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a Markov Basis?
Sonja Petrović

The June 25th, 2014 New York Times article “Shinzo Abe’s
Bid to Shake Up Corporate Japan” by Hiroko Tabuchi dis-
cussed share ownership of seventeen Japanese corpora-
tions and cited Prime Minister Abe’s claim that they are
connected in interlocking ways, owning shares in one an-
other “to create relationships that can protect them from
outside interference.” A graphical representation of this
relationship is depicted in Figure 1. Can this claim be veri-
fied? How confident are we that it is anything beyond basic
intuition?

Questions like this are at the heart of statistical reason-
ing: given an observed data set, we wish to find out how
surprising it is given some assumption about the world.
The fact is, we face such questions on a regular basis: do
male faculty members have higher salaries than their fe-
male counterparts? We answer them by looking at the data
on salaries and breaking it down by gender, discipline, etc.
Our hope that gender is independent of salary translates in
a very intuitive way into an expectation: we expect to see a
certain distribution of numbers in the salary data; whenwe
do not, we suspect that our assumption of independence
could be wrong. We shall put this everyday intuition into
a formal framework: the assumption of independence is
captured by a statistical model, a family of probability dis-
tributions for the salary data that take a specific form; the
observed data is evidence for or against such a model. The
evidence carries with it a weight, a confidence level that
measures its strength.
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The Algebra Behind the Intuition
While the idea of testing a model based on observed data
is a simple one in statistics, an exciting development in
the 1990s has brought to bear tools from commutative al-
gebra to help solve the problem for a special class of sta-
tistical models that we can define using an integer matrix.
A Markov basis is a set of vectors in the null space of that
matrix that allows us to generate synthetic data, starting
from the observed, and use the resulting sample to gather
evidence against or for the proposed model.

Mathematically, given a statistical model defined by
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Figure 1. A graphical summary of the shareholding
relationships of those corporations who disclosed them.
Nodes in the graph represent the corporations. A directed
edge from 𝑖 to 𝑗 means company 𝑖 owns shares in company 𝑗.
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𝐴 ∈ ℤ𝑚×𝑟, a Markov basis for the model is a set of vectors
{𝑏1,… , 𝑏𝑛} ⊂ kerℤ 𝐴 such that for every pair of vectors
𝑢,𝑣 for which 𝐴𝑢 = 𝐴𝑣, there exists a choice of basis
vectors satisfying

𝑢+ 𝑏𝑖1 +…+𝑏𝑖𝑁 = 𝑣,
where each partial sum results in a non-negative vector,
that is, 𝑢 + ∑𝑁

𝑗=0 𝑏𝑖𝑗 ≥ 0, componentwise for any 𝑗 =
1…𝑁. Set 𝑏+

𝑖 = min(0, 𝑏𝑖) and 𝑏−
𝑖 = max(0, 𝑏𝑖), so

that each vector in the basis can be written as a difference
of nonnegative vectors 𝑏𝑖 = 𝑏+

𝑖 −𝑏−
𝑖 .

Theorem ([5]). A set of vectors is a Markov basis if and only
if the corresponding set of binomials {𝑥𝑏+

𝑖 −𝑥𝑏+
𝑖 } generates the

toric ideal 𝐼𝐴 ∶= (𝑥𝑢 − 𝑥𝑣 ∶ 𝑢 − 𝑣 ∈ kerℤ 𝐴).
One of the remarkable consequences of this theorem is

that the existence of a finite Markov basis for any model
that can be defined by such a matrix is now guaranteed
by the Hilbert basis theorem. Besides this being a lovely
mathematical result connecting commutative algebra with
statistics, it turns out thatMarkov bases are a necessary tool
for reasoning with certain types of data such as the Japan-
ese corporate example.

Formal Reasoning with Data
In order to restate our opening questions more formally,
let us think like statisticians: buying shares is a random
event that occurs with some probability. The New York
Times article suggests that this probability is governed in
large part by reciprocity: If you own shares inmy company,
I am likely to buy shares in yours. If we can construct a
statistical model that produces relational data where reci-
procity matters, the question then becomes whether such
a model fits the observed set of relationships. In other
words, we seek to find out whether such a model can ade-
quately explain how the share ownership data was gener-
ated.

The statistics literature provides us with a model that
was designed to capture precisely this type of a reciprocal
relationship [3, 4]. The model comes equipped with an
integer matrix: it is log-linear in form, an example of a dis-
crete exponential family, defined in the next section. We
will test its goodness of fit to the observed data using an ex-
act conditional test, defined in the following section, which
requires an understanding of a certain conditional proba-
bility distribution. Markov bases are a key ingredient to
this step.

Statistical reasoning then proceeds as follows: The New
York Times article’s claim can be restated from the perspec-
tive of statistical models as follows: Under the assumption
that the random event of buying shares is governed by reci-
procity, the relationship between Japanese corporations is
not unusual. If this is correct, then the model on dyadic re-
lationships with non-zero reciprocation effect fits the cor-

porate network data, while the one in which reciprocation
effect is set to zero does not. That is, the observed data
is extreme/an outlier in the latter case, and not so in the
former. As there are too many possible share-buying sce-
narios within 17 companies to which we should compare
the observed data, we instead sample from a carefully cho-
sen reference set, one that makes statistical sense. Markov
bases, defined for any log-linear model, are used to design
an MCMC sampling scheme of this reference set.

The 𝐴 Matrix: Log-Linear Models
Log-linear models are a class of statistical models for dis-
crete data for which logarithms of joint probabilities are
captured by a linear map as follows. Let 𝑋1,… ,𝑋𝑘 be dis-
crete random variables with 𝑋𝑖 taking values in [𝑑𝑖]. A
𝑘-way contingency table 𝑢 ∈ ℤ𝑑1×⋯×𝑑𝑘

≥0 is a nonnegative in-
teger table whose (𝑖1,… , 𝑖𝑘)-entry counts the number of
times the event {𝑋1 = 𝑖1,… ,𝑋𝑘 = 𝑖𝑘} occurred; we think
of 𝑢 as a realization of a random table 𝑈. A typical exam-
ple of the use of such tables is in a cross-classification of
items into 𝑘 categories (e.g., salary levels by gender). Fix
an integer matrix 𝐴 ∈ ℤ𝑚×(𝑑1⋯𝑑𝑘) such that (1,… , 1) is
in its row span.1 Flatten the data table 𝑢 into a 𝑑1 ⋯𝑑𝑘 col-
umn vector. We may interpret the vector𝐴𝑢 as a summary
of the data table 𝑢.

Definition. With the above setup, the statistical model for
which the summary 𝐴𝑢 suffices to capture the probability
of 𝑢 is called the log-linear modelℳ𝐴 for 𝑘-way tables associ-
ated to the matrix 𝐴. It is the family of probability distribu-
tions of the following form:

𝑃𝜃(𝑈 = 𝑢) = exp{⟨𝐴𝑢,𝜃⟩ −𝜓(𝜃)},
where 𝜃 ∈ ℝ𝑚 is the vector of model parameters and
𝜓(𝜃) is the normalizing constant.2 The 𝑖-th entry of the
vector 𝐴𝑢 is called the minimal sufficient statistic for the pa-
rameter 𝜃𝑖. The matrix 𝐴 that computes the sufficient sta-
tistics is called the design matrix of ℳ𝐴.

Consider the simple example of independence of two
discrete random variables, 𝑋 and 𝑌, taking values in [𝑑1]
and [𝑑2], respectively. Let 𝛼𝑖 = 𝑃(𝑋 = 𝑖) and 𝛽𝑖 =
𝑃(𝑌 = 𝑖) denote the marginal probabilities of 𝑋 and 𝑌.
The model ℳ of independence postulates that the joint
probabilities factor as 𝑃(𝑋 = 𝑖,𝑌 = 𝑗) = 𝛼𝑖𝛽𝑗. In the
language of [2, Definition 1.1.9], ℳ is the toric model as-
sociated to 𝐴, because the monomial joint probabilities
𝛼𝑖𝛽𝑗 parameterize a toric variety. Data on 𝑋,𝑌 can be
organized in a 2-way table, where the 𝑖𝑗-entry counts the
number of occurrences of the event {𝑋 = 𝑖,𝑌 = 𝑗}. Un-
der the model ℳ, to know the probability of observing a

1A normalizing assumption so that all of the details make sense for probability vectors that
must sum to 1.
2This is simply to ensure the probabilities are nonnegative and sum to 1.
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given data table 𝑢 it suffices to know the marginal proba-
bilities𝛼𝑖s and 𝛽𝑗s. The corresponding sufficient statistics
are marginal counts—row and column sums—of the data
table 𝑢. As computing these marginals is a linear opera-
tion, it can be presented as a linear map 𝑢 ↦ 𝐴𝑢, where
𝐴 ∈ ℤ(𝑑1+𝑑2)×𝑑1𝑑2 and 𝑢 is flattened to a 𝑑1𝑑2 ×1 vector.

The Weight of the Evidence: Exact Conditional
𝑝-Value
What, then, is the conditional test for whether a log-linear
model ℳ𝐴 fits the observed data table 𝑢? As we seek to
answer whether 𝑢 is more-or-less expected under ℳ𝐴, the
test approximates the exact conditional 𝑝-value of 𝑢: the
probability of a data table being more extreme (less ex-
pected) than 𝑢, conditional on the observed values of the
sufficient statistics. Since sufficient statistics offer a sum-
mary of 𝑢 that fully captures its probability of occurring
under ℳ𝐴, it is reasonable to condition on the value of
𝐴𝑢 and explore the resulting distribution and set of tables.
The set

ℱ𝐴(𝑢) ∶= {𝑣 ∈ ℤ𝑑1×…×𝑑𝑘
≥0 ∶ 𝐴𝑢 = 𝐴𝑣}

is called the fiber of 𝑢 under the model ℳ, since it is a fiber
of the linear map defined by 𝐴.

Definition. A Markov basis of the model ℳ𝐴 is any set
of tables ℬ ∶= {𝑏1,… ,𝑏𝑛} ⊂ ℤ𝑑1×…×𝑑𝑘 , called ‘moves,’
for which

𝐴𝑏𝑖 = 0
and such that for any data table 𝑢 ∈ ℤ𝑑1×…×𝑑𝑘

≥0 and for any
𝑣 ∈ ℱ𝐴(𝑢), there exist 𝑏𝑖1 ,… , 𝑏𝑖𝑁 ∈ ℬ that can be used
to reach 𝑣 from 𝑢:

𝑢+ 𝑏𝑖1 +…+𝑏𝑖𝑁 = 𝑣
while walking through elements of the fiber:

𝑢+
𝑁
∑
𝑗=0

𝑏𝑖𝑗 ≥ 0, componentwise

for any 𝑗 = 1…𝑁.
Note that 𝐴𝑢 = 𝐴(𝑢 + 𝑏𝑖) means that adding a move

𝑏𝑖 to any data table does not change the values of the suf-
ficient statistics, so to remain on the fiber, we only need to
ensure that adding a move did not produce negative table
entries.

What’s in a Basis?
The notion of a Markov basis is different (stronger) than
that of a basis in linear algebra. Fixing a model and an ob-
served data point results in a fixed conditional distribution
of interest. Think of the finitely many points in this distri-
bution as lying on an integer lattice and Markov moves as
vectors that can be added to a fixed starting point to cre-
ate a random walk on the lattice. The set is a basis in the
sense that such a random walk is guaranteed to connect all
points on the fiber without “stepping outside.”

EveryMarkov basis contains a linear-algebra basis of the
null space of 𝐴. Although the latter can be used to reach
all tables in the fiber, it will generally fail to satisfy the sec-
ond condition that each intermediate step is a legal table,
since adding one of the basis elements to some data table
may inadvertently make some table entries negative, even
while preserving the values of the sufficient statistics. To
satisfy the non-negativity condition, a combination of sev-
eral null space basis elements may have to be used as a
single Markov move in order to reach or move away from
a particular table in the fiber. Algebraically, this can be
stated as the fact that a generating set of the toric ideal 𝐼𝐴
can be obtained by saturation from the lattice basis ideal
defined by 𝐴; for more details, see [2, §1.3].

The Algebraic Advantage Has Its Challenges
Markov bases are one of the two popular ways to sample
from the conditional distribution on the fiber (the other
is called sequential importance sampling). Fibers ℱ𝐴(𝑢)
are generally far too large to enumerate for most reason-
ably sized matrices 𝐴 in practice, and thus exploring them
via random walks is a natural alternative. The basic idea
of Markov bases is therefore quite straightforward, yet it
has provided a multitude of open problems over the past
two decades. The terminology was coined in [5] and it has
become a cornerstone of one area of algebraic statistics.

Let us revisit the algebraic setup. Looking back to the in-
dependencemodel example, let us arrange the joint proba-
bilities of 𝑋 and 𝑌 in a table 𝑝 ∈ [0, 1]𝑑1×𝑑2 . A probabil-
ity table 𝑝 is in the model if and only if it is of rank 1, or,
equivalently, can be written as an outer product of the two
marginal probability vectors (𝑝𝑖𝑗 = 𝛼𝑖𝛽𝑗). Rank-one is
of course a determinantal condition: 𝑝𝑖𝑗𝑝𝑘𝑙 −𝑝𝑖𝑙𝑝𝑘𝑗 = 0
for all 𝑖, 𝑗, 𝑘, 𝑙. This binomial corresponds to a Markov
move that replaces the 1s in positions 𝑖𝑙 and 𝑘𝑗 of the ta-
ble with 1s in positions 𝑖𝑗 and 𝑘𝑙. It is one of the defining
polynomials of the toric ideal associated to the design ma-
trix of the independence model. Hilbert’s basis theorem
guarantees that this ideal is finitely generated; in fact, any
set of generators of this ideal is a Markov basis of the model.
The correspondence between bases connecting the fibers
and generating sets of toric ideals is often called the Funda-
mental Theorem ofMarkov Bases [2, §1.3]. Randomwalks
on fibers constructed using Markov moves come with cer-
tain convergence guarantees—if they are used as proposal
moves in a Metropolis-Hastings algorithm to sample the
fiber, the stationary distribution of that Markov chain
will—by design—be precisely the conditional distribution
we are interested in sampling.

How complicated are Markov bases? In a wonderful
theorem about decomposable graphical models, a special
class of models that can be broken into components recur-
sively, Dobra provided a divide-and-conquer strategy to
computeMarkov bases for all suchmodels on tables of any
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dimension. Then came the fundamental bad news result
of De Loera and Onn: the easiest of non-decomposable
models on three-dimensional contingency tables is such
that Markov bases can be “as complicated as you can imag-
ine” if two of the dimensions are allowed to grow. (If two
dimensions are fixed, then the moves are of bounded com-
plexity. All of these results are summarized in [2, §1.2].)
So a natural question arises: if the model is not decom-
posable, how does one compute a Markov basis or verify
that a proposed set of moves constitutes one? One general
strategy is to use the so-called distance-reducing method
[6]: consider two arbitrary points in the fiber and show
that the distance between them can be reduced by apply-
ing some of the proposed moves.

This hints at an obvious limitation of Markov bases:
most of the moves are unnecessary in many scenarios!
Specifically, the bases are data-independent by definition:
for a fixed 𝐴, they connect the fiber ℱ𝐴(𝑢) for any data
table 𝑢, so that for a specific observed data table 𝑢, many
of the moves are inapplicable. For example, the following
move (right) from the independence model is not applica-
ble to the table on the left:

⎡⎢
⎣

2 3 4
0 3 4
0 0 1

⎤⎥
⎦
+ ⎡⎢

⎣

1 0 −1
0 0 0
−1 0 1

⎤⎥
⎦
.

Even though it preserves the row and column sums, it pro-
duces a negative entry, which is not a ‘legal’ data table
that counts the number of occurrences of the event {𝑋 =
3,𝑌 = 1}. Other restrictions—such as sampling cons-
traints, maximum on table entries—make the issue worse.

The literature offers a myriad of results onMarkov bases
that address these problems: structural results of and com-
plexity bounds for moves for many classes of models, dy-
namic algorithms that construct only applicable moves
and not an entire basis, larger bases that guarantee con-
nectedness of restricted fibers such as those consisting only
of 0/1 tables, etc.

The 𝑝-Value of Shareownership
Let us finally address Prime Minister Shinzo Abe’s aim to
diversify the interlocking Japanese corporations. The mod-
el of interest for this data is also log-linear in form as shown
in [4]: its sufficient statistics are, for each company 𝑖, the
number of companies in which 𝑖 owns shares, the num-
ber of companies that own shares in 𝑖, and the number of
times 𝑖 reciprocated a shareholding relationship. Comput-
ing these counts is a linear operation on the set of compa-
nies since it amounts to counting neighbors in the graph
above.

We sample the fiber of the observed Japanese corpora-
tion data using the dynamic Markov bases implementa-
tion for log-linear network models from [7]. For each of
the 100, 000 sampled data points, we compute a good-

ness-of-fit statistic—in this case the chi-square statistic—
which measures the distance of the data point from what
is expected under the model. We do this for two model
variants: first when there is a positive reciprocation effect,
and second when the reciprocation effect is zero. We take
a look at the histogram of this statistic: the number of times
a ‘more extreme’ data point is encountered is the volume of
the histogram to the right of the vertical red line marking
the observed value. Since these data are farther from the
expected value than the observed data, the size of the his-
togram to the right of the line gives the 𝑝-value of the data.
The 𝑝-values of the data under the models with non-zero
and zero reciprocations are 0.319 and 0.002, respectively.

So, is there statistical evidence to support Prime Min-
ister Shinzo Abe’s claim about strong reciprocation effect
in interlocking corporate directories? Indeed, you may de-
cide that there is, by looking at the histograms in Figure 2.

Under the model in which reciprocation effect is pre-
sent, as many as 31.9% of data points in the sample of

Figure 2. Histogram of the sampling distribution of the
goodness-of-fit statistic. Length of each random walk:
100,000 steps. Top: model with nonzero reciprocation effect.
Bottom: model with no reciprocation effect. 𝑝-values:
𝑝 = 0.319 and 𝑝 = 0.002, respectively.
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100, 000 are less expected than the observed data, whereas
under the model with zero reciprocation, that number is
merely 0.2%. Therefore, the model that sets the reciproca-
tion effect to zero does not fit the data. Perhaps the Prime
Minister knew about Markov bases.
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