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Introduction
In the early years of the twentieth century, the foundations
for quantum mechanics were laid out by Dirac, Heisen-
berg, Bohr, Schrödinger, and others. In his work on the
foundations of quantum mechanics, John von Neumann
postulated that physical phenomena should be modeled
in terms of Hilbert spaces and operators, with observables
corresponding to self-adjoint operators and states corre-
sponding to unit vectors. Motivated by his interest in the
theory of single operators, he would introduce the notion
of what is now termed a von Neumann algebra. Von Neu-
mann and Francis Murray subsequently published a series
of fundamental papers, beginning with “On rings of op-
erators” [13], that develop the basic properties of these al-
gebras and establish operator algebras as an independent
field of study.

In the years after Murray and von Neumann’s initial
work, the field of operator algebras developed rapidly and
split into subfields including 𝐶∗-algebras and von Neu-
mann algebras. Moreover, operator algebraists began to
examine generalizations of these objects, such as opera-
tor spaces and operator systems. The importance of opera-
tor algebras can be witnessed by its applications in Voicu-
lescu’s free probability theory, Popa’s deformation/rigidity
theory, and Jones’ theory of subfactors. These areas give
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us insight into numerous fields, including random matrix
theory, quantum field theory, ergodic theory, and knot the-
ory.

In a landmark paper unraveling the isomorphism class-
es of injective von Neumann algebras, Connes proves that
it is possible to construct a sequence of approximate em-
beddings for a large class of von Neumann algebras into
finite-dimensional matrix algebras; Connes somewhat ca-
sually remarks that this property should hold for all sepa-
rable von Neumann algebras. Formally, Connes’ embed-
ding problem, as this assertion is now called, asks if every
type II1 factor acting on a separable Hilbert space is em-
beddable into an ultrapower of the hyperfinite II1 factor
via a nonprinciple ultrafilter.

Our goal is to unravel the meaning behind Connes’ em-
bedding problem and to highlight its significance by pro-
viding equivalent formulations that have driven research
in the field.

Background
Let 𝑋 be a compact Hausdorff space. Then the set 𝐶(𝑋)
of continuous complex-valued functions on 𝑋, endowed
with pointwise addition and multiplication, is an algebra
overℂ. This algebra admits an anti-linear involution 𝑓∗ ∶=
𝑓 and a norm

‖𝑓‖∞ ∶= sup
𝑥∈𝑋

|𝑓(𝑥)|

that are related by the identity

‖𝑓∗𝑓‖∞ = ‖𝑓‖2
∞. (1)

Moving towards the noncommutative setting, we con-
sider the algebra 𝑀𝑛(ℂ) of 𝑛 × 𝑛 complex matrices. The
operator norm of 𝑚 ∈ 𝑀𝑛(ℂ) is

‖𝑚‖∞ ∶= sup{‖𝑚𝜉‖2 ∶ 𝜉 ∈ ℂ𝑛, ‖𝜉‖2 ≤ 1},
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in which ‖𝜉‖2 denotes the Euclidean norm of 𝜉 ∈ ℂ𝑛.
The conjugate transpose ∗ is an anti-linear involution on
𝑀𝑛(ℂ) that satisfies

‖𝑚∗𝑚‖∞ = ‖𝑚‖2
∞ . (2)

In both situations, the operation ∗ satisfies (𝑎𝑏)∗ =
𝑏∗𝑎∗ for all elements of their domain. To generalize
𝑀𝑛(ℂ), we replace ℂ𝑛 with an appropriate Hilbert space.

Definition 1. A Hilbert space is a complex inner-product

space ℋ that is complete in the norm ‖𝜉‖ℋ = √(𝜉|𝜉)
induced by the inner product.

A standard example of an infinite-dimensional Hilbert
space is the space of square-summable sequences of com-
plex numbers

ℓ2(ℕ) ∶=
⎧
⎨⎩
(𝑥𝑗)∞𝑗=1 ∶

∞
∑
𝑗=1

|𝑥𝑗|2 < ∞
⎫
⎬⎭
,

with inner product

(𝑥|𝑦) ∶=
∞
∑
𝑗=1

𝑥𝑗𝑦𝑗.

It turns out that every separable, infinite-dimensional Hil-
bert space is isometrically isomorphic to ℓ2(ℕ). For exam-
ple, this applies to

𝐿2(𝑋,𝜇) ∶= {𝑓 ∶ 𝑋 → ℂ ∶ ∫
𝑋
|𝑓(𝑥)|2 𝑑𝜇(𝑥) < ∞} ,

in which (𝑋,𝜇) is a 𝜎-finite measure space and

(𝑓| 𝑔) ∶= ∫
𝑋
𝑓(𝑥)𝑔(𝑥)𝑑𝜇(𝑥).

Operators on Hilbert spaces: Formalizing infinite ma-
trices. Operators on Hilbert spaces provide a framework
with sufficient versatility to be applied in physics, repre-
sentation theory, partial differential equations, and other
fields. We focus here on the class of bounded operators.

Definition 2. Given a Hilbert space ℋ and a linear oper-
ator 𝑥 ∶ ℋ → ℋ, the operator norm of 𝑥 is defined by

‖𝑥‖ ∶= sup{‖𝑥𝜉‖ℋ ∶ 𝜉 ∈ ℋ, ‖𝜉‖ℋ ≤ 1}.
A linear operator 𝑥 is bounded if ‖𝑥‖ is finite. 𝐵(ℋ) will
denote the collection of all bounded linear operators on
ℋ.

It can be shown that an operator is bounded if and only
if it is continuous. Since the composition of bounded lin-
ear operators is again bounded, it follows that 𝐵(ℋ) is an
algebra over ℂ. The algebra 𝐵(ℋ) shares several proper-
ties of the algebra 𝑀𝑛(ℂ) outlined above. It is a complete,
normed algebra that admits an anti-linear involution ∗
(the adjoint). The adjoint of 𝑥 ∈ 𝐵(ℋ) is the unique ele-
ment 𝑥∗ ∈ 𝐵(ℋ) satisfying

(𝑥𝜉|𝜂) = (𝜉| 𝑥∗𝜂)

for all 𝜉,𝜂 ∈ ℋ. The norm and the involution satisfy an
identity analogous to (1) and (2); for 𝑥 ∈ 𝐵(ℋ), we have

‖𝑥∗𝑥‖ = ‖𝑥‖2 .
𝐶∗- and von Neumann algebras. There are multiple infi-
nite-dimensional generalizations of 𝑀𝑛(ℂ), an important
one being 𝐵(ℋ). We examine two such generalizations:
one that arises from elevating the properties of 𝐵(ℋ) to
axioms and another that comes from considering a weaker
notion of convergence than the one arising from the oper-
ator norm. This yields two branches of operator algebras:
𝐶∗-algebras and von Neumann algebras.

Definition 3. Let (𝒜, ‖⋅‖) be a complex algebra
endowed with an anti-linear involution∗ that is complete
with respect to ‖⋅‖. If

‖𝑎𝑏‖ ≤ ‖𝑎‖‖𝑏‖
for all 𝑎,𝑏 ∈ 𝒜, then 𝒜 is a Banach-∗ algebra. If the
𝐶∗-identity

‖𝑎∗𝑎‖ = ‖𝑎‖2 (3)

holds for all 𝑎 ∈ 𝒜, then 𝒜 is a 𝐶∗-algebra. The algebra
𝒜 is unital if there is a 1𝒜 ∈ 𝒜 such that 1𝒜𝑎 = 𝑎1𝒜 =
𝑎 for all 𝑎 ∈ 𝒜.

The classic example of a unital, abelian 𝐶∗-algebra is
𝐶(𝑋), with the unit being the constant function 1. By
a theorem of Gelfand, every unital, abelian 𝐶∗-algebra
can be identified with 𝐶(𝑋) for some compact Hausdorff
space 𝑋. Examples of nonabelian unital 𝐶∗-algebras are
𝑀𝑛(ℂ) and 𝐵(ℋ). The Gelfand–Naimark–Segal (GNS)
construction produces a representation of a𝐶∗-algebra giv-
en any state (unital positive linear functional) on that al-
gebra.

Theorem 4 (Gelfand–Naimark). Given a 𝐶∗-algebra 𝒜,
there exists a 𝐶∗-subalgebra 𝒜̃ ⊂ 𝐵(ℋ) for some Hilbert
space ℋ such that 𝒜 and 𝒜̃ are isometrically ∗-isomorphic.

Therefore, any “abstract” 𝐶∗-algebra can be realized as
a “concrete” 𝐶∗-algebra via the GNS construction and the
Gelfand–Naimark theorem above.

The weak operator topology (WOT) on 𝐵(ℋ) is defined
by the family of seminorms

𝜌𝜉,𝜂(𝑥) = (𝑥𝜉|𝜂)
where 𝜉,𝜂 ∈ ℋ. In practice, a sequence 𝑥𝑛 of operators
converges to 𝑥 in the weak operator topology if and only
if for every 𝜉,𝜂 ∈ ℋ,

((𝑥𝑛 − 𝑥)(𝜉)|𝜂) → 0.
This loosely means that the “matrix coefficients” of 𝑥𝑛 con-
verge to those of 𝑥.
Definition 5. A unital ∗-subalgebra 𝑀 ⊂ 𝐵(ℋ) is a von
Neumann algebra if 𝑀 is closed in the WOT.
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The WOT is weaker than the norm topology, and thus
every vonNeumann algebra is in fact a𝐶∗-algebra. Letting

𝑀′ ∶= {𝑦 ∈ 𝐵(ℋ) ∶ 𝑥𝑦 = 𝑦𝑥 ∀𝑥 ∈ 𝑀}
denote the commutant of 𝑀, von Neumann proved that a
unital, self-adjoint subset 𝑀 ⊂ 𝐵(ℋ) is a von Neumann
algebra if and only if𝑀 = (𝑀′)′, where (𝑀′)′ denotes the
double commutant of 𝑀. This characterization is known as
the double commutant theorem. In contrast, no purely
algebraic characterization of 𝐶∗-algebras is known.

To contrast von Neumann algebras against general 𝐶∗-
algebras, note that if we consider a finite Borel measure
space (𝑋,𝜇), functions in 𝐿∞(𝑋,𝜇) act on 𝐿2(𝑋,𝜇) by
way of multiplication as bounded operators. Naturally, we
have the following chain of inclusions:

𝐶(𝑋) ⊂ 𝐿∞(𝑋,𝜇) ⊂ 𝐵(𝐿2(𝑋,𝜇)).
While 𝐶(𝑋) is a 𝐶∗-algebra, it is not a von Neumann al-
gebra, since (𝐶(𝑋)′)′ contains 𝐿∞(𝑋,𝜇). It can be shown
that 𝐿∞(𝑋,𝜇) is a maximal abelian subalgebra in
𝐵(𝐿2(𝑋,𝜇)) and is thus a von Neumann algebra by the
double commutant theorem. In fact, all abelian von Neu-
mann algebras on a separable Hilbert space can be identi-
fied with 𝐿∞(𝑋,𝜇) for some measure space (𝑋,𝜇).
Classification of factors. A von Neumann algebra 𝑀 is a
factor if its center is trivial: 𝑀 ∩ 𝑀′ = ℂ1𝑀. Every von
Neumann algebra admits a direct integral decomposition
over its center into factors. Thus, the classification of von
Neumann algebras reduces to the study of factors. Further-
more, the classification of factors involves the cone of posi-
tive elements

𝑀+ = {𝑡∗𝑡 ∶ 𝑡 ∈ 𝑀}
in a factor 𝑀 and the lattice of projections

𝒫(𝑀) = {𝑝 ∈ 𝑀 ∶ 𝑝 = 𝑝2, 𝑝 = 𝑝∗}

in 𝑀.
A linear map 𝑤 ∶ 𝑀+ → [0,∞] is a tracial weight on 𝑀

if 𝑤(𝑡∗𝑡) = 𝑤(𝑡𝑡∗) for all 𝑡 ∈ 𝑀. A factor 𝑀 is

• type I𝑛 if 𝑤(𝒫(𝑀)) = {0, 1/𝑛, 2/𝑛,… ,1}
• type I∞ if 𝑤(𝒫(𝑀)) = {0, 1, 2,… , }
• type II1 if 𝑤(𝒫(𝑀)) = [0, 1]
• type II∞ if 𝑤(𝒫(𝑀)) = [0,∞)
• type III if 𝑤(𝒫(𝑀)) = {0,∞}

for some tracial weight𝑤. Whenever𝑀 is a factor, any tra-
cial weight is unique up to a positive scalar, making type
decomposition well-defined. Factors of type I𝑛 are iso-
morphic to 𝐵(ℋ) for some Hilbert space of dimension 𝑛.
Type III factors can be further decomposed into so-called
type III𝜆 factors for 𝜆 ∈ [0, 1], but we will not elaborate
the distinguishing features here.

Given a type I𝑛 or II1 factor 𝑀, the unique weight 𝑤 ∶
𝑀+ → [0,∞) satisfying 𝑤(1𝑀) = 1 extends to a linear

functional on 𝑀. Observing that every element 𝑥 ∈ 𝑀
decomposes as a linear combination

𝑥 = 𝑥+ − 𝑥− + 𝑖𝑦+ − 𝑖𝑦−

of four elements in 𝑀+, the trace 𝜏 ∶ 𝑀 → ℂ is the linear
functional defined by

𝜏(𝑥) ∶= 𝑤(𝑥+) −𝑤(𝑥−) + 𝑖𝑤(𝑦+) − 𝑖𝑤(𝑦−).

The functional𝜏 satisfies the trace property𝜏(𝑥𝑦) = 𝜏(𝑦𝑥)
for all 𝑥,𝑦 ∈ 𝑀 and is uniquely determined if we insist
that 𝜏(1𝑀) = 1. If 𝑀 is a type I𝑛 factor, then 𝜏 ∶ 𝑀 → ℂ
is the normalized trace on 𝑀𝑛(ℂ).
Group algebras. Von Neumann observed that group rep-
resentation theory provides us with a potentially rich col-
lection of von Neumann algebras. We direct our attention
to the left regular representation of a countable group Γ en-
dowed with the discrete topology. Consider the Hilbert
space ℓ2(Γ) with basis {𝛿𝛾}𝛾∈Γ . The left regular represen-

tation is the unitary representation 𝜆 ∶ Γ → 𝐵(ℓ2(Γ)) de-
fined by linearly extending the map 𝜆𝜎(𝛿𝛾) = 𝛿𝜎𝛾 for all
𝜎,𝛾 ∈ Γ. This embeds a copy of the group ringℂ[Γ] into
𝐵(ℓ2(Γ)). Taking either the norm closure or the WOT clo-
sure of ℂ[Γ] gives either 𝐶𝜆(Γ) or 𝐿(Γ), the reduced group
C∗-algebra of Γ or the group von Neumann algebra of Γ, re-
spectively.

In both of these cases, there is a canonical trace given by
𝜏(𝑥) = (𝑥𝛿𝑒| 𝛿𝑒), where 𝑒 ∈ Γ is the identity. A group
von Neumann algebra is a II1 factor precisely when Γ is an
i.c.c. group, that is, a group for which the conjugacy class
of every nontrivial element has infinite order. Examples
of i.c.c. groups are 𝑆∞ = ⋃𝑛≥2 𝑆𝑛, the group of finitely
supported permutations of ℕ, and 𝔽𝑛, the free group on
𝑛 ≥ 2 generators. Murray and von Neumann used this
construction to give examples of two nonisomorphic von
Neumann algebras, namely 𝐿(𝑆∞) and 𝐿(𝔽2). The free
groups factor problem, which in one form asks whether
𝐿(𝔽2) ≄ 𝐿(𝔽3), is a question whose answer is currently
unknown. Efforts to understand this led to the develop-
ment of Voiculescu’s free probability theory, a topic we
visit in the subsection “Free probability theory.”
The hyperfinite II1 factor. An algebra (𝐶∗- or von Neu-
mann) is hyperfinite if there exists an increasing sequence
of finite-dimensional subalgebras whose union is dense
(with respect to the relevant topology) in the algebra. For

example, 𝐿(𝑆∞) = ⋃𝑛≥2 𝐿(𝑆𝑛)
𝑊𝑂𝑇

is a hyperfinite type
II1 factor. Murray and von Neumann were able to prove
that any two hyperfinite II1 factors are necessarily isomor-
phic. We denote by

ℛ ∶= 𝐿(𝑆∞)

the unique hyperfinite II1 factor, up to isomorphism. One
of the consequences of Connes’ work shows that ℛ is the
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“smallest” II1 factor in the sense that every II1 factor admits
an embedding of ℛ.

A canonical construction of a hyperfinite algebra arises
by considering the embeddings

𝑀2(ℂ) ↪ 𝑀4(ℂ) ↪ 𝑀8(ℂ) ↪
mapping 𝑥 ∈ 𝑀2𝑛(ℂ) to

(𝑥 0
0 𝑥) ∈ 𝑀2𝑛+1(ℂ).

Provided we use normalized traces, this forms a sequence
of trace-preserving embeddings. The inductive limit 𝐴 of
this procedure is an infinite-dimensional ∗-algebra with
a tracial state 𝜏0 ∶ 𝐴 → ℂ and trace-preserving embed-
dings of 𝑀2𝑛(ℂ) ↪ 𝐴 . The GNS construction with re-
spect to 𝜏0 gives us a Hilbert space ℋ and a faithful rep-
resentation 𝜋 ∶ 𝐴 → 𝐵(ℋ). Closing these objects in ei-
ther norm (resp., WOT) produces a uniformly hyperfinite
(UHF) (resp., hyperfinite) 𝐶∗- or von Neumann algebra,
respectively.

We may attempt to produce nonisomorphic examples
by emulating this procedure and taking trace-preserving
embeddings of the form

𝑀𝑘1(ℂ) ↪ 𝑀𝑘2(ℂ) ↪ 𝑀𝑘3(ℂ) ↪
for some sequence {𝑘𝑛} in ℕ\{1}. A theorem of Glimm
shows that there exist uncountably many nonisomorphic
UHF 𝐶∗-algebras arising in this way, and they are distin-
guished by the generating sequence {𝑘𝑛}. The von Neu-
mann algebra case is vastly different. Connes’ classifica-
tion of injective factors proves that all von Neumann alge-
bras produced in thismanner are isomorphic toℛ. Indeed
ℛ is an example of a type II1 factor with the trace playing
the role of the weight in its type decomposition.

We would be remiss if we did not expand on the clas-
sification of injective factors acting on a separable Hilbert
space. This endeavor nearly came to a close with Connes’
landmark result, which earned him the Fields Medal in
1982. In [2], Connes establishes the equivalence between
the notions of injectivity and hyperfiniteness for von Neu-
mann algebras. This settled numerous open problems,
such as whether any subfactor of the hyperfinite II1 fac-
tor is hyperfinite. Building on his previous works, Connes
goes on to show that for each of the types II1, II∞, or III𝜆
with 𝜆 ∈ (0, 1), there is a unique injective von Neumann
algebra and it is hyperfinite. While it is well known that
type III0 are not classifiable through “simple” means,
Haagerup was able to prove that there is exactly one hy-
perfinite type III1 factor, essentially closing the book on
the classification of injective factors.
Amenability. Why it is so difficult to differentiate one
group II1 factor from another? The heart of this problem
lies in understanding representation-theoretic aspects of
the group itself.

A discrete group Γ is amenable if there is a sequence of
finite subsets {𝐹𝑛} of Γ so that for all 𝛾 ∈ Γ,

lim
𝑛→∞

|𝛾𝐹𝑛Δ𝐹𝑛|
|𝐹𝑛|

= 0,

where 𝐹Δ𝐺 denotes the symmetric difference of sets.
Equivalently, we ask if the left regular representation con-
tains a sequence of unit vectors {𝜉𝑛} ∈ ℓ2(Γ) so that

lim
𝑛→∞

‖𝜆𝛾(𝜉𝑛) − 𝜉𝑛‖ = 0

for every 𝛾 ∈ Γ. In essence, this means that the group and
its group operation can be approximated by finite struc-
tures. The prototypical example is the integers ℤ, though
this class contains others such as (⊕ℤℤ/2)⋊ℤ, (⊕ℤℤ)⋊ℤ,
and 𝑆∞. Connes’ classification of injective factors demon-
strates that in the case of group von Neumann algebras, an
i.c.c. group Γ is amenable if and only if 𝐿(Γ) ≃ ℛ.

To provide nonexamples, we use an equivalent formu-
lation of amenability: a group Γ is amenable if there does
not exist a finitely additive mean 𝜇 ∶ 𝒫(Γ) → [0, 1] that
satisfies 𝜇(𝛾⋅𝐸) = 𝜇(𝐸). It is a standard exercise to show
that 𝔽𝑛 is a nonamenable group whenever𝑛 ≥ 2. An argu-
ment establishing this fact is similar to that which demon-
strates the Banach–Tarski paradox and is in fact a necessary
first step in the proof of the paradox. For this reason, non-
amenable groups are often considered to be groups that
admit “paradoxical decompositions.”
Tensor products. Wewill take various objects, such as Hil-
bert spaces, 𝐶∗-algebras, and von Neumann algebras, and
add more structure to their algebraic tensor products, re-
calling that the algebraic tensor product is just the tensor
product of vector spaces. For example, given two Hilbert
spaces ℋ,𝒦, we start with the algebraic tensor product
ℋ⊗𝒦 and produce theHilbertian tensor productℋ⊗2𝒦,
the completion of the pre-Hilbert space ℋ ⊗ 𝒦 with re-
spect to the inner product on finite sums given by

⎛
⎝
∑
𝑖
𝜉𝑖 ⊗𝜂𝑖

||||||
∑
𝑗
𝜉𝑗 ⊗𝜂𝑗⎞

⎠ℋ⊗2𝒦

∶= ∑
𝑖,𝑗

(𝜉𝑖| 𝜉𝑗)ℋ (𝜂𝑖| 𝜂𝑗)𝒦.

Let 𝒜 and ℬ be either 𝐶∗- or von Neumann algebras.
Their algebraic tensor product 𝒜⊗ℬ is a ∗-algebra with
the product and involution given on finite sums by

(∑
𝑖
𝑎𝑖 ⊗𝑏𝑖)⎛

⎝
∑
𝑗
𝑐𝑗 ⊗𝑑𝑗⎞

⎠
= ∑

𝑖,𝑗
𝑎𝑖𝑐𝑗 ⊗𝑏𝑖𝑑𝑗

and

(∑
𝑖
𝑎𝑖 ⊗𝑏𝑖)

∗

= ∑
𝑖
𝑎∗
𝑖 ⊗𝑏∗

𝑖 .

The tensor product of two von Neumann algebras 𝑀 ⊆
𝐵(ℋ),𝑁 ⊆ 𝐵(𝒦) is formed by first taking the Hilbertian
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tensor product ℋ⊗2 𝒦 and the algebraic tensor product
𝑀 ⊗ 𝑁. This implements a representation of operators
acting on ℋ⊗2 𝒦 via the formula

(𝑚⊗ 𝑛)(𝜉 ⊗ 𝜂) = (𝑚𝜉)⊗ (𝑛𝜂)

for every 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁, 𝜉 ∈ ℋ, and 𝜂 ∈ 𝒦. We then
take the WOT closure in 𝐵(ℋ ⊗2 𝒦) of these operators
to form the von Neumann algebra tensor product 𝑀⊗̄𝑁. For
group von Neumann algebras, this construction gives an
identification between 𝐿(Γ ×Λ) and 𝐿(Γ)⊗̄𝐿(Λ).

Constructing 𝐶∗-algebras from tensor products is far
more interesting and is explored in the subsection “The
minimal and maximal 𝐶∗-algebra tensor products.”
Ultraproduct constructions. Let us take a II1 factor 𝑀 ⊂
𝐵(ℋ). Connes’ work tells us that ℛ is the only II1 fac-
tor that may be approximated by finite-dimensional struc-
tures. But what if instead we attempt to approximate a II1
factor 𝑀 by ℛ? In what sense are we approximating 𝑀 by
ℛ? To answer the second question, we first need to extend
the notion of a limit.

A (proper) filter ℱ on ℕ is a collection ℱ of subsets of
ℕ such that

(1) ℕ ∈ ℱ,
(2) ∅ ∉ ℱ,
(3) if 𝐴 ∈ ℱ and 𝐴 ⊆ 𝐵, then 𝐵 ∈ ℱ, and
(4) if 𝐴,𝐵 ∈ ℱ, then 𝐴∩𝐵 ∈ ℱ.

Informally, a filter tells us which subsets of ℕ are consid-
ered to be large. An important filter is the cofinite filter,
denoted by ℱ0, which consists of all subsets of ℕ whose
complement in ℕ is a finite set.

A filter ℱ is an ultrafilter if for every 𝐴 ⊂ ℕ, either 𝐴 ∈
ℱ or 𝐴𝑐 ∈ ℱ. A standard maximality argument shows
that every filter can be extended to an ultrafilter, though
this completion is not unique. Ultrafilters containing ℱ0
are called nonprincipal ultrafilters.

Throughout this discussion, we fix a nonprincipal ultra-
filter 𝒰 on ℕ. The collection 𝒰 may be used to form lim-
its of bounded sequences {𝑠𝑛}∞𝑛=1 ∈ 𝑋 in a proper metric
space (𝑋,𝑑), even when a classical limit does not exist.
For example, if 𝑥𝑛 = (−1)𝑛 is a sequence in ℝ, then the
ultralimit of the sequence, which we denote by lim𝑛→𝒰 𝑥𝑛,
will either be −1 or 1 depending on whether 𝒰 contains
the set of even or odd numbers. In essence, the ultralimit
along an ultrafilter 𝒰 is a preferred choice of a convergent
subsequence. Moreover, if 𝑋 admits an algebra structure,
the operation lim𝑛→𝒰 obeys traditional limit laws such as
linearity and multiplicativity.

Let (𝑀𝑛, 𝜏𝑛)∞𝑛=1 be a countably infinite family of II1
factors with traces 𝜏𝑛 ∶ 𝑀𝑛 → ℂ. We define the space

ℓ∞(𝑀𝑛) ∶= {(𝑥𝑛) ∶ 𝑥𝑛 ∈ 𝑀𝑛, sup
𝑛∈ℕ

‖𝑥𝑛‖ < ∞}

and the ideal ℐ𝒰 of ℓ∞(𝑀𝑛),
ℐ𝒰 ∶= {(𝑥𝑛) ∈ ℓ∞(𝑀𝑛) ∶ lim

𝑛→𝒰
𝜏𝑛(𝑥∗

𝑛𝑥𝑛) = 0}.

The ultraproduct of (𝑀𝑛, 𝜏𝑛)∞𝑛=1 along 𝒰 is the II1 factor
∏𝑀𝑛/𝒰 = ℓ∞(𝑀𝑛)/ℐ𝒰 with trace 𝜏(𝑥𝑛) =
lim𝑛→𝒰 𝜏𝑛(𝑥𝑛). It is a nontrivial exercise to show that the
ultraproduct of II1 factors is again a II1 factor (see [1,4]). If
𝑀𝑛 = 𝑀 for every 𝑛 ∈ ℕ, then we write∏𝑀/𝒰 ∶= 𝑀𝒰,
and in this case we say that 𝑀𝒰 is the ultrapower of 𝑀. It
should be noted that a II1 factor arising from an ultraprod-
uct of II1 factors is necessarily represented on a nonsepara-
ble Hilbert space.

Connes’ Embedding
Before stating Connes’ embedding problem we wish to
make a few remarks. As was mentioned, Connes nearly
completed the classification of injective factors in his sem-
inal paper [2], where (among other things) he shows that
each of the factors of types II1, II∞, and III𝜆 for 𝜆 ∈ (0, 1)
is isomorphic to a unique hyperfinite von Neumann alge-
bra of the corresponding type. Connes proves that the free
group factors 𝐿(𝔽𝑛), 𝑛 ≥ 2, admit a sequence of approxi-
mate algebraic embeddings into matrix algebras. Further-
more, these embeddings can be chosen in such a way that
they approximately preserve the trace. He further remarks
that such a construction ought to hold for any separable
II1 factor. The precise statement is as follows:

Conjecture 6 (Connes’ embedding problem). If 𝑀 is a
separable II1 factor with trace 𝜏 then for any 𝜀 > 0 and finite
subset 𝐹 ⊂ 𝑀, there exists 𝑛 ∈ ℕ and a function 𝜑 ∶ 𝑀 →
𝑀𝑛(ℂ) so that 𝜑(1𝑀) = 1𝑀𝑛 and so that for all 𝑥,𝑦 ∈ 𝐹:

(1) ‖𝜑(𝑥 + 𝑦) −𝜑(𝑥) −𝜑(𝑦)‖2,𝑛 < 𝜀,
(2) ‖𝜑(𝑥𝑦) −𝜑(𝑥)𝜑(𝑦)‖2,𝑛 < 𝜀,
(3) |𝜏(𝑥) − 𝜏𝑛(𝜑(𝑥))| < 𝜀,

where ‖𝑚‖2,𝑛 ∶= √𝜏𝑛(𝑚∗𝑚) for all 𝑚 ∈ 𝑀𝑛(ℂ).
Properties (1) and (2) state that 𝜑 ∶ 𝑀 → 𝑀𝑛(ℂ) is

approximately an algebraic homomorphism with respect
to the Hilbert–Schmidt norm on 𝑀𝑛(ℂ), and condition
(3) shows that 𝜑 respects the trace. Taking a sequence of
𝜀𝑛 > 0 that tend to 0, we may restate Connes’ embedding
problem in the following manner:

Conjecture 7. Let 𝒰 be a nonprincipal ultrafilter on ℕ. Then
every separable II1 factor 𝑀 admits a trace-preserving embed-
ding into ℛ𝒰.

In the words of S. Popa, the elements of a vonNeumann
algebra that embed into ℛ𝒰 may be “simulated” in an ap-
propriate sense by sequences valued in the unique hyper-
finite II1 factor ℛ.

One may inquire whether there exists some II1 factor
𝑁 into which every II1 factor embeds in a trace-preserving
manner. In [14], Ozawa shows that any such II1 factor
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must necessarily be nonseparable. It is a well-known fact
thatℛ𝒰 is not faithfully represented on a separableHilbert
space and thus is a viable natural candidate.
Hyperlinear groups. For each 𝑛 ∈ ℕ, let𝑈(𝑛) ⊆ 𝑀𝑛(ℂ)
denote the group of 𝑛×𝑛 unitary matrices, equipped with
the Hilbert–Schmidt norm

𝑑𝐻𝑆(𝑢, 𝑣) = √𝜏𝑛((𝑢 − 𝑣)∗(𝑢 − 𝑣)).
The ultraproduct of (𝑈(𝑛𝑖) ⊆ 𝑀𝑛𝑖(ℂ))∞𝑖=1 is the group

∏𝑈(𝑛𝑖)/𝒰 ∶= ∏∞
𝑖=1 𝑈(𝑛𝑖)

{(𝑔𝑖)∞𝑖=1 ∶ lim𝑖→𝒰 𝑑𝐻𝑆(𝑔𝑖, 1) = 0}.

A group Γ is hyperlinear if there exist a sequence of unitary
groups {𝑈(𝑛𝑖)}∞𝑖=1, an ultrafilter𝒰 onℕ, and an injective
group homomorphism Γ ↪ ∏𝑈(𝑛𝑖)/𝒰. A deeper treat-
ment of ultraproducts of groups and their properties may
be found in [1,17].

It is conceivable that every group is hyperlinear, and in
fact the existence of a nonhyperlinear group is sufficient to
disprove Connes’ embedding conjecture:

Theorem 8 (Radulescu). The following are equivalent:

(1) 𝐿(Γ) ↪ ℛ𝒰 for all countable i.c.c. groups.
(2) Every i.c.c. group is hyperlinear.

Free probability theory. Viewing the trace 𝜏 ∶ 𝑀 → ℂ
on a II1 factor 𝑀 as a noncommutative analogue of the in-
tegral on a probability space, Voiculescu defined notions
of independence and entropy for tuples of self-adjoint el-
ements in 𝑀. This abstract formalism allows one to gen-
eralize the classical theory of probability to the more gen-
eral theory of noncommutative probability theory by re-
placing random variables and their expectations with self-
adjoint operators and their traces. Surprisingly, Connes’
embedding conjecture has an equivalent formulation in
this realm.

We fix a finite collection of 𝑛 self-adjoint elements in a
II1 factor 𝑥1,… , 𝑥𝑛 ∈ 𝑀. Given an element of the form
(𝑦 = 𝑥𝑖1 ⋯𝑥𝑖𝑗) ∶ 1 ≤ 𝑗 ≤ 𝑛, 𝑖1,… , 𝑖𝑗 ∈ {1,… ,𝑛}, the
mixed moment of 𝑦 is 𝜏(𝑦). The set

{𝜏(𝑥𝑖1 ⋯𝑥𝑖𝑗) ∶ 1 ≤ 𝑗 ≤ 𝑛, 𝑖1,… , 𝑖𝑗 ∈ {1,… ,𝑛} }
is the collection of all possible mixed moments of the 𝑛-
tuple (𝑥1,… , 𝑥𝑛), that is, the collection of values of the
trace over every possible product of the 𝑥𝑖s.

Mimicking the classical notion of Shannon entropy, Voi-
culescu defined the following analogue of microstates for
the noncommutative setting. We let 𝜏𝑘 ∶ 𝑀𝑘(ℂ) → ℂ
denote the normalized trace on the 𝑘×𝑘 matrices. Given
𝑅 > 0, 𝑚,𝑘 ∈ ℕ, and 𝜀 > 0, the set of approximating
matricial microstates, denoted by Γ𝑅((𝑥1,… , 𝑥𝑛),𝑚, 𝑘, 𝜀),
is the collection of 𝑛-tuples of 𝑘 × 𝑘 matrices (𝑟1,… , 𝑟𝑛)
such that

|𝜏(𝑥𝑖1 ⋯𝑥𝑖𝑗) − 𝜏𝑘(𝑟𝑖1 ⋯𝑟𝑖𝑗)| < 𝜀

for every 𝑗 ∈ {1,… ,𝑚} and 𝑖1,… , 𝑖𝑗 ∈ {1,… ,𝑛} with
‖𝑟𝑖‖ ≤ 𝑅. We note that the set Γ𝑅((𝑥1,… , 𝑥𝑛),𝑚, 𝑘, 𝜀)
may be empty for certain choices of parameters.

An 𝑛-tuple of self-adjoint elements in 𝑀 has microstates
if for every 𝜀 > 0, there exist parameters𝑅 > 0,𝑚,𝑘 ∈ ℕ,
so that Γ𝑅((𝑥1,… , 𝑥𝑛),𝑚, 𝑘, 𝜀) ≠ ∅. Heuristically, the
existence of microstates is equivalent to having the ability
to model the noncommutative probability distribution of
𝑛-tuples of operators in 𝑀 by sequences of matrices. This
hints at Voiculescu’s observation connecting microstates
and Connes’ embedding conjecture [19].

Theorem 9. Let 𝑀 be a II1 factor. The following are equiva-
lent.

(1) Every set of self-adjoint elements 𝑥1,… , 𝑥𝑛 ∈ 𝑀 has
microstates.

(2) 𝑀 ↪ ℛ𝒰.

Continuous model theory. In light of a classical theorem
of Łoś, ultrapower constructions play a foundational role
inmodel theory. The underlying idea in continuousmodel
theory is to transform classical predicate logic into a con-
tinuous one. Here, the standard truth values {𝑇,𝐹} are
replaced with the interval [0, 1], quantifiers ∀ and ∃ are
replaced by sup and inf, and continuous functions from
[0, 1]𝑛 → [0, 1] will be our connectives. The model the-
ory of von Neumann algebras takes this one step further
by viewing a II1 factor𝑀 with trace 𝜏 as a logical structure
with a metric arising from the 2-norm ‖𝑥‖2 ∶= √𝜏(𝑥∗𝑥)
for all 𝑥 ∈ 𝑀. The interplay between the operator norm
and the 2-norm on 𝑀 introduces complexity when con-
sidering 𝑀 as a logical structure. We remark that the un-
derstanding of continuous model theory of II1 factors is
currently in its infancy (see [4,5]).

Recall that one of the outcomes of Connes’ work shows
that ℛ embeds into any II1 factor 𝑀. On the other hand,
Connes’ embedding conjecture asserts that 𝑀 ↪ ℛ𝒰. Us-
ing the language of model theory, a positive solution to
Connes’ embedding states that ℛ𝒰 is a locally universal
object in the category of II1 factors. But another question
may be whether or not a locally universal II1 factor exists
at all. Using model theoretic techniques, there does in fact
exist such a II1 factor; a positive solution to Connes’ em-
bedding will show that ℛ is locally universal [7].

Kirchberg’s Conjecture
In the 1990s Eberhard Kirchberg discovered a highly non-
trivial equivalent form of Connes’ embedding conjecture
[11]. Explaining the equivalence would take us outside the
scope of this article, but we point out that in this landmark
paper Kirchberg presented many equivalences to Connes’
original problem and what we will refer to as Kirchberg’s
conjecture is only one such equivalence. In order to ex-
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plain Kirchberg’s conjecture we must start at its founda-
tions.
The minimal and maximal 𝐶∗-algebra tensor products.
Let 𝒜 and ℬ be 𝐶∗-algebras and let

𝜋 ∶ 𝒜 → 𝐵(ℋ) and 𝜎 ∶ ℬ → 𝐵(𝒦)
denote the faithful representations afforded by the GNS
construction. For a finite sum 𝑥 = ∑𝑖 𝑎𝑖 ⊗ 𝑏𝑖 ∈ 𝒜⊗ℬ,
the minimal 𝐶∗-tensor product norm is

‖𝑥‖𝐶∗-min ∶= ‖∑
𝑖
𝜋(𝑎𝑖) ⊗𝜎(𝑏𝑖)‖

𝐵(ℋ⊗2𝒦)
. (4)

As before, we let ⊗2 denote the Hilbertian tensor product.
The completion of 𝒜 ⊗ ℬ with respect to ‖⋅‖𝐶∗-min is a
𝐶∗-algebra denoted 𝒜⊗𝐶∗-min ℬ and called the minimal
𝐶∗-algebra tensor product of𝒜 andℬ. It can be shown that
the minimal 𝐶∗-algebra tensor product is independent of
choice of representations.

Given 𝑥 ∈ 𝒜⊗ℬ, its maximal 𝐶∗-tensor product norm
is

‖𝑥‖𝐶∗-max ∶= sup{‖𝜋(𝑥)‖}, (5)

where the supremum runs over all Hilbert spaces ℋ and
all representations 𝜋 ∶ 𝒜⊗ℬ ⟶ 𝐵(ℋ). We denote the
completion, which is again a 𝐶∗-algebra, of the algebraic
tensor product with respect to ‖⋅‖𝐶∗-max by 𝒜⊗𝐶∗-max ℬ
and call it the maximal 𝐶∗-algebra tensor product.

As wemight expect from the terminology, it follows that
given any norm ‖⋅‖𝛼 on 𝒜⊗ℬ that is submultiplicative,
preserved under the involution, satisfies the 𝐶∗-identity
(3), and yields a 𝐶∗-algebra after completing, then

‖⋅‖𝐶∗-min ≤ ‖⋅‖𝛼 ≤ ‖⋅‖𝐶∗-max .
When does equality hold in the preceding?

Definition 10. A 𝐶∗-algebra 𝒜 is nuclear if for all 𝐶∗-
algebras ℬ,

𝒜⊗𝐶∗-min ℬ = 𝒜⊗𝐶∗-max ℬ.

Examples of nuclear𝐶∗-algebras are thematrix algebras
𝑀𝑛(ℂ) for all 𝑛 ≥ 1. In particular, every finite-dimen-
sional 𝐶∗-algebra is nuclear. If 𝑋 is a compact Hausdorff
space, then 𝐶(𝑋) is nuclear, and thus every abelian 𝐶∗-
algebra is nuclear.
Lance’s weak expectation property. It can be checked that
given an inclusion of algebras 𝒜 ⊂ 𝒜𝑜, then 𝒜 ⊗ ℬ ⊂
𝒜𝑜 ⊗ℬ for all algebras ℬ. This inclusion principle quickly
fails once we put more structure on the algebraic tensor
product. If𝒜 ⊂ 𝒜𝑜 andℬ are𝐶∗-algebras, then since ev-
ery representation of𝒜𝑜⊗ℬ is a representation of𝒜⊗ℬ
by restricting, the maximal norm on 𝒜𝑜 ⊗ℬ will in gen-
eral be smaller than themaximal normon𝒜⊗ℬ. Thus, in
general, ⊗𝐶∗-max does not satisfy the inclusion principle.

In the 1970s Christopher Lance introduced a notion
for 𝐶∗-algebras that he called the weak expectation property
(WEP), and he proved that this notion was directly related
to ⊗𝐶∗-max satisfying the inclusion principle [12].

Definition 11. A unital 𝐶∗-algebra 𝒜 has Lance’s WEP if
the maximal 𝐶∗-algebra tensor product satisfies the inclu-
sion principle with respect to 𝒜.

Thus, 𝒜 has the WEP if for all 𝐶∗-algebras 𝒜𝑜 ⊃ 𝒜
containing 𝒜 as a 𝐶∗-subalgebra, we have the inclusion
of 𝐶∗-algebras

𝒜⊗𝐶∗-max ℬ ⊂ 𝒜𝑜 ⊗𝐶∗-max ℬ
for all𝐶∗-algebrasℬ. The 𝑛th amplification of a linear map
𝜑 ∶ 𝒜 → ℬ is

𝜑(𝑛) ∶ 𝑀𝑛(𝒜) → 𝑀𝑛(ℬ), [𝑎𝑖𝑗]𝑖,𝑗 ↦ [𝜑(𝑎𝑖𝑗)]𝑖,𝑗 .
We say that 𝜑 is a contractive completely positive map (c.c.p.)
if 𝜑(𝑛) is positive for all 𝑛 ∈ ℕ and contractive for 𝑛 = 1.
Here is an equivalent formulation of Lance’s WEP. Realiz-
ing 𝒜 as a 𝐶∗-subalgebra of 𝐵(ℋ), then given the com-
pletely isometric inclusion 𝜄 ∶ 𝒜 ↪ 𝒜∗∗, where 𝒜∗∗

denotes the double dual of 𝒜, 𝜄 extends to a unital, com-
pletely positive map ̃𝜄 ∶ 𝐵(ℋ) → 𝒜∗∗ such that ̃𝜄(𝑎) =
𝑎 for all 𝑎 ∈ 𝒜.
Kirchberg’s conjecture. If Γ is a discrete group, then the
full group 𝐶∗-algebra, 𝐶∗(Γ), is the completion of the
group ring ℂ[Γ] with respect to the norm ‖⋅‖ given for
𝑥 ∈ ℂ[Γ] by

‖𝑥‖ = sup{‖𝜋(𝑥)‖} ,
where the supremum is taken over all representations 𝜋 ∶
ℂ[Γ] ⟶ 𝐵(ℋ) and all Hilbert spaces ℋ. At this point
we are ready to state the equivalent formulation to Connes’
embedding problem known as Kirchberg’s conjecture [11].
Consider the free group 𝔽∞ on a countably infinite num-
ber of generators and its full group 𝐶∗-algebra 𝐶∗(𝔽∞).
Conjecture 12 (Kirchberg’s conjecture). 𝐶∗(𝔽∞) has
Lance’s WEP.

This was shown to be equivalent to a weaker nuclear-
ity property of 𝐶∗(𝔽∞), whether there was only one 𝐶∗-
structure on 𝐶∗(𝔽∞) ⊗ 𝐶∗(𝔽∞). In other words, does it
follow that

𝐶∗(𝔽∞) ⊗𝐶∗-min 𝐶∗(𝔽∞) = 𝐶∗(𝔽∞) ⊗𝐶∗-max 𝐶∗(𝔽∞)?
It can be shown that every unital 𝐶∗-algebra 𝒜 can be

written as a quotient of 𝐶∗(𝔽) for some free group 𝔽. We
say that a unital𝐶∗-algebra isQWEP if it is the quotient of
a𝐶∗-algebra with Lance’s WEP. Kirchberg conjectured that
every unital 𝐶∗-algebra had QWEP, which if true, would
give an affirmative answer to Connes’ original conjecture.

Conjecture 13 (Kirchberg’s QWEP conjecture). Every
𝐶∗-algebra is QWEP.
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Tsirelson’s problem. In our discussion on Connes’ origi-
nal problem the recurring themewas the approximation of
infinite dimensions by finite dimensions. An experiment
arising in quantum information theory concerns two inde-
pendent observers making measurements on a quantum
system. In 1980 Boris Tsirelson noticed that Bell’s inequal-
ity had intimate connections with certain famous inequal-
ities arising in analysis [18]. Here we present the operator
algebraic reformulation of this experiment and Tsirelson’s
observations.

Consider an 𝑚-tuple (𝑃𝑖)𝑚𝑖=1 of pairwise orthogonal
projections on some Hilbert spaceℋ such that∑𝑖 𝑃𝑖 = 𝐼.
For specific reasons this object is also called a projection-
valued measure (PVM) with 𝑚-outputs. Let (𝑄𝑗)𝑚𝑗=1 be
another such tuple of pairwise orthogonal projections on
ℋ such that 𝑃𝑖𝑄𝑗 = 𝑄𝑗𝑃𝑖 for all 𝑖 and 𝑗. If 𝜉 ∈ ℋ
is a unit vector, then by looking at matrices of the form
[(𝜉|𝑃𝑖𝑄𝑗𝜉)]𝑖,𝑗 we ask whether these matrices can be ap-
proximated by matrices of the same form but where we
only consider finite-dimensional Hilbert spaces. The short
answer to this question is yes. A much more complicated
scenario is where we consider a 𝑑-tuple of PVMs each with
𝑚-outputs. Thus, we consider the scenario where
(𝑃1, ..., 𝑃𝑑) and (𝑄1, ...,𝑄𝑑) are tuples of PVMswhere for
each 1 ≤ 𝑎 ≤ 𝑑, (𝑃𝑎

𝑖 )𝑚𝑖=1 is itself an 𝑚-tuple of pairwise
orthogonal projections on the Hilbert space ℋ, and sim-
ilarly for each (𝑄𝑏

𝑗)𝑚𝑗=1, 1 ≤ 𝑏 ≤ 𝑑,1 ≤ 𝑗 ≤ 𝑚. The

condition of commutativity implies that 𝑃𝑎
𝑖 𝑄𝑏

𝑗 = 𝑄𝑏
𝑗𝑃𝑎

𝑖
for all 1 ≤ 𝑖, 𝑗 ≤ 𝑚, and 1 ≤ 𝑎,𝑏 ≤ 𝑑.
Definition 14. In the above scenario, a covariance matrix
will be a matrix of the form [(𝜉|𝑃𝑎

𝑖 𝑄𝑏
𝑗𝜉)]𝑎,𝑖;𝑏,𝑗, and

the set of all such matrices will be denoted
𝑄𝑐(𝑚,𝑑).

The space of covariancematrices with PVMs restricted to
finite-dimensional Hilbert spaces will be denoted
𝑄𝑠(𝑚,𝑑). One can show that 𝑄𝑐(𝑚,𝑑) is closed (limits
of covariance matrices are covariance matrices), and since
we have that 𝑄𝑠(𝑚,𝑑) ⊂ 𝑄𝑐(𝑚,𝑑) then 𝑄𝑠(𝑚,𝑑) ⊂
𝑄𝑐(𝑚,𝑑).
Problem 15 (Tsirelson’s problem). Does it follow that
𝑄𝑠(𝑚,𝑑) = 𝑄𝑐(𝑚,𝑑) for all 𝑚 and 𝑑?

An affirmative answer to Tsirelson’s problem would
yield an affirmative answer to Kirchberg’s conjecture and
therefore to Connes’ original problem. We refer the inter-
ested reader to [3, 8, 16] for excellent treatments of this
equivalence.
Does local lifting imply Lance’s WEP? We wish to fin-
ish our discussion on Kirchberg’s conjecture with one fi-
nal equivalence that merits further analysis. Let 𝒜 and
ℬ be unital 𝐶∗-algebras. A self-adjoint (closed under in-
volution) unital subspace of 𝒜 will be called an operator

subsystem of 𝒜. Given an ideal (closed, two-sided) 𝒥 ⊂ ℬ,
consider a c.c.p. map 𝜑 ∶ 𝒜 → ℬ/𝒥. If 𝑞 ∶ ℬ → ℬ/𝒥
denotes the canonical quotient map of ℬ onto the quo-
tient𝐶∗-algebraℬ/𝒥, then𝜑 lifts locally if given any finite-
dimensional operator subsystem ℰ ⊂ 𝒜, there exists a
c.c.p. map 𝜓 ∶ ℰ → ℬ such that 𝑞 ∘𝜓 = 𝜑|ℰ.

Definition 16. A𝐶∗-algebra𝒜 has the local lifting property
(LLP) if for all𝐶∗-algebrasℬ and ideals𝒥 ⊂ ℬ, every c.c.p.
map 𝜑 ∶ 𝒜 → ℬ/𝒥 lifts locally.

Kirchberg showed that 𝐶∗(𝔽) has the LLP for any free
group 𝔽. Thus, we are led into our next and final equiva-
lence of Kirchberg’s conjecture.

Conjecture 17. LLP implies Lance’s WEP.

It is worth pointing out that in [11] Kirchberg asked if
Lance’s WEP implied LLP. This was proven to be false by
Junge and Pisier in [9], where they showed that

𝐵(ℋ)⊗𝐶∗-min 𝐵(ℋ) ≠ 𝐵(ℋ)⊗𝐶∗-max 𝐵(ℋ),

where ℋ is an infinite-dimensional Hilbert space. This
proves that Lance’s WEP does not imply the LLP, since
𝐵(ℋ) can be seen to have Lance’sWEP, recalling the equiv-
alent formulation of Definition 11, and it can be shown
that a unital 𝐶∗-algebra 𝒜 has the LLP if and only if

𝒜⊗𝐶∗-min 𝐵(ℋ) = 𝒜⊗𝐶∗-max 𝐵(ℋ)

for all Hilbert spaces ℋ.

Closing
Our brief treatment of Connes’ embedding problem and
Kirchberg’s conjecture is only part of the story that makes
up this exciting area of operator algebras. Other equiva-
lences to Connes’ embedding problem with connections
to quantum information theory and operator system the-
ory can be found in [6] and [10], respectively. For more
detailed surveys of Connes’ embedding problem, we refer
the interested reader to [1,15].

As was already mentioned in the beginning of the ar-
ticle, Murray and von Neumann developed the founda-
tions of operator algebras after von Neumann had begun
to formalize the mathematics of quantum mechanics. It
is known that during the famous debates between Niels
Bohr and Albert Einstein with regard to the probabilistic
tendencies of the universe, Einstein said, “God does not
play dice.” Thus, in this same spirit we leave you with a
similar farewell. In the words of Vaughan Jones, “Godmay
ormay not play dice, but he sure does love a vonNeumann
algebra.”
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