanced 
mathematical tools that it used. On the other 
hand I was quite disturbed by the loose way 
theory was defined in physics and by the sloppy 
“hand waving” proofs. I wanted somehow to 
combine the logical precision of mathematics 
with the (apparently) richer content of physics. 
However as my mathematical studies pro-
gressed at Harvard I gradually came to realize 
that pure mathematics had just as rich a content 

as physics and quite happily dropped physics 
and became a full fledged pure mathematician 
[4, p. 2].

A mathematical treatise helped reorient Mackey’s ac-
ademic interests. At the end of his first year at Harvard, 
Mackey “encountered a thick book in the mathematics 
library entitled ‘Linear transformations in Hilbert space 
and their applications to analysis’ by M. H. Stone…I found 
the material quite fascinating and ended up reading 60 or 
70% of it during the summer and asking Stone to be my 
thesis advisor” [4, p. 2]. Later, Mackey would clarify that 
this decision to choose Stone rather than Van Vleck as his 
thesis advisor did not mean he had decided to abandon his 
desire to become a physicist. It did mean that he wanted 
to “learn the deeper parts of pure mathematics under the 
supervision of the writer of this masterly book” [13, p. 19]. 
Mackey described Stone’s influence on his thesis as “indi-
rect” in that when he met with Stone, he told him about 
what he was doing, and listened to Stone’s “encouraging 
comments.” Harvard courses by Hassler Whitney, Garrett 

Mackey teaching, 1940s.

9Alice typed some of his handwritten notes and ensured the article made it 
to print form [7, p. 826].
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Birkhoff, and the recent Polish immigrant Stanislaw Ulam 
had a much stronger influence on Mackey [13, p. 20]. 
Mackey attributed the ideas of his thesis, “The subspaces 
of the conjugate of an abstract Linear Space,” to mathemat-
ics he learned and developed from Garrett Birkhoff and 
a stronger understanding of the linear algebra in Stone’s 
influential text [13, p. 21].

Stone had a much more direct influence on what Mackey 
termed his “development” when he “arranged” for Mackey 
to have a Sheldon Traveling Fellowship for his final year at 
Harvard in 1941–1942. On Stone’s advice, Mackey divided 
the time between Caltech and the Institute for Advanced 
Study (IAS) in Princeton. At the latter, Mackey met “such 
legendary figures as Albert Einstein, Oswald Veblen, and 
John von Neumann” along with younger PhDs including 
Paul Halmos, Paul Erdős, and Shizuo Kakutani [13, pp. 20– 
21]. Since Mackey did not yet have his PhD he could not 
technically join the IAS as a member. Stone, however, “took 
advantage of his close relationship with von Neumann to 
talk the Institute into making an exception in my case” [13, 
p. 21].10 Kakutani became a close friend and, in particular, 
he and Mackey “often dined together.” As David Mumford 
later described it, meeting for lunch was “Mackey’s favorite 
way of keeping in touch” [7, p. 837].

While making his way from Caltech to Princeton, 
Mackey stopped off at an AMS meeting where he met his 
former Rice professor, Lester Ford. Ford had just assumed 
the chairmanship at the newly founded Illinois Institute 
of Technology, and he invited Mackey to join the depart-
ment as an instructor in mathematics in 1942–1943 once 
he graduated from Harvard.11 Although he did not enjoy 
his time at Illinois Tech, it did allow him to teach mathe-
matics to engineers rather than serve in the military [13, p. 
22]. For the next three years he contributed to war-related 
research at Columbia University and in High Wycombe, 
England [14, p. 6].

Mackey at Harvard: Faculty Member
Mackey joined the Harvard faculty as an assistant profes-
sor in 1946, was promoted to full professor in 1956, and 
became the inaugural Landon T. Clay Professor of Mathe-
matics and Theoretical Science in 1969. He retired in 1985. 
While at Harvard, Mackey counted himself among the 
“relatively small number of people in the world (perhaps a 
few thousand) who spend a large part of their time thinking 
about and trying to contribute to an esoteric subject called 
pure mathematics” [6, p. 1]. In his “What do mathemati-

cians do?” Mackey set out to answer, “Whatever are these 
mathematicians doing? Why do they find it so interesting 
and what does it have to do with the rest of the world?” 
[6, p. 1]. The latter question surely arose from Mackey’s 
broad view of mathematics and his longstanding interest 
in describing physical phenomena with mathematics. “In 
a word,” Mackey began with a succinct answer to his ques-
tions, “pure mathematicians are refining, developing, im-
proving and (rather rarely) discovering the intellectual tools 
that have proved useful in analyzing and understanding the 
measurable aspects of the world in which we live” [6, p. 
1]. Early in his exposition, he (not surprisingly?) reduced 
biology to chemistry and chemistry to mathematics and 
claimed that this understanding allowed “the measurable 
aspects of the world [to] become quite pervasive” [6, p. 
2]. His letters to Singer also emphasized this link between 
mathematics and the physical world. He often connected 
those developments with the people who made them. 
Writing to Singer about Newton, Mackey asserted that 
“[d]ifferential equations are what made modern physics 
possible and the most important thing about calculus is 

10Indeed, the Institute for Advanced Study lists Mackey as a Member in 
Mathematics from January to June, 1942 and a Harvard PhD in the same 
year. See https://www.ias.edu/scholars/george-w-mackey.
11Margaret Matchett, Emil Artin’s first and only woman American PhD 
student, would just miss Mackey at Illinois Tech. She earned her PhD in 
1946 and held an instructorship at Illinois Institute of Technology from 
1946–1950.

Mackey working on a lecture, Paris, 1978.
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1949 when he took his “famous Math 212 course.” This 
course started with the foundations of mathematics and 
“ended up with some highly advanced and esoteric topics, 
such as the Peter–Weyl Theorem” [7, p. 841]. The course 
was just the beginning of a transformative experience for 
Palais. To Palais’s good fortune, Mackey was a resident tutor 
in his dorm, Kirkland House. Mackey encouraged Palais 
to share meals with him and discuss his queries about the 
course material. These meals became increasingly frequent 
and the conversation stretched to other areas of mathemat-
ics and life in general. By the end of his sophomore year, 
Palais changed his major from physics to mathematics [7, 
p. 841].

Five years later, David Mumford initially met Mackey as 
his Kirkland House nonresident tutor at Harvard in 1954. 
Through their weekly lunches, Mackey revealed to Mum-
ford “the internal logic and coherence of mathematics…
it was the lucid sequence of definitions and theorems that 
was so enticing—a yellow-brick road to more and more 
amazing places” [7, p. 836]. Although Mackey would 
“sometimes disclaim any interest in fostering undergradu-
ate education,” according to his daughter Ann, “he would 
engage passionately with anyone at any level of knowledge 
who expressed an interest in mathematics” [3]. With Mack-
ey’s investment in undergraduates, often at the intersection 
of mathematics and physics, it seems only natural that he 
would share his thoughts and expertise with his daughter’s 
undergraduate friend considering similar types of ques-
tions. One might even style his letters and text on “What do 
mathematicians do?” as something of a two-dimensional 
version of his Kirkland House conversations.

Concluding Thoughts
But there is something more. The arc of Mackey’s life 
celebrates his own undergraduate experience and his 
opportunity to work with talented undergraduates at Har-
vard. The geography of his youth led to his transformative 

that it makes differential equations possible” [4, p. 5]. He 
also included his thoughts on the pedagogy associated with 
these ideas when he continued with his view that “New-
ton’s work is epoch making in the strongest sense of the 
word and I personally find it deplorable that these facts are 
so little emphasized in modern teaching” [4, p. 5]. Given 
Mackey’s regular discussions with his Harvard colleague 
Andrew Gleason [7, p. 846; 16], who later became a major 
proponent of the teaching of calculus, one has to wonder if 
they also took up these concerns in their conversations.12

The topic of teaching was never far from Mackey in 
his letters to Singer and in his “What do mathematicians 
do?” In fact, in the latter, Mackey linked the life of a pure 
mathematician with teaching. As he described it at the very 
beginning of his talk, the vast majority of mathematicians 
“make their living by teaching in universities, their investi-
gations being subsidized by their being given less than full 
time teaching loads” [6, p. 1]. He circled back around to this 
idea near the end when he brought up the “certain tension” 
that exists for mathematicians who become immersed in 
their research problems and long for further time to devote 
to them [6, p. 4]. He identified mathematical institutes as a 
perfect remedy for this situation. In particular, he cited the 
Institute for Advanced Study in Princeton and the L’Institut 
des Hautes Études Scientifiques just outside of Paris as ex-
amples of places where mathematicians could “find more 
time for their work” (rugged individualism) and “exchange 
ideas” (extensive cooperation) [6, p. 5].

For Mackey, that exchange of ideas included discussions 
of undergraduate teaching, which ultimately attracted ex-
traordinary scholars to the field. Arlan Ramsey had his first 
class with Mackey in 1958–1959 on projective geometry, 
for example. “Already,” Ramsey later recalled, “I found his 
attitude and style appealing” [7, p. 842]. Ramsey’s “golden 
opportunity” with Mackey came the following year when 
Mackey taught from the notes that would become his 
Mathematical Foundations of Quantum Mechanics [12]. “This 
course answered many questions, and then the answers 
raised further questions. It was just what was needed and 
gave me a start on a long-term interest in quantum physics” 
[7, p. 842]. Richard Palais met Mackey as a sophomore in 

12In [16], the chapter on “The War and its Aftermath: Andrew Gleason, 
George Mackey and an Assignation in Hilbert Space” focuses more on Glea-
son and Mackey than on the war and its aftermath. Mackey and Gleason 
forged a memorable friendship at Harvard. In particular, Gleason regarded 
Mackey as his PhD supervisor even though he never earned a PhD. The two 
colleagues talked about mathematics almost daily but never collaborated on 
any papers. Mackey was slow and methodical, and Gleason worked with 
“dazzling” speed [p. 160]. The beautiful reflection on the power of their 
collaboration will inspire readers. Every reader will benefit from the very 
human insight Mackey provided when he described the “peace of mind” he 
gained when he stopped viewing Andrew Gleason “as a dangerous younger 
rival” whom he had to outdo and instead “concentrated on his own strength, 
which was his ability to think deeply about a subject—for years or days at 
a stretch—with monk-like devotion” [p. 160].

Mackey in his study at Coolidge Hill Road, 1980s.
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experiences at Rice Institute. In the 1930s, in the somewhat 
unlikely location of Houston, Texas, talented mathemati-
cians like Leighton, Ford, and Griffin served on the Rice 
faculty. Mackey benefitted from their extraordinary training 
and exposure to some of the most celebrated American 
mathematicians at the time. They not only taught Mackey 
mathematics but they also helped point him towards what 
would become his own distinguished mathematical career. 
Mackey carried this training forward at Harvard with his 
own students. Whether in his classes, in his office, or at 
Kirkland House, he shared his verve for mathematics with 
them. Singer’s queries offered another venue for Mackey to 
do what he did best (in the afternoon), namely, cooperate 
extensively on mathematics. Although Mackey begins his 
“What do mathematicians do?” by offering an analysis of 
the “mathematical strength of the world” focused in five 
geographical areas, this consideration of his life and work 
actually suggests a much broader view of the strength of 
mathematics, beginning with the undergraduate experi-
ence.
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“What do mathematicians do?”

George W. Mackey

There are a relatively small number of people in the world 
(perhaps a few thousand) who spend a large part of their 
time thinking about and trying to contribute to an eso-
teric subject called pure mathematics. The more active 
and successful number only in the hundreds and form a 
world community in which every one knows or knows of 
everyone else. The overwhelming majority make their liv-
ing by teaching in universities, their investigations being 
subsidized by their being given less than full time teaching 
loads. For complicated historical and cultural reasons the 
great majority live in Europe, North America, and Japan 
and are far from being uniformly distributed over these 
areas. Some European countries are almost completely un-
represented, and some, like France, are especially strong. 
Moreover, if the pure mathematicians of Paris, Moscow, 
greater Boston, Princeton, and New York City were to be 
eliminated, the mathematical strength of the world would 
probably be reduced by at least two thirds.

If a non-mathematician listens to these people talk 
or attempts to read their journals, he confronts an in-
comprehensible jargon filled with words like differential 
equation, group, ring, manifold, homotopy, etc. If he asks 
for an explanation, he is overwhelmed by a concatena-
tion of difficult to grasp abstract concepts held together 
by long chains of intricate argument. Whatever are these 
mathematicians doing? Why do they find it so interesting 
and what does it have to do with the rest of the world?

In the time at my disposal I can do little to answer these 
questions. Nevertheless, I am going to make an attempt. 
In a word, pure mathematicians are refining, developing, 
improving, and (rather rarely) discovering the intellectual 
tools that have proved useful in analyzing and under-
standing the measurable aspects of the world in which 
we live. These measurable aspects are not so limited as 
they might seem. At the beginning there was just counting 
and later the measuring of distances, areas and volumes. 
However, the last three centuries or so have witnessed 
a steadily accelerating growth in the extent to which all 
natural phenomena can be understood in terms of rela-
tionships between measurable entities. In the 1920s, for 
example, the discovery of quantum mechanics went a 
very long way toward reducing chemistry to the solution 
of well-defined mathematical problems. Indeed, only the 
extreme difficulty of many of these problems prevents the 
present day theoretical chemist from being able to predict 
the outcome of every laboratory experiment by making 
suitable calculations. More recently the molecular biolo-
gists have made startling progress in reducing the study 
of life back to the study of chemistry. The living cell is a 

miniature but extremely active and elaborate chemical 
factory and many, if not most, biologists today are con-
fident that there is no mysterious “vital principle,” but 
that life is just very complicated chemistry. With biology 
reduced to chemistry and chemistry to mathematics, the 
measurable aspects of the world become quite pervasive.

At this point I must make it emphatically clear that, in 
spite of what I have just said, pure mathematicians con-
cern themselves very little with the external world—even 
in its measurable aspects. Their concern with the intellec-
tual tools used in analyzing the external world is not so 
much in using these tools as in polishing them, improving 
them, and very occasionally inventing brand new ones. 
Indeed it is their concern with the tools themselves, rather 
than with using the tools, that distinguishes them from 
applied mathematicians and the more mathematically 
minded scientists and engineers.

While it is natural to suppose that one cannot do any-
thing very useful in tool making and tool improvement, 
without keeping a close eye on what the tool is to be used 
for, this supposition turns out to be largely wrong. Math-
ematics has sort of inevitable structure which unfolds as 
one studies it perceptively. It is as though it were already 
there and one had only to uncover it. Pure mathemati-
cians are people who have a sensitivity to this structure 
and such a love for the beauties it presents that they will 
devote themselves voluntarily and with enthusiasm to 
uncovering more and more of it, whenever the opportu-
nity presents itself.

Perhaps, because of the lack of arbitrariness in its struc-
ture, research in pure mathematics is a very cooperative 
activity in which everyone builds on the work of someone 
else and in turn has his own work built upon. On the other 
hand, mathematicians tend to work alone (and occasion-
ally in pairs) and to be intensely individualistic. Thus, in 
a curious way, the advancement of pure mathematics very 
effectively combines extensive cooperation with rugged 
individualism. No one has enough of an overview to be at 
all effective in directing the development of mathematics. 
Indeed if anyone tried he would probably do more harm 
than good. Just as the social insects build marvelously de-
signed intricate structures by apparently carrying materials 
around at random so have the mathematicians built a 
marvelously articulated body of abstract concepts by fol-
lowing their individual instincts with an eye to what their 
colleagues are doing. An interesting example occurred 
during the first two decades of the twentieth century. 
While the physicists were struggling with contradictions 
and anomalies in the so-called “old quantum theory,” 
two quite distinct branches of pure mathematics were 
being developed by two different sets of mathematicians 
with no thought for one another or for physics. Then the 
discoveries of Schrödinger and Heisenberg in 1924-25 
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provided the key to the mystery, and physics found its way 
to that subtle refinement of Newtonian mechanics known 
as quantum mechanics. Almost immediately it was found 
that these two separate new branches of pure mathematics 
were not only what quantum mechanics needed for its 
precise formulation and further development, but they 
could be regarded moreover as two facets of a bigger and 
better unified new branch which was even more adapted 
to the needs of quantum physics. Several decades later this 
unified new branch began to have important applications 
to some of the oldest problems in the theory of numbers.

The set of natural numbers 1, 2, 3, . . . is perhaps 
the first mathematical tool discovered by man, but its 
study continues to provide pure mathematicians with an 
apparently inexhaustible supply of profound and chal-
lenging problems. Consider, for example, the problem of 
determining in how many different ways (if any) a given 
whole number can be written as a sum of two squared 
whole numbers. The answer to this question turns out to 
depend on the factorization of the number into primes. 
I remind you that a number is said to be a prime if it 
cannot be written as the product of two other positive 
numbers, neither of which is one. For example 2, 3, 5 
and 7 are primes while 4 and 15 are not since 4 = 2×2, 
and 15 = 3×5. One can find an answer for the problem 
expressed in terms of the answer when the given number 
is a prime. This much is fairly easy. Much more difficult 
to establish is the beautiful result that solutions exist for 
the prime 2 and for precisely those odd primes which 
leave a remainder of 1 when divided by 4. This theorem 
was announced without proof by Fermat in the middle of 
the seventeenth century. One hundred years later Euler, 
the great eighteenth century mathematician, worked for 
seven years before finding a proof. Nowadays quite simple 
proofs exist, but they use sophisticated new tools such as 
group theory and field theory. Similar but slightly more 
complicated problems remained unsolved until quite re-
cently. Others are still beyond our reach but may become 
accessible when the new tool mentioned above and which 
arose in physics becomes further developed.

Such problems may seem trifling to the outsider, but a 
major lesson taught by the development of Science in the 
last three and a half centuries is that the way to progress 
lies in fine analysis—in looking very closely at the simplest 
aspects of things and then building from there. Galileo 
began modern mathematical physics by deciding that it 
would be worthwhile to time a falling body and discover 
just how much it accelerated as it fell.

Now let me return to my statement that the great major-
ity of pure mathematicians make their livings by teaching 
in universities and have their work subsidized by reduced 
teaching loads. Nowadays many people criticize this 
arrangement on the grounds that it tempts faculty mem-

bers to neglect their teaching. I think that this criticism is 
without serious foundation. In my opinion a very high 
proportion enjoy the teaching they do and regard doing 
it well as a serious responsibility which is part of what 
they owe the University for supporting their research. It 
is, I think, a rather happy arrangement in that it makes it 
possible for at least some teaching to be done by genuine 
authorities in the field and at the same time supports an 
activity whose measurable economic benefits are so un-
certain and so far into the future. On the other hand, there 
is a certain tension. One becomes extremely absorbed 
in one’s research problems and longs for extra time in 
which to work on them. The summer vacation helps but 
is not enough. It is fortunate that other possibilities exist, 
such as sabbatical leaves and various institutes where one 
can go from time to time and concentrate exclusively on 
research. Actually there are all too few of the latter, and I 
would like to close by saying a few words about the two 
which I myself have visited—one of which is just a few 
miles outside of Paris in Bures sur Yvette.

The Institute for Advanced Study in Princeton, New 
Jersey is the older and became famous very quickly by 
having Einstein on its faculty. It was founded in 1933 and 
has played a very useful role in the mathematical world 
ever since. Its school of mathematics has an extremely 
distinguished permanent faculty of half a dozen or so and 
every year a group of 50 or 100 visitors. Most of the visitors 
are young—only a few years beyond the PhD. However, 
there is always of sprinkling of older mathematicians in-
cluding a few distinguished foreigners. I have just come 
from a very pleasant and productive term there.

The institute at Bures sur Yvette (L’Institut des Hautes 
Etudes Scientifiques) is younger and has a smaller perma-
nent faculty—but one which is probably no less distin-
guished. I spent an agreeable and profitable term there 
seven years ago. Like its older counterpart in Princeton, it 
plays a very important role in the mathematical world—
not only by helping mathematicians find more time for 
their work, but by bringing those with similar interests 
together so they may exchange ideas.

On this visit to Paris I am not at Bures but am rather 
teaching a course at the University (Paris VI). However, 
my Harvard colleague, Professor Barry Mazur, is there and 
in fact is a frequent visitor. He is in the audience today 
and has agreed to try to answer questions any of you may 
have either about the nature of mathematical research or 
about the IHES.
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onset of puberty. Indeed, children naturally ask “why ques-
tions,” and based on research both the National Council 
of Teachers of Mathematics Principles and Standards for 
School Mathematics [NCTM00] and Common Core State 
Standards in Mathematics, in particular its third Practice 
Standard [CCSS10], call for more reasoning and proof 
throughout school mathematics.

Such calls are being answered. For example using pic-
tures such as those given in Figure 1, many current curricula 
provide opportunities to reason about the sum of two odd 
numbers in the second or third grade.

While such arguments through pictures lack the formal 
trappings of proof, engaging with such arguments is valu-
able experience. Moreover, visual learning of arithmetic has 
a clear basis in the research literature [PB13, Ans16]. One 
could place this activity in a coherent learning progression 
across K–12 by revisiting arithmetic of even and odd num-
bers through other arguments, either based on place value 
and case analysis or grounded in algebra. Such a learning 
sequence could advance in high school with activities such 
as showing that the sum of two squares cannot be one less 
than a multiple of four.

“I think that it is impossible for some of our students to 
learn to do proofs,” explained a colleague of mine. My 
belated response is that all students can indeed learn to do 
proofs. College faculty have been asking aspiring math ma-
jors to make a huge jump, from not being responsible for 
providing reasoning in entry-level college courses and most 
of their K–12 experience to making formal proofs. To ease 
this transition, our department at the University of Oregon 
has recently created “lab” courses for first-year students in 
addition to our “bridge” requirement, to help students by 
degrees gain experience with proof-based mathematics.

More broadly, we should afford all students, at all levels, 
practice with gradually more demanding reasoning, some-
thing which educators would call engaging in progressions 
in reasoning [CCSS18]. Teachers, mathematics educators, 
and mathematicians have been working together to de-
velop and study such learning progressions for reasoning1 
in K–12 mathematics (see for example [SBK09, Knu02, 
KCJS02]). In this article I share perspective as a research 
mathematician who has developed and implemented 
reasoning-focused tasks for K–12 students of all grades, 
for both aspiring and current teachers, and for many types 
of undergraduates.

Historically, explicit calls for student reasoning had been 
all but absent in school curricula until Euclidean geometry. 
But mathematical argument does not need to wait until the 
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Figure 1. Pictures which can support  opportunities for second 
and third graders to reason about the sum of two odd numbers.
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differences (a case in which “simplifying” has a purpose) 
and employing reasoning central to the fundamental 
theorem of calculus. Indeed, such analysis provides a first 
explanation, in the discrete setting, for why quadratic func-
tions should model total displacement in the presence of 
constant acceleration.

Asking students to provide and critique reasoning is 
more time-intensive than only demonstrating reasoning 
to them or omitting reasoning altogether. But the devel-
opment of communities of reasoning is sorely needed, es-
pecially at this moment. Students benefit immensely from 
establishing truth through logic that is accessible to all, 
with contributions from themselves and peers, rather than 
having mathematics exclusively “handed down” through 
authority of teacher and textbook. Such communities foster 
responsibility for acknowledging errors, understanding 
them as a way to progress to correct understanding.

In addition to presenting mathematics consistently 
with the practices and values of our community, increased 
reasoning will pay dividends through deeper retention as 
well as greater transfer of reasoning ability (see for example 
Chapter 3 of [NRC00]). Facility with application is also 
supported, as students who have access to reasoning can 
more flexibly use mathematics to understand the world. 
For example, concrete visual models are now regularly 
used to reason about dividing fractions and in particular 
“remainders,” as needed for applications. If it takes ¼ of 
a ton of steel to make a car, and a factory has 8  tons of 
steel, dividing, we see that there could be 33 cars made, 
and there will be  of a ton of steel left over. This is  

Reasoning about even and odd numbers has been used 
fruitfully in a number of settings. Colleagues at the Univer-
sity of Oregon and I use this material as an introduction 
to different levels of formalism for undergraduates who 
aspire to be elementary school teachers [BHS]. Patrick 
Callahan, a mathematician who led the California Math 
Project, often has schools evaluate student reasoning by 
asking students at different grade levels to explain why the 
sum of odd numbers is even. Callahan reports that high 
schoolers generally fare no better than grade schoolers, and 
when presented with the argument through variables, they 
(including advanced students) commonly report that they 
did not realize it was “allowed” for variables to be used in 
that way. Deborah Ball and her colleagues at the University 
of Michigan have used student-driven discussion about 
the definition of even numbers as a strong component of 
teacher training [Bas05, BB03].

The Common Core State Standards for Mathematics 
were designed through progressions [CCSS18]. While the 
Common Core can be read as policy or as informing ped-
agogy, to a knowledgeable reader they also suggest proofs 
for all of K–12 mathematics, short of concepts that require 
limits, in particular working rigorously with functions over 
all real numbers. The commutative property of multiplica-
tion, for example, should be established through noticing 
that a rectangular array and its transpose are in bijective 
correspondence. Strong curricula engage students in such 
proofs in age-appropriate ways.

The Common Core also asks that the canon of elemen-
tary mathematics be taught consistently with how mathe-
maticians practice mathematics. The multiplication table 
is not just a set of facts but also a rich locale for conjecture 
and proof. Students who type  or 5 into a calculator 
and get an “answer” can be asked what that answer means 
in terms of inequalities, for practice at using definitions as 
well as reinforcement of estimation and number sense. And 
the story of the law of exponents, which goes from having 
a simple verification for positive whole exponents to being 
the driver of the definition for all other exponents, is a great 
example of the art of mathematical definition. (I enjoy the 
parallel between the law of exponents and the homotopy 
lifting property, which went from being a property of fiber 
bundles to being Serre’s definition of a fibration.)

Reasoning at the high-school level can reach, for exam-
ple, the circle of ideas centered on the fact that the sum of 
the first n odd numbers is n2. The statement itself is ripe for 
conjecture through seeing cases, and it is substantial work 
for students to make their conjectures precise. A graphical 
argument, as in Figure 2, is readily accessible, and then 
provides an opportunity to press for details—for example, 
why the number of blocks added in each step increases 
by two. Algebraically, there are multiple arguments: an 
inductive argument, the standard trick for summing arith-
metic sequences, and one through calculating successive 

Figure 2. A graphical argument that the sum of the first n odd 
numbers is n2.
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Knowledge of such arguments is also helpful for entry-level 
college teaching.

4. Encourage development of opportunities for reason-
ing in high-school curricula, in particular the use of algebra 
as a tool of reasoning, for example to establish divisibility 
rules or in counting problems. Reasoning about authentic 
applications should also be developed, and play an espe-
cially prominent role in high-school math.

5. Support K–12 educators as they move away from 
harmful practices such as acceleration without understand-
ing and tracking. Students should be challenged through 
depth of understanding, which is achievable in mixed-abil-
ity classrooms. Tracking has negative consequences for all 
students, especially those from disadvantaged backgrounds. 
The benefits of such system shifts, as recommended by the 
National Council of Teachers of Mathematics [NCTM18], 
have been borne out by data, for example in the work of 
San Francisco Unified School District [BF14, SFU18].
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of the amount needed to make another car, as one sees in 
the quotient 33 , but in some contexts  would be the 
correct “remainder,” a quantity which is not accessible if 
one only learns to “flip and multiply.”

Progressions occur not only in the mathematics itself, 
as definitions and theorems build on previous such, but 
across many domains. A familiar domain to mathema-
ticians is the amount of abstraction. Related, but less 
familiar, is the sophistication of representation, including 
progression from tactile models to pictures to diagrams to 
variables. On the more cognitive side, there are progressions 
in student autonomy, including whether tools are called for 
explicitly or demanded through problem-solving. There are 
progressions in how much of the process of doing math-
ematics is engaged in, for example in formulation of con-
jectures and counterexamples. Demands in language will 
also progress. Strong curricula attend to all of these types 
of progression, and address them through research-based 
pedagogy, in particular active learning [LBHea14, Bea16, 
MAA18].

Teachers need to be prepared to implement curricula 
that demand that students supply their reasoning. As the 
mathematical community plays substantial roles in their 
preparation—especially that of future high-school teach-
ers—we make some recommendations for teacher training 
and for other related matters below. For comprehensive 
recommendations for teacher preparation, see [BLS+12, 
AMT17].

1. Restructure entry-level college courses so students are 
asked to autonomously provide reasoning, through proofs 
or in the context of applications.2 The rest of the world, 
including future teachers, takes our choices for these classes 
as a signal about the nature of our subject. Currently, they 
deduce that math is only about accurately reproducing 
procedures!

2. Develop profound understanding of the K–12 math-
ematics progressions in mathematics courses for future 
elementary and secondary teachers.

3. Provide math majors interested in teaching with op-
portunities to connect formal college-level mathematics 
with school mathematics, as being developed in multiple 
NSF-funded projects: the Mathematical Association of 
America’s META Math project; the Association of Public 
and Land-Grant Universities’ MODULES project; and the 
ULTRA project run by Rutgers, Columbia, and Temple 
Universities. At some point—perhaps masters-level or other 
professional preparation—such students should learn the 
arguments underlying the rules for arithmetic and thus 
algebra, as preparation for teaching algebra as reasoning 
and being able to appeal to or even fill in background. 

2For example, in my department we’ve replaced our Intermediate Algebra 
offerings with classes which apply algebra to mathematical modeling.
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several camps before the solution is discussed. The students 
are not expected to solve all the problems, but instead to 
think about them persistently.

After the homework discussions are finished, about 
five or six new problems are assigned. The students start 
working on these problems, but not all by themselves. They 
work in teams of two, three, or sometimes four, which they 
form themselves. Each team occupies a different room of 
the mansion so they do not disturb one another.

This peaceful, stress-free, and collaborative environment 
is one of the most important traits of the camps. In the 
rooms the teams and the mathematical puzzles are locked 
in together; they do not know what the other teams are 
doing; they work at their own pace. If they want, the stu-
dents can work at desks, but many prefer to think in their 
beds, while walking around, or simply just sitting on the 
ground. Some groups talk quite often and some—especially 
in the camps for older students—communicate only in a 
few words. This freedom and calmness makes the camps 
quite special.

The teamwork itself is also far from ordinary. One would 
expect that, in a team, if someone solves one of the prob-
lems, they would immediately share it with the others. In 
the Pósa camps this is different. The central concept of these 
camps is the joy of thinking, so everyone should have a 
chance to tackle and solve the problems themselves. If this 
is the case, one may ask, why are there teams in the first 
place? In these camps, initially everyone thinks about the 
problems individually and in any order they want. If they 
solve a problem, they are supposed to keep the solution 
secret; only those who have thought about it but do not 
know the solution yet are allowed to continue discussing 
that problem. If anyone solves the problem during the 
discussion, they also stop conversing. Solving problems is a 
little bit like finding a way out of a dark forest. It is exciting 
and we all want to participate. While the way is uncertain, 
it is better to have company, but once we are out and have 

It is a Friday afternoon in an old mansion house in the 
Buda Hills. We hear the chatter of high school students 
and parents arriving in the courtyard. It is obvious that this 
is not their first time here. The next weekend math camp 
led by Lajos Pósa is starting soon, and the air is filled with 
anticipation. Pósa knows the parents quite well—many of 
them came to the camp when they were little. They might 
revive old memories in a few words or possibly talk about 
more recent topics.

A bit later, the parents say goodbye to their children, but 
this is not a hard goodbye. The kids quickly go find their 
usual rooms and catch up with their friends, with whom 
they share their rooms. They know they will see their par-
ents in about two days, and the time in between is going 
to fly by. The two days will include about fourteen hours 
of intensive thinking about math problems—which might 
sound frightening to many—but for them this is something 
they have been waiting for for the past few months.

In fact, they were not simply waiting for the camp, they 
were also preparing. The camps usually start with a plenary 
session, in which the students discuss their progress on 
the homework problems from the previous time. Some of 
these problems are easier, and they are intended for the 
students to practice the new ideas they learned in a different 
setting, but some problems are very difficult and require 
substantial effort, even from the most talented students. 
When a problem turns out to be particularly difficult, it is 
not uncommon that the problem will be worked on over 
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history. This way students learn that raising good questions 
is an important part of science, often more important than 
finding smart answers.

Every Saturday afternoon is spent in team competition. 
The teams have three hours to solve five problems related 
to the camp curriculum. Here is an example problem that 
often appears in eighth-grade camps:

A precious piece of treasure is locked up in a safe. 
The door of the safe is circular and there are four 
indentations on it. The indentations are positioned 
on the vertices of a square centered at the midpoint 
of the circular door. Each indentation hides a binary 
switch, which cannot be seen from the outside but 
its position can be identified if we put our hands in. 
We are standing in front of the door and we can 
each put our hands into one of the indentations, 
and we can change their setting. However, once we 
pull our hands out, the door senses that it has been 
tampered with, and it starts rotating extremely fast 

experienced the joy of finding the solution, it is better to 
let the others find the right path themselves. Initially, this 
version of teamwork might be strange for the students, 
and in seventh or eighth grade they often break the rules. 
But by tenth grade no one allows the others to reveal the 
solutions; they have already experienced how the joy 
comes from finding the path themselves and not simply 
knowing the answer. The journey is more important than 
the destination.

The camps are structured by alternating plenary and 
teamwork sessions. The plenary sessions usually include 
solution discussions but sometimes also tales about the 
history of mathematics, quizzes, and sessions where the 
students are supposed to ask follow-up questions. Learning 
to ask good questions is a central objective of the camps. 
The authors of good questions receive chocolate rewards, 
and if a question becomes part of the camp curriculum, the 
authors will be mentioned in the preceding story each time 
the problem is assigned, and thus become part of camp 

Lajos Pósa (1947– ) stood out as a child with his special 
mathematical abilities. At the age of fifteen, he wrote a 
joint article with Pál Erdős. The Pósa condition, which 
guarantees the existence of a Hamiltonian cycle in a 
graph, is taught in many schools around the world even 
today. In high school he went to the same class as László 
Lovász and Miklós Laczkovich. His career in mathematics 
started wonderfully, but after acquiring his PhD degree he 
gradually renounced research for mathematics education.

He taught mathematics in several normal (not special 
math) high schools. His focus shifted toward talented 
students in the 1980s. Pósa organized the first weekend 
camp in 1988. At that time pretty much every circum-
stance was different. Hungary was still part of the Soviet 
regime; the parents helped find the location, which was 
different each time; Pósa usually led the camps without 
helpers; and there was only a single group of students. 
Since then the camps have become much more organized. 
The location—the old mansion house—is fixed. There are 
two groups of students per grade, which means a total 
of ten groups run in parallel (from seventh to eleventh 
grade); each gets to camp about two or three times a year. 

Today we are past our 350th camp, and more than a 
thousand students have had a chance to take part. Some 
of them are mathematicians or mathematics teachers, but 
many have become software engineers, economists and 
financial analysts, and even dramaturges and archaeol-
ogists.

Nurturing mathematical talent is a great tradition in 
Hungary. Experts on education, such as Tamás Varga, 
György Pólya, or Zoltán Dienes, have left behind long- 
lasting legacies. We have had countrywide competitions 
since the beginning of the twentieth century, and since 

1894 (except for the years during the World Wars) the 
KöMaL journal has appeared every month. One of the 
main features of KöMaL is a high-quality year-long mail-in 
competition in mathematics for high school students. 
Clearly, Hungary was doing quite well in terms of nur-
turing talent even before Pósa.

However, what Pósa has brought to the table is some-
thing completely new and revolutionary. It is still talent 
nurturing, but the goal is not for students to become 
efficient problem solvers. It is true that each year almost 
all the members of the Hungarian IMO team also go to 
the Pósa camps, but such competition results are merely 
a byproduct. The goal is for the students to experience 
the joy of thinking, which is a delicate task, and it only 
happens in the right kind of environment. It requires 
both the structure provided by Pósa’s carefully constructed 
curriculum and the freedom given by the supportive and 
stress-free atmosphere characteristic of the camps. And 
once the students have experienced this joy, it gives them 
the confidence to think, to be creative, to dare to fail. All 
of this is essential for solving hard problems, but more 
importantly, for asking good questions. Asking questions 
is deeply embedded in the culture of the camps; in fact, 
it is quite likely that the most common sentence of these 
camps is, “What would you ask right now?” Of course 
the effectiveness of these principles depends highly on 
how they are put into practice. This is where Pósa’s vision 
and experience matters the most, which is now further 
strengthened by the alumni who strive to carry on and 
extend his ideas so that future generations can benefit 
from the same introduction to the beauty of mathematics 
and joyful thinking.
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have worked hard for three days, which they have surely 
enjoyed, but it must also have tired them out considerably. 
On the way home they sleep in the car or pose some of the 
problems they solved in the camp to their parents. It is not 
uncommon that the parents cannot solve these problems. 

It will be about three or four months before they come 
back and the adventure will continue. The adventure intro-
duces them to the beauty of mathematics by letting them 
discover it themselves.

In case the above paragraphs did not do justice to how 
special these camps are, we also include a couple of testimo-
nials by former campers who later became mathematicians 
or mathematics teachers.

 • The long building process, the unexpected connections filled 
me with such pleasure that made mathematics for me similar 
to a form of art.

 • This is where I learned that “real mathematics” is discovery.
 • In the Pósa camps we learned to walk on the path of think-

ing. At times we stumbled and fell, but we got up and tried 
again. Lajos and his well-prepared helpers paved our way 
with fatherly care, but they never made a step for us. This 
was the key. They let us discover mathematics ourselves. This 
way we have not just received solutions to some interesting 
problems, but something much more important; the hidden 
power of thinking.

until it stops at possibly a different angle than before. 
Unless of course all four switches are in the same 
position, in which case the door opens immediately 
and we win the treasure. Can we always win the 
treasure in finite time?

The goal of the competition is again not to overstress 
the students or to establish a ranking among them; it is 
only an exciting task that helps them stay motivated. This 
is why at the end, the only information they receive about 
their results is whether they did very well, in which case 
the team wins two bars of chocolate, or even better, which 
is rewarded by three bars of chocolate.

As has already been mentioned several times, a key fea-
ture of the camps is the curriculum, which was carefully 
worked out by Pósa himself. The problems assigned in the 
camps are all building blocks that depend on one another. 
If someone cannot come to one of the camps, they must 
make an effort to make up the work; otherwise they would 
be left behind and could not take part in the future. Missing 
one or two building blocks usually does not cause serious 
problems, but a whole camp’s worth of building blocks 
can be a structural hazard. Since so much happens in one 
weekend, making up for the material is much more difficult 
than attending—another reason why students rarely miss 
the camps.

The building blocks are organized into threads; each 
problem builds on the previous one. The specific elements 
needed from each thread might differ between teams: stron-
ger teams go faster, weaker ones need smaller steps. These 
threads are tied together by the key ideas in their solution 
(e.g., impossibility proofs, recursive approach, starting from 
the extreme case, the idea of motion, etc.), instead of the 
traditional classification (algebra, geometry, combinator-
ics). Finally, the “building” is stabilized by the frequent in-
tersection of the threads. One or two particularly important 
problems shed light on the rarely observed phenomenon 
that sometimes even distant parts of mathematics have a 
strong connection between them.

During breaks between the mathematical sections of the 
camp, students play sports or choose one of the many board 
games available. Bughouse chess is a returning favorite. The 
evenings are usually spent with camp-wide games, but the 
students are free to spend this time as they prefer.

The students coming to the camps are the “eccentric 
children” in most schools, as strong mathematical interest 
is atypical. In these camps they can meet their intellectual 
peers, with whom they can build lasting friendships, and 
everyone feels perfectly normal in their skin. This expe-
rience is very inspiring for them, and it affects their life 
outside of the camp as well.

It is now a Sunday afternoon. Parents are arriving at the 
old mansion house. The last session is finished, and the 
children quickly tidy up before going home to rest. They 
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grams cover a broad range of the mathematical sciences 
and respond quickly to new and exciting developments. 
Even within the category of institutions that deliver in the 
same format, such as the MFO (Germany), CIRM (France), 
and AIM (USA), BIRS distinguishes itself by being distinctly 
multi-disciplinary, particularly receptive to emerging—pos-
sibly risky—areas of research, and by its commitment to 
provide equal access to all scientists worldwide through an 
open and highly competitive peer-reviewed process. BIRS 
is also a multinational collaborative effort that illustrates 

The Banff International Research Sta-
tion (BIRS) was established in 2003 to 
address the imperatives of collaborative 
research and cross-disciplinary synergy. 
It provides an environment for creative, 
intense, and prolonged interactions 
between mathematical scientists and 
researchers in related areas of science 
and engineering. BIRS is also about 
multiplying opportunities, providing 
intellectual access, facilitating collab-
orative problem solving, incubating 
new research projects, settling intellec-
tual controversies, and disseminating 
new discoveries, while also providing 
a forum for accelerated training, net-
working, and job prospecting for new 
generations of mathematical scientists.

While many other research-enabling 
institutes exist around the globe, the 
BIRS model offers several distinctive 
features: The Station provides a setting that is conducive 
to uninterrupted scientific interaction by way of focused, 
easily organized research workshops. Each year, its pro-

The Banff International 
Research Station for 

Mathematical Innovation 
and Discovery

Nassif Ghoussoub
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The Banff Centre Pavilion where BIRS seminars and lectures are held.
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BIRS is a key resource in the global effort for promoting 
diversity in the sciences. In particular, it addresses in its 
own way the challenges of increasing participation of un-
derrepresented groups in STEM. Every year the station hosts 
several exclusively “Women in X” workshops. In 2019, the 
X will stand for Geometry, Numerical Methods for PDEs 
& Applications, Analysis, and Commutative Algebra. These 
four workshops can count on the participation of about 
150 women mathematicians from all over the world. Ac-
commodations suitable for families are available at BIRS, 
with special provisions for women with infants and nursing 
mothers. Since 2015 BIRS has provided financial support 
for workshop participants who are travelling with children 
requiring day-care services. BIRS has led the way in address-
ing science and education issues for aboriginal people.

In 2012, BIRS made its programs accessible to the world’s 
scientific community in virtual space, via live video stream-
ing, recordings, and broadcasting produced by a state-of-
the-art automated production system. About 125 new 
videos are recorded every month and more than 10,000 of 
them have already been posted on the BIRS website.

BIRS “underscores how international cooperation adds 
up to more than what any nation could accomplish alone.” 
These words of the former director of the NSF, Rita Colwell, 
go to the heart of this project, since BIRS represents a new 
level of scientific cooperation in North America. Indeed, a 
rewarding unique aspect of BIRS is that it is a joint Cana-
da–US–Mexico initiative, which is funded by Mexico’s 
Consejo Nacional de Ciencia y Tecnología (CONACYT), 
Alberta Innovation, the US National Science Foundation 
(NSF), and Canada’s Natural Science and Engineering Re-
search Council (NSERC). A partnership of this scale is pro-
viding new and exciting opportunities for North American 
faculty and graduate students, giving them access to their 
international colleagues at the highest levels and across all 
mathematical disciplines.

This collaboration reached a new milestone in 2014, 
when the Government of Mexico awarded an infrastructure 

how scientific leadership can transcend not only provincial 
and national, but also disciplinary boundaries in the global 
quest to advance scientific discovery and innovation.

BIRS embraces all aspects of quantitative and analytic 
research. Its programs span pure, applied, computational, 
and industrial mathematics; statistics; and computer sci-
ence. Its workshops often involve physicists, biologists, 
engineers, economists, and financial mathematicians. In 
addition, BIRS hosts leadership retreats, student modeling 
camps, First Nations workshops, training sessions for math 
Olympiad teams, and “ateliers” in scientific writing.

The retreat-like atmosphere at BIRS is ideal for ensuring 
a creative environment for the exchange of ideas, knowl-
edge, and methods within the mathematical sciences and 
their vast array of applications in science and engineering. 
An added intellectual feature of the Station is its location 
within the site of the world-renowned Banff Centre for Arts 
and Creativity in Alberta, which is already internationally 
recognized as a place of high culture with programs in 
music and sound, and the written, visual, and performing 
arts that draw in many hundreds of artists, scholars, and 
intellectual leaders from around the world.

BIRS is committed to providing intellectual access and 
opportunities on a large scale and in an open competitive 
process by making a place of cutting edge research acces-
sible to a large number of scientists. Every year, a call for 
proposals is sent to the international mathematical science 
community as BIRS provides equal access to all researchers 
regardless of geographic location or scientific expertise as 
long as it is anchored on solid mathematical, statistical, 
or computational grounds. Applications are selected on a 
competitive basis, using the criteria of excellence and rele-
vance, by an international scientific panel of thirty experts 
drawn from across the entire breadth of the mathematical 
sciences and related areas.

BIRS’s main mode of operation is to competitively select 
and run weekly workshops, each devoted to a specific area 
of high significance while involving forty-two research-
ers from around the world. Each workshop has its own 
personality, yet they all share the common objective of 
encouraging an atmosphere that fosters innovative ideas 
and a collaborative spirit. The extraordinary response to 
the opportunities at BIRS leads to extremely high-quality 
competitions: more than 250 applications for workshops 
were received for the 2019 program alone. This guarantees 
high standards of excellence, a diverse scientific program, 
and a multinational collaborative effort.

BIRS also hosts teams of two to four researchers for 
periods of one or two weeks to allow collaborative, distrac-
tion-free research and the completion of major scientific 
projects. The Station’s setting has also been ideal for sum-
mer schools and focused collaborative research groups. 
The weekends are also used for two-day workshops and 
university-industry interactions. The current (temporary) CMO facilities in Oaxaca.
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grant for the construction of an affiliated research facility 
in Oaxaca so that BIRS could run an additional twenty-five 
workshops per year. Casa Mathematica Oaxaca (CMO) was 
born in 2015, and the construction of a new and perma-
nent facility there will be starting soon thanks to generous 
funding from CONACYT and the Universidad Nacional 
Autónoma de México (UNAM). Most recently, the Simons 
Foundation approved funding for the operating costs of 
several BIRS workshops at CMO. Furthermore, in a new 
and promising pilot program, BIRS will run ten additional 
workshops in 2020 jointly with the nascent Institute of 
Advanced Studies in Hangzhou, China. As such, the 2020 
BIRS program will consist of eighty-five weekly workshops 
giving access to 3,500 researchers from hundreds of institu-
tions in more than eighty countries. This groundbreaking 
development opens a much-needed new era for interna-
tional collaborative research in the mathematical sciences.

Credits
All photos are courtesy of BIRS and CMO.
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a Thin Group?
Alex Kontorovich, D. Darren Long, Alexander
Lubotzky, and Alan W. Reid

The group SL2(ℤ) of 2 × 2 integer matrices with unit de-
terminant is a quintessential arithmetic group. By this we
mean that there is an algebraic group, that is, a variety
defined by polynomial equations, namely,

SL2 ∶ {(𝑎, 𝑏, 𝑐, 𝑑) ∶ 𝑎𝑑− 𝑏𝑐− 1 = 0},
whose points over a ring happen to also form a group (un-
der standard matrix multiplication, which is a polynomial
map in the entries); then SL2(ℤ) is the set of integer points
in this algebraic group. More generally, an arithmetic
group Γ is a finite-index subgroup of the integer points
𝐺(ℤ) of an algebraic group 𝐺. Roughly speaking, a “thin”
group is an infinite-index subgroup of an arithmetic group
which “lives” in the same algebraic group, as explained be-
low.

While the term “thin group”1 was coined in the last 10–
15 years by Peter Sarnak, such groups had been studied as
long as 100–150 years ago; indeed, they appear naturally
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in the theory of Fuchsian and Kleinian groups. For a long
while, they were largely discarded as “irrelevant” to arith-
metic, in part because there was not much one could do
with them. More recently, thin groups have become a “hot
topic” thanks to the explosion of activity in “Super Approx-
imation” (see below). Armed with this new and massive
hammer, lots of previously unrelated problems in number
theory, geometry, and group theory started looking like
nails. Our goal here is to describe some of these nails at a
basic level; for a more advanced treatment of similar top-
ics, the reader would do well to consult [Sar14].

Let’s get to the general definition from first seeing some
(non-)examples. Take your favorite pair, 𝐴,𝐵, say, of 2 ×
2 matrices in SL2(ℤ) and let Γ = ⟨𝐴,𝐵⟩ be the group
generated by them; should Γ be called thin?

Example 1. Suppose you choose 𝐴 = ( 1 1
0 1 ) and 𝐵 =

( 0 1
−1 0 ). Then, as is well known, Γ is all of SL2(ℤ). This

cannot be called “thin”; it’s the whole group.

Example 2. If you choose 𝐴 = ( 1 2
0 1 ) and 𝐵 = ( 1 0

2 1 ),
then the resulting Γ is also well-known to be a congruence
group, meaning roughly that the group is defined by con-
gruence relations. More concretely, Γ turns out to be the
subset of SL2(ℤ) of all matrices with diagonal entries con-
gruent to 1(mod4) and evens off the diagonal; it is a good
exercise to check that these congruence restrictions do in-
deed form a group. It is not hard to prove that the index2

of Γ in SL2(ℤ) is 12, so just 12 cosets of Γ will be enough
to cover all of SL2(ℤ); that also doesn’t qualify as thin.

Example 3. Say you chose 𝐴 = ( 1 4
0 1 ) and 𝐵 = ( 1 6

0 1 );
that will generate Γ = ( 1 2ℤ

0 1 ), the group of upper triangu-
lar matrices with an even upper-right entry. This group is

2If the reader was expecting this index to be 6, that would be correct in PSL2(ℤ), or alter-
natively, if we added −𝐼 to Γ.
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certainly of infinite index in SL2(ℤ), so now is it thin? Still
no. The reason is that Γ fails to “fill out” the algebraic vari-
ety SL2. That is, there are “extra” polynomial equations sat-
isfied by Γ besides det = 1; namely, Γ lives in the strictly
smaller unipotent (all eigenvalues are 1) algebraic group

𝑈 ∶ {(𝑎, 𝑏, 𝑐, 𝑑) ∶ 𝑎𝑑−𝑏𝑐−1=𝑎−1=𝑑−1=𝑐=0}.
The fancy way of saying this is that𝑈 is the Zariski-closure
of Γ, written

𝑈 = Zcl(Γ).
That is, Zcl(Γ) is the algebraic group given by all polyno-
mial equations satisfied by all elements of Γ. And if we
look at the integer points of 𝑈, we get 𝑈(ℤ) = ( 1 ℤ

0 1 ), in
which Γ has finite index (namely, two). So again Γ is not
thin.

Example 4. Take 𝐴 = ( 2 1
1 1 ) and 𝐵 = ( 5 3

3 2 ). This exam-
ple is a little more subtle. The astute observer will notice
that 𝐵 = 𝐴2, so Γ = ⟨𝐴⟩, and moreover that

𝐴𝑛 = ( 𝑓2𝑛+1 𝑓2𝑛
𝑓2𝑛 𝑓2𝑛−1

),
where 𝑓𝑛 is the 𝑛th Fibonacci number, determined by
𝑓𝑛+1 = 𝑓𝑛 + 𝑓𝑛−1 and initialized by 𝑓1 = 𝑓2 = 1. Again it
is easy to see that Γ is an infinite index subgroup of SL2(ℤ),
and unlike Example 3, all the entries are changing. But it

is still not thin! Let 𝜙 = 1+√5
2 be the golden mean and 𝐾

the golden field,𝐾 = ℚ(𝜙); there is a matrix 𝑔 ∈ SL2(𝐾)
which conjugates Γ to

Γ1 = 𝑔Γ𝑔−1 = {(𝜙2𝑛 0
0 𝜙−2𝑛 ) ∶ 𝑛 ∈ ℤ}.

The latter group lives inside the “diagonal” algebraic group

𝐷 ∶ {(𝑎, 𝑏, 𝑐, 𝑑) ∶ 𝑏 = 𝑐 = 𝑎𝑑−1 = 0} = {( 𝑎 0
0 1/𝑎 )}.

This group is an example of what’s called an algebraic
torus; the group of complex points 𝐷(ℂ) is isomorphic
to the multiplicative “torus”ℂ×. When we conjugate back,
the torus 𝐷 goes to

𝐷1 = 𝑔−1𝐷𝑔 = Zcl(Γ);
the variety 𝐷1 is now defined by equations with coeffi-
cients in 𝐾, not ℚ. The rational integer points of 𝐷1 are
exactly Γ = 𝐷1(ℤ), so Γ is not a thin group.

Example 5. This time, let 𝐴 = ( 1 4
0 1 ) and 𝐵 = ( 0 1

−1 0 ),
with Γ = ⟨𝐴,𝐵⟩. If we replace the upper-right entry 4 in
𝐴 by 1, we’re back to Example 1. So at first glance, per-
haps this Γ has index 4 or maybe 8 in SL2(ℤ)? It turns out
that Γ actually has infinite index (see, e.g., [Kon13, §4] for
a gentle discussion). What is its Zariski closure? Basically
the only subvarieties of SL2 that are also groups look, up to
conjugation, like𝑈 and𝐷 (and𝑈𝐷), and it is easy to show
that Γ lives in no such group. More generally, any sub-
group of infinite index in SL2(ℤ) that is not virtually (that
is, up to finite index) abelian is necessarily thin. Indeed,

being non-virtually abelian rules out all possible proper
sub-algebraic groups of SL2, implying that Zcl(Γ) = SL2.

It is now a relatively simple matter to give an almost-
general definition.

Definition 6. Let Γ < GL𝑛(ℤ) be a subgroup and let 𝐺 =
Zcl(Γ) be its Zariski closure. We say Γ is a thin group if
the index of Γ in the integer points 𝐺(ℤ) is infinite. (Most
people add that Γ should be finitely generated.)

For more context, we return to the classical setting of a
congruence group Γ < SL2(ℤ). Such a group acts on the
upper half plane ℍ = {𝑧 ∈ ℂ ∶ ℑ𝑧 > 0} by fractional
linear transformations

( 𝑎 𝑏
𝑐 𝑑 ) ∶ 𝑧 ↦ 𝑎𝑧+ 𝑏

𝑐𝑧+ 𝑑 ,

and much twentieth- and twenty-first-century mathemat-
ics has been devoted to the study of:

• “Automorphic forms,” meaning eigenfunctions
𝜑 ∶ ℍ → ℂ of the hyperbolic Laplacian Δ =
𝑦2(𝜕𝑥𝑥 + 𝜕𝑦𝑦) that are Γ-automorphic, that is,

𝜑(𝛾𝑧) = 𝜑(𝑧),
for all 𝛾 ∈ Γ and 𝑧 ∈ ℍ, and square-integrable
(with respect to a certain invariant measure) on
the quotient Γ\ℍ. These are called “Maass forms”
for Hans Maass’s foundational papers in the
1940s. Their existence and abundance in the case
of congruence groups is a consequence of the cel-
ebrated Selberg trace formula, developed in the
1950s.

• “𝐿-functions” attached to such 𝜑. These are cer-
tain “Dirichlet series,” meaning functions of the
form

𝐿𝜑(𝑠) = ∑
𝑛≥1

𝑎𝜑(𝑛)
𝑛𝑠 ,

where 𝑎𝜑(𝑛) is a sequence of complex numbers
called the “Fourier coefficients” of 𝜑. When 𝜑
is also an eigenfunction of so-called “Hecke op-
erators” and normalizing 𝑎𝜑(1) = 1, these 𝐿-
functions are also multiplicative, enjoying Euler
products of the form

𝐿𝜑(𝑠) = ∏
𝑝

(1+ 𝑎𝜑(𝑝)
𝑝𝑠 + 𝑎𝜑(𝑝2)

𝑝2𝑠 +⋯) ,

where the product runs over primes. Needless to
say, such 𝐿-functions are essential in modern an-
alytic number theory, with lots of fascinating ap-
plications to primes and beyond.

• More generally, one can define related objects
(called “automorphic representations”) on
other arithmetic groups 𝐺(ℤ), and study their
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𝐿-functions. The transformative insight of Lang-
lands is the conjectured interrelation of these on
different groups, seenmost efficiently through the
study of operations on their 𝐿-functions. Conse-
quences of these hypothesized interrelations in-
clude the Generalized Ramanujan and Sato-Tate
Conjectures, among many, many others. We ob-
viously have insufficient capacity to do more than
graze the surface here.

Hecke, in studying Example 5, found that his theory of
Hecke operators fails for thin groups, so such 𝐿-functions
would not have Euler products,3 and hence no direct ap-
plications to questions about primes. Worse yet, the Sel-
berg trace formula breaks down, and there are basically no
Maass forms to speak of (never mind the 𝐿-functions!). So
for a longwhile, it seemed like thin groups, although abun-
dant, did not appear particularly relevant to arithmetic
problems.

About fifteen years ago, a series of stunning break-
throughs led to the theory of “Super Approximation,” as
described below, and for the first time allowed a certain
Diophantine analysis on thin groups, from which many
striking applications soon followed. To discuss these, we
first describe the more classical theory of Strong Approxima-
tion. In very rough terms, this theory says that from a cer-
tain algebraic perspective, “thin groups are indistinguish-
able from their arithmetic cousins,” by which we mean the
following.

It is not hard4 to show that reducing SL2(ℤ) modulo a
prime 𝑝 gives all of SL2(ℤ/𝑝ℤ). What happens if we re-
duce the group Γ in Example 5 mod 𝑝? Well, for 𝑝 = 2,
we clearly have a problem, since the generator 𝐴 = ( 1 4

0 1 )
collapses to the identity. But for any other prime 𝑝 ≠ 2,
the integer 4 is a unit (that is, invertible mod 𝑝), so some
power of 𝐴 is congruent to ( 1 1

0 1 ) mod 𝑝. Hence on reduc-
tion mod (almost) any prime, we cannot distinguish Ex-
ample 5 from Example 1! That is, even though Γ in Exam-
ple 5 is thin, the reduction map Γ → SL2(ℤ/𝑝ℤ) is onto.
The Strong Approximation theorem [MVW84] says that if
Γ < SL𝑛(ℤ) has, say, full Zariski closure Zcl(Γ) = SL𝑛,
then Γ → SL𝑛(ℤ/𝑝ℤ) is onto for all but finitely many
primes 𝑝. In fact, this reasoning can be reversed, giving
a very easy check of Zariski density: if for a single prime
𝑝 ≥ 5, the reduction of Γ mod 𝑝 is all of SL𝑛(ℤ/𝑝ℤ),
then the Zariski closure of Γ is automatically all of SL𝑛;
see [Lub99] for details.

One immediate caveat is that, if one is not careful,
Strong Approximation can fail. For a simple example, try
finding a 𝛾 ∈ GL2(ℤ) that mod 5 gives ( 1 2

3 4 ). The prob-

3Without Euler products, 𝐿-functions can have zeros in the region of absolute convergence;
that is, the corresponding Riemann Hypothesis can fail dramatically!
4Though if you think it’s completely trivial, try finding a matrix 𝛾 ∈ SL2(ℤ) whose re-
duction mod 5 is, say, ( 2 0

1 3 ). The latter is indeed an element of SL2(ℤ/5ℤ), since it has
determinant 6 ≡ 1(mod5).

Figure 1. The Cayley graph with vertices SL2(ℤ/3ℤ) and
generators 𝐴± and 𝐵± from Example 5.

lem is that GL𝑛(ℤ) does not map onto GL𝑛(ℤ/𝑝ℤ), since
the only determinants of the former are ±1, while the lat-
ter has determinants in all of (ℤ/𝑝ℤ)×. But such obstruc-
tions are well understood and classical. (In fancy language,
GL𝑛 is reductive, while SL𝑛 is semisimple.)

For Super Approximation, we study not only whether
these generators𝐴 and 𝐵 in Example 5 fill out SL2(ℤ/𝑝ℤ),
but the more refined question of how rapidly they do so.
To quantify this question, construct for each (sufficiently
large) prime 𝑝 the Cayley graph, G𝑝, whose vertices are the
elements of SL2(ℤ/𝑝ℤ) and two vertices (i.e., matrices) are
connected if one is sent to the other under one of the four
generators𝐴±1, 𝐵±1. When 𝑝 = 3, the graph5 is as shown
in Figure 1. This is a 𝑘-regular graph with 𝑘 = 4, that is, ev-
ery vertex𝛾 ∈ SL2(ℤ/𝑝ℤ) has four neighbors. The “graph
Laplacian” of G𝑝 is the matrix Δ ∶= 𝐼 − 1

𝑘𝒜, where 𝒜
is the adjacency matrix of the graph. By the spectrum of G𝑝,
we mean the eigenvalues

𝜆(𝑝)
0 ≤ 𝜆(𝑝)

1 ≤ ⋯
of Δ. In the case of the graph above, the spectrum is:

{0, 12,
1
2,

1
2,

1
2,

3
4,

3
4,

5
4,⋯ , 18 (7 +√17) ≈ 1.39} .

Notice that the bottom eigenvalue 𝜆0 is 0 (corresponding
to the constant function), and has multiplicity 1; this is
an instance of Strong Approximation—the graph is con-
nected! (In general, the multiplicity of the bottom eigen-
value is the number of connected components.) Hence

the first eigenvalue above the bottom, 𝜆(𝑝)
1 , is strictly posi-

tive, which by standard techniques implies that a random
walk on the graph is “rapidly mixing” (see, e.g., [DSV03]).

5This graph is begging us to identify each node 𝛾 with −𝛾(mod𝑝), that is, work in
PSL2.
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But we have infinitely many graphs G𝑝, one for each prime,
and a priori, it might be the case that the mixing rate dete-

riorates as 𝑝 increases. Indeed, 𝜆(𝑝)
1 goes from 1

2 when

𝑝 = 3 down to 𝜆(𝑝)
1 ≈ 0.038 when 𝑝 = 23, for which

the graph has about 12, 000 vertices. Super Approxima-
tion is precisely the statement that this deterioration does
not continue indefinitely: there exists some 𝜀 > 0 so that,
for all sufficiently large 𝑝,

𝜆(𝑝)
1 ≥ 𝜀.

That is, the rate ofmixing is uniform over the entire family of
Cayley graphs G𝑝. (This is what’s called an expander family,
see [Sar04,Lub12].)

For congruence groups, Super Approximation is now a
classical fact: it is a consequence of “Kazhdan’s Property T”
in higher rank (e.g., for groups like SL𝑛(ℤ) 𝑛 ≥ 3), and of
non-trivial bounds towards the “Generalized Ramanujan
Conjectures” in rank one (for example, isometry groups of
hyperbolic spaces); see, e.g., [Lub10, Sar05] for an exposi-
tion. A version of Super Approximation for some more
general (still arithmetic but not necessarily congruence)
groups was established by Sarnak–Xue [SX91].

For thin subgroups Γ < SL𝑛(ℤ), major progress was
made by Bourgain-Gamburd [BG08], who established Su-
per Approximation (as formulated above) for SL2. This
built on a sequence of striking results in Additive Combi-
natorics, namely the Sum-Product Theorem [BKT04] and
Helfgott’s Triple Product Theorem [Hel08], and prompt-
ed a slew of activity by many people (e.g., [Var12, PS16,
BGT11]), culminating in an (almost) general Super Approx-
imation theorem of Salehi–Golsefidy and Varju [SGV12].

Simultaneously, it was realized that many natural prob-
lems in number theory, groups, and geometry require one
to treat these aspects of thin (as opposed to arithmetic)
groups. Two quintessential such, discussed at length in
[Kon13], are the Local-Global Problem for integral
Apollonian packings [BK14b] and Zaremba’s conjecture
on “badly approximable” rational numbers [BK14a].
Other related problems subsequently connected to thin
groups (see the exposition in [Kon16]) includeMcMullen’s
Arithmetic Chaos Conjecture and a question of Einsiedler–
Lindenstrauss–Michel–Venkatesh on low-lying fundamen-
tal geodesics on the modular surface. The latter, eventu-
ally resolved in [BK17], was the catalyst for the develop-
ment of the Affine Sieve [BGS10,SGS13]; see more discus-
sion in [Kon14]. Yet a further direction was opened by
the realization that the Affine Sieve can be extended to
what may be called the “Group Sieve,” used to great ef-
fect on problems in group theory and geometry in, e.g.,
[Riv08, Kow08, LLR08, LM12]. We will not rehash these
topics, choosing instead to end by highlighting the diffi-
culty of answering the slight rewording of the title:

Can you tell... whether a given group is thin?

Example 7. To ease us into a higher rank example, con-
sider the group Γ < SL3(ℤ) generated by

𝐴 = ⎛⎜
⎝

1 1 0
0 1 0
0 0 1

⎞⎟
⎠

and 𝐵 = ⎛⎜
⎝

0 1 0
−1 0 0
0 0 1

⎞⎟
⎠
.

A moment’s inspection reveals that Γ is just a copy of
SL2(ℤ) (see Example 1) in the upper left 2 × 2 block of
SL3. This Γ has Zariski closure isomorphic to SL2, and is
hence not thin.

Example 8. Here’s a much more subtle example. Set

𝐴 = ⎛⎜
⎝

0 0 1
1 0 0
0 1 0

⎞⎟
⎠

and

𝐵 = ⎛⎜
⎝

1 2 4
0 −1 −1
0 1 0

⎞⎟
⎠
.

It is not hard to show that the group Γ = ⟨𝐴,𝐵⟩ has
full Zariski closure, Zcl(Γ) = SL3. Much more striking
(see [LRT11]) is that Γ is a faithful representation of the
“(3, 3, 4) hyperbolic triangle” group

𝑇 = ⟨𝐴,𝐵 ∶ 𝐴3 = 𝐵3 = (𝐴𝐵)4 = 1⟩

into SL3(ℤ); that is, the generators have these relations
and no others. It then follows that Γ is necessarily of in-
finite index in SL3(ℤ), that is, thin.
Example 9. The matrices

𝐴 =
⎛⎜⎜⎜
⎝

0 0 0 −1
1 0 0 −1
0 1 0 −1
0 0 1 −1

⎞⎟⎟⎟
⎠
, 𝐵 =

⎛⎜⎜⎜
⎝

1 0 0 5
0 1 0 −5
0 0 1 5
0 0 0 1

⎞⎟⎟⎟
⎠

generate a group Γ < SL4(ℤ) whose Zariski closure turns
out to be the symplectic group Sp(4). The interest in these
particular matrices is that they generate the “monodromy
group” of a certain (Dwork) hypergeometric equation. It
was shown in [BT14] that this group is thin. For general
monodromy groups, determining who is thin or not is
wide open; see related work in [Ven14] and [FMS14], as
well as the discussion in [Sar14, §3.5].

Example 10. The four matrices

⎛⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎟⎟
⎠
,
⎛⎜⎜⎜
⎝

1 0 0 0
1 1 1 0
−2 0 −1 0
0 0 0 1

⎞⎟⎟⎟
⎠
,

⎛⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟
⎠
,
⎛⎜⎜⎜
⎝

3 2 0 1
2 3 0 1
0 0 1 0

−12 −12 0 −5

⎞⎟⎟⎟
⎠
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Figure 2. A crystallographic sphere packing.

generate a group Γ < GL4(ℤ). Its Zariski closure turns
out to be the “automorphism group” of a certain quadratic
form of signature (3, 1). By a standard process (see, e.g.,
[Kon13, p. 210]), such a Γ acts on hyperbolic 3-space

ℍ3 = {(𝑥1, 𝑥2, 𝑦) ∶ 𝑥𝑗 ∈ ℝ,𝑦 > 0},
and in this action, each matrix represents inversion in a
hemisphere. These inversions are shown in red in Figure 2,
as is the set of limit points of a Γ orbit (viewed in the
boundary plane ℝ2 = {(𝑥1, 𝑥2, 0)}); the latter turns out
to be a fractal circle packing, see Figure 2. Here circles are
labeled with the reciprocal of their radii (notice these are
all integers!). This limit set is an example of a “crystallo-
graphic packing,” introduced (and partially classified) in
[KN18] as a vast generalization of integral Apollonian cir-
cle packings. It follows from the fractal nature of this limit
set that Γ is indeed a thin group.

In a sense that can be made precise (see [LM12,Aou11,
Riv10,FR17]), random subgroups of arithmetic groups are
thin. But lest we leave the reader with the false impres-
sion that the theory is truly well developed and on solid
ground, we demonstrate our ignorance with the following
basic challenge.

Example 11. The following group arises naturally through
certain geometric considerations in [LRT11]: let Γ=⟨𝐴,𝐵⟩
< SL3(ℤ) with

𝐴 = ⎛⎜
⎝

1 1 2
0 1 1
0 −3 −2

⎞⎟
⎠
, 𝐵 = ⎛⎜

⎝

−2 0 −1
−5 1 −1
3 0 1

⎞⎟
⎠
.

Reduced mod 7, this Γ is all of SL3(ℤ/7ℤ), so its Zariski
closure is SL3. Is it thin? As of this writing, nobody knows!
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 Fax: 401.455.4004

The target date for
proposals is August 31, 2019.

WWW.AMS.ORG/MRC

Mathematics Research Communities (MRC) is a program featuring
a week-long, hands-on summer conference organized by a team of
experienced researchers who:

• Work with motivated, able, early-career mathematicians;
• Mentor them in a relaxed and informal setting;
• Contribute to excellence and professionalism in the

mathematical realm.

2021Be an
Organizer

http://WWW.AMS.ORG/MRC
cav
Rectangle



912    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 6

COMMUNICATION

other professional societies under the CBMS umbrella) 
above AAAS membership.

Given its areas of emphasis, though, Section A Secretary 
Reinhard Laubenbacher believes that AAAS complements 
mathematical sciences professional societies nicely. “It’s 
all about outreach, and all about policy—all important 
issues for the math community,” he told business-meeting 
attendees.1 “So AAAS is a natural partner.” Former AMS 
president—and former Section A chair—Eric Friedlander 
likewise cites AAAS’s advocacy activities as a reason for 
mathematicians to consider membership (see statement, 
p. 913).

Fellows
Friedlander and the presenter who didn’t risk a trip to the 
easel, C. T. Kelley, were elected AAAS Fellows in 2018. Of 
the 416 fellows in the 2018 class, six (see box below) be-
long to Section A. For comparison, Section U (Statistics) 
boasted seven fellows, Section R (Dentistry and Oral Health 
Sciences) five, and Section G (Biological Sciences) 112. The 
number of fellows allotted to each of AAAS’s twenty-four 

It is a truth universally acknowledged (by those who pause 
to think about it, anyway) that mathematics is “under the 
radar” in the American Association for the Advancement 
of Science (AAAS), its profile in the multidisciplinary sci-
entific society lower than perhaps befits what Gauss called 
the “queen of the sciences.” AAAS, likewise, goes about its 
science-advancing business largely unheeded by much of 
the mathematics community.

Which is not to say that mathematics doesn’t have ad-
vocates within AAAS, and vice versa. Indeed, the would-be 
bridge-builders who showed up for the business meeting 
of the AAAS Section on Mathematics (Section A) at the 
Association’s annual meeting in DC in February packed 
the assigned space so snugly that one of the morning’s 
presenters forewent the easel paper procured for him. 
“There’s no way I’m going to get up there without falling 
on somebody,” he explained. During its three hours to-
gether, the capacity crowd discussed how to increase the 
involvement of mathematicians—and thus the visibility 
of mathematics—in AAAS.

Everybody’s n th Society (where n>1)
Jennifer Pearl, who directs AAAS’s Science & Technology 
Policy Fellowships program (which she wrote about in the 
April 2019 Notices, see https://bit.ly/2TVm0QC), knows 
that AAAS can be a hard sell, and not just to mathemati-
cians. “One of the challenges is that it’s everybody’s second 
society,” she said. A specialist in ant behavior is likely to 
join the Entomological Society of America before AAAS; 
most mathematicians probably prioritize membership in 
at least one of MAA, SIAM, and AMS (not to mention the 

Mathematics Societies and 
AAAS: Natural Partners?
Sophia D. Merow 

Sophia D. Merow is Special Projects Editor and Notices assistant. Her 
email address is merow.notices@gmail.com.

For permission to reprint this article, please contact: reprint-permission 
@ams.org.

DOI: https://dx.doi.org/10.1090/noti1886

1In post-meeting correspondence with the author, Laubenbacher cautioned 
against losing sight of science itself as a reason for the mathematics com-
munity to ally with AAAS: “I believe strongly that an important, or maybe 
the most important, role this connection can play is to connect to and 
anchor mathematics research in the sciences, an important contributor for 
our continued success.”

AAAS Section on Mathematics 2018 Fellows
Eric M. Friedlander, University of Southern California

Ilse C. F. Ipsen, North Carolina State University

George Em Karniadakis, Brown University

C. T. Kelley, North Carolina State University

David E. Keyes, King Abdullah University of Science
and Technology (Saudi Arabia)

Yi Li, John Jay College of Criminal Justice, CUNY
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edge and sensibility play out in a Congressional office 
or one of the federal agencies can open up a “completely 
different world” of possibilities. “There are some individ-
uals that want to do the symplectic geometry research and 
stay very focused on the technical part,” said Pearl, whose 
own dissertation work was in symplectic geometry. But 
the fellowship offers “opportunities for folks who want to 
broaden what they’re looking at.” Pearl’s comments jibe 
with 2012–2013 AMS/AAAS Congressional Fellow Carla 
Cotwright-Williams’s reasons for pursuing the fellowship 
(see statement below).

And the agencies and offices in DC are, to hear outgoing 
Section A chair Deborah Lockhart of the National Science 
Foundation tell it, eager to host any symplectic geometers 
or combinatorial topologists or the like who are keen to 
bring scientific expertise to the federal sector to inform 
better policy making. “Agencies fight over these folks,” 
Lockhart said of fellowship applicants.

Pearl reported that in 2018–2019 there were many more 
offices that wanted fellows than there were qualified final-sections depends on section membership: Only those who 

have been AAAS members without lapse for the four-year 
period prior to nomination are eligible to be fellows, and 
no section’s nominees in any given year can number more 
than 0.4 percent of its primary membership.

The 2019 Section A business meeting included presen-
tations from fellows for the first time. Kelley told tales of 
applying optimization and nonlinear solvers across disci-
plines. Yi Li credited color blindness with getting him into 
mathematics. (“To be an engineer,” he said, “you had to 
be able to tell green from red.”) David Keyes capped off an 
“ode-like” homily on the beauty, utility, and community 
of mathematics with an actual (self-authored) ode titled 
“Anthematica.” The final couplet: “At AAAS do mathematics 
and her partners meet | The fellowship of pilgrims here is 
infinitely sweet.”

Agencies Fight over These Folks
Another kind of AAAS fellow also addressed the gathering. 
Having received a PhD in mathematics (with an emphasis 
in algebra and combinatorial topology) from the University 
of Oregon in 2014, Tyler Kloefkorn is spending 2017–2019 
as a AAAS Science and Technology Policy Fellow in the 
NSF’s Division of Information and Intelligent Systems. 
Kloefkorn isn’t always sure how much math to dish out 
when. “The other day I was trying to explain what a sim-
plicial complex was to somebody who was trying to un-
derstand topological data science,” he said. “I don’t know 
that I was all that helpful.” But he does appreciate that the 
fellowship allows him to explore alternatives to “very very 
very hard to get” assistant professor jobs.

Jennifer Pearl, herself an alumna of the program she now 
directs, agrees that seeing how one’s mathematical knowl-

Why belong to AAAS? One 
reason is to read about 
scientific developments in 
Science magazine and to at-
tend broad-based scientific 
meetings, thereby broaden-
ing a member’s intellectual 
interests. Another is that 
AAAS is an important ad-
vocate for science. With the 

backing of its broad membership, AAAS speaks loudly 
in favor of government funding of science, supports 
rationality in public discourse, and promotes issues 
of common interest to scientists such as diversity and 
human rights.

—Eric Friedlander, Fellow of the AMS (2012), 
Fellow of AAAS (2018), President of AMS (2011–2012), 

Chair of AAAS Math Section (2015–2016)

For over 40 years, AAAS Sci-
ence and Technology Policy 
Fellows have worked along-
side congressional staffers 
and federal personnel help-
ing to inform a vast num-
ber of S&T policy issues 
ranging from education to 
energy, from cybersecurity 
to water quality. Mathema-

ticians apply their PhD-level analytical skills to help 
find solutions to the toughest problems faced by the 
US Congress and federal agencies. 

I’ve had fellow mathematicians ask, “Why would you 
want to do that fellowship?” My response is a simple 
one. It is important to me to use my knowledge and 
skills in a different way…in a way that I might have a 
broader impact on the world around me. The fellowship 
is a unique opportunity to learn and contribute outside 
of some paths taken by PhD mathematicians.

Some fellows choose to remain in the federal space 
or private industry after the fellowship and continue in 
policymaking. There are fellows who return to academia 
with a diverse view of the needs of the federal govern-
ment and the US which informs their research. They are 
better equipped with knowledge of the policies which 
make our government function and the impact these 
policies may have when implemented.

—Carla Cotwright-Williams, 2012–2013 
AMS/AAAS Congressional Fellow
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mathematics at these meetings.” In fact the 2019 meeting 
included four scientific symposia officially classified as 
mathematics. “If you put them together cumulatively,” 
Laubenbacher noted, “there’s a whole day’s worth of math-
ematics you can go to.” And since three of the four 2019 
symposia were discussed at the 2018 Section A business 
meeting, generating ideas for future sessions was a priority 
for the 2019 convening.

Individuals submit session proposals, but each section 
endorses one proposal, and section endorsement vastly 
increases a proposal’s chances of acceptance. Possible 
topics bandied about included the Riemann hypothesis, 
mathematics and gerrymandering, the mathematics of 
artificial intelligence, and math for social justice. Meeting 
attendees committed to pitching potential presenters. (See 
MIT mathematician Andrew Sutherland’s statement, left, 
for his thoughts on presenting at AAAS.) Laubenbacher of-
fered to help craft proposals,2 expressing his aspiration for 
incremental growth in the visibility of mathematics at the 
meeting: “Hopefully next year we will have five symposia 
rather than four.”

Tremendous Impact
Mathematicians who would like to organize a sympo-
sium—or, to choose but one of AAAS’s numerous initia-
tives, participate in a science communication workshop—
may not be aware that the opportunity exists. The primary 
takeaway from the business meeting of the Section on 
Mathematics was that each attendee should spread the 
word about AAAS activities to his or her corner of the 
mathematics community. 

A Section A web presence is in the offing, but until it 
goes live, information will be disseminated via other chan-
nels, such as blog posts (see, for instance, https://bit.
ly/2TToM9c), slide presentations at regional meetings, 
announcements in society publications.

“Everybody should do as much as they can,” Lauben-
bacher urged. “Collectively we could make a tremendous 
impact.”

ists available. “I very much want to see more applications 
from the math community,” she said.

Mathematics Symposia
The AAAS Annual Meeting bills itself as “the world’s largest 
general scientific gathering,” and Section A secretary Rein-
hard Laubenbacher’s informal polling of members of the 
math community indicates widespread belief that, to put 
it mildly hyperbolically, “there are never any symposia in 

For more information about…
AAAS membership, see aaas.org/membership

AAAS Fellows, see aaas.org/fellows

AAAS Science and Technology Policy Fellowships, see www.aaas.org/programs/science-technology 
-policy-fellowships

AMS Congressional Fellowship, see www.ams.org/programs/ams-fellowships/ams-aaas/ams-aaas 
-congressional-fellowship

AAAS annual meeting, see meetings.aaas.org

AAAS Section A, see aaas.org/governance/section-a

2The deadline for proposals for the 2020 meeting has passed. No harm, 
however, in getting a head start on crafting a winning proposal for 2021.

As we move forward into 
the twenty-first century, 
mathematicians are facing 
new research challenges 
that scientists have been 
dealing with for years. For 
example, large-scale col-
laborations are becoming 
more common in mathe-
matics, and computational 

tools are playing an increasingly important role, both 
as generators of large data sets and tools for analyzing 
them. Communication with the public is another area 
that mathematicians have really only started to think 
seriously about quite recently, whereas scientists have 
been grappling with this issue for years.

As mathematicians, we often approach these prob-
lems from a different point of view than scientists, and 
in many cases we are facing them for the first time. 
Sharing a fresh perspective is useful for both scientists 
and mathematicians; we can learn from each other’s 
experiences.

I would encourage any mathematician who is given 
the opportunity to consider presenting at the AAAS. 
We have some interesting stories to tell, and it is a great 
opportunity to make connections with people that you 
might not meet at any other venue.

—Andrew Sutherland, Massachusetts Institute 
of Technology, presented symposium “Closing the Gap: 

The Polymath Project on Bounded Gaps Between Primes” 
at the AAAS 2016 Annual Meeting
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Feed Their Curiosity
Laubenbacher (laubenbacher@uchc.edu) welcomes cor-
respondence from Notices readers interested in any sort of 
involvement with AAAS and Section A. He is particularly 
keen for mathematicians to consider contributing to Science 
(which is published by AAAS). Many Science articles are 
heavily mathematical, but the journal seldom publishes 
mathematics research per se. Pieces about math and math-
ematicians do make an occasional appearance, however. 
“To me this indicates that the science community is curious 
about us,” says Laubenbacher. 

And why not feed that curiosity? Mathematical scientists 
could contribute to the journal in any number of ways, 
from a research article to a perspective piece to a policy 
forum. “Probably the most effective way at this time,” says 
Laubenbacher, “would be to write an appropriate review 
of a math topic or open problem.”

Sophia D. Merow
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Marcelo Aguiar

Sara del Valle

Edgar Dueñez

Herbert Medina

Juan Meza

Carol Schumacher

Mariel Vazquez

Carlos Castillo-Chavez

Johnny Guzmán

Rosa Orellana

Luis David García Puente

Santiago Schnell

Federico Ardila

Montse Fuentes

José Mijares

Tatiana Toro

Erika Camacho

Fernando Codá Marques

Ivelisse Rubio

Richard Tapia

Rodrigo Bañuelos

Marianne Korten

Nancy Rodriguez

Cristina Villalobos

Minerva Cordero

Ricardo Cortez

Brisa Sánchez

William Vélez

Luis Caffarelli

Laura Matusevich

Javier Rojo

Explore the research, inspiring lives and mentoring 
contributions of these Latin@s and Hispanics in different 
areas of the mathematical sciences.

Lathisms.org

Ph
ot

o 
by

 F
re

d 
H

an
se

n,
 c

ou
rt

es
y 

of
 K

en
yo

n 
Co

lle
ge

Ph
ot

o 
co

ur
te

sy
 o

f S
an

tia
go

 S
ch

ne
ll,

 
U

ni
ve

rs
ity

 o
f M

ic
hi

ga
n,

 M
ed

ic
al

 S
ch

oo
l

U
ni

ve
rs

ity
 o

f M
ic

hi
ga

n,
 M

ed
ic

al
 S

ch
oo

l

Ph
ot

o 
co

ur
te

sy
 o

f D
an

 P
ol

la
ck

Ph
ot

o 
co

ur
te

sy
 o

f T
om

m
y 

La
Ve

rg
ne

, R
ic

e 
U

ni
ve

rs
ity

Ph
ot

o 
pr

ov
id

ed
 b

y 
Ct

rE
xc

el
le

nc
e 

in
 S

TE
M

@
U

TR
G

V

 P
ho

to
 c

ou
rt

es
y 

of
 W

ill
ia

m
 V

él
ez

Carol Schumacher Santiago Schnell Tatiana Toro Richard Tapia Cristina Villalobos William Vélez
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Having had Diaconis as my professor and postdoctoral 
advisor some two decades ago, I found the cadences and 
style of much of the text familiar. Throughout, the book 
is written in an engaging and readable way. History and 
philosophy are woven together throughout the chapters, 
which, as the title implies, are organized thematically rather 
than chronologically.

The story begins with the first great idea: Chance can be 
measured. The word probability itself derives from the Latin 
probabilis, used by Cicero to denote that “...which for the 
most part usually comes to pass” (De inventione, I.29.46, 
[2]). Even today, modern courtrooms in the United States 
shy away from assigning numerical values to probabilities, 
preferring statements such as “preponderance of the evi-
dence” or “beyond a reasonable doubt.” Those dealing with 
chance and the unknown are reluctant to assign an actual 
number to the chance that an event occurs.

The idea that chance could be measured quantitatively 
by a number took until the sixteenth century to arise. For 
instance, consider the problem of finding the probability 

Ten Great Ideas About Chance 
By Persi Diaconis and Brian Skyrms

Most people are familiar with the 
basic rules and formulas of prob-
ability. For instance, the chance 
that event A occurs plus the chance 
that A does not occur must add to 
1. But the question of why these 
rules exist and what exactly prob-
abilities are, well, that is a question 
often left unaddressed in prob-
ability courses ranging from the 

elementary to graduate level.
Persi Diaconis and Brian Skyrms have taken up these 

questions in Ten Great Ideas About Chance, a whirlwind 
tour through the history and philosophy of probability. 
Diaconis is the Mary V. Sunseri Professor of Statistics and 
Mathematics at Stanford University, and has long been 
known for his seminal work on randomization techniques 
such as card shuffling. Skyrms is a professor of philosophy 
at Stanford and Distinguished Professor of Logic and Phi-
losophy of Science and Economics at the University of Cal-
ifornia at Irvine. His recent work has been in evolutionary 
game theory. The book they created is based upon a course 
they have taught at Stanford for the past ten years, and is 
aimed at a reader who has already gone through a typical 
undergraduate course in elementary probability.

Ten Great Ideas 
 about Chance
A Review by Mark Huber
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Figure 1. A six-sided die.



Book Review

918    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 6

probabilities, or what prob-
abilities actually are. They 
treat probability as a measure, 
but they leave unanswered 
the question of what exactly 
probability measures.

Now both of the authors 
are unabashed Bayesians, and 
upfront about this through-
out the work. It is therefore 
unsurprising that their an-
swers to this question lie with 
Bayesian philosophy. In the 
Bayesian approach to chance, 
what probabilities measure 
is the degree of belief by an 
individual that the event will 
occur. Given an initial set of 
beliefs, one can update their 
beliefs as new information 
about the events comes in. 
This is the center of the Bayes-
ian philosophy.

The first Bayesian idea, and 
the second great idea about 
chance in the book, is judg-
ment, the idea that probabili-

ties arise from individual beliefs about how likely an event 
is to occur. But how can we ascertain what an individual’s 
belief really is? And how do we derive the logical rules of 
probability from this point of view?

One way is to use an idea in mathematical finance. Sup-
pose I have a security that pays $1.00 if event A occurs, and 
nothing if A does not occur. We use AC to mean the event 
that  A does not occur, also 
called the complement of A. 
How much should I be willing 
to pay to purchase this security? 
Well, the expected payoff from 
owning this security is just the 
probability that event A occurs. 
If I judge A to have probability 
0.47, then I should be willing 
to pay $0.47 to own one share 
of the security (see Figure 3).

Now suppose I do the same thing for several events. A 
Dutch book is a portfolio of multiple securities that guaran-
tees that the owner gains money. A book is the list of odds 
that a casino or racetrack would post before races. The 
person making the book is still known as a bookmaker or 
bookie. The origins of the Dutch part of the term are lost 
to history.

As an example of a Dutch book, suppose the security 
for A costs $0.30 and the security for AC costs $0.60. With 
these prices I could buy one security that pays $1.00 when A 

of rolling a 1 or a 2 on a fair 
six-sided die (see Figure 1). 
This classic problem is usually 
solved by assuming that each 
outcome of the die is equally 
likely. Therefore, since there 
are six sides and probability 
must sum to one, each has 
a one in six chance of occur-
ring, and the probability of 
a 1 or 2 is two out of six, or 
one third.

Even in the Middle Ages, 
though, mathematicians such 
as Cardano were knowledge-
able about the cheating ways 
of gamblers, and considered 
what might happen with 
shaved or otherwise altered 
dice. Gambling drove prog-
ress in probability: A histor-
ical tidbit offered up in this 
chapter concerns Galileo 
being asked by his patron to 
analyze a particular gambling 
problem to discover who had 
the advantage.

A leap forward in understanding how to measure 
probability came about during a correspondence between 
Pascal (Figure 2) and Fermat in the 1600s concerning the 
problem of points [4]. In this problem, two equally skilled 
opponents begin a series of games to decide who obtains a 
certain amount of prize money. Each winner is assigned a 
point, and the first to reach a fixed number (set in advance) 
of points wins the entire prize. Suppose they play the first 
game and the first player wins. At this point their match is 
interrupted, and so the question is: How should they split 
the prize money given this information?

The discussion of Pascal and Fermat is the first time the 
concept of expected value appears. The expected value is 
the average amount of money that each player would walk 
away with in their situation, and is how they should split 
the prize to achieve a fair division. Use of expected value 
enables the consistent development of probabilities where 
the outcomes are not all equally likely.

This was the beginning of turning chance into something 
numerical, something that could be dealt with mathemati-
cally rather than as a vague notion of plausibility. This path 
reaches its culmination in the fifth great idea: the formal 
definition of a probability measure within a set-theoretic 
framework. The definition introduced by Kolmogorov is 
now a standard feature of introductory texts.

These definitions allow for proving theorems and pro-
vide a set-theoretic foundation of the field, but they give 
little insight into why this is the proper way to calculate 

Figure 2. Blaise Pascal.

Figure 3. A simple security.
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also the probabilities. This updated probability is called 
the posterior.

If I then ran a second experiment, the posterior from 
the first experiment would become the prior for the second 
experiment, and so on. In this way, I could keep multiplying 
Bayes’ Factors and updating my beliefs about the veracity 
of theory X versus theory Y for as long as I keep getting 
more evidence.

What about the practitioners who do not hold that 
probabilities are degrees of belief? Is it a coincidence that 
they use the same rules and definitions of probability? The 
seventh great idea provides one answer to this question. 
This idea is Bruno de Finetti’s concept of exchangeability.

Exchangeability is a type of symmetry applied to se-
quences of random variables. For instance, consider a coin 
that lands heads or tails, H or T, on each flip. Then applying 
Bayes’ Theorem, no matter what your prior is, if the coin 
is flipped three times, the sequences HHT, HTH, and THH 
should be exchangeable in the sense that each sequence is 
equally likely. Whatever probability each of these three se-
quences has (and that will depend on the prior you choose 
for the probability of heads), the probability of each of 
these three sequences will be the same.

Based on this formulation, probabilities can be derived 
without requiring that chance exist. Whatever probability 
you assign to these three sequences, you can work backward 
to figure out what your prior on the chance of heads must 
have been. In other words, if you can assign probabilities 
to sequences, then you are behaving as though you had a 
prior on the probability of heads, even if you did not derive 
your probabilities in that fashion. This powerful tool can be 
extended to other processes (such as Markov chains) that 
have some but not all of the total symmetry found in the 
independent coin flip example. See [3] for more details.

Frequentist Philosophy takes a different approach, 
and gets a turn as the fourth great idea of chance. In the 
frequentist interpretation, probability does not represent 
the degree of belief that something is true. Instead, there 
is always exactly one true probability of an event, and that 
can be found by repeating the identical experiment over 
and over again and taking the limit of the number of times 
the event occurs and dividing by the number of times the 
experiment was tried. This will converge to the probability 
of the event (for properly defined convergence) and is a 
special case of the law of large numbers proved by Jacob 
Bernoulli in Ars Conjectandi (1713) [1].

John Venn in The Logic of Chance (published 1866) went 
further, saying that the projected limit of the frequency of 
an event was actually the probability of the event. They are 
not just equal numbers: that sequence together with the 
limit defines what chance is. In this approach, I cannot speak 
of the probability that a single coin flip is heads; instead I 
must consider an infinite sequence of coin flips, all done 
identically and independent of one another. Only then can 

occurs and nothing when AC occurs, plus I can buy a second 
security that pays $1.00 when AC occurs and nothing when 
A occurs. Together, these two securities form a Dutch book 
that costs $0.30 + $0.60 = $0.90. If A occurs, the first secu-
rity returns $1.00 and the second security returns nothing. 
If AC occurs, then the second security returns $1.00 and 
the first security returns nothing. Either way, the Dutch 
book makes $1.00, but at a cost of only $0.90. Therefore I 
am guaranteed to receive $0.10 regardless of the outcome. 
Bruno de Finetti [3] called probabilities associated with 
such a Dutch book incoherent because prices (and proba-
bility beliefs) would naturally change if this type of profit 
taking were possible. Either the price of A or AC would rise 
until the possibility of a Dutch book disappeared. This kind 
of argument leads directly to the notion that the probability 
of A and AC should add to 1.

The idea here is not to derive the commonly used defini-
tions of a probability measure, but instead to explain why 
probabilities behave in the way that they do.

Today, these types of securities actually exist and you can 
buy and sell them. They are called prediction markets, and 
are a way of gauging the probabilities of future events. One 
such market is the PredictIt market, created by the Victoria 
University of Wellington to buy and sell securities based 
on future events. For instance, as I write this in September 
of 2018, the PredictIt market is giving a 36% chance that 
President Trump will be re-elected to his position in 2020. 
Those who feel the chance is higher should buy this secu-
rity, while those who feel it is lower should sell.

The sixth great idea is Bayes’ Theorem for updating 
probabilities given new information. Bayes was an English 
statistician and minister who created the first argument for 
using prior information about a parameter together with a 
special case of what is now known as Bayes’ Theorem. There 
are several ways to write this theorem; one such way is by 
using odds. Suppose that I believe that either theory X or 
theory Y is true, but not both. Each has equal probability 
of being true. This means that I give theory X versus theory 
Y 1:1 odds of being true. Because this is my current belief, 
this is known as the prior in Bayesian thought.

Now suppose that I run an experiment that gives me 
evidence E. If theory X is true, I can calculate that there was 
only an 80% chance of seeing evidence E. On the other 
hand, if theory Y is true, then I only had a 40% chance of 
seeing evidence E. At this point I know the chance of E given 
X and E given Y. Can I use that to determine the probability 
of X given E and Y given E?

Note that 80% divided by 40% is 2, and so that value is 
called the Bayes’ Factor in favor of theory X. Here is where 
Bayes’ Theorem comes in. To find the new odds of X versus 
Y, take the original odds (the prior) and multiply by the 
Bayes’ Factor. The original odds for X versus Y were 1:1 (also 
known as 1/1), so I multiply by the Bayes’ Factor of 2 to 
get the new odds of 2:1 in favor of theory X. In this way, 
I can use experiments that I run to update the odds and 
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sequences, the limit is ½. However, in the Ville Kollektiv, 
after a while the frequency of H values rises to be at least ½ 
and stays there. In a true random sequence, the frequency 
will rise above ½ and drop below ½ infinitely often. In par-
ticular, a gambler who was aware of Ville’s property could 
use this fact to create a system with guaranteed returns, 
something that should not be possible when betting on a 
truly random sequence.

The remaining great ideas cover different aspects of 
probability. For instance, despite the laws of probability 
being well known and commonly understood, people often 
behave in defiance of these rules. The psychology of chance 
is the third great idea. This chapter covers the experiments 
of psychologists that showed that how a question is framed 

can lead to different decisions.
For instance, Kahneman and 

Tversky asked the following two 
questions (mixed among others) 
in a survey. Both questions had the 
same background. Suppose that 
the United States faces an outbreak 
where without intervention 600 
people will die. The first question 
is to choose between the following 
two medical options:
1. A treatment where 200 people 
will be saved.
2. A treatment where there is a 1/3 
chance that all 600 will be saved 
and a 2/3 chance that no one will 
be saved.

The second question also asked 
participants to choose between 
two different options.
1. A treatment where 400 people 
will die.
2. A treatment where there is a 
1/3 chance that no one will die, 
and a 2/3 chance that 600 people 
will die.

They found that  almost 
three-quarters of participants preferred the first treatment 
in the first question, but in the second question almost 
three-quarters of participants preferred the second treat-
ment. But it only takes a short while to reflect on the ques-
tions and come to the realization that both treatments are 
exactly the same. How a question is framed can affect how 
we make decisions and deal with chance events.

The ninth great idea is the concept of physical ran-
domness. This type of randomness is often the first type 
encountered by people as they grow up, and so often it is 
mistakenly thought to be the only type of randomness. 
Rolling dice and spinning a cage of lottery balls lead to 
this style of randomness. Here the final result of a die roll 
or a coin flip is very sensitive to initial conditions. A very 

I take the limit of the number of heads to the number of 
trials to obtain the true probability.

Of course, the deep question that leaves unaddressed is: 
What does that infinite sequence of independent coin flips 
mean? If I already have a probability for my single coin flip, 
I can calculate for the probability of any finite subset of the 
coin flips, but Venn is moving in the opposite direction, 
requiring that the infinite sequence exist before moving to 
the probability of a single coin.

Later, in 1919, Richard von Mises put forth an answer to 
this question, not as a direct response to Venn, but rather 
to David Hilbert. In 1900, Hilbert had proposed ten great 
problems in mathematics (he later extended these to 
twenty-three problems), the sixth of which was “To treat 
in the same manner, by means of 
axioms, those physical sciences in 
which already today mathematics 
plays an important part; in the first 
rank are the theory of probabilities 
and mechanics.”

Von Mises (Figure 4) took up 
this challenge, and came up with 
something that he called a Kollek-
tiv. This is a sequence that has the 
properties that are thought of as 
belonging to a random sequence 
of independent fair coin flips. For 
instance, the limiting frequency of 
H values should be ½, which is a 
first requirement that the sequence 
be random. However, a sequence 
such as HTHTHTH... has this prop-
erty without being random.

Here the problem is if we only 
consider the places 1, 3, 5, 7, …, 
these are all H values, and 2, 4, 6, 
8, … are all T values. We would 
like it if any subsequence of the 
sequence had the same ½ limiting 
frequency, but unfortunately any 
sequence with limiting frequency 
½ will contain a subsequence of all H values.

The eighth great idea, algorithmic randomness, now 
enters the picture. In the 1930s, logicians such as Church 
and Turing were developing the idea of what it means to 
be computable. For instance, we could say that a sequence of 
integers a1, a2, a3, …. is computable if given the first n terms 
in the sequence, a Turing machine can calculate the next 
term in the sequence. There are only a countable number 
of Turing machines, and so only a countable number of 
such sequences exist.

It is possible to create a Kollektiv such that for any com-
putable sequence, the limiting sequence of H and T values 
is always ½. However, Jean Ville found a complication in 
1939. Ville found a Kollektiv such that for all computable 

Figure 4. Richard  von Mises.
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slight uncertainty in the initial speed and rotation of a 
coin flip leads to each side being equally likely to come 
up in practice.

This effect appears even in simple systems like the flip 
of a coin, but also applies to systems such as gases where 
a huge number of molecules are continually changing 
directions and bouncing off of one another and any con-
tainer. Returning to the Hilbert problems, his sixth question 
was driven by the need of physicists to understand what 
randomness is in order to create a well-defined theory of 
statistical mechanics.

This need grew further with the development of quan-
tum mechanics. The Copenhagen interpretation of quan-
tum mechanics uses probabilities as a way to connect clas-
sical thought to the many experiments that show quantum 
behavior. The authors argue that this does not give rise to 
a new theory of probability, but rather leads to the same 
sorts of information that can be incorporated into priors 
through Bayesian conditioning.

The last great idea presented is induction. The idea of 
induction is simply that we learn from past experience. Cen-
turies ago, Hume laid out the basic recursive question raised 
by the use of induction in A Treatise of Human Nature [5]. 
How do we know that inductive reasoning works if the only 
way we can prove it is to use inductive reasoning? Meeting 
that challenge is a lens for revisiting the ideas of chance 
raised by Laplace, Bayes, and de Finetti earlier in the text.  

All in all, this is an excellent book for a reader who 
already understands how to calculate probabilities. The 
purpose of this book is to consider the questions of what 
probability is, and what exactly it means. Whether or not 
the reader has considered these questions before, the book 
provides a fun and engaging introduction to some of the 
fascinating ways that probability has been thought about 
over the centuries, and would make excellent supplemental 
reading for a probability course.

Mark Huber
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FAN CHINA 
EXCHANGE
PROGRAM

• Gives eminent mathematicians from
the US and Canada an opportunity
to travel to China and interact with
fellow researchers in the mathematical
sciences community.

• Allows Chinese scientists in the early
stages of their careers to come to the
US and Canada for collaborative
opportunities.

Applications received before March 15 
will be considered for the following
academic year.

For more information on the Fan China Exchange Program 
and application process see www.ams.org/china-exchange 
or contact the AMS Professional Programs Department: 

TELEPHONE: 800.321.4267, ext. 4105 (US & Canada)
                        401.455.4105 (worldwide)

          EMAIL: chinaexchange@ams.org.
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WASHINGTON UPDATE

Office of  Government Relations Activities 
at the Joint Mathematics Meetings
The Joint Mathematics Meetings (JMM) are busy for the 
Office of Government Relations (OGR), which annually 
organizes four events.

On the day preceding the official start of the JMM, 
we host a workshop for department chairs.1 This year’s 
workshop featured four interactive sessions, encouraging 
networking and sharing of ideas amongst participants. Al-
most seventy chairs and other department leaders attended, 
and it was a lively and productive day. The last session of 
the day was a “What’s on your mind?” discussion, and 
this proved quite interesting. Many participants wanted 
to focus on the changing demographics of our national 
undergraduate student body—what will this look like in 
ten or fifteen years? What about the shrinking number of 
eighteen-year olds? How do we address the mental health 

of our students? Each year, at the end of the day’s activities, 
we hold a reception for the group and invite attendees from 
previous years—this is always a good time. Please join us 
next year in Denver on Tuesday, January 14.

The OGR works with two of the AMS policy commit-
tees—the Committee on Education and the Committee 
on Science Policy—helping each to organize a panel dis-
cussion.2 This year the Committee on Education opted to 
hold an active session, adopting the mantra that “the au-
dience is the panel.” Organizers David Pengelley (Oregon 
State University), Dev Sinha (University of Oregon), and 
Ravi Vakil (Stanford University) redesigned the format to 
model this pedagogy at the center of the discussion. They 
recruited fifteen “discussion leaders” (rather than panelists) 
and officially renamed the event as a “guided discussion” 
on “Evidence-based teaching: How do we all get there?” 
as it was listed in the JMM program. The room was full 
the entire time—the participants were broken into small 
groups, and they engaged in creative problem solving on 
the spot. The organizers provided a bit of background and 
questions, which small groups then discussed, facilitated 
by the discussion leaders, followed by reporting out and 

Activities of the Office 
of Government Relations

Karen Saxe 

Karen Saxe is associate executive director of the AMS and director of the 
Office of Government Relations. Her email address is kxs@ams.org.
1www.ams.org/profession/leaders/workshops/chairsworkshop

For permission to reprint this article, please contact: reprint-permission 
@ams.org.

DOI: https://dx.doi.org/10.1090/noti1889

This quarterly column provides information on different facets of the American Mathematical Society Office of Gov-
ernment Relations (OGR) portfolio and activities. This offering focuses on our activities at the Joint Mathematics 
Meetings and gives an overview about the new members of the 116th Congress and newly configured Congressional 
committees that have jurisdiction to support research and education in the mathematical sciences.

2www.ams.org/about-us/governance/committees/gov-committees
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Lastly, at each JMM we host the Congressional Fellow-
ship Session in order to spread the word about this great 
opportunity to spend a year in Washington. This one-year 
fellowship provides a public policy learning experience, 
demonstrates the value of science-government interaction, 
and brings a technical background and external perspective 
to the decision-making process in Congress. Panelists this 
year were the current AMS Congressional Fellow James 
Ricci (office of Senator Amy Klobuchar, MN) and Jennifer 
Pearl (PhD mathematician and Director of the Science 
& Technology Policy Fellowships Program at the Ameri-
can Association for the Advancement of Science). Other 
alumni fellows were on hand to answer questions and share 

their experiences.5 The annual 
application deadline for the 
AMS Congressional Fellow-
ship is in mid-February.6

In addition to the four pro-
grams that we run, I played a 
role in a few other programs.

Since 2018 the AMS has 
hosted a Graduate Student 
Chapter Luncheon. In addi-
tion to the graduate students 
who attend, several AMS lead-
ers (staff and elected officers) 
participate. This year, I was the 
“speaker,” and talked about 
the importance of being in-
volved, and how to become 

involved in advocacy efforts that support the mathematical 
community. I told them about our newly launched CASE 
fellowship7 opportunity, and we had a lively debate about 
redistricting, including whether or not mathematicians 
and statisticians should play a formal role in the process.

A JMM 2019 highlight for me was the JPBM Commu-
nications Award ceremony honoring Margot Lee Shetterly, 
author of Hidden Figures. As part of Mathemati-con, she re-
ceived her award and was interviewed by Talithia Williams 
of Harvey Mudd College. Each year I invite certain Congres-
sional members to participate at the JMM; most often these 
are members with particular ties to mathematics and the 
local representatives. US Senator Chris Van Hollen joined 
us and gave remarks at the beginning of this event. Senator 
Van Hollen represents Maryland and is a cosponsor of a bill 
to award Congressional Gold Medals to the Hidden Figures: 
Christine Darden, Mary Jackson, Katherine Johnson, and 

whole-room discussion after each small-group period. The 
session probed the interests of the audience in scaling up 
active learning in their departments, the basic steps and 
challenges they face in pursuing those interests, the existing 
resources to support those interests, and resources the au-
dience would like to see developed to support their efforts. 
Some especially interesting observations and suggestions 
came from the early career “leading from below” group. 
The challenges this group feels they face are not surpris-
ing—lack of experience, lack of influence, low expectations 
in terms of their contributions in their departments. Their 
requests to overcome these challenges include offering 
more “on-ramps” in their department settings. One specific 
request asks departments to 
“normalize” conversations 
about education by including 
seminars and colloquia on 
education issues (some by 
distinguished visitors, just as 
mathematical talks are).3

The Committee on Science 
Policy decided to take ad-
vantage of the proximity to 
Washington, DC, by “using” 
their panel time to have a con-
versation with the National 
Science Foundation’s (NSF) 
new heads of the Directorates 
for Mathematical & Physi-
cal Sciences (MPS) and Education & Human Resources 
(EHR). Dr. Anne Kinney is a PhD astrophysicist who came 
to NSF/MPS in January 2018. MPS supports fundamental 
research in astronomy, chemistry, physics, materials science, 
and mathematics. Dr. Karen Marrongelle holds a PhD in 
mathematics education and joined NSF/EHR in October 
2018. EHR supports STEM education at all levels. I was to 
facilitate a conversation about Dr. Kinney’s vision for the 
Division of Mathematical Sciences, Dr. Marrongelle’s vision 
for mathematics work in EHR, and their joint views on how 
the mathematical sciences fit with larger programs at the 
NSF. Unfortunately, the NSF was closed as part of the par-
tial government shutdown, and the session was cancelled. 
The NSF was shuttered because its funding is tied up in 
the border wall fight.4 The shutdown has affected science 
in many ways: the NSF reported more than one hundred 
postponed panels, and there were declines in participation 
at many scientific conferences including at the JMM. The 
lingering effects of a government shutdown are felt for 
months, if not years.

3Slides and notes can be found at https://web.nmsu.edu/~davidp.
4The NSF and the potential border wall funding are both part of one of 
the twelve appropriations bills that package Commerce, Science, and Justice 
together (NSF is in science; the wall in justice). For more on how appropri-
ations work see https://www.ams.org/government/dc-budgetprimer.

AMS Committee on Education session at JMM.

5I was there, and so were David Weinrich, Dan Ullman, Catherine 
Paolucci, and Margaret Callahan. Also, on hand were alumni Mass Media 
Fellows Ben Thompson and Yen Duong, and other mathematicians who 
have served as AAAS Fellows in the Executive Branch. 
6Learn more at https://www.ams.org/programs/ams-fellowships 
/ams-aaas/ams-aaas-congressional-fellowship.
7This is a three-day workshop for students; learn more at https://www.ams 
.org/government/dc-case-fellowship.
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dergraduate Student Poster Session, spending time with 
students from his district in California; to talks on the 
mathematics behind elections; and to the Current Events 
Bulletin Session.

The  2018  Election and Implications 
for the Mathematics Community
According to the New York Times, the 2018 midterm election 
resulted in ten new senators and 101 new members of the 
House of Representatives.11 All House seats and one-third 
of the Senate seats are up for election every two years. All 
ten of the new senators graduated from college, and seven 
of them received graduate degrees. Almost all new House 
members also graduated from college, and about ninety 
percent of them hold graduate degrees.12

Seven of the newcomers in the House hold a graduate 
degree in a STEM field, or a medical degree:

 • Sean Casten (IL 6) has his undergraduate degree in 
molecular biology and biochemistry, a master of 
engineering management, and a master of science 
in biochemical engineering. His career has been in 

Dorothy Vaughan. The Congressional Gold Medal is the 
highest civilian award in the US. (An interesting piece of 
trivia is that the first medal went to George Washington 
in 1776 for his “wise and spirited conduct” in bringing 
about the British evacuation of Boston.8) The conversation 
between Talithia Williams and Margot Lee Shetterly was 
a real treat. Shetterly described what it was like working 
with stars Janelle Monae and Kevin Costner on the movie 
project. I found it interesting to learn about her next book 
project, which will be about early twentieth-century Afri-
can American entrepreneurs in Baltimore. Williams told 
me that she loved hearing the author “talk so beautifully 
about the life and legacy of Rudy Horne,” the math con-
sultant on the movie,9 and that Shetterly’s remarks made 
clear “that she knew him and was intricately a part of the 
production of the movie, and didn’t just hand her book 
over and step away.”

Representative Jerry McNerney (CA 9),10 a PhD mathe-
matician and—perhaps needless to say—the only one in 
the US Congress, always enjoys the JMM and attends as 
often as his congressional schedule allows. This year he 
spent much of Friday with us. He went to the MAA Un-

8https://fas.org/sgp/crs/misc/R45101.pdf
9The mathematics community lost Dr. Horne in 2017: https://www 
.ams.org/journals/notices/201902/rnoti-p202.pdf.
10Parenthetic reference indicates that he represents California’s congres-
sional district 9, in the US House of Representatives. Senators’ states are 
indicated in a similar manner.

AMS Executive Director Catherine Roberts, Hidden Figures author Margot Lee Shetterly, and US Senator Chris Van Hollen (MD).

11https://www.nytimes.com/interactive/2018/11/28/us/politics 
/congress-freshman-class.html

12For more on the education of members of the 116th Congress see https:// 
www.forbes.com/sites/michaeltnietzel/2018/12/10/the 

-college-profile-of-the-116th-congresss-first-year-class. 
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SST’s Subcommittee on Research and Technology holds 
jurisdiction over the NSF, as well as university research 
policy and all matters relating to STEM education. In the 
Senate, it is the CST’s Subcommittee on Science, Oceans, 
Fisheries, and Weather.14

The authorization committees provide guidance about 
how the NSF spends and manages its appropriated funds. 
In January 2017, just as he was leaving office, President 
Obama signed into law the most recent NSF authorizing 
law—the American Innovation and Competitiveness Act. Just 
to give you an idea of what sort of things are in such an 
authorization law, the Republicans had been pushing for 
Congress to have the power to determine how much money 
goes to each research area funded, that is, to fund the NSF 
“by directorate.” In part due to efforts by scientists reach-
ing out to their members of Congress and the concerted 
efforts of scientific society government relations staff, this 
particular provision did not succeed in making it to the 
final law, and leaves (at least for the time being) the NSF 
to determine for itself how to distribute funds among re-
search areas. This effort was pushed by Lamar Smith, who 
retired at the end of last year but was the powerful chair of 
the House Committee on Science, Space, and Technology 
at the time the American Innovation and Competitiveness Act 
was signed into law.

Here are the leaders of the four NSF appropriating and 
authorizing committees (the Chair is always of the majority 
party, and the Ranking member is from the minority party):
Subcommittee on Commerce, Science and Justice (of 
the Senate Appropriations Committee)
Chair Jerry Moran (KS)
Ranking member Jeanne Shaheen (NH)
Subcommittee on Commerce, Science and Justice (of 
the House Appropriations Committee)
Chair José Serrano (NY 15)
Ranking member Robert Alderholt (AL 4)
Subcommittee on Science, Oceans, Fisheries, and 
Weather (of the Senate Committee on Commerce, 
Science and  Transportation)
Chair Cory Gardner (CO)
Ranking member Tammy Baldwin (WI)
Subcommittee on Research and Technology (of the 
House Committee on Science, Space, and Technology)
Chair Haley Stevens (MI 11)
Ranking member Jim Baird (IN 4)

It is important for mathematicians to know which con-
gressional members hold decision-making power about 
how much money the NSF spends and how it is spent. 
Lawmakers are especially interested in the concerns of their 
own constituents. If you have an NSF grant and are doing 
research that you can convince them is important, or if you 

the private sector and is focused on clean energy 
technologies.

 • Joe Cunningham (SC 1) has a bachelor’s degree in 
ocean engineering. He worked in this field, in in-
dustry, until the 2008 recession when he returned 
to law school.

 • Chrissy Houlahan (PA 6) has an undergraduate 
engineering degree from Stanford and a master of 
science in technology and policy from MIT. She 
has taught high school science and most recently 
worked for a nonprofit focusing on early child-
hood literacy in underserved populations.

 • Elaine Luria (VA 2) has an undergraduate degree in 
physics and a master of engineering management. 
As an engineer, she operated nuclear reactors in 
the Navy.

The others are pediatrician Kim Schrier (WA 8); Lauren 
Underwood (IL 14), a registered nurse; and dentist Jeff van 
Drew (NJ 2).

Re-elected to Congress are PhD mathematician Jerry 
McNerney (CA 9) and PhD physicist Bill Foster (IL 11). The 
House lost Jacky Rosen—a computer programmer, software 
developer, and proponent of programs to support women 
and girls in science—but she won her bid for the Senate 
seat, so she will remain in Congress, representing Nevada. 

All this is not to say that legislators with science back-
grounds are our only allies. Congressional members can 
introduce legislation on any topic they want, but are most 
easily able to introduce legislation and promote policies 
through the committees on which they serve. 

There are four congressional committees with power 
over the NSF—the “appropriating” and “authorizing” 
committees for each of the House and Senate. The Appro-
priations Committees—specifically, the Subcommittees on 
Commerce, Science and Justice in each chamber—decide 
how much money the NSF receives each year. This money, 
in turn, is awarded to scientists to support their research 
through grants. Appropriations committees are powerful, 
and membership on these committees is sought by many 
members of Congress.13 While the Appropriations Com-
mittees in each of the House and Senate are the same in 
their names and subcommittee structure, this is not the 
case for the authorizing committees. The NSF authorizing 
committees are the House Committee on Science, Space, 
and Technology (SST) and the Senate Committee on Com-
merce, Science and Transportation (CST). In the House, the 

13Each of the House and Senate has rules for how committee assignments 
are made, the structure of each committee, how many committees each 
member can sit on, etc. These rules are updated and evolve with each new 
Congress; each chamber has a website with an explanation:

Senate: https://www.senate.gov/artandhistory/history/common 
/briefing/Committees.htm

House: clerk.house.gov/committee_info/index.aspx

This site is also informative: https://www.congress.gov/committees.

14For more on these committees in the 116th Congress, see: https:// 
blogs.ams.org/capitalcurrents/2019/02/16/which-members-of 

-congress-have-a-say-over-the-nsf.
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Credits
Photo of the AMS Committee on Education is by Anita Ben-

jamin.
Photo of Catherine Roberts, Margot Lee Shetterly, and Chris 

Van Hollen is by Kate Awtrey.
Photo of Karen Saxe is courtesy of Macalester College/David 

Turner.

are working to engage students in STEM fields in their home 
district or state, they will be interested and may perhaps 
use your story as ammunition in arguing for Congress to 
fund the NSF at a robust and sustainable level in years to 
come. The leaders of the committees, in large part, set the 
priorities and agendas for the committee work, and they 
can push legislation that they favor.

There are, of course, other congressional committees 
with jurisdiction over matters of concern to many math-
ematicians. For example, the Senate Homeland Security 
and Governmental Affairs Committee has considered 
whether or not papers that report on federally funded 
research should be made available to the public for free. I 
wrote about “open access” in my March Notices column, 
and it is a topic to watch, perhaps especially as Plan S is 
implemented in Europe.15 As another example, the House 
Education and Labor Committee covers topics ranging from 
workforce training to student financial aid in higher educa-
tion to improving employment conditions for contingent 
faculty—those employed outside of the tenure track. The 
shift from a Republican-controlled House to a Democrat-
ic-controlled House means that the committees’ agendas 
have shifted. The new Democratic leadership’s ideas about 
how to ensure access to higher education, reduce cost, 
and increase graduation rates are markedly different from 
those of their Republican predecessors.16 For example, the 
Democrats propose far more substantial investments in the 
Pell Grant program than do the Republicans—the Demo-
crats support a larger maximum Pell Grant and propose to 
index the award amount to inflation in subsequent years. 
The Democrats would create a new grant program to help 
community colleges boost graduation and transfer rates. 

I write a biweekly blog, and my posts often touch on 
congressional priorities and actions that might affect math-
ematicians and mathematics research. 

15There has been much written on Plan S; National Academies of 
Sciences President Marcia McNutt has written an article about how it 
might interact with society publishers: https://www.pnas.org/content 
/early/2019/01/24/1900359116.
16See www.ihep.org/sites/default/files/uploads/prosper-aha 
_ihep_analysis_final.pdf.

Karen Saxe 
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FROM THE AMS SECRETARY

2018 Contributors

Dear AMS Members and Friends,

I am filled with gratitude for your remarkable generosity in supporting math-
ematics; the year 2018 was very special. We began to build The Next Generation 
Fund (NextGen), a permanent endowment to support early career mathematicians. 
A generous benefactor sparked this initiative by offering to match up to $1.5 
million in gifts and pledges. Many of you are responding with enthusiasm to this 
fundraising challenge. In doing so, you are creating an enduring resource that will 
impact hundreds of emerging mathematicians every year at formative moments 
in their professional lives. Thank you!

As part of this endeavor, we introduced the Maryam Mirzakhani Fund for The 
Next Generation. This is a special named fund within the NextGen endowment 
supporting the same goals and activities as NextGen. Your donations to this fund 
honor Professor Mirzakhani’s memory by helping the rising mathematicians of 
today and tomorrow.

Our donors continue to advance our strategic priorities in creative ways. Philippe 
Tondeur gave a significant boost to the BIG Math Network, helping to connect 
aspiring mathematical scientists with career opportunities in business, industry, 
and government. The Mary P. Dolciani Halloran Foundation funded a new AMS 
prize to recognize faculty members from non-doctoral mathematics departments 
for their active research programs and distinguished records of scholarship.

I want to acknowledge everyone who is making a legacy gift to the AMS through 
their estate. Your thoughtful vision will help shape mathematics well into the fu-
ture. The AMS received bequests last year from the estates of Eugene and Katherine 
Toll, and James and Bettie Hannan, providing vital unrestricted support to AMS 
programs and services.

The following list includes several first time donors. We welcome you with deep 
appreciation for your kindness. We also celebrate our many long-time supporters 
who have donated to the AMS for ten years, twenty years, and longer! Your dedi-
cation fuels our mission to advance research and create connections.

You may notice our 2018 Contributors report now features an expanded 
Thomas S. Fiske Society list, and a special section for the Campaign for The Next 
Generation identifying people who made gifts and pledges to the campaign as of 
December 31, 2018.

Every person on the 2018 Contributors list, including those who prefer to be 
anonymous, helps make wonderful things happen in our mathematics community, 
both locally and globally. On behalf of all the people and programs benefiting 
from your selfless generosity, I offer you my deepest thanks.

Catherine A. Roberts
Executive Director

Catherine A. Roberts
AMS Executive Director
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In Tribute
The following friends, colleagues, and family members are being specially honored by commemorative gifts. The AMS is 
pleased to be the steward of donors’ generosity in their name.

Gifts made in honor of the following individuals:
Krishna Siddhanta Athreya by Jayadev S. Athreya
Bill Barker by Emma J. Chiapetta
Bill Barker by Catherine A. Roberts
Bill Barker by Victoria Stoneman
Jim Bray by Mira Levine
Morton Harris by Anonymous
Sigurdur Helgason by William H. Barker
Ebadollah S. Mahmoodian by Joan P. Hutchinson
John N. McDonald by Niles White
Nikhil Patel by Anonymous

Harold & Betty Reiter by David Jacob Wildstrom
William Sawin by Stephen F. Sawin
James L. Silver by Thomas Barr
Andrew J. Simoson by Thomas Barr
Emil Vulpe by Sophie Vulpe
Maria Vulpe by Sophie Vulpe
Tongtong Wang by Erica Busillo
Daniel Waterman by Sanford and Theda Perlman
Glenn F. Webb by Thomas Barr

Thomas S. Fiske Society
Members of the Thomas S. Fiske Society create a personal legacy supporting mathematics by naming the AMS in their 
will, retirement plan, or other gift vehicle. The AMS celebrates the following people for their thoughtful vision.

Italics indicates deceased.

Anonymous (4)
Walter Augenstein
Richard A. and
     Melanie L. Baum
Shirley and Gerald Bergum 
Robert L. Bryant and
     Reymundo A. Garcia
Ralph Cohen and

     Susan Million

anna cueni and
     loki der quaeler
Robert J. Daverman
Peter L. Duren
Ramesh A. Gangolli
Rosalind J. Guaraldo
Robert T. Kocembo
Carole B. Lacampagne

Yanguang Charles Li
Zhaorong Liu
Joseph S. Mamelak
Timothy E. McMahon
Eve Menger
Fredric Menger
Charles E. Parker II
Moshe Rosenfeld

David M. Sward
B. A. and M. Lynn Taylor
Edmond and
     Nancy Tomastik
Steven H. Weintraub
Susan Schwartz Wildstrom

Rachel Blodgett Adams
Roy L. Adler
Alfred Aeppli
Kathleen Baxter
Barbara Beechler
Israel Berstein
Ernest William Brown
Richard M. Cohn
Levi L. Conant
Edward Davis
Thomas Dietmair
Carl Faith
Ky and Yu-Fen Fan
Isidore Fleischer

Sidney Glusman
James F. and
     Bettie C. Hannan
Robert Henderson
Geneva Barrett Hutchinson
Jeffrey S. Joel
Solomon A. Joffe
Joseph Kist 
Rada G. Laha 
Ralph Mansfield
Trevor J. McMinn
Helen Abbot Merrill
Josephine M. Mitchell and
     Lowell I. Schoenfeld

Cathleen S. Morawetz
Kiiti Morita
Charles C. Morris
Sidney Neuman
Carroll Vincent Newsom
Christos D.
     Papakyriakopolous 
Mary K. Peabody
Franklin P. Peterson
Marion Reilly
James G. Renno, Jr.
Joseph Fels Ritt
T. Benny Rushing
Theda and William Salkind

Arthur Sard 
Paul T. and
     Barbara Schaefer
Henry Schaerf 
Maynard Shelley 
Rubin Smulin 
Leroy P. Steele
Eugene Toll
Waldemar J. and
     Barbara Trjitzinsky
Sally Whiteman
James V. Whittaker
James K. Whittemore
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Gifts made in memory of the following individuals:
Vladimir Arnold by Anonymous
Glynn E. Behmen Sr. Family by Glynn E. Behmen
Harvey Cohn by Herman Chernoff
H. Hope Daly by Ellen H. Heiser
Clifford J. Earle by Elizabeth Earle
Hilda Geiringer von Mises by The Stephen and
     Margaret Gill Family Foundation
Kenneth I. Gross by Thomas Pietraho and Jennifer Taback
Bertram S. Kabak by Dee Dee Shantell Chavers
Herbert M. Kamowitz by Elaine Kamowitz
James M. Kister by Jane E. Kister
Robert T. Kocembo, Sr. by Robert T. Kocembo, Jr.
Bertram Kostant by Ann Kostant

Virginia C. Lagarias by Anonymous
Joseph Lehner by Zheindl Lehner
Cecil E. Leith by Mary Louise Leith
Vincent O. McBrien by Joseph W. Paciorek
Karl Menger by Fredric Menger
Nancy Ogden by John Patrick Ogden
Eugene A. Pflumm by Mollie Pflumm
Gian-Carlo Rota by Anonymous
Paul J. Sally, Jr. by Judith D. Sally
Tsungming Tu by Loring W. Tu
Robert C. Warner by David Colella
Stephen Wildstrom by Susan Schwartz Wildstrom
David Zitarelli by Matt & Cindy Tessler

The following friends, colleagues, and family members paid tribute to Kay 
Magaard (1962–2018):
Anonymous (5)      Simon M. Goodwin      Guy Poirier
Val Carlone      Frank Himstedt      Terrie Romano
Sheila Cressman      Edward and Stephanie Laws     Anne Safranyos
Sarah Divall      Rebecca Lockhart and      Gordan Savin
Donna Edwards           Mahetem Gessese      Simon and Sanama
Gabriele Franz      Bernadette Lupul      Angela Spreng and
Daniel E. Frohardt     Caitlin MacCallum           friends at Ontario
Meinolf Geck      Adolf G. Mader           office in Munich
Rachelle Geddes      Lorenz and Ursula Magaard     Carla Tsambourlianos
David Gluck      Daniel K. Nakano      Robert Wolfe

Gifts made in memory of esteemed mathematician 
Maryam Mirzakhani (1977–2017):
Anonymous (7)
Jayadev S. Athreya
Leonard John Borucki
Ralph Cohen and
     Susan Million
Robert J. Currier
Ingrid Daubechies
Shanna Dobson
Mohamed Elhamdadi
Erica Flapan and
     Francis Bonahon
Carolyn S. Gordon
Robert Andrew Grossman
Rosalind J. Guaraldo
Ellen H. Heiser
Nancy Hoffman
Joan P. Hutchinson
Masanori Itai
Jane E. Kister
Jacques Lafontaine
Gregory F. Lawler

David B. Leep
Walter Markowitch, Jr.
Hee Oh
Hemant Pendharkar
Eric Todd Quinto and
     Judith Anne Larsen
Shrisha Rao
Joseph Rosenblatt and 
     Gay Miller
Linda Preiss Rothschild
Daniel Ruberman
Carla D. Savage
Freydoon Shahidi
Siavash H. Sohrab
Alexander Vauth
David Vogan
Sophie Vulpe
Niles White
George V. Woodrow III
Alexander Wright
Anton Zorich

Maryam Mirzakhani
Photo courtesy Stanford University

Kay Magaard
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Campaign for The Next Generation
The following people made gifts or pledges to support The Next Generation Fund, a new endowment supporting early 
career mathematicians, as of December 31, 2018.

Anonymous (19)
William Abikoff
James Arthur
Jayadev S. Athreya
Adrian David Banner
William H. Barker
Hyman Bass
Frances B. Bauer
Bonnie Berger and
     Tom Leighton
George Berzsenyi
Tom and Nancy Blythe
Brian D. Boe
Leonard John Borucki
David Bressoud
John Brillhart
William J. Browning
Ruth Charney and
     Stephen Cecchetti
Dee Dee Shantell Chavers
Herman Chernoff
Emma J. Chiappetta
Ralph Cohen and
     Susan Million
John B. Conway
Robert J. Currier
Ingrid Daubechies
Pierre R. Deligne
Keith Dennis
Peter Der
Shanna Dobson
Nathan Dunfield
Mohamed Elhamdadi
John H. Ewing
Benson Farb and
     Amie Wilkinson

Erica Flapan and
     Francis Bonahon
Sergey Fomin
Solomon Friedberg
William Fulton
James and Adele Glimm
William M. Goldman
Carolyn S. Gordon
Matthew A. Grayson
Mark L. and
     Kathryn Kert Green
Robert Andrew Grossman
Rosalind J. Guaraldo
Alfred W. Hales
Jane Hawkins and
     Michael Taylor
William R. Hearst III
Ellen H. Heiser
Sigurdur Helgason
Nancy Hoffman
Tara Holm and
     Timothy Riley
John M. Hosack
Paul D. and Bonnie Humke
Craig L. Huneke
Joan P. Hutchinson
Masanori Itai
Elaine Kamowitz
Linda Keen
Jane E. Kister
Ann Kostant
Bryna Kra and
     Brian Platnick
Jacques Lafontaine
Gregory F. Lawler
Robert Lazarsfeld

David B. Leep
Jim Lewis
John Locker
Robin Marek and
     David Beutel
Walter Markowitch, Jr.
Math for America
James Maxwell
William McCallum
Donald and Mary McClure
M. Susan Montgomery
Paul and Linda Muhly
Zbigniew Nitecki
M. Frank Norman
Hee Oh
Ken Ono
Matthew Papanikolas and
     Katherine Veneman
Hemant Pendharkar
Thomas Pietraho and
     Jennifer Taback
Jill C. Pipher
Eric Todd Quinto and
     Judith Anne Larsen
Shrisha Rao
Kenneth A. Ribet and
     Lisa R. Goldberg
Emily Riley and
     Theodore Simon
Catherine A. Roberts
Joseph Rosenblatt and
     Gay Miller
Linda Preiss Rothschild
Daniel Ruberman
Carla D. Savage
Thomas R. Savage

Karen Saxe and Peter Webb
Richard Schoen
Freydoon Shahidi
Brooke E. Shipley
Susan and Joseph Silverman
Norton and Irene Starr
Ronald and Sharon Stern
Victoria Stoneman
Margaret W. Taft
Jean E. Taylor
Loring W. Tu
Alice Staveley and Ravi Vakil
Anthony Varilly-Alvarado
Alexander Vauth
David Vogan
Karen Vogtmann and
     John Smillie
Sophie Vulpe
Judy and Mark Walker
Tongtong Wang
Steven H. Weintraub
Niles White
David Jacob Wildstrom
Susan Schwartz Wildstrom
Edward Witten and
     Chiara R. Nappi
Scott and Linda Wolpert
George V. Woodrow III
Alexander Wright
Robert J. Zimmer
Anton Zorich

PARTNERS
($10,000 and above)
Anonymous (5)
Frances B. Bauer
Bonnie Berger and
     Tom Leighton
Joan Birman

William J. Browning
Pierre R. Deligne
Estate of Eugene Toll
Matthew A. Grayson
Mark L. and
     Kathryn Kert Green
William R. Hearst III

Sigurdur Helgason
Tara Holm and
     Timothy Riley
Donald E. and Jill C. Knuth
Jim Lewis
M. Susan Montgomery
Paul and Linda Muhly

John Patrick Ogden
Thomas R. Savage
Ronald and Sharon Stern
Margaret W. Taft
Philippe M. Tondeur

AMS Donors
The people and organizations listed below made gifts to the AMS between January 1–December 31, 2018. The AMS thanks 
every donor on behalf of the beneficiaries for their generosity. Every gift helps advance mathematics.



AMS Contributors

FROM THE AMS SECRETARY

932    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 6

STEWARDS
($5,000 to $9,999)
Anonymous (3)
William Abikoff
Hyman Bass
Mary P. Dolciani
     Halloran Foundation
Stephen and Margaret Gill
     Family Foundation
Craig L. Huneke
Ann Kostant
Fredric Menger
Michael I. Miller
Susan Schwartz Wildstrom
Templeton Charity
     Foundation Switzerland
Karen Vogtmann and
     John Smillie
Scott and Linda Wolpert
Robert J. Zimmer

BENEFACTORS 
($2,500 to $4,999)
Anonymous (3)
2018 AMS Staff
John Brillhart
John B. Conway
Robert J. Daverman
Richard T. Durrett
Estate of Bettie C. and
     James F. Hannan
John H. Ewing
Robert Andrew Grossman
Bryna Kra and Brian Platnick
Math for America
William McCallum
Donald and Mary McClure
Jill C. Pipher
Catherine A. Roberts
Joseph Rosenblatt and
     Gay Miller
Linda Preiss Rothschild
Norton and Irene Starr
Loring W. Tu
David Vogan

PATRONS
($1,000 to $2,499)
Anonymous (4)
James Arthur
Elwyn and
     Jennifer Berlekamp
Marshall Bishop
Roger Chalkley

Ruth Charney and
     Stephen Cecchetti
Ralph Cohen and
     Susan Million
Ingrid Daubechies
Keith Dennis
Peter Der
loki der quaeler
Michael R. Douglas
Nathan Dunfield
Barbara T. Faires
Erica Flapan and
     Francis Bonahon
William Fulton
Richard L. Gantos
William M. Goldman
Ronald L. and
     Fan Chung Graham
Elizabeth L. Grossman and
     Joshua L. Boorstein
Rosalind J. Guaraldo
Alfred W. Hales
Bill Hassinger, Jr.
Jane Hawkins and
     Michael Taylor
John M. Hosack
Linda Keen
James E. Keisler
Jane E. Kister
Robert V. Kohn
Gregory F. Lawler
Robert Lazarsfeld
Zheindl Lehner
Mary Louise Leith
Lorenz and Ursula Magaard
Albert and Dorothy Marden
Robin Marek and
     David Beutel
Microsoft Corporation
Gary R. Miller
Joseph G. Moser
M. Frank Norman
Andrew P. Ogg
Hee Oh
Donald S. and
     Shari Ornstein
Matthew Papanikolas and
     Katherine Veneman
Thomas Pietraho and
     Jennifer Taback
Eric M. Rains
Samuel Murray Rankin III
Peter J. Riemer
Emily Riley and
     Theodore Simon

Andrew M. and
     Kathryn S. Rockett
Habib Salehi
Judith D. Sally
Carla D. Savage
Karen Saxe and Peter Webb
Richard Schoen
Susan and Joseph Silverman
Lance W. and
     Lynne Barnes Small
T. Christine Stevens
Symantec Corporation
John T. and Carol P. Tate
Jean E. Taylor
Mark A. Taylor
Steven H. Weintraub
Edward Witten and
     Chiara R. Nappi
George V. Woodrow III

SPONSORS
($500 to $999)
Anonymous (6)
Jayadev S. Athreya
William H. Barker
Thomas Barr
Manuel P. and
     Maria A. Berriozabal
Henrik Bresinsky
Daniel Broennimann
Charles Allen Butler
Karl E. Byleen
James C. Cantrell
Denis Charles
Dee Dee Shantell Chavers
Charles W. Curtis
Klaus Deimling
Harold G. Diamond
Loyal Durand
Benson Farb and
     Amie Wilkinson
Sergey Fomin
Solomon Friedberg
James and Adele Glimm
Frank D. Grosshans
Audrey Cole Hand
Paul D. and Bonnie Humke
David C. Kelly
Maria Margaret Klawe
Leonid Kneller
Keri A. Kornelson and
     Noel Patrick Brady
Gary R. Krumpholz
Albert T. Lundell
David B. Massey
Gregg McCarty

Zbigniew Nitecki
Eric A. Nordgren
Ken Ono
Gerald J. Porter
Robert D. Rigdon
Terrie Romano
Freydoon Shahidi
Keith Paul Smith
Joel H. Spencer
Chuu-Lian Terng
Sophie Vulpe
Judy and Mark Walker
Tammy King Walsh
David Jacob Wildstrom
Jay A. Wood
Tsu C. Wu

ASSOCIATES
($100 to $499)
Anonymous (99)
Ole Kristian Aamot
Jose Adachi
Colin C. Adams
Robin Hagan Aguiar
Ethan J. Akin
Fuad Aleskerov
Bernard C. Anderson
Donald W. Anderson
Marlow E. Anderson
Michael T. Anderson
Benjamin Andrews
George E. Andrews
Peter H. Anspach
Stuart S. Antman
Myla M. Archer
Richard A. Askey
Walter O. Augenstein
Catherine C. Aust
Sheldon Axler
John M. Bachar, Jr.
Matthew Badger
John T. Baldwin
Joseph A. Ball
Christopher L. Barrett
Jose Barros-Neto
Theodore J. Barth
Peter H. Baxendale
Steven R. Bell
Wolfgang Bell IV
George M. Bergman
Julia Bergner
Shirley and Gerald Bergum
David S. Berry
Robert William Berry
George Berzsenyi
Utpal Kumar Bhattacharya
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Richard L. Bishop
Jerome Blackman
Denis Blackmore
David E. Blair
Leonard John Borucki
Aldridge K. Bousfield
John S. Bradley
Richard C. Bradley
Michael A. and
     Sandra M. Breen
David Bressoud
James G. Bridgeman
John Bromback
David Y. Broom
Frank R. Brown, Jr.
Gordon E. Brown
Lawrence G. Brown
Richard K. Brown
Andrew M. Bruckner
John L. Bryant
Joseph T. Buckley
Daniel Buehler
Stephen S. Bullock
Robert Bumcrot
R. B. Burckel
Ralph Stevens Butcher
Thomas R. Butts
Rotraut G. Cahill
Leonardo Calle
Sylvain E. Cappell
Corrado Cardarelli

James Baldwin Carrell
James R. Case
Alfred S. Cavaretta, Jr.
Thomas E. Cecil
Gulbank D. Chakerian
Jagdish Chandra
Pak Soong Chee
William A. Cherry
Richard C. Churchill
Stuart Citrin
Daniel I. A. Cohen
Donald L. Cohn
George Cole
Paul Dana Cole
Bruce P. Conrad
Arthur H. Copeland, Jr.
Douglas L. Costa
Malcolm A. Coulter
Carl C. Cowen
Sheila Cressman
Albert W. Currier
Robert J. Currier
Everett C. Dade
Constantine M. Dafermos
James N. Damon
Anthony J. D’Aristotile
Jan W. and Lynn A. Dash
James R. Davidson
M. Hilary Davies
Donald M. Davis
Paul L. Davis

Clint Dawson
Guy M. De Primo
Jean E. de Valpine
Luz Maria DeAlba
Anthony T. Dean
Ronald W. DeGray
Herbert A. Dekleine
Aristide Deleanu
Charles R. Diminnie
Heinz Deitrich Doebner
Peter C. Dolan
James A. Donaldson
Simon Donaldson
Alex J. Dragt
Elizabeth Earle
Patrick Barry Eberlein
Lawrence Man Hou Ein
Stanley Mamour
     Einstein-Matthews
Mohamed Elhamdadi
Hans P. Engler
Samantha L. Faria
Ruth G. Favro
George F. Feeman
Mark E. Feighn
Burton I. Fein
Ian M. Ferris
David V. Finch
Benji N. Fisher
Marjorie Fitting-Gifford
Gerald B. Folland
Julie A. Fondurulia
Paul Fong
Gabriele Franz
Walden Freedman
Ralph S. Freese
Peter J. Freyd
Daniel E. Frohardt
John D. Fulton
Joseph Galante
John B. Garnett
Meinolf Geck
Eberhard G. P. Gerlach
Murray Gerstenhaber
Joseph L. Gerver
David Gluck
Daniel A. Goldston
Martin Golubitsky
Kenneth R. Goodearl
Robert K. Goodrich
Google Inc
Carolyn S. Gordon
David J. Grabiner
Kevin A. Grasse
Jack E. Graver
Larry K. Graves

Frederick P. Greenleaf
Phillip A. Griffith
Labib S. Haddad
Gerhard E. Hahne
Richard M. Hain
John L. Hank
Carsten Hansen
Garry D. Hart
Deirdre Haskell and
     Walter Craig
Kazuyuki Hatada
Adam O’Neill Hausknecht
Brian P. Hayes
Jonathan Haylock
Ellen H. Heiser
Simon Hellerstein
John Paul Helm
Francis McVey Henderson
Georg Hetzer
Gerald A. Heuer
Gloria C. Hewitt
C. Denson Hill
Shirley A. Hill
Frank Himstedt
Nancy Hingston
Peter David Hislop
Jonathan P. E. Hodgson
Helmut H. W. Hofer
Hartmut Hoft
Raymond T. Hoobler
Philip Kneil Hotchkiss
Fredric T. Howard
Henry C. Howard
Tiao-Tiao Hsu
James G. Huard
Joseph A. Hughes
Mark E. Huibregtse
Birge K.
     Huisgen-Zimmermann
Thomas C. Hull
James E. Humphreys
Karen C. Hunt
Walker E. Hunt
Michael G. Hurley
Joan P. Hutchinson
Ettore Ferrari Infante
Arnold J. Insel
Ron Irving
I. Martin Isaacs
William Araujo Jacques
Louise Jakobson
Gerald J. Janusz
Herbert Jarszick
Trevor M. Jarvis
Hae-Pyng Jea
George A. Jennings

“Thank you for the AMS support. We have had 
difficult months [rebuilding from Hurricane 
Maria] but with the help of the AMS Epsilon 
Fund we have been able to continue with our 
math camps and activities for math talented 
students.”

—Luis F. Caceres-Duque, Director of PROTaSM
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Hans Joergen Jensen
Robert R. Jensen
Charles H. Jepsen
Eugene C. Johnsen
Bradford W. Johnson
Charles N. Johnson
David Copeland Johnson
Donald G. Johnson
William B. Jones
Seva and
     Valentina Joukhovitski
Henry Price Kagey
Elaine Kamowitz
Yulia Karpeshina
Victor J. Katz
Edward L. Keenan
Robert P. Kertz
Mark E. Kidwell
L. Richardson King
Allan M. Kirch
Roland R. Kneece, Jr.
Julia F. Knight
Heinz J. Konig
Antoni A. Kosinski
George Kozlowski
Robert Krasny
Ralph M. Krause
Lam Research
Peter S. Landweber
Joseph and Betty Langsam
David C. Lantz
Michel L. Lapidus
Philip and Mary Lavin
Edward and Stephanie Laws

H. Blaine Lawson, Jr.
Walter R. Lawson
James W. Lea, Jr.
John M. Lee
David B. Leep
J. Larry Lehman
Joan R. Leitzel
Thomas Gibbs Leness
H. W. Lenstra
Henry S. Leonard, Jr.
George M. Lewis
James E. L’heureux
Zvie Liberman
Thomas M. Liggett
Robert J. Lipshutz and
     Nancy Wong
Rebecca L. Lockhart
George W. Lofquist
Ling Long
Graham Lord
Jonathan D. Lubin
Harry Lucas, Jr.
Bernadette Lupul
Clement H. Lutterodt
Russell D. Lyons
John E. Mack
Michael C. Mackey
James Joseph Madden
Adolf G. Mader
Anne Mahoney
Joseph Malkevitch
Jason Fox Manning
Pauline Mann-Nachbar
Stefano Marchiafava
Walter Markowitch, Jr.

Greg Marks
Thomas J. Marlowe, Jr.
William J. Martin
Arthur P. Mattuck
Stephen B. Maurer
Dieter H-J Mayer
John C. Mayer
Raymond A. Mayer, Jr.
Jon McCammond
Gregory L. McColm
Michael J. McCourt
Thomas L. McCoy
Clint McCrory
O. Carruth McGehee
William D. McIntosh
Robert C. McOwen
George F. Meierhofer
Anders Melin, Sr.
Bruce Mericle
Jorma K. Merikoski
Marvin V. Mielke
Ellen Rammelkamp Miller
Jack M. Miller
Stanislav M. Mintchev
Norman D. Mirsky
John A. Mitchem
Connor R. Mooney
Yasuhiro Morita
Larry J. Morley
Joseph R. Morris
Robert A. Morris
Kent E. Morrison
Motohico Mulase
Hans J. Munkholm
Douglas Mupasiri
Alexander Nagel
Kuniaki Nakamitsu
Manmath Nayak
Arnold L. Neidhardt
Csaba Nemethi
Charles W. Neville
Togo Nishiura
Andrew M. Odlyzko
Hajimu Ogawa
John Arthur Oman
Edward T. Ordman
Arlene O’Sean
Mikhail Ostrovskii
Joseph W. Paciorek
Judith A. Packer
John H. Palmieri
Michelle I. Paraiso
Thomas H. Parker
Donald A. Patterson
James M. Peek
Hemant Pendharkar

John W. Pennisten
Maria Cristina Pereyra
Sanford Perlman
William G. Pertusi
John W. Petro
Mollie Pflumm
Don L. Pigozzi
Gilles Pisier
Guy Poirier
Paul P. Pollack
Aleksey Popelyukhin
Gopal Prasad
Michael F. Quinn
Eric Todd Quinto and
     Judith Anne Larsen
Paul H. Rabinowitz
Louis B. Rall
R. Michael Range
Salvatore Rao
S. W. Rayment
Frank Raymond
Ahmed Raza
Christopher L. Reedy
David E. Reese
Robert J. Reynolds
Charles W. Rezk
Bruce Reznick
Martin G. Ribe
Stephen J. Ricci
Barbara Slyder Rice
Marc A. Rieffel
Thomas W. Rishel
James B. Robertson
Daniel S. Rogalski
Vijay K. Rohatgi
David E. Rohrlich
Jonathan M. Rosenberg
Ronald C. Rosier
Sharon Cutler Ross
Gary Roumanis and
     Ale Madera
Daniel Ruberman
David Ryeburn
Jeffrey R. Sachs
Michael Saitas
Laurent Saloff-Coste
Robert W. Sanders
Chelluri C. A. Sastri
Gordan Savin
Stephen French Sawin
Murray M. Schacher
Michael Schlessinger
Dieter S. Schmidt
Bertram M. Schreiber
Cedric F. Schubert
Robert J. Schwabauer

Students at PROTaSM (Puerto Rico Opportu-
nities for Talented Students in Mathematics), a 
summer mathematics program supported by 
the Epsilon Fund for Young Scholars Programs.
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Warner Henry
     Harvey Scott III
Andreas Seeger
Stuart A. Seligson
George H. Senge
Timo Seppalainen
Mohamed W. I. Sesay
Richard J. Shaker
David L. and
     Christine A. Shannon
Brooke E. Shipley
Stuart J. Sidney
Martha J. Siegel
Daniel S. Silver
Irina F. Sivergina
Walter S. Sizer
Christopher Skinner
David L. Skoug
John R. Smart
Laurie M. Smith
William M. Snyder, Jr.
Siavash H. Sohrab
Alexia Henderson Sontag
John J. Spitzer
David A. Sprecher

Angela Spreng and
     Friends at Ontario office
     in Munich
Olaf P. Stackelberg
Harold M. Stark
Russell Lynn Stead
Paul K. Stockmeyer
Lawrence D. Stone
Victoria Stoneman
Ruth Rebekka Struik
Daniel Studenmund
Susquehanna
     International Group

David M. Sward
William J. Sweeney
Andrzej A. Szymanski
B. A. and M. Lynn Taylor
Laurence R. Taylor
D. E. Tepper
Edward C. Thoele
John A. Thorpe
Selden Y. Trimble V
Thomas W. Tucker
Joann Stephanie Turisco
Jeremy Taylor Tyson
Johannes A. Van Casteren
Anthony Varilly-Alvarado
Wolmer V. Vasconcelos
Marie A. Vitulli
Stephen Wainger
John Thomas Walsh
John H. Walter
Hans Ulrich Walther
William Edwin Warren
Arthur G. Wasserman
David S. Watkins
Mark E. Watkins
Greg M. Watson

Cary H. Webb
Barnet M. Weinstock
Ellen Westheimer
John E. Wetzel
Brian Cabell White
Brian D. Wick
Steven V. Wilkinson
Susan Gayle Williams
Frank Sottile and
     Sarah Witherspoon
Robert Wolfe
Japheth L. M. Wood
Alexander Wright

Bostwick F. Wyman
Catherine Huafei Yan
Michael Yanowitch
Mitsuru Yasuhara
Sam Wayne Young
Charles T. Zahn
Thomas Zaslavsky
Ping Zhang
David E. Zitarelli
Anton Zorich
John A. Zweibel

FRIENDS
($1 to $99)
Anonymous (234)
Martha L. Abell
William P. Abrams
Jeffrey Adams
William W. Adams
Nasir Uddin Ahmed
T. M. G. Ahsanullah
Daniel Alexander
Marcia C. Almeida
Brian R. Alspach
AmazonSmile Foundation

Alexander Anthony
     Ambrioso
Vrege Jolfai Amirkahanian
Astrid an Huef
Victoria W. Ancona
Laura M. Anderson
Paul Anderson
Michael M. Anshel
Michael V. Anshelevich
Tom Armbruster
Kendall E. Atkinson
Jean-Christophe Aubert
Shaun Van Ault

Bernice L. Auslander
Kiyoshi Baba
Allen H. Back
Ayman Rateb Badawi
Joni E. Baker
Kirby A. Baker
Robert S. Baker
Carlo Bardaro
Claude W. Bardos
Wayne W. Barrett
David J. Barsky
Neil G. Bartholomew
Ariel Elizabeth Barton
J. Thomas Beale
Edward Beckenstein
David S. Becker
Glynn E. Behmen
Sarah-Marie Belcastro
Swanhild Bernstein
James S. Bethel
Marilyn S. Bickel
Katalin Bimbo
Terrence Paul Bisson
Steven E. Blasberg
Tom and Nancy Blythe

Mikhail E. Bogovskii
Ethan D. Bolker
Jayaraman Boobalan
Paul F. Bracken
Tom C. Braden
Steven B. Bradlow
John C. Breckenridge
Joseph Edward Brierly
Gloria Brown Brooks
Johnny E. Brown
Kenneth S. Brown
Robert F. Brown
Robert R. Bruner

“Without the generosity of donors such as yourself, 
my trip to the Joint Mathematics Meetings would not 
have been possible. Because of you, I was able to give 
a talk about my research, receive feedback from experts 
in my area, and participate in ten job interviews. I have 
two on-campus interviews scheduled now. I cannot 
thank you enough for your contribution that helped 
make this happen for me!”

—Graduate Student Travel Grant Recipient

Photo by Kate Awtrey, 
Atlanta Convention Photography
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Nicholas P. Buchdahl
Richard S. Bucy
Krzysztof Burdzy
Richard Charles Burge
Jonathan Burns
Erica Busillo
Nigel Paul Byott
Charles L. Byrne
Luciano Caccianotti
M. Carme Calderer
Val Carlone
Jon F. Carlson
David W. Carter
Ubirajara Jose Gama Castro
Weita Chang
Sagun Chanillo
Timothy P. Chartier
Mohindar S. Cheema
Kwan-Wei Chen
Emma J. Chiappetta
Sunday C. Chikwendu
Chris Christensen
Wil Clarke
James A. Cochran
Amy Cohen
Frederick R. Cohen
Joel M. Cohen
David Colella
Daniel Comenetz
Thomas A. Cootz
Ovidiu Costin

Lenore J. Cowen and
     William Bogstad
Melvin R. Currie
David Scott Cyphers
Terry Czubko
John P. Dalbec
Harold Garth Dales

Kevin Davidsaver
Guillermo Davila-Rascon
Chandler Davis
Martin D. Davis
Matthew G. Dawson
Peter W. Day
Richard Delaware
Beverly J. Demchuk-Burke
Frank R. Deutsch
Roland B. di Franco
Donna Dietz
Sarah Divall
Shanna Dobson
Jozef Dodziuk
Ana Nora Donaldson
Dogan Donmez
Martin J. Dowd
Thomas L. Drucker
James S. Dukelow, Jr.
Steve N. Dulaney
Edward G. Dunne
John W. Duskin, Jr.
Donna Edwards
Sylvan H. Eisman
Joanne Elliott
Steven P. Ellis
Richard S. Elman
Thomas J. Emerson
Philip G. Engstrom
Kumar Eswaran
Leonard Evens

Davida Fischman
Mary K. Flagg
Anne Kathryn Flaherty
Richard J. Fleming
Robert A. Fontenot
Michael W. Frazier
Stephen H. Friedberg

Merwyn M. Friedman
William E. Gabella
Ryan L. Garibaldi
Eugene C. Gartland, Jr.
Rachelle Geddes
Richard M. Gillette
Maurice Eugene Gilmore
Jack E. Girolo
Burton F. Gischner
Robert Gold
Dorian Goldfeld
Jerry Goldman
Simon M. Goodwin
John A. Gosselin
Yasuhiro Goto
Mary W. Gray
Gary R. Greenfield
Allan T. Greenleaf
Aaron Gregory
Gerd Grubb
Juan Manuel
     Guevara-Jordan
Martin H. Gutknecht
Wynne Alexander Guy
R. Stanton Hales, Jr.
William F. Hammond
Heiko Harborth
James D. Harper
Andrew William Harrell
Stacy Guy Harris
Jonathan Harrison

Peter Niels Heller
Dylan Helliwell
Rohan Hemasinha
Thomas Henningsen
Ira W. Herbst
Troy L. Hicks
Teruo Hikita

Hugh M. Hilden
Gerald N. Hile
John J. Hirschfelder
Chungwu Ho
Michael E. Hoffman
Detlev W. Hoffmann
Philip John Holmes
John M. Holte
Dylan Houlihan
Roger F. House
V. Dwight House
Pao-sheng Hsu
Denise Huet
Anne Hughes
Jacques Claude Hurtubise
Francesco Iachello
Felice Iavernaro
Pascal Imhof
Lucian Miti Ionescu
Marius V. Ionescu
Lynne Kamstra Ipina
Joseph A. Iskra, Jr.
Masanori Itai
N. M. Ivochkina
William Burkley Jacob
David M. James
Abdul J. Jerri
Trygve Johnsen
D. Randolph Johnson
David L. Johnson
Peter M. Johnson
Theodore D. Johnson
Marinus A. Kaashoek
Jeffry N. Kahn
Peter J. Kahn
Yuichiro Kakihara
Yoshinobu Kamishima
Johan Karlsson
Louis H. Kauffman
John P. Kavanagh
Edward L. Keller
Wayne G. Kellner
Dmitry Khavinson
Michael K. H. Kiessling
Steven J. Kifowit
John O. Kiltinen
Donald R. King
Paul O. Kirley
Jan Kisynski
Peter H. Kleban
Benjamin G. Klein
Robert T. Kocembo
Jerzy Kocik
Yoshiharu Kohayakawa
Semen Koksal
Ralph D. Kopperman

“Throughout my career, I’ve appreciated 
the support offered by the AMS, including 
career resources, attending meetings, 
and publishing in AMS journals. The AMS 
serves mathematics and mathematicians; 
donating is an opportunity for us to share 
in supporting it.”

—Bryna Kra, Chair of AMS 
Board of Trustees
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Eric J. Kostelich
Daniel B. Kotlow
Mile Krajcevski
Jurg Kramer
Aleksandr S. Krantsberg
John E. Krimmel
Vikas Naresh Kumar
Joerg Kunze
Leong-Chuan Kwek
Donna E. LaLonde
John Patrick Lambert
Debbie Landry
Peter A. Lappan, Jr.
Lawrence J. Lardy
David R. Larson
Lorraine D. Lavallee
Richard B. Lavine
David Law
Alan C. Lazer
Ke-Seung Lee
Gerald M. Leibowitz
James U. Lemke
Suzanne Marie Lenhart
James I. Lepowsky
Linda Lesniak
Steven C. Leth
Emily Levine
Howard A. Levine
Bernard W. Levinger
Andrew M. Lewis
Roger T. Lewis
Aihua Li
Wenjing Li
Denis Lieberman
Denise A. Lima
Shen Lin
Eric Mitchell Linn
Friedrich Littmann
Ming Chit Liu
Tsai-Sheng Liu
John Locker
Charles J. Lombardo
John M. Long
Jorge Marcial Lopez
Leo Lutchansky, Jr.
Norman Y. Luther
Richard N. Lyons
Gennady Lyubeznik
Caitlin MacCallum
Thomas H. MacGregor
Ib Madsen
Mehran Mahdavi
Peter Malcolmson
David M. Malon
Kenneth L. Manders
Alfred P. Maneki

Charles D. Marshall
David Imler Marshall
Attila Mate
Diarmuid O. Mathuna
Leroy T. Mattson
Donald E. Maurer
James G. McLaughlin
Cynthia L. McCabe
T. G. McLaughlin
Alberto Medina
David Meier
Morris J. Meisner
Raymond Mejia
Alexei G. Miasnikov
Ronald E. Mickens
Michael J. Miller
Russell G. Miller
William David Miller
Jan Minac
C. David Minda
Michal Misiurewicz
Guido Mislin
William J. Mitchell
Michael J. Molnar
Richard W. Montgomery
John J. Mooney
Douglas Moore
Alberto Cezar Moreira
Carlos Julio Moreno
Hugo Moreno Reyes
Jonathan Morrison
Bruno L. Nachtergaele
Daniel K. Nakano
Lee P. Neuwirth
Monica Nevins
Juan Neyra
Liviu I. Nicolaescu
Lance W. Nielsen
Virginia A. Noonburg
Rutger Noot
Phil Novinger
Richard Alan Oberle
Timur Oikhberg
Mogens Norgaard Olesen
Robert F. Olin
Paul D. Olson
Peter P. Orlik
Bent Orsted
Conrad Orta
Morris Orzech
Brad G. Osgood
William Oswald
Michelle Ouellette
Kale Oyedeji
Felipe M. Pait
Victor P. Palamodov

Bruce P. Palka
Diethard Ernst Pallaschke
Peter Papadopol
Alberto Parmeggiani
Walter R. Parry
Bozenna Pasik-Duncan
Peter Paule
Lambertus A. Peletier
Stephen Pennell
Ulrich Pennig
Peter Perkins
Charles Samuel Peskin
Troels Petersen
Cornelius Pillen
Nigel Pitt
Michael A. Pohrivchak
Harriet S. Pollatsek
Harry J. Porta
Stanley Preiser
Kenneth Hugh Price
Martin E. Price
Jozef Henryk Przytycki
Philip Quartararo, Jr.
George S. Quillan
Andrew S. Raich
Melapalayam S. Ramanujan
A. Duane Randall
Shrisha Rao
A. S. Rapinchuk
Richard H. Reese

Ernestine Reeves-Hicks
Eugenio Regazzini
Jean N. Renault
Viktor Reshniak
Michael Bela Revesz
Norman J. Richert
John H. Rickert
Jose Rio
Joel L. Roberts
Norai R. Rocco
Judith Roitman
Raymond H. Rolwing
Guillermo
     Romero Melendez
Alessandro Rosa
George M. Rosenstein
Kenneth A. Ross
Adrian S. Roth
Virginia G. Rovnyak
Joachim H. Rubinstein
Robert S. Rumely
Kimberly C. Sacra
Hector N. Salas
Luis C. Salinas
Thomas S. Salisbury
Mats Gunnar Sandberg
Jose Carlos Santos
Leslie David Saper
Hiroki Sato
Richard C. Scalzo

“The time in my working group was unlike any 
other experience I've had (since second year of 
grad school) and I'm extremely thankful for it!  
In just a few days we were able to get enough 
together for at least one paper; it was time 
extremely well spent!”

—Early-Career Participant in 
Mathematics Research Communities

Photo by Tongtong Wang
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Andre Scedrov
Doris W. Schattschneider
Markus Schmidmeier
Wolfgang M. Schmidt
John Schue
Paul E. Schupp
Charles Freund Schwartz
Fritz Schweiger
Laurence Britt Schweitzer
Stanley L. Sclove
Steven S. Scott
George F. Seelinger
George B. Seligman
Mehrdad M. Shahshahani
Karnum Shashidhar
Zhongwei Shen
Ching-Kuang Shene
Joseph Shomberg
Vladimir Shpilrain
Steven E. Shreve
Anastasios Simalarides
Patrick J. Sime
Harold Simmons
Simon Simon
Premjit Singh
Satyanand Singh
David B. Singmaster
R. Sivaramakrishnan
Jon A. Sjogren
Daphne Skipper
Stephen Slack
Tara L. Smith

Wilbur L. Smith
Boris Solomyak
Daniel Sousa
Thirumalai P. Srinivasan
Ross E. Staffeldt
Dennis W. Stanton
Charles I. Steinhorn
John Colin Stillwell
Manfred Stoll
Orlin Tsankov Stoytchev
Philip D. Straffin, Jr.
Emil J. Straube
Walter A. Strauss
Steven H. Strogatz
Gerhard O. Strohmer
Garrett James Stuck
William D. Sudderth
William H. Sulis
John B. Sullivan
Kelly John Suman
David C. Sutor
Kazunari Suzuki
Margaret Fife Symington
Jacek Szmigielski
Yoshinori Takei
Jun-Ichi Tanaka
Yoshihiro Tanaka
Elliot A. Tanis
Leon H. Tatevossian
James J. Tattersall
Matthew Tessler
Prasad V. Tetali

Sittampalam
     Thirugnanasampanthan
Ben Thomas
Jon H. Thompson
Pham Huu Tiep
Lisa Gail Townsley
Charles R. Traina
Carla Tsambourlianos
Spiros Peter Tsatsanis
Axel Tuffery
Emma A. M. Turian
Johan Tysk
Douglas L. Ulmer
Zenaida E. S. Uy
H. N. Van Eck
Antonius J. Van Haagen
Charles L. Vanden Eynden
Joseph C. Varilly
Alexander Vauth
Alessandro Veneziani
Frank Verhoeven
Anatoly M. Vershik
Paul A. Vojta
Hans W. Volkmer
Jonathan M. Wahl
Justin Clement Walker
Roger Walker
William Wallace
Lawrence J. Wallen
Tongtong Wang
Max Leon Warshauer
Michiaki Watanabe

Edward A. Waybright
Edward C. Waymire
Charles S. Weaver
David L. Webb
Glenn F. Webb
Suzanne L. Weekes
Ian Weiner
Alan D. Weinstein
Elisabeth M. Werner
Charles M. White
Niles White
Roger A. and
     Sylvia M. Wiegand
Stephen J. Willson
Robert Lee Wilson
F. Wintrobe
Arthur Wouk
Haviland Wright
Marvin Yablon
Suresh Yegnashankaran
J. Michael Yohe
Manchun Yu
Fernando Zalamea
Jean-Claude Zambrini
Ahmed I. Zayed
Joshua Zelinsky
Jose Zero
Gaoyong Zhang
Hyman J. Zimmerberg
Patrick Dylan Zwick

This report reflects contributions received January 1, 2018, through December 31, 2018. Accuracy is important to us and 
we apologize for any errors. Please bring discrepancies to our attention by calling AMS Development at 401.455.4111 or 
emailing development@ams.org. Thank you.
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detail what happens when the Palais–Smale condition is 
violated. A minimizing sequence of mappings converges 
outside a finite set of singular points, and, by using resca-
ling arguments, they describe the behavior near the singu-
larities as bubbles or instantons, which are the standard 
solutions of the minimizing map from the 2-sphere to the 
target manifold.

In higher dimensions, Uhlenbeck in collaboration with 
Schoen wrote two foundational papers on minimizing 
harmonic maps. They gave a profound understanding 
of singularities of solutions of nonlinear elliptic partial 
differential equations. The singular set, which in the case 
of surfaces consists only of isolated points, is in higher 
dimensions replaced by a set of codimension 3.

The methods used in these revolutionary papers are now 
in the standard toolbox of every geometer and analyst. They 
have been applied with great success in many other partial 
differential equations and geometric contexts. In particu-
lar, the bubbling phenomenon appears in many works in 
partial differential equations, in the study of the Yamabe 
problem, in Gromov’s work on pseudoholomorphic curves, 
and also in physical applications of instantons, especially 
in string theory.

After hearing a talk by Atiyah in Chicago, Uhlenbeck 
became interested in gauge theory. She pioneered the study 
of Yang–Mills equations from a rigorous analytical point 
of view. Her work formed a base of all subsequent research 
in the area of gauge theory.

Gauge theory involves an auxiliary vector bundle over a 
Riemannian manifold.

The basic objects of study are connections on this vector 
bundle. After a choice of a trivialization (gauge), a connec-
tion can be described by a matrix valued 1-form. Yang–Mills 

Citation
Karen Keskulla Uhlenbeck is a 
founder of modern geometric 
analysis. Her perspective has 
permeated the field and led 
to some of the most dramatic 
advances in mathematics in the 
last forty years.

Geometric analysis is a field 
of mathematics where tech-
niques of analysis and differ-
ential equations are interwoven 
with the study of geometrical 
and topological problems. Spe-

cifically, one studies objects such as curves, surfaces, con-
nections, and fields, which are critical points of functionals 
representing geometric quantities such as energy and 
volume. For example, minimal surfaces are critical points 
of the area and harmonic maps are critical points of the 
Dirichlet energy. Uhlenbeck’s major contributions include 
foundational results on minimal surfaces and harmonic 
maps, Yang–Mills theory, and integrable systems.

An important tool in global analysis, preceding the work 
of Uhlenbeck, is the Palais–Smale compactness condition. 
This condition, inspired by earlier work of Morse, guaran-
tees existence of minimizers of geometric functionals and 
is successful in the case of 1-dimensional domains, such 
as closed geodesics.

Uhlenbeck realized that the condition of Palais–Smale 
fails in the case of surfaces due to topological reasons. 
The papers of Uhlenbeck, coauthored with Sacks, on the 
energy functional for maps of surfaces into a Riemannian 
manifold, have been extremely influential and describe in 

Karen Uhlenbeck 
Awarded Abel Prize

Karen Keskulla Uhlenbeck

The Norwegian Academy of Science and Letters has awarded the Abel Prize for 2019 to Karen Keskulla Uhlenbeck of 
the University of Texas at Austin, “for her pioneering achievements in geometric partial differential equations, gauge 
theory and integrable systems, and for the fundamental impact of her work on analysis, geometry and mathematical 
physics.” The Abel Prize recognizes contributions of extraordinary depth and influence in the mathematical sciences 
and has been awarded annually since 2003. It carries a cash award of six million Norwegian krone (approximately 
US$700,000).
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Karen Uhlenbeck’s pioneering results have had funda-
mental impact on contemporary analysis, geometry, and 
mathematical physics, and her ideas and leadership have 
transformed the mathematical landscape as a whole.

Biographical Sketch
The following is taken from a biography written by Jim Al-
Khalili and published on the website www.abelprize.no 
/c73996/binfil/download.php?tid=74122.

“Karen Keskulla Uhlenbeck, the eldest of four children, 
was born in Cleveland, Ohio, in 1942. Her father, Arnold 
Keskulla, was an engineer, and her mother, Carolyn Win-
deler Keskulla, an artist and school teacher. The family 
moved to New Jersey when Karen was in third grade. As a 
young girl, she was curious about everything. Her parents 
instilled in her a love of art and music, and she developed 
a lifelong love of the outdoors, regularly roaming the local 
countryside near her home.

“Most of all, she loved reading, shutting herself away 
whenever she could to devour advanced science books, 
staying up late at night and even reading secretly in class. 
She dreamed of becoming a research scientist, particularly if 
it meant avoiding too much interaction with other people; 
not that she was a shy child, but rather because she enjoyed 
the peace and solitude of her own company. The last thing 
she wanted to do was to follow in her mother’s footsteps 
and end up teaching—an attitude that would change dra-
matically later in life.

“Uhlenbeck’s love affair with mathematics developed 
only after she had started at university. Having been in-
spired in high school by the writings of great physicists 
such as Fred Hoyle and George Gamow, she enrolled at 
the University of Michigan, initially planning to major in 
physics. However, she soon discovered that the intellectual 
challenge of pure mathematics was what really excited her. 
It also meant she didn’t have to do any lab work, which 
she disliked.

“Graduating in 1964, she married her biophysicist 
boyfriend Olke Uhlenbeck a year later and decided to 
embark on postgraduate study. Already well aware of the 
predominantly male and often misogynistic culture in aca-
demia, she avoided applying to prestigious schools such as 
Harvard, where Olke was heading for his PhD and where 
competition to succeed was likely to be fierce. Instead, 
she enrolled at Brandeis University where she received a 
generous graduate fellowship from the National Science 
Foundation. There, she completed her PhD in mathematics 
[under Richard Palais], working on the calculus of varia-
tions; a technique that involves the study of how small 
changes in one quantity can help us find the maximum 
or minimum value of another quantity—like finding the 
shortest distance between two points. You might think this 
would be a straight line, but it is not always so straightfor-
ward. For example, if you have to drive through a busy city, 

connections are critical points of gauge-invariant func-
tionals. Uhlenbeck addressed and solved the fundamental 
question of expressing Yang–Mills equations as an elliptic 
system, using the so-called Coulomb gauge. This was the 
starting point for both Uhlenbeck’s celebrated compactness 
theorem for connections with curvature bounded in Lp and 
for her later results on removable singularities for Yang–
Mills equations defined on punctured 4-dimensional balls. 
The removable singularity theory for Yang–Mills equations 
in higher dimensions was carried out much later by Gang 
Tian and Terence Tao. Uhlenbeck’s compactness theorem 
was crucial in non-Abelian Hodge theory and, in particu-
lar, in the proof of the properness of Hitchin’s map and 
Corlette’s important result on the existence of equivariant 
harmonic mappings.

Another major result of Uhlenbeck is her joint work 
with Yau on the existence of Hermitian Yang–Mills connec-
tions on stable holomorphic vector bundles over complex 
n-manifolds, generalizing an earlier result of Donaldson 
on complex surfaces. This result of Donaldson–Uhlen-
beck–Yau links developments in differential geometry 
and algebraic geometry, and is a foundational result for 
applications of heterotic strings to particle physics.

Uhlenbeck’s ideas laid the analytic foundations for the 
application of gauge theory to geometry and topology, to 
the important work of Taubes on the gluing of self-dual 
4-manifolds, to the groundbreaking work of Donaldson 
on gauge theory and 4-dimensional topology, and many 
other works in this area. The book written by Uhlenbeck 
and Dan Freed on instantons and 4-manifold topology in-
structed and inspired a generation of differential geometers. 
She continued to work in this area, and in particular had 
an important result with Lesley Sibner and Robert Sibner 
on non-self-dual solutions to the Yang–Mills equations.

The study of integrable systems has its roots in nine-
teenth-century classical mechanics. Using the language of 
gauge theory, Uhlenbeck and Hitchin realized that har-
monic mappings from surfaces to homogeneous spaces 
come in 1-dimensional parametrized families. Based on 
this observation, Uhlenbeck described algebraically har-
monic mappings from spheres into Grassmannians relating 
them to an infinite-dimensional integrable system and Vi-
rasoro actions. This seminal work led to a series of further 
foundational papers by Uhlenbeck and Chuu-Lian Terng on 
the subject and the creation of an active and fruitful school.

The impact of Uhlenbeck’s pivotal work goes beyond 
geometric analysis. A highly influential early article was 
devoted to the study of regularity theory of a system of 
nonlinear elliptic equations, relevant to the study of the 
critical map of higher order energy functionals between 
Riemannian manifolds. This work extends previous results 
by Nash, De Giorgi, and Moser on regularity of solutions of 
single nonlinear equations to solutions of systems.

http://www.abelprize.no/c73996/binfil/download.php?tid=74122
http://www.abelprize.no/c73996/binfil/download.php?tid=74122
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funny, pretty, or well-dressed they will succeed. But it’s also 
possible to succeed with all of your imperfections. I may 
be a wonderful mathematician and famous because of it, 
but I’m also very human.’ Karen Uhlenbeck is certainly a 
remarkable human.”

Karen Uhlenbeck received the National Medal of Science 
in 2000 and the AMS Steele Prize for Seminal Contribution 
to Research in 2007. She is a former MacArthur and Gug-
genheim Fellow and is a Fellow of the American Academy 
of Arts and Sciences and a member of the inaugural class 
of AMS Fellows. She gave the AWM Noether Lecture in 
1988 and became the second woman after Emmy Noether 
to give a plenary lecture at the International Congress of 
Mathematicians in 1990. She is the first woman mathema-
tician to be elected to the National Academy of Sciences 
(1986). She is currently a visiting senior research scholar at 
Princeton University and a visiting associate at the Institute 
for Advanced Study.

AMS President Jill C. Pipher said: “On behalf of the 
American Mathematical Society, it is my great pleasure 
to congratulate Professor Karen Uhlenbeck, recipient 
of the 2019 Abel Prize. Professor Uhlenbeck has made 
legendary advances in several fields of mathematics. Her 
early groundbreaking work on harmonic maps gave rise 
to a new field, geometric analysis. Her analysis via gauge 
theory of solutions of Yang–Mills equations had and will 
continue to have a profound influence on all future work 
in this field. She transformed the fields of geometry and 
analysis, crossing boundaries and making deep discoveries 
at the interfaces.”

Read more about Uhlenbeck’s life and work, including 
“A Glimpse of the Laureate’s Work” by Arne B. Slets-
jøe, as well as a list of previous recipients of the Abel 
Prize, at www.abelprize.no/c73996/binfil/download 
.php?tid=74122. See also the article “Karen Uhlenbeck 
and the Calculus of Variations,” Notices of the American 
Mathematical Society, March 2019.

About the Prize
The Niels Henrik Abel Memorial Fund was established 
in 2002 to award the Abel Prize for outstanding scientific 
work in the field of mathematics. The prize is awarded by 
the Norwegian Academy of Science and Letters, and the 
choice of Abel Laureate is based on the recommendation of 
the Abel Committee, which consists of five internationally 
recognized research scientists in the field of mathematics. 
The Committee is appointed for a period of two years.

—From announcements of the Norwegian Academy of Science 
and Letters

Credits
Photo of Karen Keskulla Uhlenbeck is courtesy of the Insti-

tute for Advanced Study.

the quickest route is not necessarily the shortest. Needless 
to say, Uhlenbeck’s contribution to the field was somewhat 
more complicated than this!

“After a brief teaching period at MIT, she moved to 
Berkeley, California, where she studied general relativity 
and the geometry of space-time—topics that would shape 
her future research work. Although a pure mathematician, 
Uhlenbeck has drawn inspiration for her work from theo-
retical physics and, in return, she has had a major influence 
in shaping it by developing ideas with a wide range of 
different applications.

“For example, physicists had predicted the existence of 
mathematical objects called instantons, which describe 
the behavior of surfaces in four-dimensional space-time. 
Uhlenbeck became one of the world’s leading experts in 
this field. The classic textbook Instantons and 4-Manifolds, 
which she cowrote in 1984 with Dan Freed, inspired a 
whole generation of mathematicians.

“In 1971, she became an assistant professor at the Uni-
versity of Illinois at Urbana-Champaign, where she felt 
isolated and undervalued. So, five years later she left for 
the University of Illinois at Chicago. Here, there were other 
female professors, who offered advice and support, as well 
as other mathematicians who took her work more seriously. 
In 1983, she took up a full professorship at the University 
of Chicago, establishing herself as one of the preeminent 
mathematicians of her generation. Her interests included 
nonlinear partial differential equations, differential geom-
etry, gauge theory, topological quantum field theory, and 
integrable systems. In 1987, she moved to the University of 
Texas at Austin to take up the Sid W. Richardson Foundation 
Regents’ Chair in mathematics. There, she broadened her 
understanding of physics by studying with Nobel Prize–
winning physicist Steven Weinberg. She would remain at 
the University of Texas until the end of her working career.

“Uhlenbeck’s most noted work focused on gauge theo-
ries. Her papers analyzed the Yang–Mills equations in four 
dimensions, laying some of the analytical groundwork 
for many of the most exciting ideas in modern physics, 
from the standard model of particle physics to the search 
for a theory of quantum gravity. Her papers also inspired 
mathematicians Cliff Taubes and Simon Donaldson, pav-
ing the way for the work that won Donaldson the Fields 
Medal in 1986.

“Uhlenbeck, now back in New Jersey, remains a staunch 
advocate for greater gender diversity in mathematics and 
in science. She has come a long way from the young girl 
who wished to be alone. For a while, she struggled to 
come to terms with her own success, but now says she ap-
preciates it as a privilege. She has stated that she is aware 
of being a role model, for young female mathematicians 
in particular, but that ‘it’s hard, because what you really 
need to do is show students how imperfect people can be 
and still succeed. Everyone knows that if people are smart, 

http://www.abelprize.no/c73996/binfil/download.php?tid=74122
http://www.abelprize.no/c73996/binfil/download.php?tid=74122
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or up to ten years post-PhD, are eligible. Awardees receive 
US$1 million distributed over five years.

—From an NSF announcement

Prizes of the Association 
for Women in Mathematics
The Association for Women in Mathematics (AWM) has 
awarded a number of prizes in 2019.

Catherine Sulem of the Univer-
sity of  Toronto has been named the 
Sonia Kovalevsky Lecturer for 2019 by 
the Association for Women in Math-
ematics (AWM) and the Society for 
Industrial and Applied Mathematics 
(SIAM). The citation states: “Sulem 
is a prominent applied mathemati-
cian working in the area of nonlin-
ear analysis and partial differential 
equations. She has specialized on 

the topic of singularity development in solutions of the 
nonlinear Schrödinger equation (NLS), on the problem of 
free surface water waves, and on Hamiltonian partial differ-
ential equations. Her work on the subtle 1 √2t log (log t) 
behavior of H1-solutions of the NLS at the singularity time 
resolved a major outstanding scientific question. Her book 
on the NLS is the central and most highly cited reference 
monograph in the field. Her continuing work on the 
problem of water waves, their time evolution, and their 
approximation by model dispersive equations is opening 
new territory, both in studies of wave propagation and in 
the analysis of the Euler equations.” Sulem received her 
PhD from the University of Paris-Nord under the direction 
of Claude Bardos and held positions with CNRS and Ben 
Gurion University before joining the faculty at Toronto. She 
is a recipient of the Krieger-Nelson Prize of the Canadian 
Mathematical Society and of a Simons Foundation Fellow-
ship and is a Fellow of the AMS and of the Royal Society 
of Canada. She is also an accomplished violinist who per-
forms regularly in small ensembles and local orchestras. 
She will deliver the Kovalevsky Lecture at the 2019 ICIAM 
meeting in Valencia, Spain.

Braverman Receives 
NSF Waterman Award

Mark Braverman of Princeton 
University has been selected as a 
cowinner of the 2019 Alan T. Wa-
terman Award of the National Sci-
ence Foundation (NSF) for his work 
in complexity theory, algorithms, 
and the limits of what is possible 
computationally. According to the 
prize citation, his work “focuses on 
complexity, including looking at 
algorithms for optimization, which, 

when applied, might mean planning a route—how to get 
from point A to point B in the most efficient way possible.

“Algorithms are everywhere. Most people know that 
every time someone uses a computer, algorithms are at 
work. But they also occur in nature. Braverman examines 
randomness in the motion of objects, down to the erratic 
movement of particles in a fluid.

“His work is also tied to algorithms required for learning, 
which serve as building blocks to artificial intelligence, and 
has even had implications for the foundations of quantum 
computing.

“Braverman's work includes mechanism design with 
applications in health care. His multidisciplinary approach 
is developing algorithms to address issues such as a new 
way to match medical residents to US hospitals and ways 
to implement new incentive structures in health insurance.

“Braverman has solved two puzzles that eluded re-
searchers for decades: the Grothendieck constant and the 
Linial-Nisan conjecture.”

Braverman received his PhD from the University of To-
ronto in 2008. He served on the faculty of the University 
of Toronto until joining Princeton in 2011. His honors in-
clude an NSF CAREER Award (2012), a Packard Fellowship 
(2013), the Stephen Smale Prize (2014), and the Presburger 
Award of the European Association for Theoretical Com-
puter Science (2016).

The Waterman Award annually recognizes an outstand-
ing young researcher in any field of science or engineering 
supported by NSF. Researchers forty years of age or younger, 

Mark Braverman

Catherine Sulem
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Prizes of the Canadian 
Mathematical Society

Jeremy Quastel of the University 
of Toronto has been awarded the 
2019 Jeffery–Williams Prize for 
Research Excellence of the Cana-
dian Mathematical Society (CMS) 
for his exceptional contributions to 
mathematics research. The citation 
reads: “Dr. Quastel is awarded the 
2019 Jeffery-Williams prize for his 
ground-breaking results in probabil-
ity and non-equilibrium statistical 

mechanics, in particular, his recent discovery with Matetski 
and Remenik of the complete integrability of TASEP, and 
through a scaling limit, the strong coupling fixed point of 
the KPZ universality class. The class contains random in-
terface growth models and directed polymer free energies. 
An example is the famous Kardar–Parisi–Zhang non-linear 
stochastic partial differential equation, which gives the 
class its name; TASEP is its most popular discretization. 
The KPZ fixed point is expected to describe the universal 
long time large scale fluctuations for all such systems.” 
Quastel received his undergraduate degree from McGill 
University and his PhD from the Courant Institute in 1990 
under the direction of S. R. S. Varadhan. He is professor and 
chair of the Department of Mathematics at the University 
of Toronto, where he has taught since 1998. He received 
the CRM–Fields–PIMS prize in 2018 and is a Fellow of 
the Royal Society of Canada. The prize recognizes math-
ematicians who have made outstanding contributions to 
mathematical research.

Jacob Tsimerman of the Univer-
sity of Toronto has been awarded 
the 2019 Coxeter–James Prize for 
his exceptional contributions to 
mathematics research. The prize ci-
tation reads in part: “His work is a 
mixture of transcendence theory, 
analytic number theory, and arith-
metic geometry. Early in his career, 
Dr. Tsimerman obtained remarkable 
results related to the Andre-Oort con-

jecture. This conjecture is concerned with the behavior of 
collections of special points inside Shimura varieties. Dr. 
Tsimerman made several breakthrough advancements to-
wards a proof of the conjecture and removing unnecessary 
(Riemann) hypothesis conditions. He built a reputation for 
his creativity and insight in this area.” Tsimerman was born 
in Kazan, Russia, and received his PhD in pure mathematics 
from Princeton University in 2011 under the supervision of 

Anna Skripka of the University 
of New Mexico was awarded the 
Ruth I. Michler Memorial Prize of 
the AWM for the years 2019–2021. 
She proposes to connect some of 
her recent work in noncommutative 
analysis with the research of Michael 
Nussbaum of Cornell University on 
statistical problems of estimation, 
regression, and asymptotic analysis. 
She also hopes that interactions with 

other Cornell faculty members will enhance her research 
program. Skripka received her PhD from the University 
of Missouri in 2007 under the direction of Konstantin A. 
Makarov. She worked at Texas A&M University and the 
University of Central Florida before joining the faculty at 
New Mexico. She held invited positions at the University 
of California at Berkeley, Université de Franche-Comté, 
Besançon, and the University of New South Wales. Skripka 
has been awarded four single-investigator NSF awards, 
including a CAREER award. The Michler Prize grants a 
mid-career woman in academia a residential fellowship in 
the Cornell University mathematics department without 
teaching obligations.

Michelle Snider of the Institute 
for Defense Analyses (IDA) Center 
for Computing Sciences has been 
selected to receive the 2019 Service 
Award “for her concern, care and tire-
less efforts to bring AWM’s message 
to members through aiding in build-
ing the new AWM website. Snider 
launched herself into learning a new 
piece of software, problem solving, as 
well as teaching and working with the 

rest of the website team, so as to create a communication 
channel for women to feel connected and to find their place 
in the mathematics community. Snider’s goals for a reno-
vated AWM website were for each page to communicate 
values, goals, and a vision for this important organization.” 
Snider received her PhD from Cornell University in 2011 
and is presently a research staff member at IDA. The prize 
is given for helping to promote and support women in 
mathematics through exceptional voluntary service to the 
Association for Women in Mathematics.

—From AWM announcements

Anna Skripka
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Peter Sarnak, after which he held a postdoctoral position 
at Harvard University. He won gold medals in the Interna-
tional Mathematical Olympiad (IMO) in both 2003 and 
2004 (perfect score), and his honors include the SASTRA 
Ramanujan Prize (2015) and the André Aisenstadt Prize 
(2017). He was an invited speaker at the 2018 International 
Congress of Mathematicians. The prize recognizes young 
mathematicians who have made outstanding contributions 
to mathematical research.

Julia Gordon of the University of 
British Columbia has been awarded 
the 2019 Krieger–Nelson Prize “for 
her exceptional contributions to 
mathematics research.” The prize 
citation reads: “Julia Gordon works 
in representation theory of p-adic 
groups related to the Langlands 
Program, and motivic integration. 
In many of her results, she applies 
model theory (specifically, motivic 

integration) to arithmetic questions. In rough terms, mo-
tivic integration makes it possible to do integration on 
p-adic fields uniformly in p. With Raf Cluckers and Imman-
uel Halupczok, Gordon used this technique to prove uni-
form estimates on orbital integrals that have an application 
in the study of L-functions.” Gordon received her PhD at 
the University of Michigan in 2003 under the supervision 
of Thomas Hales. She was a Fields Institute Postdoctoral 
Fellow in 2003 and a University of Toronto Postdoctoral 
Fellow from 2004 to 2006. She received the Michler Prize of 
AWM and Cornell University in 2017. The Krieger–Nelson 
Prize recognizes outstanding contributions in the area of 
mathematical research by a woman mathematician.

Andrea Fraser of Dalhousie Uni-
versity has been awarded the 2019 
Excellence in Teaching Award. The 
prize citation states in part: “There is 
an overwhelming amount of positive 
student feedback that speaks to Dr. 
Fraser’s dedication and commitment 
to student success, and to the origi-
nality and exceptional clarity of her 
presentation. Students praise her 
ability to make difficult concepts easy 

and intuitive, and her lecturing style, which makes students 
feel they are ‘discovering’ the material…. Dr. Fraser's inno-
vation in designing courses extends to the development 
of textbooks that contain stimulating visuals and clear ex-
planations, and sets her apart as an outstanding instructor 
of mathematics.” Fraser received her PhD from Princeton 
University in 1997 under Elias M. Stein. After a four-year 
lecturer position at the University of New South Wales in 
Australia, she returned to Canada, where she has been a 
faculty member at Dalhousie University since 2001. Her 

research interests include multiplier operators and analysis 
on the Heisenberg group. She tells the Notices: “I am an avid 
hiker, and enjoy kayaking and windsurfing. I also paint 
landscapes en plein air, a pursuit I started while living on 
the spectacular coastline in Sydney, Australia, during the 
time I was a research associate at UNSW.”

—From CMS announcements

Bertsekas and Tsitsiklis 
Awarded 2018 
von Neumann Theory Prize

Dimitri P. Bertsekas and John N. 
Tsitsiklis, both of the Massachu-
setts Institute of Technology, have 
been awarded the 2018 Institute for 
Operations Research and the Man-
agement Sciences (INFORMS) John 
von Neumann Theory Prize “for con-
tributions to parallel and distributed 
computation as well as neurody-
namic programming.”

The prize citation reads: “Working 
together and independently, Bert-
sekas and Tsitsiklis have made semi-
nal contributions to both these fields. 
They unified ideas and built solid 
theoretical foundations while these 
fields were still relatively nascent, 
thus greatly enhancing subsequent 
development of rigorous theory.

“Their monograph Parallel and 
Distributed Computation: Numeri-
cal Methods represents a significant 

achievement in the field. The work builds on and ex-
tends the authors’ extensive previous work in this area, 
identifying the tolerance of algorithms to asynchronous 
implementations and a number of positive convergence 
results. An antecedent work of particular significance to the 
operations research community is the paper by Tsitsiklis, 
Bertsekas, and Athans, which provides seminal analysis of 
asynchronous implementations of deterministic and sto-
chastic gradient algorithms. This line of inquiry has recently 
found application in the analysis of descent algorithms 
for neural network training and other machine learning 
problems. Their work in distributed computation has also 
had significant impact on the areas of distributed network 
control and distributed detection.

“Their monograph Neuro-Dynamic Programming helped 
provide a unified theoretical treatment of the wide variety 

Julia Gordon
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of reinforcement learning algorithms by building con-
nections to the dynamic programming and distributed 
computation literature. This has proven extremely valuable 
in bringing theoretical rigor to a field of rapid, empirical 
innovation. The authors’ contributions in this area go be-
yond providing a theoretical foundation that others could 
build on. The authors have made significant original con-
tributions to value function learning, temporal difference 
methods and actor-critic algorithms.

“The work of Bertsekas and Tsitsiklis is characterized by 
its innovation, depth, and clarity, and it has had tremen-
dous impact, as evident from the large number of citations. 
Their two joint monographs are among their individual five 
most cited works, making the award of a joint prize particu-
larly appropriate. Bertsekas and Tsitsiklis have brought the 
fields of computer science and operations research closer 
together through unifying theory.”

Dimitri Bertsekas was born in Athens, Greece, and re-
ceived his PhD in system science from the Massachusetts 
Institute of Technology in 1971. Before joining the MIT 
faculty he taught at Stanford University and the University 
of Illinois at Urbana–Champaign. He is the author or co-
author of sixteen textbooks and monographs. Among his 
honors are the 2014 INFORMS Khachiyan Prize and the 
2015 Dantzig Prize of the Society for Industrial and Applied 
Mathematics (SIAM) and the Mathematical Optimization 
Society (MOS). He was elected to the US National Academy 
of Engineering in 2001. He tells the Notices: “I remember 
the periods I spent researching and writing Parallel and 
Distributed Computation and Neurodynamic Programming as 
among the most exciting of my career. Both books share the 
characteristic that they were the first to focus on speculative 
fields of marginal interest at the time they were written, 
only to emerge as major research areas twenty years later. 
Asynchronous distributed algorithms became a major 
subject of continuing interest in machine learning in the 
late 2000s, while neurodynamic programming, essentially 
a synonym for reinforcement learning, is currently of great 
interest in artificial intelligence. Sharing the journey with 
my longtime research collaborator and friend John Tsitsik-
lis added greatly to this memorable experience.”

John Tsitsiklis was born in Thessaloniki, Greece, and re-
ceived his PhD from the Massachusetts Institute of Technol-
ogy in 1984. After a year at Stanford University, he joined 
the MIT faculty in 1984. He currently serves as the director 
of the Laboratory for Information and Decision Systems 
and is affiliated with the Institute for Data, Systems, and 
Society (IDSS), the Statistics and Data Science Center, and 
the MIT Operations Research Center. His honors include 
the 1997 ICS Prize, the ACM SIGMETRICS Achievement 
Award (2016), and the IEEE Control Systems Award (2018). 
He is a member of the National Academy of Engineering 
and a Fellow of the IEEE and INFORMS. He tells the No-
tices that, while growing up in Greece, his hobbies were 

Euclidean geometry and skiing in the Greek mountains. 
These days, skiing has been replaced by rock climbing, his 
favorite outdoor activity.

—From an INFORMS announcement

Prizes of the Mathematical 
Society of Japan
The Mathematical Society of Japan (MSJ) has awarded 
several prizes for 2019.

Yasunori Maekawa of Kyoto Uni-
versity was awarded the MSJ Spring 
Prize for “outstanding contributions 
to new developments for mathemat-
ical analysis of fluid mechanics.” 
The Spring Prize and the Autumn 
Prize are the most prestigious prizes 
awarded by the MSJ to its members. 
The Spring Prize is awarded to those 
under the age of forty who have 
obtained outstanding mathematical 
results.

The Algebra Prizes were awarded to Shinichi Kobayashi 
of Kyushu University for contributions to the Iwasawa 
theory of elliptic curves and to Shunsuke Takagi of the 
University of Tokyo for work on singularities in character-
istic zero and F-singularities.

The Outstanding Paper Prizes, given for papers pub-
lished in the Journal of the Mathematical Society of Japan, were 
awarded to the following: Masato Tsujii, Kyushu Univer-
sity, for “Exponential Mixing for Generic Volume-Preserv-
ing Anosov Flows in Dimension Three,” 70 (2018), no. 2; 
Xun Yu, Tianjin University, for “Elliptic Fibrations on K3 
Surfaces and Salem Numbers of Maximal Degree” 70, no. 
3; and Akito Futaki, University of Tokyo and Tsinghua 
University, and Hajime Ono for “Volume Minimization 
and Conformally Kähler, Einstein–Maxwell Geometry,” 
70, no. 4.

 —From MSJ announcements

Yasunori Maekawa
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Lawler and Le Gall 
Awarded 2019 Wolf Prize

Gregory F. Lawler of the University of 
Chicago and Jean-François Le Gall 
of Université Paris-Sud Orsay have 
been awarded the Wolf Foundation 
Prize for Mathematics for 2019 by 
the Wolf Foundation. Lawler was 
honored “for his comprehensive and 
pioneering research on erased loops 
and random walks,” and Le Gall was 
selected “for his profound and ele-
gant works on stochastic processes.” 
According to the prize citation, “the 
work undertaken by these two math-
ematicians on random processes and 
probability, which [has] been recog-
nized by multiple prizes, became the 
stepping stone for many consequent 
breakthroughs.”

Citation
The prize citation for Lawler reads as 
follows: “Gregory Lawler has made 

trailblazing contributions to the development of proba-
bility theory. He obtained outstanding results regarding a 
number of properties of Brownian motion, such as cover 
times, intersection exponents, and dimensions of vari-
ous subsets. Studying random curves, Lawler introduced 
a now-classical model, the Loop-Erased Random Walk 
(LERW), and established many of its properties. While sim-
ple to define, it turned out to be of a fundamental nature, 
and was shown to be related to uniform spanning trees and 
dimer tilings. This work formed much of the foundation 
for a great number of spectacular breakthroughs, which 
followed Oded Schramm’s introduction of the SLE curves. 
Lawler, Schramm, and Werner calculated Brownian inter-
section exponents, proved Mandelbrot’s conjecture that 
the Brownian frontier has Hausdorff dimension 4/3, and 
established that the LERW has a conformally invariant scal-
ing limit. These results, in turn, paved the way for further 
exciting progress by Lawler and others.”

The prize citation for Le Gall states that he “has been at 
the forefront of probability since 1983, when he established 
what still are the best results on pathwise uniqueness for 
one-dimensional stochastic differential equations. His 
current groundbreaking discoveries on the Brownian map 
ensure he remains at the cutting edge of the field today.

“Jean-François Le Gall has made several deep and elegant 
contributions to the theory of stochastic processes. His 
work on the fine properties of Brownian motions solved 
many difficult problems, such as the characterization of 

sets visited multiple times and the behavior of the volume 
of its neighborhood—the Brownian sausage. Le Gall made 
groundbreaking advances in the theory of branching pro-
cesses, which arise in many applications. In particular, his 
introduction of the Brownian snake and his studies of its 
properties revolutionized the theory of super-processes—
generalizations of Markov processes to an evolving cloud 
of dying and splitting particles. He then used some of 
these tools for achieving a spectacular breakthrough in the 
mathematical understanding of 2D quantum gravity. Le 
Gall established the convergence of uniform planar maps 
to a canonical random metric object, the Brownian map, 
and showed that it almost surely has Hausdorff dimension 
4 and is homeomorphic to the 2-sphere.”

Biographical Notes
Gregory Lawler was born in Alexandria, Virginia, in 1955 
and received his PhD from Princeton University in 1979 
under the direction of Edward Nelson. He was a faculty 
member at Duke University from 1979 to 2001 and at 
Cornell University from 2001 to 2006 before joining the 
University of Chicago in 2006. With Oded Schramm and 
Wendelin Werner, he was a corecipient of the George Pólya 
Prize of the Society for Industrial and Applied Mathemat-
ics (SIAM) in 2006. He was a member of the Inaugural 
Class of AMS Fellows in 2012 and is also a Fellow of the 
American Academy of Arts and Sciences, the Alfred P. Sloan 
Foundation, and the Institute of Mathematical Statistics. 
He was elected to the National Academy of Sciences in 
2013. He has authored or coauthored six books. He served 
as editor-in-chief of the Annals of Probability from 2006 
to 2008 and was an editor of the Journal of the American 
Mathematical Society from 2009 to 2013. He cofounded 
the Electronic Journal of Probability in 1995 and served as its 
coeditor until 1999.

Professor Lawler studies random walks, especially 
strongly interacting walks “with memory” that arise in 
critical phenomena in statistical physics. He introduced the 
loop-erased random walk, which is one of the important 
models in the field.  With Oded Schramm and Wendelin 
Werner, he developed the theory of the Schramm-Loewner 
Evolution (SLE) as a continuum limit of two-dimensional 
random curves.  This machinery, along with Lawler’s earlier 
work relating intersection exponents for Brownian motion 
with fractal properties of curve, proved a conjecture of 
Benoit Mandelbrot that the Hausdorff dimension of the 
Brownian coastline is 4/3.

Besides his research, Lawler has been involved in the 
tournament bridge world in investigations of cheating 
among top competitors, especially the use of statistics to 
verify allegations.   When not doing math, he plays guitar 
and is in charge of music at the Beverly Unitarian Church 
in Chicago.  In summers he plays on the mathematics de-
partment softball team at University of Chicago.  

Gregory F. Lawler

Jean-François Le Gall
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Harrington and Veraart 
Awarded Adams Prize

Heather Harrington of the Univer-
sity of Oxford and Luitgard Veraart 
of the London School of Economics 
and Political Science (LSE) have been 
awarded the 2019 Adams Prize in 
this year’s chosen field, the Math-
ematics of Networks. According to 
Mihalis Dafermos, chair of the prize 
adjudicators, “Dr. Harrington has 
adapted ideas from areas such as 
algebraic geometry and algebraic to-
pology and applied them in a novel 
way to real-world problems, with 
particular emphasis on those arising 
in biology. Her broad work ranges 
from the mathematics of biologi-
cal networks to detailed empirical 
studies. Dr. Veraart has developed 
new tools and concepts relevant for 
the representation and analysis of 
financial stability and systemic risk in 
banking networks. Her work has had 

considerable visibility and impact, both within academia 
and outside.” 

Harrington received her PhD from Imperial College 
London in 2010 under the supervision of Jaroslav Stark 
and Dorothy Buck. She was awarded a Whitehead Prize of 
the London Mathematical Society in 2018. She is head of 
the Algebraic Systems Biology group at the Mathematical 
Institute at Oxford. She is a member of the AMS, the Lon-
don Mathematical Society, and the Society for Industrial 
and Applied Mathematics (SIAM). Veraart received her 
PhD in 2007 from the University of Cambridge. She was 
postdoctoral research associate at the Bendheim Center for 
Finance at Princeton University and an assistant professor 
of financial mathematics at Karlsruhe Institute of Technol-
ogy before joining the Department of Mathematics at LSE. 
She received a George Fellowship from the Bank of England 
in 2016 for research on systemic risk in financial networks. 
She is associate editor of Applied Mathematical Finance and 
the SIAM Journal on Financial Mathematics.

—From a University of Cambridge announcement

Jean-François Le Gall was born in 1959 in Morlaix, 
France, and received his PhD from the Université Pierre et 
Marie Curie (Paris VI) in 1982 under the direction of Marc 
Yor. After twenty years on the faculty of Université Pierre 
et Marie Curie, he joined the Université Paris-Sud Orsay in 
2007. He received the Rollo Davidson Prize in 1986, the 
Loève Prize in 1997, and the Sophie Germain and Fermat 
Prizes in 2005. He was elected to the French Academy of 
Sciences in 2013. He is the author of the books Spatial 
Branching Processes, Random Snakes and Partial Differential 
Equations (Birkhäuser Verlag, 1999) and Brownian Motion, 
Martingales, and Stochastic Calculus (Springer, 2016).

About the Prize
The Wolf Prize carries a cash award of US$100,000. The 
science prizes are given annually in the areas of agriculture, 
chemistry, mathematics, medicine, and physics. Laureates 
receive their awards from the President of the State of Is-
rael in a special ceremony at the Knesset Building (Israel’s 
Parliament) in Jerusalem. The list of previous recipients of 
the Wolf Prize in Mathematics is available on the website 
of the Wolf Foundation, www.wolffund.org.il.

—Elaine Kehoe

2019 Rollo Davidson Prize
Tom Hutchcroft of the University of 
Cambridge and Vincent Tassion of 
ETH Zurich have been named recip-
ients of the Rollo Davidson Prize for 
2019. Hutchcroft was recognized for 
his many beautiful results in proba-
bility theory, including on random 
and self-avoiding walks, random 
forests, and percolation theory. Tas-
sion was recognized for his extensive 
achievements in disordered systems 

and percolation. Hutchcroft received his PhD from the 
University of British Columbia under the supervision of 
Asaf Nachmias and Omer Angel. He received the CMS 
Doctoral Prize in 2018. He tells the Notices: “I grew up in 
rural England in the small town of Glastonbury, which is 
known for its music festival, magic trees, and monastic 
ruins, and according to legend is the final resting place 
of the Holy Grail.” Tassion studied at Ecole Normale 
Supérieure de Lyon and did postdoctoral work with Hugo 
Duminil-Copin at the University of Geneva. His research 
involves phase transitions in statistical physics using dis-
crete models such as percolation and the Ising model. The 
prize is awarded annually to early career probabilists by the 
Rollo Davidson Trust.

—From a Davidson Trust announcement

Tom Hutchcroft

Luitgard Veraart

Heather Harrington
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in mathematics, I was a bit torn regarding the final career 
path. However, after spending a year sailing across the In-
dian Ocean, I decided to focus on math, move to California 
and study at UC Berkeley."

The IMA Prize is awarded annually to a mathematical 
scientist who received his or her PhD degree within ten 
years of the nomination year. The award recognizes an 
individual who has made a transformative impact on the 
mathematical sciences and their applications.

—From an IMA announcement

ANZIAM Prizes Awarded
Australian and New Zealand Industrial and Applied 
Mathematics (ANZIAM), a division of the Australian 
Mathematical Society, has awarded medals for 2019 to 
three mathematical scientists. Peter Taylor, director of 
the Australian Research Council Centre of Excellence for 
Mathematical and Statistical Frontiers, has been awarded 
the 2019 ANZIAM Medal “for his contributions to the 
theory and applications of mathematics, particularly in 
the area of applied probability.” The medal is awarded 
for outstanding merit in research achievements, activities 
enhancing applied or industrial mathematics, or both, and 
contributions to ANZIAM. Scott McCue of Queensland 
University of Technology has been awarded the 2019 E. O. 
Tuck Medal for research focusing on developing and apply-
ing theoretical and computational techniques to problems 
in interfacial dynamics and mathematical biology, as well 
as his broader contributions to industrial mathematics. The 
medal is a midcareer award given for outstanding research 
and distinguished service to the field of applied mathe-
matics. Ryan Loxton of Curtin University was selected to 
receive the J. H. Michell Medal for research in areas such as 
nonlinear optimization, operations research, and system 
identification. The medal recognizes an outstanding young 
researcher in applied/industrial mathematics.

—From an ANZIAM announcement

Wigderson Awarded 
Knuth Prize

Avi Wigderson of the Institute for 
Advanced Study has been awarded 
the 2019 Donald E. Knuth Prize “for 
fundamental and lasting contribu-
tions in areas including randomized 
computation, cryptography, circuit 
complexity, proof complexity, par-
allel computation, and our under-
standing of fundamental graph prop-
erties” and for his contributions to 
education and as a mentor. He is the 

author of the book Mathematics and Computation (Princeton 
University Press). The prize is awarded by the Association 
for Computing Machinery (ACM) Special Interest Group 
on Algorithms and Computation Theory and the IEEE 
Technical Committee on the Mathematical Foundations of 
Computing to recognize major research accomplishments 
and contributions to the foundations of computer science 
over an extended period of time.

—From an ACM/IEEE announcement

Hansen Awarded 
2018 IMA Prize

Anders Hansen of the Cambridge 
Centre for Analysis at the University 
of Cambridge and the University 
of Oslo has been awarded the 2018 
IMA Prize of the Institute for Math-
ematics and Its Applications (IMA). 
He was honored for his “work in 
computational mathematics, and 
in particular for his development 
of the solvability complexity index 
and its corresponding classification 

hierarchy.” His work involves foundations of computa-
tional mathematics and applied functional and harmonic 
analysis. He is currently working on enhancing resolution 
in medical imaging.

Hansen received his PhD from the University of Cam-
bridge in 2008. He received a Leverhulme Prize in Math-
ematics and Statistics in 2017 and is an editor of the Pro-
ceedings of the Royal Society Series A. Hansen tells the Notices: 
"I have a slightly unorthodox background as my original 
plan was to become a jazz guitarist, and I even spent some 
time at Berklee College of Music pursuing an education in 
music. And, although I have always had a strong interest 

Anders Hansen

Avi Wigderson
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also won first place in the high school level category and 
will be published in the AWM Newsletter. First place in the 
college undergraduate category was awarded to Liyaan Mas-
kati of Brown University for the essay “Nothing Ventured, 
Nothing Gained” about Ellie Pavlick of Brown University. 
First place in the middle school category was awarded to 
Farren Stainton of the Sharon Academy, Sharon, Vermont, 
for the essay “My Teacher Makes the Irrational Perfectly 
Rational,” about Sandy Thorne of the Sharon Academy.

—From an AWM announcement

Simons Fellows 
in Mathematics
The Simons Foundation Mathematics and Physical Sci-
ences (MPS) division supports research in mathematics, 
theoretical physics, and theoretical computer science. The 
MPS division provides funding for individuals, institutions, 
and science infrastructure. The Fellows Program provides 
funds to faculty for up to a semester-long research leave 
from classroom teaching and administrative obligations. 
The mathematical scientists who have been awarded 2019 
Simons Fellowships are:

 • Federico Ardila, San Francisco State University
 • Nir Avni, Northwestern University
 • Yuri Berest, Cornell University
 • Christopher Bishop, Stony Brook University
 • Sergey Bobkov, University of Minnesota–Twin 

Cities
 • Vyjayanthi Chari, University of California, Riv-

erside
 • Ivan Cherednik, University of North Carolina at 

Chapel Hill
 • Gheorghe Craciun, University of Wisconsin–

Madison
 • Philippe Di Francesco, University of Illinois at 

Urbana–Champaign
 • William Duke, University of California, Los An-

geles
 • Sergey Fomin, University of Michigan
 • Joshua Greene, Boston College
 • Changfeng Gui, University of Texas at San Antonio 
 • Robert Guralnick, University of Southern Cali-

fornia
 • Juhi Jang, University of Southern California
 • Victor Kac, Massachusetts Institute of Technology 
 • Matthew Kahle, Ohio State University
 • Nets Katz, California Institute of Technology
 • Rinat Kedem, University of Illinois at Urbana–

Champaign
 • Autumn Kent, University of Wisconsin–Madison 

Putnam Prizes Awarded
The winners of the seventy-ninth William Lowell Putnam 
Mathematical Competition have been announced. The 
Putnam Competition is administered by the Mathematical 
Association of America (MAA) and consists of an examina-
tion containing mathematical problems that are designed 
to test both originality and technical competence. Prizes 
are awarded both to individuals and to teams.

The six highest ranking individuals each received a cash 
award of US$2,500. Listed in alphabetical order, they are: 

 • Dongryul Kim, Harvard University
 • Shyam Narayanan, Harvard University
 • David Stoner, Harvard University
 • Yuan Yao, Massachusetts Institute of Technology
 • Shengtong Zhang, Massachusetts Institute of 

Technology
Institutions with at least three registered participants 

obtain a team ranking in the competition based on the 
rankings of three designated individual participants. The 
five top-ranked teams (with members listed in alphabetical 
order) were:

 • Harvard University, Dongryul Kim, Shyam 
Narayanan, David Stoner

 • Massachusetts Institute of Technology, Junyao 
Peng, Ashwin Sah, Yunkun Zhou

 • University of California, Los Angeles, Ciprian 
Mircea Bonciocat, Xiaoyu Huang, Konstantin 
Miagkov

 • Columbia University, Quang Dao, Myeonhu Kim, 
Matthew Lerner-Brecher

 • Stanford University, David Kewei Lin, Hanzhi 
Zheng, Yifan Zhu

The first-place team receives an award of US$25,000, and 
each member of the team receives US$1,000. The awards 
for second place are US$20,000 and US$800; for third 
place, US$15,000 and US$600; for fourth place, US$10,000 
and US$400; and for fifth place, US$5,000 and US$200. 

Danielle Wang of the Massachusetts Institute of Tech-
nology was awarded the Elizabeth Lowell Putnam Prize for 
outstanding performance by a woman in the competition. 
She received an award of US$1,000.

—From an MAA announcement

AWM Essay Contest Winners
The Association for Women in Mathematics (AWM) has an-
nounced the winners of its 2019 essay contest, “Biographies 
of Contemporary Women in Mathematics.” The grand prize 
was awarded to Dominique Alexander of Douglas High 
School, Minden, Nevada, for the essay “How Bees Sting,” 
about Christine Ensign of Douglas High School. The essay 
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Regeneron Science 
Talent Search
Two young scientists whose work involves the mathe-
matical sciences are among the top winners in the 2019 
Regeneron Science Talent Search.

Ana Humphrey, eighteen, of Alexandria, Virginia, re-
ceived the first-place award of US$250,000 for her mathe-
matical model to determine the possible locations of exo-
planets—planets outside our solar system—that may have 
been missed by NASA’s Kepler Space Telescope. She used 
her model to find “unpacked” spaces where as many as 560 
new planets might fit and identified ninety-six locations as 
primary search targets. Her research could aid our under-
standing of the formation of planets and inform our search 
for life in outer space. Adam Areishar, seventeen, of Alex-
andria, Virginia, was awarded third place and US$150,000 
for his project combining a classic previously unsolved 
math problem called the “coupon collector problem” with 
extreme value theory. The theory is used to determine the 
likelihood of a maximal event, such as a 1,000-year flood. 
He developed a way to calculate the average maximum 
values of distributional datasets, which could be applied to 
predicting the expected amount of time for a given number 
of different randomly-timed events to occur.

The Regeneron Science Talent Search is the United States’ 
oldest and most prestigious science and mathematics com-
petition for high school seniors. It is administered by the 
Society for Science and the Public.

—From a Society for Science and the Public announcement

2019 SIAM Fellows Elected
The Society for Industrial and Applied Mathematics (SIAM) 
has elected its class of fellows for 2019. Their names and 
institutions follow.

 • Mihai Anitescu, Argonne National Laboratory and 
University of Chicago

 • David A. Bader, Georgia Institute of Technology
 • Francesco Bullo, University of California, Santa 

Barbara
 • José Antonio Carrillo de la Plata, Imperial Col-

lege London
 • Stephen Jonathan Chapman, University of Ox-

ford
 • Pierre Comon, CNRS
 • Wolfgang A. Dahmen, University of South Caro-

lina, Columbia
 • Jesus Antonio De Loera, University of California, 

Davis
 • Froilán Dopico, Universidad Carlos III de Madrid

 • Inwon Christina Kim, University of California, 
Los Angeles

 • Sergiu Klainerman, Princeton University
 • Slava Krushkal, University of Virginia 
 • Kai-Wen Lan, University of Minnesota–Twin Cities
 • Xiaochun Li, University of Illinois at Urbana–

Champaign
 • Irina Mitrea, Temple University
 • Toan Nguyen, Pennsylvania State University
 • Denis Osin, Vanderbilt University
 • Dmitry Panchenko, University of Toronto
 • Irena Peeva, Cornell University
 • Malabika Pramanik, University of British Co-

lumbia
 • Eric Rowell, Texas A&M University
 • Andreas Seeger, University of Wisconsin–Madison
 • Evgueni Tevelev, University of Massachusetts, 

Amherst
 • Tatiana Toro, University of Washington
 • Jared Weinstein, Boston University
 • Michael Wolf, William Marsh Rice University
 • Paul Yang, Princeton University
 • Guoliang Yu, Texas A&M University

—From a Simons Foundation announcement

Guggenheim Fellowship 
Awards to Mathematical 
Scientists
The John Simon Guggenheim Memorial Foundation has 
announced the names of the scholars, artists, and scien-
tists who were selected as Guggenheim Fellows for 2019. 
Selected as fellows in the mathematical sciences were:

 • Mohammad T. Hajiaghayi, University of Mary-
land, applied mathematics 

 • David Jerison, Massachusetts Institute of Technol-
ogy, mathematics

 • Per A. Mykland, University of Chicago, applied 
mathematics

Selected as a Fellow in computer sciences was Georg 
Essl, University of Wisconsin–Milwaukee.

Guggenheim Fellows are appointed on the basis of im-
pressive achievement in the past and exceptional promise 
for future accomplishments.

—From a Guggenheim Foundation announcement
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Fellows of the Royal Society
The Royal Society has announced the names of fifty-one 
new fellows, ten foreign members, and one honorary fel-
low for 2019. The new fellows whose work involves the 
mathematical sciences are:

 • Manjul Bhargava, Princeton University
 • Caucher Birkar, University of Cambridge
 • Sarah C. Darby, University of Oxford
 • Christoper Hacon, University of Utah
 • Peter Haynes, University of Cambridge
 • Richard Jozsa, University of Cambridge
 • Roy Kerr, University of Cambridge, New Zealand
 • Marta Kwiatkowska, University of Oxford
 • Robert Tibshirani, Stanford University
 • Ashkay Venkatesh, Princeton University 

Elected as a foreign member was Jack Dongarra, Uni-
versity of Tennessee, Oak Ridge National Laboratory, and 
the University of Manchester.

—From a Royal Society announcement

NAE Elections
The National Academy of Engineering (NAE) has elected 
eighty-six new members and eighteen foreign members. 
Below are the mathematical scientists who were elected 
for 2019:

 • Joseph Halpern, Cornell University
 • William Jordan, Jordan Analytics
 • Mahta Moghaddam, University of Southern Cal-

ifornia
Elected as foreign members were:

 • Michael Cates, University of Cambridge
 • Gilbert Laporte, HEC Montreal

—From an NAE announcement

Hertz Foundation 
Fellowships
The Fannie and John Hertz Foundation has announced 
its Graduate Fellowship awards for 2019. The new Fel-
lows whose work involves the mathematical sciences are 
Noah Golowich, Harvard University; Melissa Mai, Johns 
Hopkins University; Nitya Mani, Stanford University; and 
Nina Zubrilina, Stanford University. The new Fellows 
will receive up to five years of academic support valued at 
up to US$250,000 to pursue innovative research without 
constraints.

—From a Hertz Foundation announcement

 • Ernesto Estrada, University of Zaragoza and 
ARAID Foundation

 • Fariba Fahroo, Air Force Research Laboratory
 • Andreas Frommer, Universität Wuppertal
 • Roger G. Ghanem, University of Southern Cali-

fornia
 • Sigal Gottlieb, University of Massachusetts, Dart-

mouth
 • Michael Allen Heroux, Sandia National Labora-

tories and St. John's University
 • Misha Kilmer, Tufts University
 • Ron Kimmel, Technion-Israel Institute of Technol-

ogy and Intel Corporation
 • Gitta Kutyniok, Technische Universität Berlin
 • Irena Lasiecka, University of Memphis
 • Juan C. Meza, University of California, Merced
 • Jill C. Pipher, Brown University
 • Mason A. Porter, University of California, Los 

Angeles
 • Sebastian Reich, Universität Potsdam
 • Carla D. Savage, North Carolina State University
 • Zuowei Shen, National University of Singapore
 • Joel A. Tropp, California Institute of Technology
 • Yin Zhang, Rice University and Chinese University 

of Hong Kong, Shenzhen
 • Jun Zou, Chinese University of Hong Kong

—From a SIAM announcement

AAAS Fellows Elected
The American Academy of Arts and Sciences (AAAS) has 
elected its new Fellows and foreign honorary members for 
2019. The new members in the section on Mathematical 
and Physical Sciences are: 

 • Michael H. Harris, Columbia University
 • Mikhail Lyubich, Stony Brook University 
 • Sylvia Serfaty, New York University 
 • Michael J. Shelley, New York University
 • András Vasy, Stanford University 
 • Ofer Zeitouni, Weizmann Institute of Science

Elected in the section on Computer Sciences were:
 • Francine D. Berman, Rensselaer Polytechnic 

Institute 
 • David R. Karger, Massachusetts Institute of Tech-

nology

—From an AAAS announcement
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 • Sarah (Sally) Collins (Boston College), Georgia 
Institute of Technology

 • Destiny Diaz (State University of New York at 
Buffalo), State University of New York at Buffalo

 • Michael Dotzel (University of Missouri–Colum-
bia), University of Missouri–Columbia

 • Hindy Drillick (Stony Brook University), Stony 
Brook University

 • Rebecca F. Durst (Williams College), Brown 
University

 • Patrick J. Dynes (Clemson University), University 
of Oklahoma–Norman

 • Yael Eisenberg (Yeshiva University), Yeshiva 
University

 • Sabrina E. Enriquez (University of Southern Cal-
ifornia), University of California, Davis

 • Katherine Gallagher (University of Notre Dame), 
University of Notre Dame

 • Aaron S. George (University of Maryland), Uni-
versity of Maryland

 • Shay Gilpin (University of California, Santa Cruz), 
University of Colorado at Boulder

 • Nikolay D. Grantcharov (University of California, 
Berkeley), University of California, Berkeley

 • Jiajing Guan (George Mason University), George 
Mason University

 • Mitchell S. Harris (Yale University)
 • Brice Huang (Massachusetts Institute of Technol-

ogy), Massachusetts Institute of Technology
 • DeVon M. Ingram (Georgia Institute of Technol-

ogy), Georgia Institute of Technology
 • Adam Q. Jaffe (Stanford University), Stanford 

University
 • Jennifer N. Jones (Universidad de Guanajuato/

CIMAT), Universidad de Guanajuato/CIMAT
 • Sydney N. Kahmann (University of California, 

Los Angeles), University of California, Los Angeles
 • Caleb Ki (Amherst College), University of Mich-

igan–Ann Arbor
 • Yujin Hong Kim (Columbia University), Colum-

bia University
 • Nathaniel J. Kroeger (Baylor University), William 

Marsh Rice University
 • Cameron Krulewski (Harvard University), Har-

vard University
 • Andrew Kwon (Carnegie-Mellon University), 

Carnegie-Mellon University
 • Jaylen M. Lee (James Madison University), Uni-

versity of California, Irvine
 • Ishan Levy (Princeton University), Princeton 

University
 • Jared D. Lichtman (Dartmouth College), Univer-

sity of Cambridge
 • Hyun Jae Lim (Harvard College), University of 

California, Berkeley

NSF Graduate 
Research Fellowships
The National Science Foundation (NSF) has awarded a 
number of Graduate Research Fellowships for fiscal year 
2019. Further awards may be announced later in the year. 
This program supports students pursuing doctoral study 
in all areas of science and engineering and provides a 
stipend of US$30,000 per year for a maximum of three 
years of full-time graduate study. Information about the 
solicitation for the 2020 competition will be published in 
the “Mathematics Opportunities” section of an upcoming 
issue of the Notices.

Following are the names of the awardees in the mathe-
matical sciences selected so far in 2019, followed by their 
undergraduate institutions (in parentheses) and the insti-
tutions at which they plan to pursue graduate work.

 • David J. Altizio (Carnegie-Mellon University), 
Carnegie-Mellon University

 • Allen Alvarez Loya (California State University, 
Fullerton), University of Colorado at Boulder

 • Montie S. Avery (University of New Mexico), Uni-
versity of Minnesota–Twin Cities

 • Julius Baldauf-Lenschen (Massachusetts Insti-
tute of Technology), Massachusetts Institute of 
Technology

 • William J. Barham (University of Colorado at 
Boulder), University of Colorado at Boulder

 • Savannah V. Bates (Jacksonville University), North 
Carolina State University

 • Olivia M. Bernstein (Biola University), University 
of California, Irvine

 • Adam B. Block (Columbia University), Columbia 
University

 • Sarah Brauner (Reed College), University of Min-
nesota–Twin Cities

 • Thomas Brazelton (Johns Hopkins University), 
University of Pennsylvania

 • Madelyne M. Brown (Bucknell University), Uni-
versity of North Carolina at Chapel Hill

 • Katherine Brumberg (Yale University), Yale Uni-
versity 

 • Amanda Burcroff (University of Michigan–Ann 
Arbor), University of Michigan–Ann Arbor

 • Alois Cerbu (Yale University), University of Cali-
fornia, Berkeley

 • Ryan C. Chen (Princeton University), Princeton 
University

 • Tyler Chen (Tufts University), University of Wash-
ington

 • Karina Cho (Harvey Mudd College), Harvey Mudd 
College
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 • Chandler Squires (Massachusetts Institute of 
Technology), Massachusetts Institute of Technol-
ogy

 • Stephanie E.-T. Stacy (Williams College), Univer-
sity of California, Los Angeles

 • Zofia Stanley (Brown University), University of 
Colorado at Boulder

 • George Stepaniants (University of Washington), 
University of Washington

 • David W. Stoner (Harvard University), Harvard 
University

 • Austin J. Stromme (University of Washington), 
Massachusetts Institute of Technology

 • Naomi Sweeting (University of Chicago), Univer-
sity of Chicago

 • Tiffany Tang (William Marsh Rice University), 
University of California, Berkeley

 • Evan H. Toler (William Marsh Rice University), 
New York University

 • Matthew Tyler (Princeton University), Princeton 
University

 • Dario Verta (Johns Hopkins University), George 
Washington University

 • Alexander M. Vetter (Villanova University), Villa-
nova University

 • Nathan A. Wagner (Bucknell University), Wash-
ington University

 • Danielle Y. Wang (Massachusetts Institute of Tech-
nology), Massachusetts Institute of Technology 

 • Joshua X. Wang (Princeton University), Harvard 
University

 • Luya Wang (Princeton University), University of 
California, Berkeley

 • Scott Weady (Yale University), New York Univer-
sity

 • Michael C. Wigal (West Virginia University), Geor-
gia Institute of Technology

 • Emily T. Winn (College of the Holy Cross), Brown 
University

 • David H. Yang (Massachusetts Institute of Tech-
nology), Harvard University

 • Andrew Yarger (Saint Olaf College), University of 
Michigan–Ann Arbor

 • Michelle Yu (College of the Holy Cross), Univer-
sity of California, Berkeley

 • David K. Zhang (Vanderbilt University), Vander-
bilt University

 • Edith Zhang (University of Virginia), University 
of Virginia

 • John C. Zito (Kenyon College)
 • Nina Zubrilina (Stanford University), Stanford 

University

—NSF announcement

 • Jessica Maghakian (Massachusetts Institute of 
Technology), Stony Brook University

 • Scott A. Mahan (Arizona State University), Uni-
versity of California, San Diego

 • Yelena Mandelshtam (Stanford University), Stan-
ford University

 • Nitya Mani (Stanford University), Stanford Uni-
versity

 • Sofia R. Martinez Alberga (University of Califor-
nia, Riverside), University of California, Riverside

 • Amanda S. Mason (Wofford College), University 
of Colorado at Boulder

 • Bijan H. Mazaheri (Williams College), California 
Institute of Technology

 • Sean McGrath (McGill University)
 • Theo McKenzie (Harvard University), University 

of California, Berkeley
 • Andres N. Mejia (Bard College), Yale University
 • Anya Michaelsen (Williams College), Williams 

College
 • Samantha C. Moore (University of Northern Colo-

rado), University of North Carolina at Chapel Hill
 • Keshav B. Patel (University of North Carolina 

at Chapel Hill), University of North Carolina at 
Chapel Hill

 • Luke K. Peilen (Yale University), New York Uni-
versity

 • Thomas Reeves (Princeton University), Cornell 
University

 • Tristan Reynoso (University of Central Florida), 
University of Central Florida

 • Daniel D. Richman (Massachusetts Institute of 
Technology)

 • Ryan A. Robinett (Massachusetts Institute of Tech-
nology), Massachusetts Institute of Technology

 • Sarah Robinson (University of Georgia), William 
Marsh Rice University

 • Samuel P. Rosin (Harvard College), University of 
North Carolina at Chapel Hill

 • Bryce T. Rowland (Centre College of Kentucky), 
University of North Carolina at Chapel Hill

 • Gabriel Ruiz (University of California, Riverside), 
University of California, Los Angeles

 • Andrew I. Sack (University of Florida), University 
of Florida

 • Sandeep B. Silwal (Massachusetts Institute of 
Technology), Massachusetts Institute of Technol-
ogy

 • Yousuf Soliman (Carnegie-Mellon University), 
California Institute of Technology

 • Melissa I. Spence (University of California, Davis), 
University of California, Merced

 • Samuel A. Spiro (University of Miami), University 
of California, San Diego
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TEXTBOOKS
FROM THE AMS

James L. Cornette and Ralph A. Ackerman

Freshman and sophomore life sciences stu-
dents respond well to the modeling approach 
to calculus, difference equations, and dif-
ferential equations presented in this book. 
Examples of population dynamics, pharma-
cokinetics, and biologically relevant physical 
processes are introduced in Chapter 1, and 
these and other life sciences topics are devel-
oped throughout the text. Readers should 
have studied algebra, geometry, and trigo-
nometry.

Online question content and interactive step-
by-step tutorials are available for this title in 
WebAssign. WebAssign is a leading provider of 
online instructional tools for both faculty and 
students.
AMS/MAA Textbooks, Volume 29; 2015; 713 pages; 
Softcover; ISBN: 978-1-4704-5142-4; List US$99; 
AMS members US$37.50; MAA members US$37.50

Previously, this title was available 
as an eBook only. The print version 

is now available for order at:
bookstore.ams.org/text-29

http://bookstore.ams.org/text-29
cav
Rectangle
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Community Updates

NEWS

Epsilon Awards Announced
The AMS has chosen nineteen summer mathematics pro-
grams to receive Epsilon grants for 2019. These summer 
programs give students a chance to see aspects of mathe-
matics that they may not see in school and allow them to 
share their enthusiasm for mathematics with like-minded 
students.

The programs that received Epsilon grants for 2019 are:
 • AIMC Math Camp at Navajo Prep, Navajo Preparatory 

School, Tatiana Shubin, Director
 • All Girls/All Math Summer Camp, University of Ne-

braska, Lincoln, Amanda Laubmeier, Director
 • Baa Hózhó Math Camp, Navajo Technical University, 

Crownpoint, New Mexico, David Auckly, Director
 • Bridge to Enter Advanced Mathematics (BEAM), Bard 

College and Union College, Daniel Zaharopol, Director
 • Broward Young People’s Project, Broward County 

Public Schools, Beverly Kerner, Director
 • Canada/USA Mathcamp, Lewis and Clark College, 

Marisa Debowsky, Director
 • Center for Mathematical Talent, Courant Institute of 

Mathematical Sciences at New York University, Selin 
Kalaycioglu, Director

 • Euclid Lab, online, David Gay, Director
 • GirlsGetMath@ICERM, Brown University, Brendan 

Edward Hassett, Director
 • GirlsGetMath@Rochester, University of Rochester, 

Amanda Tucker, Director
 • MathILy, Bryn Mawr College, sarah-marie belcastro, 

Director
 • MathILy-Er, Bowdoin College, Alice Mark, Director
 • Mathworks Honors Summer Math Camp, Texas State 

University, Max Warshauer, Director
 • PROMYS (Programs in Mathematics for Young Scien-

tists), Boston University, Glenn Stevens, Director
 • PROTaSM (Puerto Rico Opportunities for Talented 

Students in Math), University of Puerto Rico, Mayaguez, 
Luis F. Caceres, Director

 • QTM Math Circle, Emory University’s Institute for 
Quantitative Theory, Steven Olsen, Director

 • Research Science Institute (RSI), Massachusetts Insti-
tute of Technology, Charles Farmer, Director

AMS–AAAS Mass Media 
Fellowship Awarded

Leila Sloman, a doctoral student in 
mathematics at Stanford University, 
has been chosen as the 2019 AMS–
AAAS Mass Media Fellow. Leila is in 
the third year of her PhD studies and 
works in the areas of applied mathe-
matics, partial differential equations, 
and probability theory. She will work 
at Scientific American this summer.

The Mass Media Science and En-
gineering Fellows program is orga-

nized by the American Association for the Advancement 
of Science (AAAS). This program is designed to improve 
public understanding of science and technology by plac-
ing advanced undergraduate, graduate, and postgraduate 
science, mathematics, and engineering students in media 
outlets nationwide.  The Fellows work for ten weeks over 
the summer as reporters, researchers, and production assis-
tants alongside media professionals to sharpen their com-
munication skills and increase their understanding of the 
editorial process by which events and ideas become news.

Now in its forty-fifth year, this program has placed 
more than 700 Fellows in media organizations nationwide 
as they research, write, and report today’s headlines. The 
program is designed to report science-related issues in 
the media in easy-to-understand ways so as to improve 
public understanding and appreciation for science and 
technology.

For more information on the AAAS Mass Media Science 
and Engineering Fellows program, visit the website www.
aaas.org/programs/mass-media-fellowship. Follow 
on Twitter @AAASMassMedia for program highlights and 
news.

—Anita Benjamin 
AMS Office of Government Relations

Leila Sloman

http://www.aaas.org/programs/mass-media-fellowship
http://www.aaas.org/programs/mass-media-fellowship
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 • Ross Mathematics Program, Ross Mathematics Foun-
dation, Jim Fowler, Director

 • TexPREP-Lubbock, Texas Tech University, Jim Brown, 
Director

—AMS announcement

From the AMS 
Public Awareness Office
The Mathematical Imagery web page now presents images 
in a larger format and employs MathJax to display mathe-
matics in the descriptions. View nearly 700 art works with 
descriptions in forty-nine galleries, and find links to mu-
seums, galleries, articles and resources, at https://www.
ams.org/math-imagery.

—Annette Emerson and Mike Breen 
AMS Public Awareness Officers 

paoffice@ams.org

From the AMS 
Committee on Education
The AMS Committee on Education is sponsoring a one-day 
mini-conference on October 25, 2019, in DC. This one-day 
mini-conference will focus on “Mathematics Departments 
and the Explosive Growth of Computational and Quanti-
tative Offerings in Higher Education.” If you are interested 
in attending the meeting, please register at: www.ams.org/
minireg.

Registration opens June 19, 2019. Please register no later 
than September 27, 2019.

For additional information, contact amsdc@ams.org.

—AMS announcement

https://www.ams.org/math-imagery
https://www.ams.org/math-imagery
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IMA Prize in Mathematics 
and Its Applications

The Institute for Mathematics and Its Applications (IMA) 
awards the annual Prize in Mathematics and its Applica-
tions to an individual who has made a transformative im-
pact on the mathematical sciences and their applications. 
The deadline for nominations is July 19, 2019. See www 
.ima.umn.edu/prize.

—From an IMA announcement

Early Career Opportunity

NSF Mathematical Sciences 
Postdoctoral Research Fellowships

The National Science Foundation (NSF) solicits proposals 
for the Mathematical Sciences Postdoctoral Research Fel-
lowships. The deadline for full proposals is October 16, 
2019. See https://www.nsf.gov/funding/pgm_summ 
.jsp?pims_id=5301.

—From an NSF announcement

NSF CAREER Awards

The National Science Foundation (NSF) solicits proposals 
for the Faculty Early Career Development Awards. The 
deadline for full proposals is July 17, 2019. See www.nsf 
.gov/funding/pgm_summ.jsp?pims_id=503214.

—From an NSF announcement

Early Career Opportunity

Call for Nominations 
for Adams Prize

The University of Cambridge will award the 2020 Adams Prize 
in the field of algebra. The prize will be awarded to a math-
ematician who is under forty years of age and in a university 
or other institution in the United Kingdom for outstanding 
achievement in algebra. The deadline for applications is 
October 31, 2019. See https://www.maths.cam.ac.uk 
/adams-prize.

—From a University of Cambridge announcement

Call for Nominations 
for 2020 W. K. Clifford Prize

The W. K. Clifford Prize is awarded to young researchers 
for excellence in theoretical and applied Clifford algebras, 
their analysis, and geometry. The prize will be awarded at 
the 12th Conference on Clifford Algebras and Their Ap-
plications in Mathematical Physics in 2020. The deadline 
for nominations is September 30, 2019. Nominations 
should be sent to CliffordPrize2020@gmail.com. See  
https://wkcliffordprize.wordpress.com.

—G. Stacey Staples
Southern Illinois University

The most up-to-date listing of NSF funding opportunities from the 
Division of Mathematical Sciences can be found online at: 
www.nsf.gov/dms  and for the Directorate of Education and 
Human Resources at www.nsf.gov/dir/index.jsp?org=ehr.   
To receive periodic updates, subscribe to the DMSNEWS listserv by following 
the directions at www.nsf.gov/mps/dms/about.jsp. 

https://www.maths.cam.ac.uk/adams-prize
https://www.maths.cam.ac.uk/adams-prize
http://www.ima.umn.edu/prize
http://www.ima.umn.edu/prize
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5301
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2019 Clay Research Conference 
and Workshops

The Clay Mathematics Institute (CMI) will hold the 2019 
Clay Research Conference on October 2, 2019, at the Math-
ematical Institute of the University of Oxford. The plenary 
speakers are:

 • Benedict Gross, University of California San Diego
 • Alex Lubotzky, Hebrew University of Jerusalem
 • Oscar Randal-Williams, University of Cambridge
 • Geordie Williamson, University of Sydney

Associated workshops will be held throughout the week 
of the conference, September 29–October 4, 2019:

 • Beyond Spectral Gaps (Emmanuel Breuillard, 
Assaf Naor)

 • Modular Representation Theory (Geordie William-
son, Ivan Losev, Matthew Emerton)

 • Patterns in Cohomology of Moduli Spaces (Søren 
Galatius, Oscar Randal-Williams)

 • Periods, Representations, and Arithmetic: Recent 
Advances on the Gan-Gross-Prasad Conjectures 
and Their Applications (Christopher Skinner, Wei 
Zhang)

Registration for the conference is free but required. 
Participation in the workshops is by invitation; a limited 
number of additional places are available. Limited accom-
modation is available for PhD students and early career 
researchers. To register for the conference and to register 
interest in a workshop, email Naomi Kraker at admin 
@claymath.org. For full details, including the schedule, 
titles, and abstracts when they become available, see www 
.claymath.org.

—From a CMI announcement

NSF Mathematical Sciences 
Innovation Incubator

The Mathematical Sciences Innovation Incubator (MSII) 
activity of the National Science Foundation (NSF) provides 
funding to support the involvement of mathematical scien-
tists in research areas in which the mathematical sciences 
are not yet playing large roles—for example, security and 
resilience of critical infrastructure, emerging technologies, 
innovative energy technology, and foundational biological 
and health research. For details, see www.nsf.gov/funding 
/pgm_summ.jsp?pims_id=505044&org=DMS.

—From an NSF announcement

Research Experiences 
for Undergraduates

The Research Experiences for Undergraduates (REU) pro-
gram supports student research in areas funded by the 
National Science Foundation (NSF) through REU sites and 
REU supplements. See www.nsf.gov/funding/pgm_summ 
.jsp?pims_id=5517. The deadline date for proposals 
from institutions wishing to host REU sites is August 28, 
2019. Dates for REU supplements vary with the research 
program (contact the program director for more informa-
tion). Students apply directly to REU sites. See www.nsf 
.gov/crssprgm/reu/list_result.jsp?unitid=5044 
for active REU sites.

—From an NSF announcement

Early Career Opportunity

Fulbright Israel 
Postdoctoral Fellowships

The United States–Israel Educational Foundation (USIEF) 
plans to award eight grants to US postdoctoral scholars 
who seek to pursue research at Israeli institutions of higher 
education. The deadline for applications is September 
16, 2019. See https://awards.cies.org/content 
/clone-postdoctoral-fellowship.

—From a USIEF announcement

http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505044&org=DMS
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505044&org=DMS
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Early Career Opportunity

News from MSRI

The Mathematical Sciences Research Institute (MSRI) will 
hold the following workshops during the fall of 2019. Es-
tablished researchers, postdoctoral fellows, and graduate 
students are invited to apply for funding. It is the policy of 
MSRI to actively seek to achieve diversity in its workshops. 
Thus a strong effort is made to remove barriers that hinder 
equal opportunity, particularly for those groups that have 
been historically underrepresented in the mathematical 
sciences. MSRI has a resource to assist visitors with finding 
child care in Berkeley.  For more information, please contact 
Sanjani Varkey at sanjani@msri.org.

The workshops are as follows:
 • August 15–16, 2019: Connections for Women: 

Holomorphic Differentials in Mathematics and 
Physics. See www.msri.org/workshops/894

 • August 19–23, 2019: Introductory Workshop: 
Holomorphic Differentials in Mathematics and 
Physics. See www.msri.org/workshops/895

 • August 29–30, 2019: Connections for Women: 
Microlocal Analysis. See www.msri.org                 
/workshops/896

 • September 3–6, 2019: Introductory Work-
shop: Microlocal Analysis. See www.msri.org
/workshops/897

 • October 14–18, 2019: Recent Developments 
in Microlocal Analysis. See www.msri.org
/workshops/899

 • November 18–22, 2019: Holomorphic Differen-
tials in Mathematics and Physics. See www.msri
.org/workshops/898

MSRI has been supported from its origins by the Na-
tional Science Foundation, now joined by the National 
Security Agency, more than 100 academic sponsor depart-
ments, a range of private foundations, and generous and 
farsighted individuals.

—MSRI announcement

CONTACT:
AMS Professional Programs

American Mathematical Society
201 Charles Street  |  Providence, RI 02904-2213 USA

800.321.4267, ext. 4096  |  mathjobs@ams.org

The automated job application database 
sponsored by the AMS.

MathJobs.Org offers a paperless 
application process for applicants and 

employers in mathematics.

Registered Applicants Can:
• Create their own portfolio of application 

documents
• Make applications online to participating 

employers
• Choose to make a cover sheet viewable by all 

registered employers

Registered Employers Can:
• Post up to seven job ads
• Set all criteria for required documents, and add 

speci�c questions
• Receive and upload reference letters
• Manage applicant information and 

correspondence quickly and easily
• Set limited access permissions for faculty and 

EOE administrators
• Search for and sort additional applicants in the 

database
• Choose an advertising-only account, or a 

discounted single ad account

Visit mathjobs.org for pricing information.

FREE FOR APPLICANTS

http://www.msri.org/workshops/896
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Classified Advertising
Employment Opportunities

The Notices Classified Advertising section is devoted to listings of current employment opportunities. The publisher reserves the right to reject any listing 
not in keeping with the Society's standards. Acceptance shall not be construed as approval of the accuracy or the legality of any information therein. Advertis-
ers are neither screened nor recommended by the publisher. The publisher is not responsible for agreements or transactions executed in part or in full based 
on classi�ed advertisements. 
The 2019 rate is $3.50 per word. Advertisements will be set with a minimum one-line headline, consisting of the institution name above body copy, unless 
additional headline copy is speci�ed by the advertiser. Headlines will be centered in boldface at no extra charge. Ads will appear in the language in which they 
are submitted. There are no member discounts for classi�ed ads. Dictation over the telephone will not be accepted for classi�ed ads.
Upcoming deadlines for classi�ed advertising are as follows: August 2019—May 16, 2019; September 2019—June 17, 2019; October 2019—July 17, 2019, 
November 2019—August 5, 2019; December 2019—September 17, 2019.
US laws prohibit discrimination in employment on the basis of color, age, sex, race, religion, or national origin. Advertisements from institutions outside the 
US cannot be published unless they are accompanied by a statement that the institution does not discriminate on these grounds whether or not it is subject to 
US laws.
Submission: Send email to classads@ams.org.

TCAM plans to fill in fifty or more permanent faculty 
positions in the next few years. In addition, there are a 
number of temporary and visiting positions. We look for-
ward to receiving your application or inquiry at any time. 
There are no deadlines.

Please send your resume to mathjobs@tju.edu.cn.
For more information, please visit cam.tju.edu 

.cn or contact Ms. Erica Liu at mathjobs@tju.edu.cn, 
telephone: 86-22-2740-6039.

01

CHINA

Tianjin University, China 
Tenured/Tenure-Track/Postdoctoral Positions at the 

Center for Applied Mathematics

Dozens of positions at all levels are available at the recently 
founded Center for Applied Mathematics, Tianjin Univer-
sity, China. We welcome applicants with backgrounds in 
pure mathematics, applied mathematics, statistics, com-
puter science, bioinformatics, and other related fields. We 
also welcome applicants who are interested in practical 
projects with industries. Despite its name attached with 
an accent of applied mathematics, we also aim to create a 
strong presence of pure mathematics. Chinese citizenship 
is not required.

Light or no teaching load, adequate facilities, spacious 
office environment and strong research support. We are 
prepared to make quick and competitive offers to self-mo-
tivated hard workers, and to potential stars, rising stars, as 
well as shining stars.

The Center for Applied Mathematics, also known as the 
Tianjin Center for Applied Mathematics (TCAM), located 
by a lake in the central campus in a building protected as 
historical architecture, is jointly sponsored by the Tianjin 
municipal government and the university. The initiative 
to establish this center was taken by Professor S. S. Chern. 
Professor Molin Ge is the Honorary Director, Professor 
Zhiming Ma is the Director of the Advisory Board. Professor 
William Y. C. Chen serves as the Director.

http://cam.tju.edu.cn
http://cam.tju.edu.cn
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NEW BOOKS

New Books Offered by the AMS

Tensors: Asymptotic 
Geometry and 
Developments 2016–2018
J.M. Landsberg, Texas A&M Uni-
versity, College Station, TX

Tensors are used throughout the 
sciences, especially in solid state 
physics and quantum informa-
tion theory. This book brings 
a geometric perspective to the 
use of tensors in these areas. 
Numerous open problems ap-

propriate for graduate students and post-docs are included 
throughout.

This item will also be of interest to those working in applications 
and mathematical physics.

CBMS Regional Conference Series in Mathematics, 
Number 132
June 2019, 152 pages, Softcover, ISBN: 978-1-4704-5136-
3, 2010 Mathematics Subject Classification: 68Q17, 14L30, 
15A69, 81P45, List US$55, AMS members US$44, MAA 
members US$49.50, Order code CBMS/132

bookstore.ams.org/cbms-132

Analysis

Real Analysis
A Constructive Approach 
Through Interval Arithmetic
Mark Bridger, Northeastern Uni-
versity, Boston, MA

Real Analysis: A Constructive Ap-
proach Through Interval Arithmetic 
presents a careful treatment of 
calculus and its theoretical un-
derpinnings from the construc-
tivist point of view. Throughout 
the book the emphasis on rig-

orous and direct proofs is supported by an abundance of 

Algebra and
Algebraic Geometry

Algebraic Geometry 
Codes: Advanced Chapters
Michael Tsfasman, CNRS, Lab-
oratoire de Mathématiques de Ver-
sailles, France, Institute for In-
formation Transmission Problems, 
Moscow, Russia, and Independent 
University of Moscow, Russia, 
Serge Vlǎduţ, Aix Marseille Uni-
versité, France, and Institute for 
Information Transmission Prob-
lems, Moscow, Russia, and Dmitry 
Nogin, Institute for Information 
Transmission Problems, Moscow, 
Russia

Algebraic Geometry Codes: Advanced Chapters is devoted to 
the theory of algebraic geometry codes, a subject related 
to several domains of mathematics. Whereas most books 
on coding theory start with elementary concepts and then 
develop them in the framework of coding theory itself 
within, this book systematically presents meaningful and 
important connections of coding theory with algebraic 
geometry and number theory.

This item will also be of interest to those working in applications.

Mathematical Surveys and Monographs, Volume 238
July 2019, 453 pages, Hardcover, ISBN: 978-1-4704-4865-
3, LC 2019003782, 2010 Mathematics Subject Classification: 
14Hxx, 94Bxx, 14G15, 11R58; 11R04, 11T71, 11M38, 
11R37, 11R42, 14D22, 14J20, List US$129, AMS mem-
bers US$103.20, MAA members US$116.10, Order code 
SURV/238

bookstore.ams.org/surv-238

http://bookstore.ams.org/cbms-132
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students to the methodology of mathematical modeling, 
which plays a role in nearly all real applications of math-
ematics.

AMS/MAA Textbooks, Volume 50
July 2019, approximately 522 pages, Hardcover, ISBN: 978-
1-4704-5001-4, LC 2018053676, 2010 Mathematics Subject 
Classification: 00–01, 39–01, List US$75, AMS Individual 
member US$56.25, AMS Institutional member US$60, 
MAA members US$56.25, Order code TEXT/50

bookstore.ams.org/text-50

An Introduction to Game-
Theoretic Modelling
Third Edition
Mike Mesterton-Gibbons, Flor-
ida State University, Tallahassee, 
FL

This book introduces game the-
ory and its applications from an 
applied mathematician’s per-
spective, systematically devel-
oping tools and concepts for 
game-theoretic modelling in the 

life and social sciences. In the present third edition, the au-
thor has added substantial new material on evolutionarily 
stable strategies and their use in behavioral ecology.

Pure and Applied Undergraduate Texts, Volume 37
July 2019, approximately 398 pages, Hardcover, ISBN: 978-
1-4704-5029-8, LC 2019000060, 2010 Mathematics Subject 
Classification: 91–01, 91A10, 91A12, 91A22, 91A40, 91A80; 
92–02, 92D50, List US$82, AMS members US$65.60, MAA 
members US$73.80, Order code AMSTEXT/37

bookstore.ams.org/amstext-37

Differential Equations

Discrete Painlevé 
Equations
Nalini Joshi, University of Sydney, 
Australia

Discrete Painlevé equations are 
nonlinear difference equations, 
which arise from translations 
on crystallographic lattices. 
The deceptive simplicity of this 
statement hides immensely rich 
mathematical properties, con-
necting dynamical systems, alge-

examples, exercises, and projects at the end of every section. 
The exposition is informal but exceptionally clear and well 
motivated throughout.

Pure and Applied Undergraduate Texts, Volume 38
June 2019, 302 pages, Hardcover, ISBN: 978-1-4704-5144-
8, LC 2019006280, 2010 Mathematics Subject Classification: 
03F60, 03F55, 97–01, 97Ixx, 26–01, 26Axx, List US$82, 
AMS members US$65.60, MAA members US$73.80, 
Order code AMSTEXT/38

bookstore.ams.org/amstext-38

Invitation to Real Analysis
Cesar E. Silva, Williams College, 
Williamstown, MA

This book is an introduction to 
real analysis for a one-semester 
course aimed at students who 
have completed the calculus se-
quence and preferably one other 
course, such as linear algebra. 
It does not assume any specific 
knowledge and starts with all 
that is needed from sets, logic, 
and induction.

Pure and Applied Undergraduate Texts, Volume 36
June 2019, 303 pages, Hardcover, ISBN: 978-1-4704-4928-
5, LC 2018058742, 2010 Mathematics Subject Classification: 
26–01, 26A03, 26A06; 26A24, 26A42, List US$99, AMS 
members US$79.20, MAA members US$89.10, Order 
code AMSTEXT/36

bookstore.ams.org/amstext-36

Applications

Elementary Mathematical 
Models
An Accessible Development 
without Calculus, 
Second Edition
Dan Kalman, American Univer-
sity, Washington, DC, Sacha For-
goston, and Albert Goetz

Elementary Mathematical Mod-
els offers instructors an alterna-
tive to standard college algebra, 
quantitative literacy, and liberal 

arts mathematics courses. Presuming only a background 
of exposure to high school algebra, the text introduces 

bookstore.ams.org/amstext-38
cav
Rectangle

http://bookstore.ams.org/text-50
cav
Rectangle

http://bookstore.ams.org/amstext-36
cav
Rectangle

http://bookstore.ams.org/amstext-37
cav
Rectangle



NEW BOOKS

JUNE/JULY 2019  NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY   963

Geometry and Topology

Breadth in 
Contemporary Topology
David T. Gay, University of Geor-
gia, Athens, GA, and Weiwei Wu, 
University of Georgia, Athens, GA, 
Editors

This volume contains the pro-
ceedings of the 2017 Georgia 
International Topology Confer-
ence, held from May 22–June 
2, 2017, at the University of 
Georgia, Athens, Georgia. The 

papers contained in this volume cover topics ranging from 
symplectic topology to classical knot theory to topology of 
3- and 4-dimensional manifolds to geometric group theory. 
Several papers focus on open problems, while other papers 
present new and insightful proofs of classical results.

Proceedings of Symposia in Pure Mathematics, Volume 
102
June 2019, 282 pages, Hardcover, ISBN: 978-1-4704-4249-
1, LC 2019001949, 2010 Mathematics Subject Classification: 
57–06, 20F36, 53D35, 53D12, 55P48, 57M25, 57M27, 
57R17, 57R91, List US$133, AMS members US$106.40, 
MAA members US$119.70, Order code PSPUM/102

bookstore.ams.org/pspum-102

Number Theory

Hilbert’s Tenth Problem
An Introduction to 
Logic, Number Theory, 
and Computability
M. Ram Murty, Queen’s Uni-
versity, Kingston, ON, Canada, 
and Brandon Fodden, Carleton 
University, Ottawa, ON, Canada

This book gives a complete solu-
tion to Hilbert’s tenth problem 
using elementary number the-
ory and rudimentary logic. It is 
self-contained.

This item will also be of interest to those working in logic and 
foundations.

braic geometry, Coxeter groups, topology, special functions 
theory, and mathematical physics. Instead of technical 
theorems or complete proofs, this book relies on provid-
ing essential points of many arguments about this topic 
through explicit examples, with the hope that they will be 
useful for applied mathematicians and physicists.

This item will also be of interest to those working in algebra and 
algebraic geometry, analysis, and applications.

CBMS Regional Conference Series in Mathematics, 
Number 131
June 2019, 146 pages, Softcover, ISBN: 978-1-4704-5038-
0, LC 2018058757, 2010 Mathematics Subject Classification: 
33E17, 39A45, 14E07, 14E15, 32S45, List US$55, AMS 
members US$44, MAA members US$49.50, Order code 
CBMS/131

bookstore.ams.org/cbms-131

General Interest

The Math Behind 
the Magic
Fascinating Card and 
Number Tricks and 
How They Work
Ehrhard Behrends, Freie Univer-
sität, Berlin, Germany
Translated by David Kramer

A magician appears able to 
banish chaos at will: a deck of 
cards arranged in order is shuf-
fled— apparently randomly—by 

a member of the audience. Then, hey presto! The deck is 
suddenly put back in its original order! In this rich, color-
fully illustrated volume, Ehrhard Behrends presents around 
30 card tricks and number games that are easy to learn and 
have an interesting mathematical foundation, with no prior 
knowledge required.

This item will also be of interest to those working in discrete 
mathematics and combinatorics and number theory.

June 2019, 208 pages, Softcover, ISBN: 978-1-4704-4866-
0, LC 2019004263, 2010 Mathematics Subject Classification: 
00A08, 97A20, List US$30, AMS members US$24, MAA 
members US$27, Order code MBK/122

bookstore.ams.org/mbk-122

Volume 102

Proceedings of Symposia in

 URE      ATHEMATICSP M

Breadth in 
Contemporary 
Topology 
 

David T. Gay
Weiwei Wu
Editors
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New in Contemporary
Mathematics
Algebra and
Algebraic Geometry

Model Theory of Modules, 
Algebras and Categories
Alberto Facchini, Università 
Degli Studi Di Padova, Italy, Lorna 
Gregory, Università Degli Studi 
Della Campania “Luigi Vanvitelli”, 
Caserta, Italy, Sonia L’Innocente, 
Università Di Camerino, Italy, and 
Marcus Tressl, University of Man-
chester, United Kingdom, Editors

This volume contains the pro-
ceedings of the international 

conference Model Theory of Modules, Algebras and Cat-
egories, held from July 28–August 2, 2017, at the Ettore 
Majorana Foundation and Centre for Scientific Culture in 
Erice, Italy. Papers contained in this volume cover recent 
developments in model theory, module theory and cate-
gory theory, and their intersection.

This item will also be of interest to those working in logic and 
foundations.

Contemporary Mathematics, Volume 730
June 2019, 237 pages, Softcover, ISBN: 978-1-4704-4367-
2, LC 2018047324, 2010 Mathematics Subject Classification: 
03C60, 13D09, 13F30, 16D40, 16D70, 16G20; 18D10, 
18E05, 37A35, List US$117, AMS members US$93.60, 
MAA members US$105.30, Order code CONM/730

bookstore.ams.org/conm-730

Tensor Categories and 
Hopf Algebras
Nicolás Andruskiewitsch, Uni-
versidad Nacional de Córdoba, 
Argentina, and Dmitri Nikshych, 
University of New Hampshire, 
Durham, NH, Editors

This volume contains the pro-
ceedings of the scientific session 
“Hopf Algebras and Tensor Cat-
egories”, held from July 27–28, 
2017, at the Mathematical Con-

Student Mathematical Library, Volume 88
June 2019, 239 pages, Softcover, ISBN: 978-1-4704-4399-
3, LC 2018061472, 2010 Mathematics Subject Classification: 
11U05, 12L05, List US$55, All Individuals US$44, AMS 
Institutional member US$44, MAA members US$44, 
Order code STML/88

bookstore.ams.org/stml-88

Probability and Statistics

Applied Stochastic 
Analysis
Weinan E, Princeton University, 
NJ, Tiejun Li, Peking University, 
Beijing, China, and Eric Van-
den-Eijnden, Courant Institute 
of Mathematical Sciences, New 
York, NY

Presenting the basic mathemat-
ical foundations of stochastic 
analysis as well as some import-
ant practical tools and applica-

tions, this textbook is for advanced undergraduate students 
and beginning graduate students in applied mathematics. 
The book strikes a nice balance between mathematical for-
malism and intuitive arguments, a style that is most suited 
for applied mathematicians.

This item will also be of interest to those working in analysis.

Graduate Studies in Mathematics, Volume 199
June 2019, 305 pages, Hardcover, ISBN: 978-1-4704-4933-
9, LC 2019000898, 2010 Mathematics Subject Classification: 
60–01, 60J22, 60H10, 60H35, 62P10, 62P35, 65C05, 
65C10, 82–01, List US$85, AMS members US$68, MAA 
members US$76.50, Order code GSM/199

bookstore.ams.org/gsm-199

 
Weinan E
Tiejun Li
Eric Vanden-Eijnden

Applied 
Stochastic 
Analysis

GRADUATE STUDIES
IN MATHEMATICS 199
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Tensor Categories
and Hopf Algebras

Nicolás Andruskiewitsch
Dmitri Nikshych
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gress of the Americas in Montreal, Canada. Papers highlight 
the latest advances and research directions in the theory of 
tensor categories and Hopf algebras.

Contemporary Mathematics, Volume 728
May 2019, 194 pages, Softcover, ISBN: 978-1-4704-4321-
4, LC 2018042384, 2010 Mathematics Subject Classification: 
16D90, 16E65, 16T05, 16T20, 16W50, 17B37, 17D05, 
18D10, 20G05, List US$117, AMS members US$93.60, 
MAA members US$105.30, Order code CONM/728

bookstore.ams.org/conm-728

Rings, Modules and Codes
André Leroy, Université d’Artois, 
Arras, France, Christian Lomp, 
Universidade do Porto, Portugal, 
Sergio López-Permouth, Ohio 
University, Athens, OH, and 
Frédérique Oggier, Nanyang 
Technological University, Singa-
pore, Editors

This book contains the proceed-
ings of the Fifth International 
Conference on Noncommutative 
Rings and their Applications, 

held from June 12–15, 2017 at the University of Artois, 
Lens, France. The papers are related to noncommutative 
rings, covering topics such as: ring theory, with both the 
elementwize and more structural approaches developed; 
module theory with popular topics such as automorphism 
invariance, almost injectivity, ADS, and extending modules; 
and coding theory, both the theoretical aspects such as 
the extension theorem and the more applied ones such as 
Construction A or Reed–Muller codes.

This item will also be of interest to those working in applications.

Contemporary Mathematics, Volume 727
May 2019, 355 pages, Softcover, ISBN: 978-1-4704-4104-
3, LC 2018041947, 2010 Mathematics Subject Classification: 
16D40, 16D70, 16W20, 16S36, 11T71, 13P05, 08A05, 
List US$117, AMS members US$93.60, MAA members 
US$105.30, Order code CONM/727

bookstore.ams.org/conm-727

Geometry and Topology

Homotopy Theory: Tools 
and Applications
Daniel G. Davis, University 
of Louisiana at Lafayette, LA, 
Hans-Werner Henn, Université 
de Strasbourg, France, J. F. Jar-
dine, Western University, London, 
Ontario, Canada, Mark W. John-
son, Pennsylvania State Univer-
sity, Altoona, PA, and Charles 
Rezk, University of Illinois at Ur-
bana-Champaign, IL, Editors

This volume contains the proceedings of the conference 
Homotopy Theory: Tools and Applications, in honor of 
Paul Goerss’s 60th birthday, held from July 17–21, 2017, 
at the University of Illinois at Urbana-Champaign, Urbana, 
IL. The articles cover a variety of topics spanning the current 
research frontier of homotopy theory.

Contemporary Mathematics, Volume 729
June 2019, 268 pages, Softcover, ISBN: 978-1-4704-
4244-6, LC 2018047360, 2010 Mathematics Subject Clas-
sification: 55P43, 55N22, 55N91, 18D50, 55Q45, 55Q51, 
55T15, 54B40, 55U10, 55S35, List US$117, AMS mem-
bers US$93.60, MAA members US$105.30, Order code 
CONM/729

bookstore.ams.org/conm-729
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Moufang Sets and Structurable 
Division Algebras
Lien Boelaert, Ghent University, Belgium, Tom De Medts, 
Ghent University, Belgium, and Anastasia Stavrova, St. Pe-
tersburg State University, Saint Petersburg, Russia

Memoirs of the American Mathematical Society, Volume 
259, Number 1245
June 2019, 88 pages, Softcover, ISBN: 978-1-4704-3554-
7, 2010 Mathematics Subject Classification: 16W10, 20E42, 
17A35, 17B60, 17B45, 17Cxx, 20G15, 20G41, List US$81, 
AMS Individual member US$48.60, AMS Institutional 
member US$64.80, MAA members US$72.90, Order code 
MEMO/259/1245

bookstore.ams.org/memo-259-1245

Analysis

Geometric Pressure for Multimodal Maps 
of the Interval
Feliks Przytycki, Polish Academy of Sciences, Warszawa, Po-
land, and Juan Rivera-Letelier, University of Rochester, NY

Memoirs of the American Mathematical Society, Volume 
259, Number 1246
June 2019, 81 pages, Softcover, ISBN: 978-1-4704-3567-
7, 2010 Mathematics Subject Classification: 37E05, 37D25, 
37D35, List US$81, AMS Individual member US$48.60, 
AMS Institutional member US$64.80, MAA members 
US$72.90, Order code MEMO/259/1246

bookstore.ams.org/memo-259-1246

Differential Equations

On Space-Time Quasiconcave Solutions 
of the Heat Equation
Chuanqiang Chen, Zhejiang University of Technology, Hang-
zhou, China, Xinan Ma, University of Science and Technology 
of China, Hefei, China, and Paolo Salani, Università di 
Firenze, Italy

Memoirs of the American Mathematical Society, Volume 
259, Number 1244
June 2019, 83 pages, Softcover, ISBN: 978-1-4704-3524-0, 
2010 Mathematics Subject Classification: 35K20; 35B30, List 
US$81, AMS Individual member US$48.60, AMS Institu-
tional member US$64.80, MAA members US$72.90, Order 
code MEMO/259/1244

bookstore.ams.org/memo-259-1244

New in Memoirs 
of the AMS
Algebra and 
Algebraic Geometry

Automorphisms of  Two-Generator Free Groups 
and Spaces of Isometric Actions on 
the Hyperbolic Plane
William Goldman, University of Maryland, College Park, 
Maryland, Greg McShane, Institut Fourier, Grenoble, France, 
George Stantchev, University of Maryland, College Park, 
Maryland, and Ser Peow Tan, University of Singapore, Sin-
gapore

This item will also be of interest to those working in geometry 
and topology.

Memoirs of the American Mathematical Society, Volume 
259, Number 1249
June 2019, 78 pages, Softcover, ISBN: 978-1-4704-3614-8, 
2010 Mathematics Subject Classification: 57M05, 22D40, List 
US$81, AMS Individual member US$48.60, AMS Institu-
tional member US$64.80, MAA members US$72.90, Order 
code MEMO/259/1249

bookstore.ams.org/memo-259-1249

Flat Rank Two Vector Bundles 
on Genus Two Curves
Viktoria Heu, Institut de Recherche Mathématique Avancée 
(IRMA), Strasbourg, France, and Frank Loray, Institut de 
Recherche Mathématique de Rennes (IRMAR), France

Memoirs of the American Mathematical Society, Volume 
259, Number 1247
June 2019, 107 pages, Softcover, ISBN: 978-1-4704-3566-
0, 2010 Mathematics Subject Classification: 14H60; 34Mxx, 
32G34, 14Q10, List US$81, AMS Individual member 
US$48.60, AMS Institutional member US$64.80, MAA 
members US$72.90, Order code MEMO/259/1247

bookstore.ams.org/memo-259-1247
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New AMS-Distributed 
Publications
Algebra and 
Algebraic Geometry

Eighteen Essays in 
Non-Euclidean Geometry
Vincent Alberge, Fordham Uni-
versity, Bronx, NY, and Athanase 
Papadopoulos, Université de 
Strasbourg, France, Editors

This book consists of a series of 
self-contained essays in non-Eu-
clidean geometry in a broad 
sense, including the classical 
geometries of constant curva-
ture (spherical and hyperbolic), 

de Sitter, anti-de Sitter, co-Euclidean, co-Minkowski, 
Hermitian geometries, and some axiomatically defined 
geometries. Some of these essays deal with very classical 
questions and others address problems that are at the heart 
of present-day research, but all of them are concerned with 
fundamental topics.

All the essays are self-contained, and most of them can 
be understood by the general educated mathematician. 
They should be useful to researchers and to students of 
non-Euclidean geometry and are intended to be references 
for the various topics they present.

This item will also be of interest to those working in geometry 
and topology.

A publication of the European Mathematical Society. Distributed within 
the Americas by the American Mathematical Society.

IRMA Lectures in Mathematics and Theoretical Physics, 
Volume 29
March 2019, 475 pages, Hardcover, ISBN: 978-3-03719-
196-5, 2010 Mathematics Subject Classification: 03B30, 
51A05, 51F15, 51F20, 51M04, 51M05, 51M09, 51M10, 
51M16, 51M20, 51M25, 51N15, 52A15, 52A55, 52B15, 
52C25, 05C62, 53–01, 53A05, 53A30, 53A35, 53C35, 
53C45, List US$88, AMS members US$70.40, Order code 
EMSILMTP/29

bookstore.ams.org/emsilmtp-29

Mathematical Physics

Spinors on Singular Spaces and the Topology 
of Causal Fermion Systems
Felix Finster, Universität Regensburg, Germany, and Niky 
Kamran, McGill University, Montreal, Canada

Memoirs of the American Mathematical Society, Volume 
259, Number 1251
June 2019, 82 pages, Softcover, ISBN: 978-1-4704-3621-
6, 2010 Mathematics Subject Classification: 53–02; 53Z05, 
53C80, 53C27, 57R22, List US$81, AMS Individual mem-
ber US$48.60, AMS Institutional member US$64.80, MAA 
members US$72.90, Order code MEMO/259/1251

bookstore.ams.org/memo-259-1251

Distribution of Resonances in Scattering 
by Thin Barriers
Jeffrey Galkowski, McGill University, Montreal, Canada

Memoirs of the American Mathematical Society, Volume 
259, Number 1248
June 2019, 153 pages, Softcover, ISBN: 978-1-4704-3572-
1, 2010 Mathematics Subject Classification: 35P20, 35P25, 
31B10, 31B20, 31B35; 45C05, 47F05, List US$81, AMS 
Individual member US$48.60, AMS Institutional mem-
ber US$64.80, MAA members US$72.90, Order code 
MEMO/259/1248

bookstore.ams.org/memo-259-1248

Probability and Statistics

Time Changes of the Brownian Motion: Poincaré 
Inequality, Heat Kernel Estimate 
and Protodistance
Jun Kigami, Kyoto University, Japan

Memoirs of the American Mathematical Society, Volume 
259, Number 1250
June 2019, 118 pages, Softcover, ISBN: 978-1-4704-3620-
9, 2010 Mathematics Subject Classification: 31E05, 60J35, 
60J60; 28A80, 30L10, 43A99, 60J65, 80A20, List US$81, 
AMS Individual member US$48.60, AMS Institutional 
member US$64.80, MAA members US$72.90, Order code 
MEMO/259/1250

bookstore.ams.org/memo-259-1250
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various forms depending on the number of species and on 
the strength of the interactions. From the mathematical 
point of view, these models have very different behaviors. 
Their analysis, therefore, requires various mathematical 
methods which this book aims to present in a systematic, 
painstaking, and exhaustive way.

This item will also be of interest to those working in mathemat-
ical physics.

A publication of the European Mathematical Society (EMS). Distributed 
within the Americas by the American Mathematical Society.

EMS Monographs in Mathematics, Volume 9
April 2019, 418 pages, Hardcover, ISBN: 978-3-03719-193-
4, 2010 Mathematics Subject Classification: 76P05, 76W05, 
82C40, 35B25, List US$88, AMS members US$70.40, 
Order code EMSMONO/9

bookstore.ams.org/emsmono-9

Applications

Spectral Theory of Graphs 
and of Manifolds
CIMPA 2016, Kairouan, Tunisia
Colette Anné ,  Laboratoire 
de Mathématiques Jean Leray, 
Nantes, France, and Nabila Tor-
ki-Hamza, Universitaire de Mah-
dia, Tunisie, Editors

This volume is devoted to the 
Spectral Theory on Graphs and 
Manifolds, the CIMPA Research 
School which took place at Kai-

rouan (Tunisia) in November 2016. The school offered six 
courses and two conferences.

This volume contains the redaction of five of the presen-
tations: Spectral Theory on Combinatorial and Quantum 
Graphs, by E. M. Harrell; Introduction to Spectral Theory 
of Unbounded Operators, by H. Najar; On the Absolute 
Continuous Spectrum of Discrete Operators, by S. Golénia; 
Random Schrödinger Operators on Discrete Structures, by 
C. Rojas-Molina; Critical Points at Infinity Theory on CR 
Manifolds, by N. Gamara. Geometric Bounds on the Eigen-
values of Graphs, by N. Anantaraman, is just summarized, 
as it was podcasted and is still available on the Internet.
The volume concludes with the text of L. Hillairet’s con-
ference on Two Applications of the Dirichlet-Neumann 
Bracketing.

This item will also be of interest to those working in geometry 
and topology.

Lectures on the 
Icosahedron and
the Solution of Equations 
of the Fifth Degree
With a New Introduction and 
Commentary
Felix Klein

The highest achievement of 
Greek mathematics is the clas-
sification of regular solids, the 
five so-called Platonic solids. The 
most complicated solid is the 

icosahedron. Up to and through the 19th century, the most 
important problem in mathematics was solving algebraic 
equations. In this classic book, Klein showed how to relate 
these two seemingly unrelated topics and also tied them 
together with another new theory of mathematics: hyper-
geometric functions and monodromy groups.

A publication of Higher Education Press (Beijing). Exclusive rights in 
North America; non-exclusive outside of North America. No distribution 
to mainland China unless order is received through the AMS bookstore. 
Online bookstore rights worldwide. All standard discounts apply.

Classical Topics in Mathematics, Volume 5
May 2019, 306 pages, Hardcover, ISBN: 978-7-04-051022-
5, 2010 Mathematics Subject Classification: 12D10, 30C15, 
13A50, 51M20, 33C05, List US$99, AMS members 
US$79.20, Order code CTM/5

bookstore.ams.org/ctm-5

Analysis

From the Vlasov–Maxwell–
Boltzmann
System to Incompressible 
Viscous
Electro-magneto-
hydrodynamics
Volume 1
Diogo Arsénio, Université Paris 
Diderort, France, and Laure 
Saint-Raymond, École Normale 
Supérieure, Lyon, France

The Vlasov–Maxwell–Boltz-
mann system is a microscopic model to describe the 
dynamics of charged particles subject to self-induced 
electromagnetic forces. At the macroscopic scale, in the 
incompressible viscous fluid limit, the evolution of the 
plasma is governed by equations of Navier–Stokes–Fourier 
type, with some electromagnetic forcing that may take on 
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117 Polynomial Problems 
from the AwesomeMath 
Summer Program
Titu Andreescu, University of 
Texas at Dallas, Navid Safaei, 
Sharif University of Technology, 
Tehran, Iran, and Alessandro 
Ventullo, University of Milan, 
Italy

Polynomials form the corner-
stone of modern mathematics 
and other discrete fields, and this 

book will showcase the true beauty of polynomials through 
a discerning collection of problems from mathematics 
competitions and intuitive lectures. Through the prob-
lems, lecture, and theory, readers will gain the knowledge, 
strategies, and tricks to fully appreciate, solve, and enjoy 
solving polynomials.

A publication of XYZ Press. Distributed in North America by the American 
Mathematical Society.

XYZ Series, Volume 33
February 2019, 234 pages, Hardcover, ISBN: 978-0-
9993428-4-8, 2010 Mathematics Subject Classification: 
00A07, 97U40, 97D50, List US$59.95, AMS members 
US$47.96, Order code XYZ/33

bookstore.ams.org/xyz-33

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Séminaires et Congrès, Number 32
December 2018, 261 pages, Softcover, ISBN: 978-2-85629-
895-4, 2010 Mathematics Subject Classification: 35P05, 
39A05, 58J05, 05C05, 47A05, 81Q35, 32V30, List US$42, 
AMS members US$33.60, Order code SECO/32

bookstore.ams.org/seco-32

Math Education

Topics in Geometric 
Inequalities
Titu Andreescu, University of 
Texas at Dallas, and Oleg Mush-
karov, Bulgaria Academy of Sci-
ence

Cross discipline discoveries 
with multiple solutions pro-
vided makes Topics in Geometric 
Inequalities a must have for ded-
icated problem solvers that will 
strengthen readers’ abilities to 

analyze, dissect, and invent creative methods—all skills 
that are necessary to succeed in mathematics competitions. 
Readers will also learn innovative and powerful techniques 
in geometric arguments.

A publication of XYZ Press. Distributed in North America by the American 
Mathematical Society.

XYZ Series, Volume 34
February 2019, 420 pages, Hardcover, ISBN: 978-0-9993428-
3-1, 2010 Mathematics Subject Classification: 00A05, 00A07, 
97U40, 97D50, List US$59.95, AMS members US$47.96, 
Order code XYZ/34

bookstore.ams.org/xyz-34

http://bookstore.ams.org/seco-32
cav
Rectangle

http://bookstore.ams.org/xyz-33
cav
Rectangle

http://bookstore.ams.org/xyz-34
cav
Rectangle



Read about the mathematical research,
inspiring stories, and advice of these AMS members

and more women researchers and role models at

www.ams.org/
women-18

Photo by D
ave B

u
rbank

Ph
ot

o 
by

 B
ry

ce
 V

ic
km

ar
k

Ph
ot

o 
co

ur
te

sy
 o

f J
oh

n 
So

le
m

Photo courtesy of M
o

n
a M

erling
Photo cou

rtesy of Fern Y. Hunt
Ph

ot
o 

by
 M

el
is

sa
 T

ot
m

an

Photo courtesy of Rosem
ary G

uzm
an

Pho
to

 c
ou

rt
es

y 
o

f J
os

ep
h 

Ra
bi

noff

Photo courtesy of A
m

ie W
ilkinson

Photo courtes
y o

f R
ya

n 
S.

 B
ra

nd
en

be
rg

/T
em

pl
e U

. 

Melody Chan
Tropical geometry, combinatorialalgebraic
geometry and combinatorics 

"Do examples! Try to do as much 
mathematics as you can standing at 
the board, writing things down, and 
explaining them to people."

Tara S. Holm
Symplectic geometry and its applications
in other areas of mathematics

"Find collaborators, especially ones 
who are close enough to your � eld 
so that you can talk but far enough 
that they will teach you some new 
mathematics."

Andrea Nahmod
Nonlinear Fourier and harmonic analysis
and partial differential equations

"Have a broad mathematical culture, 
follow your intuition, keep a long 
view about research, and love what 
you do."

Gigliola Staffi lani
Partial differential equations that
model nonlinear wave phenomena

"Work with other mathematicians. The 
model of the lonely researcher in an ivory 
tower does not match with most of the 
mathematicians I know. This is a myth that 
de� nitely needs to be busted: it is danger-
ous and not encouraging."

Chelsea Walton
Noncommutative algebra and 
noncommutative algebraic geometry

"Find, value, and support your 
network of people, in math or not, 
who can sel� essly give you words of 
encouragement, because the happier 
you are, the more math you will do!"

Rosemary  Guzman
Topology and its applications in

other areas of mathematics 

"Form your networks with intent,  under-
standing that the formation of  different 

kinds of networks—research, mentoring, 
and teaching—serve distinct purposes."

Fern Y. Hunt
Discrete approximation of dynamical systems

and applications of Markov chains

"Attend as many research conferences
as time and money allow, make use of 

online resources such as the arXiv
and  MathSciNet, and organize a

special session at an annual conference."

Emily Riehl
Category theory, particularly as related to homotopy theory

"Ultimately, how you want to spend your 
time engaging with mathematical ideas is 

up to you. Give talks and take on extracur-
ricular writing or teaching projects if this 

makes you happier, even if this means less 
time for research and other things."

Éva Tardos
Algorithms and algorithmic game theory

"Be open to exciting new
opportunities in research."

Amie Wilkinson
Dynamical systems

"Enjoy the process of discovery, 
there’s an in� nite zoo of

possibilities to explore
and that’s the joy
of mathematics."
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New and Noteworthy Titles on our Bookshelf
June/July 2019

The Bookshelf is prepared monthly by Notices Associate Editor Stephan 
Ramon Garcia. 

Appearance of a book in the Notices Bookshelf does not represent an en-
dorsement by the Notices or by the AMS.

Suggestions for the Bookshelf can be sent to notices-booklist 
@ams.org. 

Although the mathematics surveyed is mostly elementary, 
the algebraic details are often messy. Fortunately, addendum 
sections attached to some of the chapters contain the more 
onerous calculations, a few of which stretch on for several 
pages. The gory details are worked out in full detail and with 
plenty of explanations. This approach permits the main text 
to proceed in a conversational and elegant fashion. 

This book is suitable for any mathematically inclined 
reader who enjoys video games. For example, this might be 
a wonderful book to give to a high-school calculus student 
with a passion for video games.

The Paper Puzzle Book:  
All You Need is Paper!  
by Ilan Garibi, David Goodman, Yossi 
Elran 

This book contains almost one 
hundred clever paper-based puz-
zles, tricks, and gags in the spirit 
of Martin Gardner, whom the au-
thors cite as an inspiration. Those 
who delight in puzzles will find 
this book fascinating and enjoy-
able. Illustrations appear on al-

most every page, and the book is easy to follow.
The puzzles are loosely organized according to themes 

such as “just folding,” “strips of paper,” and “flexagons.” Hints 
are occasionally provided, and complete solutions appear at 
the end of each chapter. The puzzles often require paper of 
specific dimensions;  each puzzle is accompanied by an icon 
that denotes those requirements. The puzzles are assigned a 
difficulty level from one to four stars. Some are relatively easy, 
although even the simplest require a bit of thought, visual-
ization, and experimentation. For example, one instructs the 
reader to “fold an equilateral triangle from a square sheet of 
paper.” Another wants one to take a paper strip in proportion 
1:7 and fold it into a cube of size 1:1:1. The harder problems 
are true brain benders of the most pleasant sort.

Although the problems are implicitly infused with mathe-
matics, the book is accessible to almost anyone who has taken 
trigonometry and knows about square roots. It could even be 
enjoyed by a motivated middle-school student. 

Power-Up:  
Unlocking the Hidden Mathematics  

in Video Games  
by Matthew Lane

This book consists of nine chapters, 
the first eight of which cover aspects 
of video games that prompt lively 
mathematical digressions. A good 
calculus student with some patience 
should be able to follow most of 
the mathematics. The final chapter 
(“The Value of Games”) discusses 

the complex relationship between mathematics, education, 
and society, often quoting from enlightening sources. 

The games discussed vary from old favorites such as Pac- 
Man and Minesweeper, to newer games such as Assassin’s Creed 
and The Sims. Although some familiarity with the games 
might make the reading experience more enjoyable, it is not a 
prerequisite. The relevant game mechanics are explained with 
plenty of illustrations, many of which are in color. 

The mathematics involved is mostly of the Cartesian 
geometry, calculus, and probability sort, although deeper 
topics such as the uncountability of real numbers occasionally 
arise. These topics are not explored in great detail, but rather 
sprinkled throughout the book to suggest added riches just 
below the surface.

How exactly does math enter a discussion about video 
games? Here are a few examples. What is the best way to 
gather power-up items that are spread throughout an open 
“sandbox”-style game? This leads to a discussion of the 
traveling salesman problem, complexity theory, and the P 
versus NP problem. Why do quiz-type games seem to repeat 
the same questions so often? This prompts a discussion of 
probability and the birthday paradox. In a similar manner, 
software developers’ attempts to rank game features by user 
satisfaction ratings lead to an account of voting theory and 
Arrow’s Impossibility Theorem.

W
or

ld
 S

ci
en

ti
fi

c,
 2

01
8,

 2
40

 p
ag

es

Pr
in

ce
to

n
, 2

01
7,

 2
64

 p
ag

es



© Marijn Heule

mathscinet.ams.org
MathSciNet® contains information on more 
than 3 million articles and books  and includes 
expert reviews, customizable author pro�les, 
and extensive citation information.

Authors
Customize your author pro�le today with your photo, 
email, and a link to your homepage.
Your profile also includes:

A share button to create a universal link to your pro�le page, letting you 
share your pro�le with subscribers and non-subscribers alike.

A link to your Mathematics Genealogy Project Pro�le—easily keep track 
of former students and advisors.

Linked word clouds showing your publication areas, co-authors, and 
most-cited publications—see the impact of your research and quickly 
locate related work.

A complete record of your MathSciNet review and publication activity 
—use it as a supplement to your university homepage, or as a quick 
reference when updating a CV.

An option for inputting your name in your native script or language.
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AMS 
BOOKSHELF

The AMS Book Program serves the mathematical community by publishing books that further mathematical research, awareness, 
education, and the profession while generating resources that support other Society programs and activities. As a professional society of 
mathematicians and one of the world’s leading publishers of mathematical literature, we publish books that meet the highest standards 
for their content and production. Visit bookstore.ams.org to explore the entire collection of AMS titles. 

The AMS Bookshelf is prepared bimonthly by AMS Acquisitions Specialist 
for MAA Press titles Stephen Kennedy. His email address is kennedy 
.maapress@ams.org.

Never a Dull Moment 
Hassler Whitney, Mathematics Pioneer 

Keith Kendig

As an undergraduate at Yale 
in the 1920s, Hassler Whitney 
took only one mathematics 
class, an advanced class in com-
plex variables. He was admitted 
to Harvard for graduate study 
in physics in 1930. Whereupon 
he realized with dismay that 
physicists had to remember stuff, 

which he was bad at. He switched to mathematics and 
began a lifelong pattern. He looked around for an easily 
stated problem upon which he could use his instinct for 
experimentation. He wanted a problem that would yield 
to devoted study of geometric examples. He found one in 
the four-color theorem of graph theory. He discovered a 
new characterization of planarity; a simple condition that 
guaranteed the existence of a Hamiltonian cycle; and some 
tricks for computing chromatic polynomials. It was enough 
for a PhD under G.D. Birkhoff.

Whitney’s extension theorems, his embedding theo-
rems, his work on singularities, and his (co-)invention of 
the cup product all followed a similar pattern. He would 
manipulate geometric examples until he found those that 
typified the behavior he was trying to understand. Then he 
would express the results for publication, carefully hiding 
all traces of the geometric inspiration.

Keith Kendig first met Whitney in the 1950s. With 
shared passions for music and geometry, the two became 
lifelong friends. As a result, Kendig became very familiar 
with Whitney’s mathematical thinking; that familiarity 
is on display here. He also learned Whitney family lore 
(Whitney’s grandfather Simon Newcomb was the fourth 
president of the AMS) and Whitney’s habits and hobbies: 
mountain climbing, mechanical tinkering, chamber music. 
This closeness makes for a very intimate—personally and 
mathematically—biography of a great mathematician.

Volterra Adventures 
Joel H. Shapiro

In his preface, Shapiro quotes 
Louis Auslander, “Mathematics is 
like a river. You just jump in...the 
current will take you where you 
need to go.” Shapiro chooses to 
jump in at the Volterra operator, 

 : ([0, ])  1([0, ]):

( )( ) = 
0
 ( ) .

He then follows a meandering, but natural, current 
through regions of functional analysis. First, we observe 
that the operator acts linearly on (0, ) and the natural 
linear algebra questions all make perfect sense in this 
infinite-dimensional setting. The essential idea commu-
nicated early on is that we can conceive of functions as 
points in these spaces and do analysis and algebra there. 
He converts the initial-value problem for a mass-spring 
system into an integral equation and notes that existence 
of a unique solution to the IVP is equivalent to invertibility 
of the derived linear operator.

So now we’re asking questions about kernels of oper-
ators and it’s just a short step to considering the Banach 
space of bounded operators between Banach spaces. Then a 
simple geometric series argument establishes the invertibil-
ity of the operator associated with a Volterra kernel. We’re 
led to convolution operators and, eventually, a proof of the 
Titchmarsh Convolution Theorem.

The goal from the beginning has been the Volterra In-
variant Subspace Theorem. The only invariant subspaces 
of  are exactly the spaces of functions identically zero on 
[0, ], as Shapiro says, just the “obvious” ones. 

Shapiro is a terrific guide carefully pointing out where 
we’re going, why the questions are natural, and how they 
relate to what the reader already knows. This book would 
make a strong independent study course for a motivated 
undergraduate, or a lovely preview for a graduate student.
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June/July Table of Contents

Meetings in this Issue

  2019  
September 14–15 Madison, Wisconsin p. 975
October 12–13 Binghamton, New York  p. 983
November 2–3 Gainesville, Florida p. 984
November 9–10 Riverside, California p. 985

  2020  
January 15–18 Denver, Colorado p. 987
March 13–15 Charlottesville, Virginia p. 987
March 21–22 Medford, Massachusetts p. 988
April 4–5 West Lafayette, Indiana p. 988
May 2–3 Fresno, California p. 989
September 12–13 El Paso, Texas p. 989
October 3–4 State College, Pennsylvania p. 989
October 10–11 Chattanooga, Tennessee  p. 990
October 24–25 Salt Lake City, Utah p. 990

  2021  
January 6–9 Washington, DC p. 990
July 5–9 Grenoble, France p. 990
July 19–23 Buenos Aires, Argentina p. 991
October 9–10 Omaha, Nebraska  p. 991

  2022  
January 5–8 Seattle, Washington p. 991 

  2023  
January 4–7 Boston, Massachusetts    p. 991

See www.ams.org/meetings for the  
most up-to-date information on the meetings and  

conferences that we offer.

The Meetings and Conferences section of the Notices gives 
information on all AMS meetings and conferences ap-
proved by press time for this issue. Please refer to the page 
numbers cited on this page for more detailed information 
on each event. 

Invited Speakers and Special Sessions are listed as soon 
as they are approved by the cognizant program committee; 
the codes listed are needed for electronic abstract sub-
mission. For some meetings the list may be incomplete. 
Information in this issue may be dated. 

The most up-to-date meeting and conference informa-
tion can be found online at: www.ams.org/meetings.

Important Information About AMS Meetings: Poten-
tial organizers, speakers, and hosts should refer to page 
127 in the January 2019 issue of the Notices for general 
information regarding participation in AMS meetings and 
conferences.

Abstracts: Speakers should submit abstracts on the 
easy-to-use interactive Web form. No knowledge of LATEX is 
necessary to submit an electronic form, although those who 
use LATEX may submit abstracts with such coding, and all 
math displays and similarly coded material (such as accent 
marks in text) must be typeset in LATEX. Visit www.ams.
org/cgi-bin/abstracts/abstract.pl. Questions 
about abstracts may be sent to abs-info@ams.org. Close 
attention should be paid to specified deadlines in this issue. 
Unfortunately, late abstracts cannot be accommodated.

Associate Secretaries of the AMS
Central Section: Georgia Benkart, University of Wiscon-
sin–Madison, Department of Mathematics, 480 Lincoln 
Drive, Madison, WI 53706-1388; email: benkart@math 
.wisc.edu; telephone: 608-263-4283.

Eastern Section: Steven H. Weintraub, Department of 
Mathematics, Lehigh University, Bethlehem, PA 18015-
3174; email: steve.weintraub@lehigh.edu; tele-
phone: 610-758-3717.

Southeastern Section: Brian D. Boe, Department of Math-
ematics, University of Georgia, 220 D W Brooks Drive, 
Athens, GA 30602-7403; email: brian@math.uga.edu; 
telephone: 706-542-2547.

Western Section: Michel L. Lapidus, Department of Math-
ematics, University of California, Surge Bldg., Riverside, 
CA 92521-0135; email: lapidus@math.ucr.edu; tele-
phone: 951-827-5910.

http://www.ams.org/cgi-bin/abstracts/abstract.pl
http://www.ams.org/cgi-bin/abstracts/abstract.pl
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of the AMS

MEETINGS & CONFERENCES

IMPORTANT information regarding meetings programs: AMS Sectional Meeting programs do not appear in the print 
version of the Notices. However, comprehensive and continually updated meeting and program information with links 
to the abstract for each talk can be found on the AMS website. See www.ams.org/meetings. 

Final programs for Sectional Meetings will be archived on the AMS website accessible from the stated URL.

Madison, Wisconsin
University of Wisconsin–Madison

September 14–15, 2019
Saturday – Sunday

Meeting #1150
Central Section
Associate secretary: Georgia Benkart

Announcement issue of Notices: June 2019
Program first available on AMS website: July 23, 2019
Issue of Abstracts: Volume 40, Issue 3

Deadlines
For organizers: Expired
For abstracts: July 16, 2019

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited Addresses
Nathan Dunfield, University of Illinois, Urbana–Champaign, Fun with finite covers of 3-manifolds: connections between 

topology, geometry, and arithmetic.
Teena Gerhardt, Michigan State University, Invariants of rings via equivariant homotopy.
Lauren Williams, University of California, Berkeley, Title to be announced (Erdő s Memorial Lecture).

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at www.ams.org/cgi-bin/abstracts/abstract.pl.

Algebraic and Geometric Combinatorics (Code: SS 12A), Benjamin Braun, University of Kentucky, Marie Meyer, Lewis 
University, and McCabe Olsen, Ohio State University.

Analysis and Probability on Metric Spaces and Fractals (Code: SS 10A), Guy C. David, Ball State University, and John 
Dever, Bowling Green State University.

Applications of Algebra and Geometry (Code: SS 38A), Shamgar Gurevich and Jose Israel Rodriguez, University of 
Wisconsin–Madison.

Arithmetic of Shimura Varieties (Code: SS 26A), Chao Li, Columbia University, and Solly Parenti and Tonghai Yang, 
University of Wisconsin–Madison.

Association Schemes and Related Topics—in Celebration of J.D.H. Smith’s 70th Birthday (Code: SS 8A), Kenneth W. Johnson, 
Penn State University Abington, and Sung Y. Song, Iowa State University.
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Automorphic Forms and L-Functions (Code: SS 16A), Simon Marshall and Ruixiang Zhang, University of  Wisconsin–
Madison.

Categorical Gromov-Witten Invariants and Mirror Symmetry (Code: SS 42A), Andrei Caldararu, University of  Wiscon-
sin–Madison, and Junwu Tu, University of Missouri–Columbia and Shanghai Tech University.

Classical and Geophysical Fluid Dynamics: Modeling, Reduction and Simulation (Code: SS 17A), Nan Chen, University of 
Wisconsin–Madison, and Honghu Liu, Virginia Tech University.

Combinatorial Algebraic Geometry (Code: SS 21A), Juliette Bruce and Daniel Erman, University of Wisconsin–Madison, 
Chris Eur, University of California Berkeley, and Lily Silverstein, University of California Davis.

Commutative Algebra: in Celebration of the 150th Birthday of Roger and Sylvia Wiegand (Code: SS 22A), Nicholas Baeth, 
Franklin & Marshall College, and Graham Leuschke, Syracuse University.

Computability Theory in honor of Steffen Lempp’s 60th birthday (Code: SS 6A), Joseph S. Miller, Noah D. Schweber, and 
Mariya I. Soskova, University of Wisconsin–Madison.

Connecting Network Structure and Behavior of Biological Interaction Systems (Code: SS 31A), David Anderson, Gheorghe 
Craciun, and Abhishek Deshpande, University of Wisconsin–Madison.

Connections between Noncommutative Algebra and Algebraic Geometry (Code: SS 15A), Jason Gaddis and Dennis Keeler, 
Miami University.

Extremal Graph Theory (Code: SS 14A), Józef Balogh, University of Illinois, and Bernard Lidický , Iowa State University.
Floer Homology in Dimensions 3 and 4 (Code: SS 29A), Jianfeng Lin, UC San Diego, and Christopher Scaduto, Uni-

versity of Miami.
Fully Nonlinear Elliptic and Parabolic Partial Differential Equations, Local and Nonlocal (Code: SS 25A), Fernando Charro, 

Wayne State University, Stefania Patrizi, The University of Texas at Austin, and Peiyong Wang, Wayne State University.
Functional Analysis and Its Applications (Code: SS 30A), Clement Boateng Ampadu, Boston, MA, and Waleed Al-Rawash-

deh, Montana Tech University.
Geometry and Topology in Arithmetic (Code: SS 41A), Rachel Davis, University of Wisconsin–Madison.
Geometry and Topology of Singularities (Code: SS 13A), Laurentiu Maxim, University of Wisconsin–Madison.
Hall Algebras, Cluster Algebras and Representation Theory (Code: SS 27A), Xueqing Chen, UW-Whitewater, and Yiqiang 

Li, SUNY at Buffalo.
Hodge Theory in Honor of Donu Arapura’s 60th Birthday (Code: SS 11A), Ajneet Dhillon, University of Western Ontario, 

Kenji Matsuki and Deepam Patel, Purdue University, and Botong Wang, University of Wisconsin–Madison.
Homological and Characteristic p > 0 Methods in Commutative Algebra (Code: SS 1A), Michael Brown, University of Wis-

consin–Madison, and Eric Canton, University of Michigan.
Homotopy Theory (Code: SS 34A), Gabe Angelini-Knoll and Teena Gerhardt, Michigan State University, and Bertrand 

Guillou, University of Kentucky.
Large Scale Properties of Interacting Stochastic Systems (Code: SS 33A), Timo Seppalainen, Hao Shen, and Benedek Valko, 

University of Wisconsin–Madison.
Lie Representation Theory (Code: SS 19A), Mark Colarusso, University of South Alabama, Michael Lau, Université Laval, 

and Matt Ondrus, Weber State University.
Model Theory (Code: SS 5A), Uri Andrews and Omer Mermelstein, University of Wisconsin–Madison.
Nonlinear Dispersive Equations and Water Waves (Code: SS 37A), Mihaela Ifrim, University of Wisconsin–Madison, and 

Daniel Tataru, University of California, Berkeley.
Number Theory and Cryptography (Code: SS 40A), Eric Bach, University of Wisconsin–Madison, and Jon Sorenson, 

Butler University.
Quasigroups and Loops—in honor of J.D.H. Smith’s 70th birthday (Code: SS 35A), J.D. Phillips, Northern Michigan Uni-

versity, and Petr Vojtechovsky, University of Denver.
Recent Developments in Harmonic Analysis (Code: SS 3A), Theresa Anderson, Purdue University, and Joris Roos, Uni-

versity of Wisconsin–Madison.
Recent Trends in the Mathematics of Data (Code: SS 39A), Sebastien Roch, University of Wisconsin–Madison, David 

Sivakoff, Ohio State University, and Joseph Watkins, University of Arizona.
Recent Work in the Philosophy of Mathematics (Code: SS 4A), Thomas Drucker, University of Wisconsin–Whitewater, 

and Dan Sloughter, Furman University.
Relations Between the History and Pedagogy of Mathematics (Code: SS 32A), Emily Redman, University of Massachusetts, 

Amherst, Brit Shields, University of Pennsylvania, and Rebecca Vinsonhaler, University of Texas, Austin.
Several Complex Variables (Code: SS 7A), Hanlong Fang and Xianghong Gong, University of Wisconsin–Madison.
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Special Functions and Orthogonal Polynomials (Code: SS 2A), Sarah Post, University of Hawai‘i at Manoa, and Paul Ter-
williger, University of Wisconsin–Madison.

Stochastic Partial Differential Equations and Related Fields (Code: SS 28A), Igor Cialenco, Illinois Institute of Technology, 
Yu Gu, Carnegie Mellon University, and Hyun-Jung Kim, Illinois Institute of Technology.

Supergeometry, Poisson Brackets, and Homotopy Structures (Code: SS 36A), Ekaterina Shemyakova, University of Toledo, 
and Theodore Voronov, University of Manchester.

Topics in Graph Theory and Combinatorics (Code: SS 20A), Songling Shan and Papa Sissokho, Illinois State University.
Topology and Descriptive Set Theory (Code: SS 18A), Tetsuya Ishiu and Paul B. Larson, Miami University.
Uncertainty Quantification Strategies for Physics Applications (Code: SS 9A), Qin Li, University of Wisconsin–Madison, 

and Tulin Kaman, University of Arkansas.
Wave Phenomena in Fluids and Relativity (Code: SS 24A), Sohrab Shahshahani, University of Massachusetts, and Willie 

W.Y. Wong, Michigan State University.
Zero Forcing, Propagation, and Throttling (Code: SS 23A), Josh Carlson, Iowa State University, and Nathan Warnberg, 

University of Wisconsin–La Crosse.

Accommodations
Participants should make their own arrangements directly with the hotel of their choice. Special discounted rates were 
negotiated with the hotels listed below. Rates quoted do not include the Wisconsin state hotel tax (5.5%), city tax (10%), 
and other hotel fees. Participants must state that they are with the American Mathematical Society’s (AMS) Fall Central 
Sectional Meeting to receive the discounted rate. The AMS is not responsible for rate changes or for the quality of the 
accommodations. Hotels have varying cancellation and early checkout penalties; be sure to ask for details.

AC Hotel Madison Downtown, 1 North Webster Street, Madison, WI 53703; (608) 286-1337; www.achotelmadison 
.com. Rates are US$145 per night for a standard room. Amenities include AC Kitchen serving a fresh European-influenced 
breakfast, Eno Vino Wine Bar and Bistro located on the ninth and tenth floors with panoramic views of Madison, and 
AC Lounge serving espresso, tapas, and cocktails. Valet parking is available for US$20 per car a night. The parking rate is 
subject to change and the parking fee in effect during the dates of your stay will be charged. This property is located about 
a five-minute drive from campus. Cancellation and early check-out policies vary and penalties exist at this property; be 
sure to check when you make your reservation. The deadline for reservations at this rate is noon local time on August 
14, 2019.

Best Western Plus Inn Towner, 2424 University Avenue, Madison, WI 53726; (608) 233-8778. Rates are US$119 per 
night for a room with one king or two queen beds. Guests should visit www.inntowner.com/reservations to make a 
reservation online. In the ‘Group Code’ field on the left-hand side of the page enter AMS2019 and hit ‘enter.’ Amenities 
include complimentary hot breakfast buffet, complimentary airport shuttle, swimming pool/whirlpool, business center, 
fitness center, and free self-parking. Cancellation and early check-out policies vary and penalties exist at this property; 
be sure to check when you make your reservation. This property is located about a six-minute drive from campus.  The 
deadline for reservations at this rate is by August 14, 2019.

Best Western Premier Park Hotel, 22 S. Carroll Street, Madison, WI 53703; (608) 285-8000. Rates are US$189 per 
night for a traditional room with one or two beds. Guests should visit https://www.bestwestern.com/en_US/book 
/hotel-rooms.50061.html?groupId=W11NQ1A1 to make a reservation online. Amenities include free shuttle service 
to and from the airport, free Wi-Fi in all guest rooms and hotel common areas, refrigerators and microwaves in all guest 
rooms, on-site restaurant and lounge, and modern fitness center. The valet parking rate is US$15 a day for one vehicle 
per room. The parking rate is subject to change and the parking fee in effect during the dates of your stay will be charged. 
This property is located about an eight-minute drive from the campus. Cancellation and early check-out policies vary 
and penalties exist at this property; be sure to check when you make your reservation. The deadline for reservations at 
this rate is August 13, 2019. 

Doubletree by Hilton Hotel Madison, 525 W. Johnson Street, Madison, WI 53703; (608) 251-5511. Rates are US$159 
per night for a single or double bed room. Guests should visit https://doubletree.hilton.com/en/dt/groups 
/personalized/M/MSNDTDT-AMS-20190913/index.jhtml?WT.mc_id=POG to make a reservation online or call the 
hotel at (608) 251-5511 and reference code ‘AMS.’ Amenities include complimentary parking, complimentary airport 
and downtown shuttle service, complimentary Wi-Fi, twenty-four-hour fitness center, business center, on-site restaurant, 
Starbucks Café, and microwaves and refrigerators in every room. This property is located about a five-minute drive from 
campus. Cancellation and early check-out policies vary and penalties exist at this property; be sure to check when you 
make your reservation. The deadline for reservations at this rate is August 14, 2019.
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Graduate Madison, 601 Langdon Street, Madison, WI 53703; (608) 257-4391. Rates are US$169 per night for a 
standard room. Guests should visit https://gc.synxis.com/rez.aspx?Hotel=77206&Chain=21643&arrive=9/13 
/2019&depart=9/16/2019&adult=1&child=0&group=190913AMER to book a reservation online. Amenities include 
complimentary bike rentals, complimentary shuttle service, fitness center, lobby-level café, and rooftop hangout. Current 
valet parking rates include unlimited in and out privileges for US$25 per day. The parking rate is subject to change and 
the parking fee in effect during the dates of your stay will be charged. This property is located about a block from campus. 
Cancellation and early check-out policies vary and penalties exist at this property; be sure to check when you make your 
reservation. The deadline for reservations at this rate is August 13, 2019.

 Hilton Madison Monona Terrace, 9 E. Wilson Street, Madison, WI 53703; (608) 255-5100; https://www3.hilton 
.com/en/hotels/wisconsin/hilton-madison-monona-terrace-MSNMHHF/index.html. Rates are US$179 per night 
for a standard room. Amenities include Pavilion Pantry Market, bar area, gift shop, guest activity/recreation desk, laundry/
valet service, local area transportation, lounge, on-site convenience store, and room service. The current on-site self-parking 
rate is US$17 per day and the current valet parking rate is US$20 per day. The parking rates are subject to change and the 
parking fee in effect during the dates of your stay will be charged. This property is located about an eight-minute drive 
from campus. Cancellation and early check-out policies vary and penalties exist at this property; be sure to check when 
you make your reservation. The deadline for reservations at this rate is August 14, 2019.

Lowell Center, 610 Langdon Street, Madison, WI 53703; (608) 256-2621; https://pyle.wisc.edu/hotel 
-accommodations. Rates are US$149 based on double occupancy per night in a deluxe room. More than two guests 
will be US$12 per person per night. To book online visit bit.ly/mathassociation. Amenities include complimentary 
Wi-Fi, indoor swimming pool, sauna and fitness rooms, and complimentary breakfast buffet served daily in the dining 
room. On-site parking is US$10 a day for overnight guests and complimentary parking is available nearby. The parking 
rate is subject to change and the parking fee in effect during the dates of your stay will be charged. This property is lo-
cated about a fifteen-minute walk from meeting space on campus. Cancellation and early check-out policies vary and 
penalties exist at this property; be sure to check when you make your reservation. The deadline for reservations at this 
rate is August 13, 2019.

Sheraton Madison, 706 John Nolen Drive, Madison, WI 53713; (608) 251-2300. Rates are US$139 for a stan-
dard room. Guests should visit https://www.marriott.com/event-reservations/reservation-link.mi?id 
=1553525302604&key=GRP&app=resvlink to make a reservation online. Amenities include complimentary shuttle 
service to and from the Dane County Regional Airport and downtown Madison area, free Wi-Fi available in the lobby 
business center and throughout the hotel, twenty-four-hour fitness center, free self-parking, indoor pool, and hot tub. 
This property is located about an eleven-minute drive from campus. Cancellation and early check-out policies vary and 
penalties exist at this property; be sure to check when you make your reservation. The deadline for reservations at this 
rate is 5:00pm local time on August 14, 2019.

The Edgewater, 1001 Wisconsin Avenue, Madison, WI 53703; (608) 535-8200; https://www.theedgewater.com. 
Rates are US$199 for a king room. A one-night deposit of room, tax, and resort fee is required to secure a reservation. All 
guest rooms will be assessed a nightly resort fee at the current rate of US$18 per night. The resort fee includes: wireless 
and wired Internet, local calls, transportation to and from Dane County Airport (based upon availability), transportation 
within a two-mile radius of the hotel (based upon availability), two bottles of water in your guest room per day, business 
center, The Edgewater Fitness Club, and access to The Edgewater Spa relaxation pool and steam room. This property is 
located about a five-minute drive from campus. Overnight parking rates are US$25 for valet and US$18 for self-parking. 
Both overnight options include unlimited in and out privileges. The parking rate is subject to change and the parking fee 
in effect during the dates of your stay will be charged. Cancellation and early check-out policies vary and penalties exist at 
this property; be sure to check when you make your reservation. The deadline for reservations at this rate is August 1, 2019.

The Madison Concourse Hotel and Governor’s Club, 1 W. Dayton Street, Madison, WI 53703; (608) 257-6000; www 
.concoursehotel.com. Rates are US$189 for a concourse premier level guest room. To book online visit https:// 
reservations.travelclick.com/6388?groupID=2515736. Amenities include complimentary wireless Internet access, 
compact refrigerator, weekday newspaper, Starbucks, and in-room dining. The current parking rate for overnight guests is 
US$15. Additional parking facilities are located within one block of the hotel. The parking rate is subject to change and 
the parking fee in effect during the dates of your stay will be charged. This property is located about a five-minute drive 
from campus. Cancellation and early check-out policies vary and penalties exist at this property; be sure to check when 
you make your reservation. The deadline for reservations at this rate is August 18, 2019.
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Housing  Warning
Please beware of aggressive housing bureaus that target potential attendees of a meeting. They are sometimes called “room 
poachers” or “room-block pirates” and these companies generally position themselves as a meeting's housing bureau, con-
vincing attendees to unknowingly book outside the official room block. They call people who they think will more likely 
than not attend a meeting and lure them with room rates that are significantly less than the published group rate—for a 
limited time only. People who find this offer tempting may hand over their credit card data, believing they have scored a 
great rate and their housing is a done deal. Unfortunately, this often turns out to be the start of a long, costly nightmare. 

Note that some of these room poachers create fake websites on which they represent themselves as the organizers of 
the meeting and include links to book rooms, etc. The only official website for this meeting is https://www.ams.org 
and one that has the official AMS logo.

These housing bureaus are not affiliated with the American Mathematical Society or any of its meetings, in any way. 
The AMS would never call anyone to solicit reservations for a meeting. The only way to book a room at a rate negotiated 
for an AMS Sectional Meeting is via a listing on AMS Sectional Meetings pages or Notices of the AMS. The AMS cannot be 
responsible for any damages incurred as a result of hotel bookings made with unofficial housing bureaus.

Food Services
On Campus: Please visit https://www.housing.wisc.edu/dining for further details on dining options. The most up-
to-date list of university restaurants hours is located at https://www.housing.wisc.edu/dining/locations.
 • Carson’s Market, main level of Carson Gulley Center; open 12:00 pm–8:00 pm on Saturdays and Sundays; offers 

pizza, deli sandwiches, ethnic entrées, and baked goods. 
 • Gordon Avenue Market, Gordon Dining & Event Center; open 9:00 am–9:00 pm on Saturdays and Sundays; serves 

home-style comfort foods, coffee, ice cream, fresh baked goods, daily pasta selections, pizza, burgers, and ethnic entrées.
Off Campus: During fall you'll find farm-to-table comfort foods on many menus. For an interactive directory of down-
town restaurants and attractions visit https://www.visitmadison.com/restaurants.

Some options for coffee include:
 • Aldo’s Cafe, 330 N. Orchard Street, Madison; (608) 204-3943; https://aldoscafemadison.com; café and deli fea-

turing locally roasted coffee from Just Coffee Cooperative.
 • Ancora Coffee & Tea, 107 King Street, Madison; (608) 255-0285; https://ancoracoffee.com; artisan roasted cof-

fees, delicious soups and sandwiches.
 • Poindexter Coffee, 601 Langdon Street, Madison; (608) 257-4391; https://www.graduatehotels.com/madison 
/restaurant/poindexter-coffee; located in the lobby of the Graduate Madison, serving coffee, fresh juices, and 
snacks on the fly.
Some options for downtown dining include:

 • Avenue Club and the Bubble Up Bar, 1128 E. Washington Avenue, Madison; (608) 257-6877; https://avenueclub 
madison.com; mid century modern ambiance, serving cocktails and casual dining in an upbeat atmosphere.

 • Badgerland Bar & Grill, 525 W. Johnson Street, Madison; (608) 251-5511; badgerlandbarandgrill.com; located 
inside the DoubleTree by Hilton Madison Hotel with many large TV screens.

 • Bassett Street Brunch Club, 440 W. Johnson Street, Madison; (608) 467-5051; https://brunchclubmadison.com; 
serving playful versions of comfort food, breakfast classics, and unique cocktails in a modern atmosphere.

 • BelAir Cantina Capitol Square, 111 Martin Luther King Jr. Boulevard, Madison; (608) 620-6040; https:// 
belaircantina.com; serving fresh tacos, burritos, and salsas. 

 • The Brass Ring, 701 E. Washington Avenue, Madison; (608) 256-9359; https://thebrassringmadison.com; 
serving craft beers and upscale pub food within a historic venue including billiards tables, shuffleboard, or live trivia.

 • Camp Trippalindee, 601 Langdon Street, Fl. 7, Madison; (608) 257-4391; https://www.graduatehotels.com 
/madison/restaurant/camp-trippalindee; located in the Graduate Madison and inspired by 1980s camp movies, 
this fun and easy restaurant serves tacos, double stacked burgers, and craft beers.

Registration and Meeting Information
Advance Registration: Advance registration for this meeting opens on July 22, 2019. Advance registration fees will be 
US$75 for AMS members, US$110 for nonmembers, and US$15 for students, unemployed mathematicians, and emeritus 
members. Participants may cancel registrations made in advance by emailing mmsb@ams.org. The deadline to cancel is 
the first day of the meeting.

On-site Information and Registration: The registration desk, AMS book exhibit, and coffee service will be located 
in Van Hise Hall. The Invited Address lectures, including the Erdős Lecture, will be in Ingraham Hall, room 10. Special 
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Sessions and Contributed Paper Sessions will take place in the nearby classrooms in Van Hise Hall and Ingraham Hall. 
Please look for additional information about specific session room locations on the web and in the printed program. For 
further information on building locations, a campus map is available at map.wisc.edu/s/dna0uzcn.

The registration desk will be open on Saturday, September 14, 7:30 am–4:00 pm and Sunday, September 15, 8:00 
am–12:00 pm. The same fees listed above apply for on-site registration and are payable with cash, check, or credit card.

Other  Activities
Book Sales: Stop by the on-site AMS bookstore to review the newest publications and take advantage of exhibit discounts 
and free shipping on all on-site orders! AMS members receive 40% off list price. Nonmembers receive a 25% discount. 
AMS Members receive additional discounts on books purchased at meetings, subscriptions to Notices and Bulletin, dis-
counted registration for world-class meetings and conferences, and more!

Complimentary coffee will be served courtesy of the AMS Membership Department.
AMS Editorial Activity: An acquisitions editor from the AMS book program will be present to speak with prospective 

authors. If you have a book project that you wish to discuss with the AMS, please stop by the book exhibit.

Special Needs
It is the goal of the AMS to ensure that its conferences are accessible to all, regardless of disability. The AMS will strive, 
unless it is not practicable, to choose venues that are fully accessible to the physically handicapped.

If special needs accommodations are necessary in order for you to participate in an AMS Sectional Meeting, please 
communicate your needs in advance to the AMS Meetings Department by:

 • Registering early for the meeting
 • Checking the appropriate box on the registration form, and
 • Sending an email request to the AMS Meetings Department at mmsb@ams.org or meet@ams.org.

The closest gender inclusive restroom is in the Gordon Dining and Event Center, located on the first floor on the right 
in between other restrooms. This restroom is wheelchair accessible. It is labeled as "Restroom."

AMS Policy on a  Welcoming Environment
The AMS strives to ensure that participants in its activities enjoy a welcoming environment. In all its activities, the AMS 
seeks to foster an atmosphere that encourages the free expression and exchange of ideas. The AMS supports equality of 
opportunity and treatment for all participants, regardless of gender, gender identity or expression, race, color, national or 
ethnic origin, religion or religious belief, age, marital status, sexual orientation, disabilities, or veteran status.

Local Information and Maps
This meeting will take place on the campus of The University of Wisconsin–Madison. A campus map can be found at 
map.wisc.edu/s/dna0uzcn. Information about The University of Wisconsin–Madison Mathematics Department can be 
found at www.math.wisc.edu. Please visit the university website at https://www.wisc.edu for additional information 
on the campus.

Please watch the AMS website at www.ams.org/meetings/sectional/sectional.html for additional information 
on this meeting. 

Parking
There are over twenty parking lots on the University of Wisconsin–Madison campus that allow free parking all day Sat-
urday and Sunday. A complete list of lot hours of control can be found on the lot locations and hours page at https:// 
transportation.wisc.edu/parking-lots/locations-and-hours/#oncampus.

Suggested free parking lots are Lot 62 located at 525 Easterday Lane and Lot 34 located at 1480 Tripp Circle. These lots 
include a reasonable walk to the meeting space. Visit http://map.wisc.edu/ for an interactive campus map including 
parking lots.

Paid visitor parking is available in the Nancy Nicholas Garage (Lot 27) located at 1330 Linden Drive and Observatory 
Drive Ramp (Lot 36) located at 1645 Observatory Drive. These lots are controlled at all times, 24/7. This is a “pay on exit” 
system where visitors pull a ticket upon entry and then pay by credit card upon exit. The daytime hourly visitor parking rate 
at time of printing is US$1 per thirty minutes for the first three hours, US$1 per hour thereafter, and US$15 daily maximum. 
Please note campus parking rates are subject to change. Inquiries about visitor parking can be sent to visitorparking 
@fpm.wisc.edu.
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Travel
This meeting will take place on the main campus of University of Wisconsin–Madison located in Madison, Wisconsin.
By Air: 
Dane County Regional Airport (airport code MSN) is located minutes from downtown Madison and is the most con-
venient air travel choice. Please visit the airport website for a list of airlines and lists of cities with daily direct flights; 
www.msnairport.com.

There are several options available for transportation to and from the airport. 
On-airport transportation network companies (ride share) are located between doors #3 and #4 on roadway median. 

Taxis are located at the north end of baggage claim at door #7. For a list of taxi companies visit www.msnairport.com 
/parking_transportation/ground_transportation.

Many area hotels provide courtesy vehicles to handle your transportation to or from the Dane County Regional Airport. 
You may use the courtesy phone located at the hotel board between Bag Claims 1 and 2, or call your hotel directly. For a 
list of properties visit www.msnairport.com/parking_transportation/ground_transportation.

On-airport rental car booths are located in the baggage claim area and outside door #6. For phone numbers and further 
information visit www.msnairport.com/parking_transportation/car_rental.

Madison Metro Transit System Route 20 runs between the North Transfer Point and East Towne Mall via the airport 
every thirty minutes during weekdays, and hourly weeknights, weekends, and holidays. For service from the airport to 
downtown Madison or the University of Wisconsin–Madison campus area, passengers should board buses reading “Route 
20—North Transfer Point.” Buses reading “Route 20—East Towne Mall” would carry passengers to points east of the air-
port, including the MATC campus area, and eventually, East Towne Mall. For more information call the Madison Metro 
Transit System at (608) 266-4466 or visit www.mymetrobus.com.
By Bus: 
Long-distance intercity bus services providing scheduled service to Madison include Badger Coach, Greyhound, Jefferson 
Lines, Megabus, and Van Galder bus lines. There are daily connections to Milwaukee and Chicago airports, and Amtrak 
in Chicago. Many buses stop at Memorial Union. Visit https://wisconsindot.gov/Pages/travel/pub-transit 
/bus-service.aspx for more details.
By Car:
From Milwaukee (1½ hours): From the East via Interstate 94: As you approach the city, follow Highway 30 into Madison. 
Take the “State Capitol” exit off of Highway 30 and you will then be on East Washington Avenue, which leads directly 
to the Capitol Square.

From Dubuque (1¾ hour): From the Southwest via Highways 18 and 151: Take the appropriate exit to Highway 151 
going north toward the State Capitol. In Madison, Highway 151 will become South Park Street. Follow Park Street to its 
conclusion to reach University of Wisconsin–Madison. Or, from Park, take a right onto Johnson Street to reach the State 
Street/Capitol Square area.

From Chicago (2½ hours): From the Southeast via Interstate 90: Take the Hwy 12/18 (Beltline) exit to Madison. If 
you are going to the Alliant Energy Center or Monona Terrace, exit at John Nolen Drive. If you are going to University of 
Wisconsin–Madison, exit at Park Street and follow north.

From Green Bay (2½ hours): From the Northeast via Highway 151: Follow Highway 151 toward the State Capitol. You 
will then be on East Washington Avenue, which leads directly to the Capitol Square.

From Minneapolis (4½ hours): From the North via Interstate 90/94: Take I-90/94 to the Highway 151 exit (Southwest) 
going toward the State Capitol. You will then be on East Washington Avenue, which leads directly to the Capitol Square.

Car Rental: Hertz is the official car rental company for the meeting. To make a reservation accessing our special 
meeting rates online at www.hertz.com, click on the box “I have a discount,” and type in our convention number (CV): 
CV#04N30009. You can also call Hertz directly at 800-654-2240 (US and Canada) or 1-405-749-4434 (other countries).  
At the time of reservation, the meeting rates will be automatically compared to other Hertz rates and you will be quoted 
the best comparable rate available.

For directions to campus, inquire at your rental car counter.

Local  Transportation
Campus Bus Routes: The University of Wisconsin–Madison campus bus routes are fare-free for all riders. All campus bus 
stops with real-time pick-up information can be found on the interactive campus map at www.map.wisc.edu. Routes 80 
and 84 provide daytime service. Routes 80, 81, and 82 provide nighttime service. The service calendar for Routes 80 and 
84 is posted at www.cityofmadison.com/metro/routes-schedules/uw-service-calendar.
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The closest westbound bus stop to the meeting is on the 1200 block of Linden Drive. The closest eastbound bus stop 
to the meeting is across the street from Van Hise Hall. This stop serves routes 11, 28, 38, 44, 80, 84. Visit the interactive 
campus map at map.wisc.edu for bus stop locations on campus.

When riding the campus bus, be sure to remain behind the yellow standee line at the front of the bus for safety. Stand-
ing beyond this line obscures the driver’s view and can lead to crashes. All campus buses are kneeling buses, capable of 
transporting wheelchairs and other mobility equipment.

Madison Metro City Routes: Madison Metro routes run within campus and throughout the city of Madison. Select 
routes also run to nearby areas, such as Fitchburg, Middleton, and Monona. For more information, visit the Madison 
Metro website at www.cityofmadison.com/metro or call (608) 266-4466.

For routes and schedules use the online Ride Guide at www.cityofmadison.com/metro/routes-schedules or pick 
up a hard copy on any Madison Metro bus or at any Transportation Services office.

Other options: Other local transportation options include Uber; www.uber.com and Lyft; www.lyft.com.

Weather
Madison averages a daily maximum temperature for September of 66°F, rarely falling below 54°F or exceeding 86°F. 
The daily low temperature is 58°F to 47°F, rarely falling below 36°F or exceeding 68°F. The month of September in 
Madison experiences gradually increasing cloud cover, with overcast or mostly cloudy weather. Attendees are advised to 
dress in layers.

Social Networking
Attendees and speakers are encouraged to use the hashtag #AMSmtg to tweet about the meeting.

Information for International Participants
Visa regulations are continually changing for travel to the United States. Visa applications may take from three to four 
months to process and require a personal interview, as well as specific personal information. International participants 
should view the important information about traveling to the US found at https://travel.state.gov/content 
/travel/en.html. If you need a preliminary conference invitation in order to secure a visa, please send your request to 
cro@ams.org.

If you discover you do need a visa, the National Academies website (see above) provides these tips for successful visa 
applications:

* Visa applicants are expected to provide evidence that they are intending to return to their country of residence. 
Therefore, applicants should provide proof of “binding” or sufficient ties to their home country or permanent residence 
abroad. This may include documentation of the following:

 • Family ties in home country or country of legal permanent residence
 • Property ownership
 • Bank accounts
 • Employment contract or statement from employer stating that the position will continue when the employee 

returns;
* Visa applications are more likely to be successful if done in a visitor’s home country than in a third country;
* Applicants should present their entire trip itinerary, including travel to any countries other than the United States, 

at the time of their visa application;
* Include a letter of invitation from the meeting organizer or the US host, specifying the subject, location and dates 

of the activity, and how travel and local expenses will be covered;
* If travel plans will depend on early approval of the visa application, specify this at the time of the application;
* Provide proof of professional scientific and/or educational status (students should provide a university transcript). 
This list is not to be considered complete. Please visit the websites above for the most up-to-date information.
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Binghamton, New York
Binghamton University

October 12–13, 2019
Saturday – Sunday

Meeting #1151
Eastern Section
Associate secretary: Steven H. Weintraub

Announcement issue of Notices: August 2019
Program first available on AMS website: August 29, 2019
Issue of Abstracts: Volume 40, Issue 3

Deadlines
For organizers: Expired
For abstracts: August 20, 2019

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited  Addresses
Richard Kenyon, Brown University, What polygons can be tiled with squares?
Tony Pantev, University of Pennsylvania, Geometry and topology of wild character varieties.
Lai-Sang Young, New York University, A dynamical model for controlling of infectious diseases via isolation.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at www.ams.org/cgi-bin/abstracts/abstract.pl.

Algebraic Combinatorics on the Occasion of the 75th Birthday of Thomas Zaslavsky (Code: SS 13A), Nathan Reff, State 
University of New York, The College at Brockport, and Lucas Rusnak, Texas State University.

Analysis and Applications of Deterministic and Stochastic Evolution Equations (Code: SS 10A), Vincent Martinez, City Uni-
versity of New York, Hunter College, and Kazuo Yamazaki, University of Rochester.

Commutative Algebra (Code: SS 9A), Bethany Kubik, University of Minnesota, Duluth, and Denise Rangel Tracy, 
Central Connecticut State University.

Effective and Quantitative Advances in Low Dimensional Topology and Geometric Group Theory (Code: SS 3A), Jenya Sapir, 
Binghamton University, and Edgar Bering, Temple University.

Group Actions on Manifolds and Related Spaces (Code: SS 12A), Thomas Koberda, University of Virginia, Yash Lodha, École 
Polytechnique Féderalé de Lausanne, Switzerland, and Matt Zaremsky, University at Albany, State University of New York.

Groups and Their Representations (Code: SS 1A), Jamison Barsotti and Rob Carman, College of William and Mary, and 
Daniel Rossi and Hung P. Tong-Viet, Binghamton University.

Homotopy Theory and Algebraic K-theory (Code: SS 5A), Cary Malkiewich, Binghamton University, Marco Varisco, Uni-
versity at Albany, and Inna Zakharevich, Cornell University.

Invariants of Knots, Links, and Low-dimensional Manifolds (Code: SS 15A), Moshe Cohen, Vassar College, Adam Giam-
brone, Elmira College, Adam Lowrance, Vassar College, and Jonathan Williams, Binghamton University.

Operator Theory and Complex Analysis (Code: SS 17A), Gabriel T. Prajitura and Ruhan Zhao, College at Brockport, SUNY.
Oriented Matroids and Related Topics (Code: SS 7A), Laura Anderson, Michael Dobbins, and Benjamin Schroeter, 

Binghamton University.
Percolation, Random Graphs, and Random Geometry (Code: SS 11A), Shishendu Chatterjee and Jack Hanson, City Uni-

versity of New York, City College.
Recent Trends in Geometrical PDEs and Mathematical Physics (Code: SS 6A), Xiangjin Xu and Gang Zhou, Binghamton 

University.
Representations of Lie Algebras, Vertex Operators, and Related Topics (Code: SS 2A), Alex Feingold, Binghamton University, 

and Christopher Sadowski, Ursinus College.
Statistics (Code: SS 14A), Sanjeena Dang, Aleksey Polunchenko, Xingye Qiao, and Anton Schick, Binghamton Uni-

versity.
Stochastic Evolution of Discrete Structures (Code: SS 8A), Vladislav Kargin, Binghamton University.
What’s New in Group Theory? (Code: SS 4A), Luise-Charlotte Kappe, Binghamton University, and Justin Lynd and 

Arturo Magidin, University of Louisiana at Lafayette.
p-adic Analysis in Number Theory (Code: SS 16A), C. Douglas Haessig, University of Rochester, and Rufei Ren.
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Gainesville, Florida
University of Florida

November 2–3, 2019
Saturday – Sunday

Meeting #1152
Southeastern Section
Associate secretary: Brian D. Boe

Announcement issue of Notices: September 2019
Program first available on AMS website: September 19, 2019
Issue of Abstracts: Volume 40, Issue 4

Deadlines
For organizers: Expired
For abstracts: September 10, 2019

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited  Addresses
Jonathan Mattingly, Duke University, Title to be announced.
Isabella Novik, University of Washington, Title to be announced.
Eduardo Teixeira, University of Central Florida, Geometric regularity theory for diffusive processes and their intrinsic free 

boundaries.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at www.ams.org/cgi-bin/abstracts/abstract.pl.

Čech-Stone Compactification of Semigroups: Algebra, Topology, Dynamics, and Combinatorics (Code: SS 17A), Dana Bartošová 
and Jindř ich Zapletal, University of Florida.

Algebras, Analysis and Physics (Code: SS 6A), Craig A. Nolder, Florida State University, Carmen Judith Vanegas Espi-
noza, Technical University of Manabi (Ecuador), and Soren Krausshar, Universitat Erfurt (Germany).

Analysis of Geometric and Evolutionary PDEs (Code: SS 16A), Yi Hu, Yongki Lee, Yuanzhen Shao, and Shijun Zheng, 
Georgia Southern University.

Applications of Differential Equations in Mathematical Biology (Code: SS 25A), Nehal Shukla, Columbus State University.
Applied Topology: Theory and Applications (Code: SS 12A), Peter Bubenik, University of Florida, and Nataša Jonoska, 

University of South Florida.
Combinatorial Lie Theory (Code: SS 3A), Erik Insko, Florida Gulf Coast University, Martha Precup, Washington Uni-

versity in St. Louis, and Edward Richmond, Oklahoma State University.
Crystallographic and Highly Symmetric Structures (Code: SS 15A), Milé Krajč evski and Gregory McColm, University of 

South Florida.
Effective Equations of Quantum Physics (Code: SS 18A), Israel Michael Sigal, University of Toronto, and Avy Soffer, 

Rutgers University.
Experimental Mathematics in Number Theory and Combinatorics (Code: SS 20A), Hannah Burson, University of Illinois at 

Urbana–Champaign, Tim Huber, University of Texas, Rio Grande Valley, and Armin Straub, University of South Alabama.
Extremal and Probabilistic Combinatorics (Code: SS 19A), Linyuan Lu, University of South Carolina, and Yi Zhao, Georgia 

Southern University.
Fractal Geometry and Dynamical Systems (Code: SS 2A), Mrinal Kanti Roychowdhury, University of Texas Rio Grande 

Valley.
Geometric Structures on Manifolds (Code: SS 14A), Sam Ballas, Florida State University, Luca Di Cerbo, University of 

Florida, and Kate Petersen, Florida State University.
Geometric and Topological Combinatorics (Code: SS 1A), Bruno Benedetti, University of Miami, Steve Klee, Seattle Uni-

versity, and Isabella Novik, University of Washington.
Geometry of Gauge Theoretic Moduli Spaces (Code: SS 23A), Chris Kottke, New College of Florida, and Ákos Nagy, Duke 

University.
Homological Methods in Algebra (Code: SS 11A), Luigi Ferraro and W. Frank Moore, Wake Forest University.
New Developments in Mathematical Biology (Code: SS 21A), Maia Martcheva, University of Florida, Necibe Tuncer, 

Florida Atlantic University, and Libin Rong, University of Florida.
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Nonlinear Elliptic Partial Differential Equations (Code: SS 13A), Mark Allen, Brigham Young University, and Eduardo V. 
Teixeira, University of Central Florida.

Nonlinear PDEs in Fluid Dynamics (Code: SS 10A), Ming Chen, University of Pittsburgh, Aseel Farhat, Florida State 
University, and Cheng Yu, University of Florida.

Nonlinear Solvers and Acceleration Methods (Code: SS 9A), Sara Pollock, University of Florida, and Leo Rebholz, Clem-
son University.

Partition Theory and Related Topics (Code: SS 22A), Dennis Eichhorn, University of California, Irvine, Frank Garvan, 
University of Florida, and Brandt Kronholm, University of Texas, Rio Grande Valley.

Patterns in Permutations (Code: SS 7A), Miklós Bóna and Vince Vatter, University of Florida.
Probabilistic and Geometric Tools in High-Dimension (Code: SS 4A), Arnaud Marsiglietti, University of Florida, and Artem 

Zvavitch, Kent State University.
Recent Progress in Operator Theory (Code: SS 8A), Mike Jury, Scott McCullough, and James Pascoe, University of Florida.
Recent Trends in Extremal Graph Theory (Code: SS 24A), Theodore Molla and Brendan Nagle, University of South Florida.
Topological Complexity and Related Topics (Code: SS 5A), Daniel C. Cohen, Louisiana State University, and Alexander 

Dranishnikov and Yuli B. Rudyak, University of Florida.

Riverside, California
University of California, Riverside

November 9–10, 2019
Saturday – Sunday

Meeting #1153
Western Section
Associate secretary: Michel L. Lapidus

Announcement issue of Notices: September 2019
Program first available on AMS website: September 12, 2019
Issue of Abstracts: Volume 40, Issue 4

Deadlines
For organizers: Expired
For abstracts: September 3, 2019

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited  Addresses
Robert Boltje, University of California, Santa Cruz, Title to be announced.
Jonathan Novak, University of California, San Diego, Title to be announced.
Anna Skripka, University of New Mexico, Albuquerque, Title to be announced.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at www.ams.org/cgi-bin/abstracts/abstract.pl.

AWM, with Emphasis on Geometry and Dynamics (Code: SS 13A), Weitao Chen, Savanna Gee, Paige Helms, and Qixuan 
Wang, University of California, Riverside.

Advances in Functional Analysis (Code: SS 17A), Marat Markin, California State University, Fresno, and Yunied Puig De 
Dios, University of California, Riverside.

Advances in Operator Algebras (Code: SS 31A), Scott Atkinson, Vanderbilt University, Rolando de Santiago, UCLA, and 
Feng Xu, UC Riverside.

Algebraic and Combinatorial Structures in Knot Theory (Code: SS 6A), Jieon Kim, Pusan National University, and Sam 
Nelson, Claremont McKenna College.

Analysis of Nonlinear Partial Differential Equations and Applications (Code: SS 9A), Nam Q. Le, Indiana University, Bloom-
ington, and Connor Mooney, University of California, Irvine.

Applied Category Theory (Code: SS 12A), John Baez and Joe Moeller, University of California, Riverside.
Applied Partial Differential Equations and Optimization (Code: SS 24A), Yat Tin Chow and Amir Moradifam, University 

of California, Riverside.
Arithmetic Geometry in Finite Characteristic (Code: SS 22A), Nathan Kaplan and Vlad Matei, University of California 

Irvine.
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Canonical Bases, Cluster Structures and Non-commutative Birational Geometry (Code: SS 11A), Arkady Berenstein, Univer-
sity of Oregon, Eugene, Jacob Greenstein, University of California, Riverside, and Vladimir Retakh, Rutgers University.

Celebrating MM Rao’s Many Mathematical Contributions as he Turns 90 Years Old (Code: SS 27A), Jerome Goldstein, 
University of Memphis, and Michael Green, Alan Krinik, Randall J. Swift, and Jennifer Switkes, California State Poly-
technic University, Pomona.

Computational Methods in Hyperbolic Geometry (Code: SS 35A), Brian Benson, University of California, Riverside, and 
Jeffrey S. Meyer, California State University, San Bernardino.

Data Science (Code: SS 16A), Shuheng Zhou, University of California, Riverside.
Differential Equation, Differential Geometry and Mathematical General Relativity (Code: SS 26A), Po-Ning Chen and Mi-

chael McNulty, University of California, Riverside.
Dynamical Systems and Ergodic Theory (Code: SS 10A), Nicolai Haydn, University of Southern California, Huyi Hu, 

Michigan State University, and Zhenghe Zhang, University of California, Riverside.
Fluid Dynamics: from Theory to Numerics (Code: SS 18A), James P Kelliher and Ali Pakzad, University of California, 

Riverside.
Fractal Geometry, Dynamical Systems, and Related Topics (Code: SS 30A), Tim Cobler, Fullerton College, Therese Landry, 

University of California, Riverside, Erin Pearse, California Polytechnic State University, San Luis Obispo, and Goran 
Radunovic, University of Zagreb.

Geometric Methods in Representation Theory (Code: SS 25A), Mee Seong Im, United States Military Academy, West Point, 
Neal Livesay, University of California, Riverside, and Daniel Sage, Louisiana State University.

Geometric Partial Differential Equations and Variational Methods (Code: SS 4A), Longzhai Lin, University of California, 
Santa Cruz, Xiangwen Zhang, University of California, Irvine, and Xin Zhou, University of California, Santa Barbara.

Geometry and Representation Theory of Quantum Algebras and Related Topics (Code: SS 19A), Mee Seong Im, United States 
Military Academy, West Point, Bach Nguyen, Temple University, Hans Nordstrom, University of Portland, and Karl 
Schmidt, University of California, Riverside.

Graph Theory (Code: SS 29A), Zhanar Berikkyzy and Mei-Chu Chang, University of California, Riverside.
Integrating Forward and Inverse Modeling: Machine Learning and Multiscale, Multiphysics Challenges (Code: SS 21A), Mark 

Alber, University of California, Riverside, and William Cannon, Pacific Northwest National Laboratory.
Invariants of Knots and Spatial Graphs (Code: SS 5A), Alissa Crans, Blake Mellor, and Patrick Shanahan, Loyola Ma-

rymount University.
Inverse Problems (Code: SS 3A), Hanna Makaruk, Los Alamos National Laboratory, and Robert Owczarek, University 

of New Mexico, Albuquerque and University of New Mexico, Los Alamos.
Mathematical Biology: Multi-Scale Modeling of Complex Biological Systems (Code: SS 15A), Suzanne Sindi and Mikahl 

Banwarth-Kuhn, University of California, Merced.
Mathematical Modeling in Developmental Biology (Code: SS 14A), Weitao Chen and Qixuan Wang, University of Cali-

fornia, Riverside.
Random Matrices and Related Structures (Code: SS 2A), Jonathan Novak, University of California, San Diego, and Karl 

Liechty, De Paul University.
Representations of Finite Groups and Related Topics (Code: SS 7A), Robert Boltje, University of California at Santa Cruz, 

Klaus Lux, University of Arizona at Tucson, and Amanda Schaeffer Fry, Metropolitan State University of Denver.
Research in Mathematics by Early Career Graduate Students (Code: SS 20A), Marat Markin and Khang Tran, California 

State University, Fresno.
Several Complex Variables and Complex Dynamics (Code: SS 34A), Xin Dong, University of California, Irvine, and Sara 

Lapan and Bun Wong, University of California, Riverside.
Topics in Algebraic Geometry (Code: SS 23A), Jose Gonzalez, Ziv Ran, and Zhixian Zhu, University of California, Riverside.
Topics in Extremal and Structural Graph Theory (Code: SS 32A), Andre Kundgen, California State University San Marcos, 

and Craig Timmons, California State University Sacramento.
Topics in Global Geometric Analysis (Code: SS 8A), Fred Whilhelm and Qi Zhang, University of California, Riverside.
Topics in Operator Theory (Code: SS 1A), Anna Skripka and Maxim Zinchenko, University of New Mexico.
Undergraduate Research in Mathematics: Presentations on Research and Mentorship (Code: SS 28A), David Weisbart, Uni-

versity of California, Riverside.
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MEETINGS & CONFERENCES

Denver, Colorado
Colorado Convention Center

January 15–18, 2020
Wednesday – Saturday

Meeting #1154
Joint Mathematics Meetings, including the 126th Annual 
Meeting of the AMS, 103rd Annual Meeting of the Mathe-
matical Association of America (MAA), annual meetings of 
the Association for Women in Mathematics (AWM) and the 
National Association of Mathematicians (NAM), and the win-
ter meeting of the Association of Symbolic Logic (ASL), with 

sessions contributed by the Society for Industrial and Applied 
Mathematics (SIAM)
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: October 2019
Program first available on AMS website: November 1, 2019
Issue of Abstracts: Volume 41, Issue 1

Deadlines
For organizers: Expired
For abstracts: September 17, 2019

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/national.html.

AMS Invited Addresses
Maleafisha J. P. S. Tladi, University of Limpopo, Well-Posedness and Long-Time Dynamics of the Rotating Boussinesq
and Quasigeostrophic Equations (AMS Josiah Willard Gibbs Lecture).

Charlottesville, Virginia
University of Virginia

March 13–15, 2020
Friday – Sunday

Meeting #1155
Southeastern Section
Associate secretary: Brian D. Boe

Announcement issue of Notices: January 2020
Program first available on AMS website: February 4, 2020
Issue of Abstracts: Volume 41, Issue 2

Deadlines
For organizers: August 15, 2019
For abstracts: January 21, 2020

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited  Addresses
Moon Duchin, Tufts University, Title to be announced (Einstein Public Lecture in Mathematics).

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at www.ams.org/cgi-bin/abstracts/abstract.pl.

Advances in Difference, Differential, Fractional Differential and Dynamic Equations with Applications (Code: SS 2A), Mu-
hammad Islam and Youssef Raffoul, University of Dayton.

Advances in Infectious Disease Modeling: From Cells to Populations (Code: SS 4A), Lauren Childs, Stanca Ciupe, and 
Omar Saucedo, Virginia Tech.

Curves, Jacobians, and Abelian Varieties (Code: SS 1A), Andrew Obus, Baruch College (CUNY), Tony Shaska, Oakland 
University, and Padmavathi Srinivasan, Georgia Institute of Technology.

Numerical Methods for Partial Differential Equations: A Session in Honor of Slimane Adjerid’s 65th Birthday (Code: SS 3A), 
Mahboub Baccouch, University of Nebraska at Omaha.
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MEETINGS & CONFERENCES

Medford, Massachusetts
Tufts University

March 21–22, 2020
Saturday – Sunday

Meeting #1156
Eastern Section
Associate secretary: Steven H. Weintraub

Announcement issue of Notices: January 2020
Program first available on AMS website: February 11, 2020
Issue of Abstracts: Volume 41, Issue 2

Deadlines
For organizers: August 22, 2019
For abstracts: January 28, 2020

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Invited  Addresses
Daniela De Silva, Columbia University, Title to be announced.
Enrique Pujals, City University of New York, Title to be announced.
Chris Woodward, Rutgers, the State University of New Jersey, Title to be announced.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at www.ams.org/cgi-bin/abstracts/abstract.pl.

Anomalous Diffusion Processes (Code: SS 3A), Christoph Borgers, Tufts University, and Claude Greengard, New York 
University and Foss Hill Partners.

Modeling and Analysis of Partial Differential Equations in Fluid Dynamics and Related Fields: Geometric and Probabilistic 
Methods (Code: SS 1A), Geng Chen, University of Kansas, Siran Li, Rice University and Centre de Recherches Mathéma-
tiques, Université de Montréal, and Kun Zhao, Tulane University.

Recent Advances in Schubert Calculus and Related Topics (Code: SS 2A), Christian Lenart and Changlong Zhong, State 
University of New York at Albany.

West Lafayette, Indiana
Purdue University

April 4–5, 2020
Saturday – Sunday

Meeting #1157
Central Section
Associate secretary: Georgia Benkart

Announcement issue of Notices: February 2020
Program first available on AMS website: February 18, 2020
Issue of Abstracts: Volume 41, Issue 2

Deadlines
For organizers: September 5, 2019
For abstracts: February 4, 2020

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at www.ams.org/cgi-bin/abstracts/abstract.pl.

Harmonic Analysis (Code: SS 2A), Brian Street and Shaoming Guo, University of Wisconsin–Madison.
Low-dimensional Topology (Code: SS 4A), Matthew Hedden, Katherine Raoux, and Lev Tovstopyat-Nelip, Michigan 

State University.
Mathematical Methods for Inverse Problems (Code: SS 3A), Isaac Harris and Peijun Li, Purdue University.
The Interface of Harmonic Analysis and Analytic Number Theory (Code: SS 1A), Theresa Anderson, Purdue University, 

Robert Lemke Oliver, Tufts University, and Eyvindur Palsson, Virginia Tech University.
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MEETINGS & CONFERENCES

Fresno, California
California State University, Fresno

May 2–3, 2020
Saturday – Sunday

Meeting #1158
Western Section
Associate secretary: Michel L. Lapidus

Announcement issue of Notices: March 2020
Program first available on AMS website: March 19, 2020
Issue of Abstracts: Volume 41, Issue 2

Deadlines
For organizers: October 3, 2019
For abstracts: March 3, 2020

El Paso, Texas
University of Texas at El Paso

September 12–13, 2020
Saturday – Sunday

Meeting #1159
Central Section
Associate secretary: Georgia Benkart

Announcement issue of Notices: June 2020
Program first available on AMS website: July 28, 2020
Issue of Abstracts: Volume 41, Issue 3

Deadlines
For organizers: February 20, 2020
For abstracts: July 14, 2020

The scientific information listed below may be dated. For the latest information, see www.ams.org/amsmtgs/sectional.html. 

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at www.ams.org/cgi-bin/abstracts/abstract.pl.

Algebraic Structures in Topology, Logic, and Arithmetic, John Harding, New Mexico State University, and Emil Schwab, 
University of Texas at El Paso.

High-Frequency Data Analysis and Applications, Maria Christina Mariani, University of Texas at El Paso, Michael Poko-
jovy, University of Texas at El Paso, and Ambar Sengupta, University of Connecticut.

Nonlinear Analysis and Optimization, Behzad Djafari-Rouhani, University of Texas at El Paso, and Akhtar A. Khan, 
Rochester Institute of Technology.

State College, Pennsylvania
Pennsylvania State University, University Park Campus

October 3–4, 2020
Saturday – Sunday

Meeting #1160
Eastern Section
Associate secretary: Steven H. Weintraub

Announcement issue of Notices: August 2020
Program first available on AMS website: August 25, 2020
Issue of Abstracts: Volume 41, Issue 3

Deadlines
For organizers: March 3, 2020
For abstracts: August 11, 2020
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MEETINGS & CONFERENCES

Chattanooga, Tennessee
University of Tennessee at Chattanooga

October 10–11, 2020
Saturday – Sunday

Meeting #1161
Southeastern Section
Associate secretary: Brian D. Boe

Announcement issue of Notices: August 2020
Program first available on AMS website: September 1, 2020
Issue of Abstracts: Volume 41, Issue 4

Deadlines
For organizers: March 10, 2020
For abstracts: August 18, 2020

Salt Lake City, Utah
University of Utah

October 24–25, 2020
Saturday – Sunday

Meeting #1162
Western Section
Associate secretary: Michel L. Lapidus

Announcement issue of Notices: August 2020
Program first available on AMS website: September 17, 2020
Issue of Abstracts: Volume 41, Issue 4

Deadlines
For organizers: March 24, 2020
For abstracts: September 1, 2020

Invited Addresses
Saturday, October 24, 2020, 6:00 pm – 7:10 pm, Erdő s Memorial Lecture.

Washington, District of Columbia
Walter E. Washington Convention Center

January 6–9, 2021
Wednesday – Saturday
Joint Mathematics Meetings, including the 127th Annual 
Meeting of the AMS, 104th Annual Meeting of the Mathe-
matical Association of America (MAA), annual meetings of 
the Association for Women in Mathematics (AWM) and the 
National Association of Mathematicians (NAM), and the win-
ter meeting of the Association of Symbolic Logic (ASL), with 

sessions contributed by the Society for Industrial and Applied 
Mathematics (SIAM).
Associate secretary: Brian D. Boe
Announcement issue of Notices: October 2020
Program first available on AMS website: November 1, 2020
Issue of Abstracts: To be announced

Deadlines
For organizers: April 1, 2020
For abstracts: To be announced

Grenoble, France
Université de Grenoble-Alpes

July 5–9, 2021
Monday – Friday
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced
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MEETINGS & CONFERENCES

Buenos Aires, Argentina
The University of Buenos Aires

July 19–23, 2021
Monday – Friday
Associate secretary: Steven H. Weintraub
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Omaha, Nebraska
Creighton University

October 9–10, 2021
Saturday – Sunday
Central Section
Associate secretary: Georgia Benkart
Announcement issue of Notices: To be announced

Program first available on AMS website: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Seattle, Washington
Washington State Convention Center and the Sheraton Seattle Hotel

January 5–8, 2022
Wednesday – Saturday
Associate secretary: Georgia Benkart
Announcement issue of Notices: October 2021
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Boston, Massachusetts
John B. Hynes Veterans Memorial Convention Center, Boston Marriott Hotel, and Boston Sheraton Hotel

January 4–7, 2023
Wednesday – Saturday
Associate secretary: Steven H. Weintraub
Announcement issue of Notices: October 2022
Program first available on AMS website: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced
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Frank and Brennie Morgan
AMS-MAA-SIAM Prize
for Outstanding Research
in Mathematics
by an Undergraduate Student
The prize is awarded each year to an undergraduate student (or 
students for joint work) for outstanding research in mathematics. 
Any student who is an undergraduate in a college or university in the 
United States or its possessions, Canada, or Mexico is eligible to be 
considered for this prize.

The prize recipient’s research need not be confined to a single paper; 
it may be contained in several papers. However, the paper (or papers) 
to be considered for the prize must be completed while the student 
is an undergraduate; they cannot be written after the student’s 
graduation. The research paper (or papers) may be submitted for 
the committee’s consideration by the student or a nominator. Each 
submission for the prize must include at least one letter of support 
from a person, usually a faculty member, familiar with the student’s 
research. Publication of research is not required.

The recipients of the prize are to be selected by a standing joint 
committee of the AMS, MAA, and SIAM. The decisions of this 
committee are final. Nominations for the 2020 Morgan Prize are due 
no later than June 30, 2019. Those eligible for the 2020 prize must 
have been undergraduates in December 2018.

MATHEMATICAL ASSOCIATION OF AMERICA

Questions may be directed to: 

 James Sellers, Secretary
 Mathematical Association
 of America

 Penn State University
 University Park, PA 16802

 Telephone: 814-865-7528
 Email: sellersj@psu.edu

Nominations and submissions
should be sent to: 

 Carla Savage, Secretary
 American Mathematical Society

 Computer Science Department
 North Carolina State University
 Raleigh, NC 27695-8206

 or uploaded via the form
 available at:
 www.ams.org/nominations

20  20

Call for Nominations



American Mathematical Society  
Distribution Center

35 Monticello Place,  
Pawtucket, RI 02861 USA

facebook.com/amermathsoc
@amermathsoc

The Math
Behind the Magic
Fascinating Card and Number Tricks
and How They Work
Ehrhard Behrends, Freie Universität, Berlin, 
Germany
Translated by David Kramer

In this rich, colorfully illustrated volume, 
Ehrhard Behrends presents around 30 card 
tricks and number games with an interesting 
mathematical foundation.
2019; 208 pages; Softcover; ISBN: 978-1-4704-4866-0; 
List US$30; AMS members US$24; MAA members 
US$27;  Order code MBK/122

Invitation to Real Analysis 
Cesar E. Silva, Williams College, Williamstown, 
MA

This introduction to real analysis is aimed at 
students who have completed the calculus 
sequence and preferably one other course, 
such as linear algebra.
Pure and Applied Undergraduate Texts, Volume 36; 
2019; 303 pages; Hardcover; ISBN: 978-1-4704-4928-5; 
List US$99; AMS members US$79.20; MAA members 
US$89.10; Order code AMSTEXT/36

An Introduction
to Game-Theoretic
Modelling  

white -->

Third Edition
Mike Mesterton-Gibbons, Florida State 
University, Tallahassee

This book introduces game theory and its 
applications from an applied mathemati-
cian’s perspective, systematically developing 
tools and concepts for game-theoretic mod-
elling in the life and social sciences.
Pure and Applied Undergraduate Texts, Volume 37; 
2019; approximately 398 pages; Hardcover; ISBN: 978-
1-4704-5029-8; List US$82; AMS members US$65.60; 
MAA members US$73.80; Order code AMSTEXT/37

AMS / MAA Press
Elementary
Mathematical Models 
An Accessible Development
without Calculus, Second Edition
Dan Kalman, American University, Washington, 
DC, Sacha Forgoston, and Albert Goetz

Presuming only a background of exposure 
to high school algebra, this text introduces 
students to the methodology of mathemati-
cal modeling.
AMS/MAA Textbooks, Volume 50; 2019; approximately 
522 pages; Hardcover; ISBN: 978-1-4704-5001-4; List 
US$75; AMS members US$56.25; MAA members 
US$56.25; Order code TEXT/50

Applied Stochastic
Analysis  

white -->

Weinan E, Princeton University, NJ, Tiejun 
Li, Peking University, Beijing, China, and 
Eric Vanden-Eijnden, Courant Institute of 
Mathematical Sciences, New York, NY

Presenting the basic mathematical founda-
tions of stochastic analysis as well as some 
important practical tools and applications, 
this textbook is for advanced undergraduate 
students and beginning graduate students in 
applied mathematics.
Graduate Studies in Mathematics, Volume 199; 2019; 
305 pages; Hardcover; ISBN: 978-1-4704-4933-9; 
List US$85; AMS members US$68; MAA members 
US$76.50; Order code GSM/199

Hilbert’s Tenth Problem 
An Introduction to Logic, Number 
Theory, and Computability
M. Ram Murty, Queen’s University, Kingston, 
ON, Canada, and Brandon Fodden, 
Carleton University, Ottawa, ON, Canada

This book gives a complete solution 
to Hilbert’s tenth problem using 
elementary number theory and 
rudimentary logic.
Student Mathematical Library, 
Volume 88; 2019; 239 pages; 
Softcover; ISBN: 978-1-4704-
4399-3; List US$55; All indi-
viduals US$44; Order code 
STML/88

NEW RELEASES
from the AMS

Discover more titles at
bookstore.ams.org

= Textbook
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= Applied Mathematics
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