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While invariants of geometric or topological objects can
be of any sort, most modern invariants are algebraic in
nature. The goal of this article is to survey some of the
ways in which categorical algebra can be utilized to mea-
sure topological phenomena. This area of mathematics is
a relatively recent outcrop on a vast landscape of interac-
tions between algebra and geometry. The critical points
of a differentiable function or the Betti numbers and Euler
characteristic of a topological space are two among many
points of interest on this landscape, and the field of alge-
braic topology has its origins nearby. Venturing further,
Betti numbers were recognized by Noether and Vietoris as
the avatars of homology groups, a perspective that was not
immediately adopted but whose advantages are now clear.
Our route begins here and leads toward higher-categorical
algebra and the topological applications thereof.

Just as the theory of groups provides an abstraction and
formalism for mathematical structures observed in many
examples (e.g., symmetry or additivity), so the theory of
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categories abstracts and formalizes mathematical structure
observed in many applications (e.g., functoriality or natu-
rality). More recently, categories with additional structure
(monoidal, tensor, fusion, enriched, etc.) have found ap-
plications in geometry, representation theory, and physics.
Some of these applications have their roots in the deep
connections between topological invariants and categori-
cal structure. Our discussion below will give an overview
of these connections, outlining several of the key ideas but
focusing on stability (in topology) and symmetric mon-
oidal structure (in category theory).
A natural history of category theory. Even before cate-
gory theory emerged as a distinct mathematical perspec-
tive, the importance of functoriality—that some construc-
tions are preserved by morphisms—had been observed in
various settings. For example, given a ring 𝑅 we can con-
struct the ring of polynomials 𝑅[𝑥] with coefficients in 𝑅,
and any ring homomorphism 𝑓 ∶ 𝑅 → 𝑆 will induce a
ring homomorphism 𝑓∗ ∶ 𝑅[𝑥] → 𝑆[𝑥] by applying 𝑓 to
the coefficients. Similarly, the construction of the dual𝑉∗

of a vector space 𝑉 applies to morphisms as well as to ob-
jects, in the sense that any linear transformation 𝑇∶ 𝑉 →
𝑊 induces a linear transformation (in the opposite direc-
tion!) 𝑇∗ ∶ 𝑊∗ → 𝑉∗.

Functoriality of the fundamental group is what proves
that there is no retraction of a disk 𝐷2 to its boundary cir-
cle 𝑆1. Such a retraction

𝑆1 → 𝐷2 → 𝑆1

SEPTEMBER 2019 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1225



would necessarily induce a retraction on fundamental
groups

ℤ → 0 → ℤ
such that the composite is equal to the identity homomor-
phism on the integers. This produces a contradiction, so
no such retraction can exist. This argument shows the util-
ity of a construction that preserves composition and iden-
tities—the very definition of functoriality.

Eilenberg and Mac Lane introduced category theory per
se to formalize the notion of natural transformation between
functors. Recall that a category C has objects and mor-
phisms, which we draw as vertices and directed edges, to-
gether with a composition law for morphisms and identity
morphisms satisfying associativity and unit axioms. Func-
tors are maps between categories, consisting of a function
sending objects to objects and a function sending mor-
phisms to morphisms, preserving composition and iden-
tities. Natural transformations are then morphisms be-
tween functors. One early motivation was to codify the
properties of the suspension isomorphism for generalized
(co)homology theories (see (2)), but natural transforma-
tions appear in every domain that functors do. For exam-
ple, there is always a ring homomorphism including 𝑅
into𝑅[𝑥] as the subring of constant polynomials. This ho-
momorphism is constructed “naturally” in the sense that
it commutes with all ring homomorphisms: the two com-
posites around the left square in Figure 1 are equal.

Likewise, there is an injective linear transformation
from a vector space to its double dual, which is an isomor-
phism if the vector space is finite-dimensional. This trans-
formation is “naturally” constructed in a way that is uni-
form for any vector space and independent of any choice
of basis. Concretely, this means that the two composites
around the right square in Figure 1 are always equal for
any linear transformation 𝑇.

Category theory provides a language, a context, and in-
deed amathematical theory that abstracts the general prop-
erties of such constructions from their specific instances.
Thus, category theory is sometimes called “the mathemat-
ics of mathematics” for its role in organizing general fea-
tures across mathematical disciplines.

Another point of view on category theory emphasizes
its algebraic nature, by which we mean that it involves data
(objects, morphisms, functors, transformations), rules for
combining that data (identities, composition, etc.), and ax-
ioms such as the associativity of composition or the
equalities in naturality squares. For example, a group 𝐺
can be considered as a category consisting of a single object
whose set of endomorphisms is given precisely by𝐺. Thus,
we can think of categories as generalizations of monoids
or groups and hence as algebraic objects in their own right.

Such a generalization is the start of what is sometimes
called higher-dimensional algebra. Thinking of a set as a col-

𝑅 𝑆

𝑅[𝑥] 𝑆[𝑥]

𝑓

𝑓∗

𝑉 𝑊

𝑉∗∗ 𝑊∗∗

𝑇

𝑇∗∗

Figure 1. Naturality squares.

lection of 0-dimensional elements, the multiplication of
group elements or the addition of vectors is thought of as 0-
dimensional algebra. A category has both 0-dimensional
and 1-dimensional aspects—the objects andmorphisms—
so any algebraic structure on a category is inherently 1-
dimensional. For example, the direct sum of vector spaces
is additive on dimension and thus provides a higher-
dimensional analogue of the sum of natural numbers.

The pattern of organizational framework repurposed as in-
dependent theory leading to higher-dimensional invariants re-
peats within category theory itself. Much of the power of
basic category theory arises from the use of natural trans-
formations. In turn, many of those arguments can be ab-
stracted and formalized in the context of 2-categories, in
which we have 2-dimensional arrows betweenmorphisms.

This process can be continued indefinitely and indeed
has spawned the entire subject of higher-dimensional cate-
gory theory: the study of structures that have objects
(thought of as 0-dimensional points), morphisms between
them (thought of as 1-dimensional arrows), 2-dimension-
al morphisms between those, and so on, together with
composition and identity operations. Like 1-dimensional
category theory, themotivations for developing this higher-
dimensional version come from topology, algebraic geom-
etry, logic, physics, computer science, and the subject it-
self.
An analogy with the theory of groups. Our two perspec-
tives on category theory—as an organizing abstraction and
as a higher-dimensional algebra—are themselves general-
izations of two perspectives on group theory. From one
point of view, groups are an abstraction of symmetries.
Homomorphisms between symmetry groups give compar-
isons between symmetries of one object and those of an-
other. Permutations of polynomial roots (Galois theory)
and symmetries of manifolds (Klein’s Erlangen program)
are two early and formative examples of this perspective.
But we also understand groups as useful algebraic invari-
ants in their own right. Mathematical invariants that are
groups instead of mere numbers will detect more subtle
phenomena.

Example 1. For each natural number 𝑛 we have a sym-
metric group 𝑆𝑛. This can be thought of as a 1-object cat-
egory, where the object is an 𝑛-element set and 𝑆𝑛 is the
set of automorphisms of it. When we put all of these ob-
jects together in a single category, 𝐒, we have an object for
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𝐒
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⋯
𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

Figure 2. The category 𝐒 has objects given by the natural
numbers and automorphisms given by symmetric groups.

each 𝑛 ≥ 0 and each object has automorphisms given by
its symmetric group. See Figure 2.

This category has further structure given by the disjoint
union of sets and the block sum of permutations. This
endows 𝐒 with an additive structure that, on objects, is
given by the addition of natural numbers. In this way 𝐒
is a higher-dimensional analogue of the natural numbers,
encoding both cardinality and permutations of elements.

The category 𝐒 is an example of a symmetric monoidal
category using the addition defined above, a structure we
will focus on in the latter sections. Symmetric monoidal
categories abound; the category of sets, Sets , with cartesian
product is one, and the category of vector spaces, Vect , with
tensor product is another.

The purpose of this note is to explain how symmetric
monoidal structure in higher category theory corresponds
to stability in topology. We begin with a description of
some classical invariants in algebraic topology and explain
how these are encoded in the categorical algebra of weak
𝑛-groupoids. Then we explain stabilization in topology
and how the corresponding categorical objects arise from
symmetrization. We describe several ways that interesting
topological invariants motivate natural and equally inter-
esting categorical incarnations, focusing on the data aris-
ing from Postnikov towers in topology. The mathemat-
ics we explain here falls under the broad umbrella of the
stable homotopy hypothesis, which we outline over the
course of the article and detail in the section “Low-
Dimensional Examples of the Stable Homotopy Hypoth-
esis.”

The Fundamental Group(oid) and Classifying
Space
The fundamental group(oid). The fundamental group of a
topological space was introduced in 1895 by Poincaré in
Analysis Situs. For a space𝑋 and a basepoint 𝑥 ∈ 𝑋, this is
the group 𝜋1(𝑋, 𝑥) formed by homotopy classes of paths
in 𝑋 beginning and ending at 𝑥. The fundamental group
measures holes of a certain type in a space, as Example 2
demonstrates.

Example 2. The fundamental group of the circle 𝑆1 is iso-
morphic to the group of integers, as is that of an annulus
𝑆1×[0, 1]. A loop is characterized by its (signed) winding
number around the circle. The fundamental group of the
torus 𝑆1 × 𝑆1 is ℤ × ℤ, and a loop is characterized by its
winding numbers around the two coordinate circles. The

Figure 3. Left: a loop with winding number 3 in the annulus;
Middle: a loop with winding number (1,5) in the torus; Right:
contractible loops in the 2-sphere.

fundamental group of the 2-sphere 𝑆2 is trivial because
any loop there can be contracted to a point. See Figure 3
for these examples.

Note that the definition of 𝜋1 depends on a choice of
basepoint for the loops. A path between two points gives
rise to an isomorphism between the fundamental groups
based at those points, but different paths can produce dif-
ferent isomorphisms and different path components can
have different fundamental groups. Thus, the fundamen-
tal group fails to be a functor on the category of topological
spaces. One can either work with based spaces or track the
dependence on basepoints with a higher-categorical struc-
ture. One such structure is the fundamental groupoidΠ1𝑋
of a space 𝑋.

The objects of the fundamental groupoidΠ1𝑋 are given
by the points of𝑋, and themorphisms between two points
𝑥 and 𝑦 are the homotopy classes of paths between them.
The term groupoid is used for a category in which everymor-
phism is invertible, and Π1𝑋 is a groupoid because paths
are reversible. The fundamental group based at a point 𝑥
is recovered as the group of endomorphisms of 𝑥 (all of
which are automorphisms) in the fundamental groupoid.
Moreover, the change-of-basepoint isomorphisms are en-
coded as morphisms in Π1𝑋, and the set of isomorphism
classes of objects is the set𝜋0(𝑋) of path-connected com-
ponents of 𝑋. At first sight, this may seem to be merely
a clever reframing of elementary notions, but the key fea-
ture is that it allows these two invariants—the set of com-
ponents and the fundamental group(s) thereof—to be en-
coded as a single algebraic object. Unfortunately this is all
the informationΠ1𝑋 carries, so we will need more sophis-
ticated invariants to carry additional topological informa-
tion.
The classifying space. Whereas the fundamental group-
oid makes a category out of a space, taking paths for mor-
phisms, the classifying space constructs a space from a cat-
egory. Given a category 𝐶, the classifying space 𝐵𝐶 (Fig-
ure 4) is constructed as a CW complex with 0-cells given
by the objects of 𝐶, 1-cells given by morphisms, 2-cells
given by composable pairs of morphisms, and, in general,
𝑛-cells given by composable 𝑛-tuples of morphisms. In
particular, every morphism in 𝐶 gives a path in 𝐵𝐶. This
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•𝑥

•𝑦

•𝑧

•𝑤

𝑓

𝑔 ℎ

𝑔∘𝑓

ℎ∘𝑔

Figure 4. The classifying space of a category is constructed as
a CW complex with cells given by composable morphisms.

construction generalizes the notion of classifying space for
a group, where a group is regarded as a 1-object category.

The set𝜋0(𝐵𝐶) of connected components of 𝐵𝐶 is iso-
morphic to the set of connected components of the un-
derlying graph of objects and arrows in 𝐶. For an object 𝑥
in𝐶, the fundamental group𝜋1(𝐵𝐶, 𝑥) has elements that
are represented by equivalence classes of zigzags of mor-
phisms that start and end at 𝑥,

𝑥 𝑓1→ 𝑥1
𝑓2← 𝑥2

𝑓3→ ⋯ 𝑓𝑛← 𝑥𝑛
𝑓𝑛+1→ 𝑥,

with relations induced by composition. A crucial distinc-
tion between 𝐶 and 𝐵𝐶 is that the latter loses the notion
of directionality of morphisms. If 𝐶 is a groupoid, then
zigzags of morphisms can be replaced by composites in 𝐶
using the inverses of the “wrong way” morphisms. Such a
replacement procedure proves that, for a groupoid, the fun-
damental group 𝜋1(𝐵𝐶, 𝑥) is isomorphic to 𝐶(𝑥, 𝑥), the
group of automorphisms of 𝑥.

This connection can be expressed more clearly in cate-
gorical language. For a general category 𝐶, there is a natu-
ral transformation 𝐶 → Π1𝐵𝐶 known as groupoid comple-
tion, the universal way to invert all morphisms in 𝐶. If 𝐶
is a groupoid, then 𝐶 → Π1𝐵𝐶 is an equivalence of cate-
gories.

The reader might wonder now about the relationship
between𝑋 and 𝐵Π1𝑋 since they share𝜋0 and𝜋1. Spaces
have more homotopy groups than these two, and more-
over they are assembled in complicated ways. This addi-
tional topological information is all controlled by the Post-
nikov tower, which we explain in the next section. To cap-
ture more data in the tower using categorical tools, we ex-
plore in the section “Higher Groupoids, More Subtle Alge-
bra” a higher-dimensional analogue of Π1 that faithfully
reflects more of the Postnikov tower.

Higher Homotopy Groups, More Subtle
Invariants
Loop spaces and higher homotopy groups. Further topo-
logical information beyond the set of connected compo-
nents and their fundamental groups is encoded in the high-
er homotopy groups of a space.

Definition 3. For based spaces𝑋,𝑌, we let [𝑋,𝑌] denote
the set of based homotopy classes of continuous based

maps 𝑋 → 𝑌.

The group 𝜋𝑛(𝑋) is given by the set of based homo-
topy classes of maps from the 𝑛-sphere 𝑆𝑛 into𝑋, written
[𝑆𝑛,𝑋]. As with 𝜋1, this involves a choice of basepoint
that is often suppressed in the notation; paths between
different basepoints induce isomorphisms on𝜋𝑛 as in the
case 𝑛 = 1. We restrict to path-connected spaces for the
remainder of this section.

For a based space 𝑋, we denote by Ω𝑛𝑋 the space of
based maps from 𝑆𝑛 to 𝑋. When 𝑛 = 1 this is called the
loop space of 𝑋 and is simply denoted Ω𝑋. The elements
of the group 𝜋𝑛(𝑋) are the path components of Ω𝑛𝑋,
and the group structure on 𝜋𝑛(𝑋) (abelian if 𝑛 > 1) is
induced by an up-to-homotopy group structure on Ω𝑛𝑋.
One can show, using the loop-suspension adjunction (1)
below, that the loop space shifts homotopy groups:

𝜋𝑛(Ω𝑋) ≅ 𝜋𝑛+1(𝑋).
These elementary observations are the first signs of a deeper
theory that we will introduce in the sections “Stabilization
in Topology” and “The Algebra of Iterated Loop Spaces.”

A map 𝑓 that is a homotopy equivalence induces iso-
morphisms on homotopy groups.1 A homotopy type is an
equivalence class of spaces under the relation of homotopy
equivalence; i.e.,𝑋 and𝑌 have the same homotopy type if
there is a homotopy equivalence between them. Although
the homotopy type of a space𝑋 determines its homotopy
groups, the converse is generally not true; an abstract iso-
morphism of homotopy groups does not necessarily in-
duce a homotopy equivalence. One also needs attaching
information, akin to extension classes in group theory. As
we now explain, one can approach the classification of ho-
motopy types from the point of view of basic blocks, the
Eilenberg–Mac Lane spaces, and attaching data known as
Postnikov invariants.

Definition 4. For 𝑛 ≥ 0 and a group 𝐴 (abelian if 𝑛 ≥
2), the 𝑛th Eilenberg–Mac Lane space 𝐾(𝐴,𝑛) is a space
whose homotopy groups are zero except in dimension 𝑛,
and 𝜋𝑛(𝐾(𝐴,𝑛)) ≅ 𝐴.

There aremany ways to construct such a space, but all of
them result in homotopy equivalent spaces. Note that be-
cause the loop space construction shifts homotopy groups,
Ω𝐾(𝐴,𝑛+1) is an Eilenberg–Mac Lane space for𝐴 in di-
mension 𝑛. Uniqueness therefore implies that𝐾(𝐴,𝑛) ≃
Ω𝐾(𝐴,𝑛 + 1).

Given a space𝑍, we say that a space𝑊 is a delooping of𝑍
if there is a homotopy equivalence 𝑍 ≃ Ω𝑊. Note that
both the space𝑊 and the homotopy equivalence may not
be unique. The previous paragraph explains that𝐾(𝐴,𝑛+
1) is a delooping of 𝐾(𝐴,𝑛).
1The converse is not true in general but does hold for CW complexes.
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Eilenberg–Mac Lane spaces are closely connected with
ordinary cohomology, as described in the following theo-
rem.2

Theorem 5. Cohomology is represented by homotopy classes of
maps into Eilenberg–Mac Lane spaces. More precisely, for each
natural number 𝑛 > 0, based space 𝑋, and abelian group 𝐴
there are isomorphisms

𝐻𝑛(𝑋;𝐴) ≅ [𝑋,𝐾(𝐴,𝑛)]

natural in 𝑋 and 𝐴.

One can use Eilenberg–Mac Lane spaces to construct a
space with any given sequence of homotopy groups𝐴𝑖 pro-
vided 𝐴𝑖 is abelian for 𝑖 ≥ 2. Indeed, the product

𝑃 = ∏
𝑖
𝐾(𝐴𝑖, 𝑖)

has 𝜋𝑖(𝑃) ≅ 𝐴𝑖. Given a space 𝑋, one can ask whether it
is different from a product of Eilenberg–Mac Lane spaces.
For example, if𝑋 has just two nontrivial homotopy groups,
𝜋1 = 𝐴1 and 𝜋2 = 𝐴2, then 𝑋 sits in a fiber sequence

𝐾(𝐴2, 2) → 𝑋 → 𝐾(𝐴1, 1)

where the first of these maps is an isomorphism on 𝜋2,
and the second is an isomorphism on 𝜋1.

There is an action of 𝜋1(𝑋) = 𝐴1 on 𝜋2(𝑋) = 𝐴2 in-
duced by the fibration structure, and the homotopy type
of 𝑋 depends subtly on this action. However, in the con-
text we study below, this action is necessarily trivial, and
therefore for the remainder of this section we assume that
𝜋1(𝑋) acts trivially on all homotopy groups of 𝑋. Such
spaces are called simple.

The general theory of fibrations then gives a continua-
tion of this sequence to the right:

𝐾(𝐴2, 2) → 𝑋 → 𝐾(𝐴1, 1)
𝑘1→ 𝐾(𝐴2, 3).

The map denoted 𝑘1 corresponds to a cohomology class
in

𝐻3(𝐴1; 𝐴2) ≅ [𝐾(𝐴1, 1),𝐾(𝐴2, 3)],
which we also denote 𝑘1, and it classifies spaces with two
nontrivial homotopy groups in the following sense.

Theorem 6. The total space 𝑋 above decomposes as a prod-
uct 𝐾(𝐴1, 1) × 𝐾(𝐴2, 2) if and only if 𝜋1(𝑋) acts trivially
on 𝜋2(𝑋) and 𝑘1 = 0 in 𝐻3(𝐴1; 𝐴2). More generally, the
homotopy type of such a space is determined by the two groups
and the cohomology class 𝑘1.

2We state this theorem only for 𝑛 > 0 so as to avoid the distinction between
reduced and unreduced cohomology, which agree in positive degrees. It is the
reduced cohomology groups that are represented by Eilenberg–Mac Lane spaces,
and we implicitly take reduced cohomology throughout this article.

𝑋1

𝑋2

𝑋3

⋮

𝐾(𝐴2, 3)

𝐾(𝐴3, 4)

𝐾(𝐴4, 5)

𝐾(𝐴2, 2)

𝐾(𝐴3, 3)

𝑘1

𝑘2

𝑘3

Figure 5. Postnikov tower for a connected space 𝑋. The
highlighted region connecting two different layers is a
homotopy fibration sequence.

Postnikov towers. This map 𝑘1 is called the Postnikov in-
variant at level 1, and our discussion above can be extended
for higher homotopy groups as in Figure 5. For each 𝑛,
we have a map 𝑋 → 𝑋𝑛 inducing an isomorphism on
homotopy groups 𝜋𝑘 for 𝑘 ≤ 𝑛. The space 𝑋𝑛 is called
the 𝑛th Postnikov truncation or the homotopy 𝑛-type of 𝑋.
The homotopy groups 𝜋𝑘(𝑋𝑛) are zero for 𝑘 > 𝑛, so
𝑋1 ≃ 𝐾(𝐴1, 1). The sequence of spaces 𝑋𝑛 and coho-
mology classes 𝑘𝑛 determines this entire diagram, called
the Postnikov tower of 𝑋. The central result of Postnikov
theory can be summed up by the following slogan.

Slogan 7. The homotopy type of a space𝑋 is determined by its
homotopy groups and Postnikov invariants.

The Postnikov tower presents a connected topological
space in terms of its homotopy groups and the cohomol-
ogy classes along which they are attached. This is dual to
the cellular construction of a space, which proceeds by at-
taching disks and thus presents a space in terms of its ho-
mology groups and the homotopy classes along which el-
ements are attached.

Higher Groupoids, More Subtle Algebra
For a space𝑋, the fundamental groupoidΠ1(𝑋) provides
an algebraic model for the homotopy 1-type of 𝑋. More
precisely, the first Postnikov truncation 𝑋1 and 𝐵Π1𝑋 are
homotopy equivalent. Moving up the Postnikov tower, we
seek algebraicmodels for the higher homotopy groups and
Postnikov invariants.

There is a striking result by Thomason that every homo-
topy type can be constructed as the classifying space 𝐵𝐶
for some category 𝐶. However, the higher Postnikov data
of 𝐵𝐶 is difficult to extract from𝐶 itself. If𝐶 is a groupoid
this is easily done, because 𝜋𝑛(𝐵𝐶, 𝑥) = 0 for all 𝑛 ≥ 2
and all basepoints 𝑥. In this section we discuss notions
of higher groupoid which provide algebraic models for
higher-dimensional Postnikov data, but still in a finite
range.
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Figure 6. An example of composition formed by attaching
disks and intervals, respectively, along intervals and points.

The fundamental 𝑛-groupoid Π𝑛. Recall that the group-
oidΠ1𝑋 has morphisms given by the homotopy classes of
paths in𝑋, and these are classes of continuous maps from
the 1-dimensional disk 𝐷1 to 𝑋. Evaluation at the end-
points gives the source and target of a morphism. Thus,
we seek a higher-dimensional analogue of the fundamen-
tal groupoid that includes the data of maps 𝐷𝑖 → 𝑋 for
higher-dimensional disks 𝐷𝑖.

Desideratum 8. The fundamental 𝑛-groupoid Π𝑛𝑋 of a
space 𝑋 has as data

• all continuous maps 𝐷𝑖 → 𝑋 for 0 ≤ 𝑖 < 𝑛,
• all homotopy classes of maps 𝐷𝑛 → 𝑋 (relative

to the boundary), and
• information for how thesemaps or classes ofmaps

glue together along compatible boundaries.

These compatible boundaries are given by the two in-
clusions 𝜎,𝜏 ∶ 𝐷𝑖−1 → 𝐷𝑖 as the northern and southern
hemispheres of the boundary of 𝐷𝑖 and their iterates. We
can extract from this some basic features of an algebraic
structure we would like to call an 𝑛-groupoid. Letting 𝐺𝑖
denote the set of all continuous maps 𝐷𝑖 → 𝑋 for 𝑖 < 𝑛
and the set of homotopy classes of maps 𝐷𝑛 → 𝑋 relative
to the boundary when 𝑖 = 𝑛, there are source and target
maps 𝑠, 𝑡 ∶ 𝐺𝑖 → 𝐺𝑘 induced by the iterations of𝜎 and 𝜏.
Abstracting this structure leads to the following.

Desideratum 9. An 𝑛-groupoid 𝐺 has

• sets 𝐺𝑖 of 𝑖-cells for 𝑖 = 0,… ,𝑛;
• maps 𝑠, 𝑡 ∶ 𝐺𝑖 → 𝐺𝑖−1 assigning to each 𝑖-cell

both a source and a target (𝑖 − 1)-dimensional
cell;

• maps 𝐺𝑖 → 𝐺𝑖+1 that assign to each 𝑖-cell 𝛼 an
identity (𝑖 + 1)-cell with 𝛼 as both source and
target; and

• a variety of composition laws ∘𝑘, subject to fur-
ther associativity, invertibility, and unit axioms.

The composition laws are the most complicated feature
of such a definition, but also themost interesting. They are
of the form ∘𝑘 ∶ 𝐺𝑖×𝑘𝐺𝑖 → 𝐺𝑖, where𝐺𝑖×𝑘𝐺𝑖 is the sub-
set of𝐺𝑖×𝐺𝑖 in which the 𝑘-dimensional target of the first
cell matches the 𝑘-dimensional source of the second cell.
Topologically, these functions show the different ways to
attach two disks together along some lower-dimensional
boundary disk; see for example Figure 6.

The homotopy hypothesis. What we have described so
far is not a rigorously defined structure, only some basic
desiderata. The simplest definition fulfilling these yields
the notion of strict 𝑛-groupoid, in which the associativity
and unit axioms for composition hold in each dimension
separately. The definition of strict 𝑛-groupoid is most suc-
cinctly stated using the theory of enriched categories: a
strict 𝑛-groupoid is a groupoid enriched in strict (𝑛 − 1)-
groupoids. We will not give further details here, as this
definition has a serious defect, first described by Carlos
Simpson.

Theorem 10. Topological spaces that correspond to strict 3-
groupoids have trivial Whitehead products. In particular, strict
3-groupoids fail to model all homotopy 3-types.

In order to understand the statement of this theorem,
note that the homotopy groups of a space are not just a
sequence of independently defined groups but have oper-
ations between them. One such operation arises from a
canonical map

𝑆𝑘+𝑗−1 → 𝑆𝑘 ∨𝑆𝑗.
This yields a bilinear function 𝜋𝑘(𝑋) × 𝜋𝑗(𝑋) →
𝜋𝑘+𝑗−1(𝑋) known as theWhitehead product.

Taking 𝑘 = 𝑗 = 2, we have a function𝜋2(𝑋)×𝜋2(𝑋)
→ 𝜋3(𝑋), and this function is related to the coherence
constraint for the composition operation∘0 ∶ 𝐺2×0𝐺2 →
𝐺2. The axioms for a strict 𝑛-groupoid imply a unique-
ness result for composition operations, while the White-
head product can be interpreted in the categorical setting
as the difference between two such operations. Unique-
ness means that there is no difference, so the Whitehead
products are all zero. Of course there are spaces with non-
vanishing Whitehead products; the sphere 𝑆2 is a primary
example. Therefore, to define a fundamental 𝑛-groupoid
Π𝑛𝑋 that correctly models the homotopy 𝑛-type of an ar-
bitrary space, we require a weak notion of 𝑛-groupoid in-
stead of a strict one. One of the guiding principles for no-
tions of weak 𝑛-groupoid is summed up in Grothendieck’s
homotopy hypothesis, formulated in his letter Pursuing
Stacks.

Homotopy Hypothesis. The theory of weak 𝑛-groupoids
is equivalent3 to that of homotopy 𝑛-types.

The homotopy hypothesis states a desired property of
a proposed definition. It can be viewed through different
lenses and has been the inspiration behind many lines of
research in higher-dimensional category theory. On one
end of the spectrum, the homotopy hypothesis can be the
basis for a definition of weak 𝑛-groupoid, leading to some-
thing obviously tautological (“a weak 𝑛-groupoid is a ho-
motopy 𝑛-type”) but which yields little to no categorical

3In modern treatments, this is interpreted to mean an equivalence of homotopy
theories, a notion we will not explain here.
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insight. At the other end of the spectrum, one can give
a fully algebraic definition4 of weak 𝑛-categories (such as
those in work of Batanin [Bat98] and Leinster [Lei04]) us-
ing the internal logic of category theory and then see if it
satisfies the homotopy hypothesis.

The less like a topological space one defines a weak 𝑛-
groupoid to be, the harder it is to verify the homotopy hy-
pothesis and, as a consequence, the more interesting the
methods involved are likely to be. There is currently no
proof of the homotopy hypothesis for a fully algebraic def-
inition of weak 𝑛-groupoid that is valid in all dimensions.
There are proofs in the literature for some low-dimension-
al cases of fully algebraic definitions and systematic proofs
valid across all dimensions for more topological defini-
tions.

The theory of higher groupoids is situated within the
larger theory of higher categories. As with weak 𝑛-group-
oid, there is no single, all-purpose definition of weak 𝑛-
category, and different authors have used a myriad of mo-
tivating principles for various applications. However, all
current notions ofweak 𝑛-category have the same sort of un-
derlying data and composition laws as in Desideratum 9
but drop the requirement that all 𝑖-cells be invertible. We
will return to this topic in the section “Stabilization in Cat-
egory Theory” after establishingmore of the relevant topol-
ogy in the intervening sections.

Stabilization in Topology
For the remainder of this article we shift focus to stable
phenomena in topology and category theory. In his book
Infinite Loop Spaces, Adams writes, “A phenomenon is said
to be stable if it occurs in any dimension, or any sufficiently
large dimension, in a waywhich is essentially independent
of the dimension.” As we will see, the algebra of stable ho-
motopy is closely connected with higher category theory.
Topological suspension. In order to study phenomena
that are independent of dimension, we need to understand
the basic construction that shifts dimension.

Definition 11. Given a based space (𝑋,∗), the suspension
of𝑋 is the based space Σ𝑋 constructed by taking the cylin-
der𝑋×𝐼 and identifying the subspaces𝑋×{0},𝑋×{1},
and {∗} × 𝐼 to a single point, which then becomes the
basepoint (see Figure 7).

Suspension increases the dimension of a space by 1. In
particular, one can check that there is a homeomorphism
Σ𝑆𝑛 ≅ 𝑆𝑛+1. Suspension is a functor from the category of
based spaces to itself and is left adjoint to the loop space

4By fully algebraic, we mean a definition that is equivalent to the category of
algebras for a finitary monad on (𝑛−)globular sets. Defining the monad on
globular sets as opposed to some other, more geometric, presheaf category en-
sures that all of the higher-categorical structure is encoded in the monad and
not via some property of the objects in the underlying category/shapes involved.

Figure 7. Cylinder and suspension; the subspace {∗} × 𝐼 is
drawn as a line and is identified to a point in Σ𝑋.

functor. That is, there is a natural correspondence between
continuous maps Σ𝑋 → 𝑌 and continuous maps 𝑋 →
Ω𝑌, giving an isomorphism known as the loop-suspension
adjunction

[Σ𝑋,𝑌] ≅ [𝑋,Ω𝑌]. (1)

Moreover, suspension is compatible with homotopies, so
it induces a function [𝑋,𝑌] → [Σ𝑋,Σ𝑌].

A fundamental theorem in stable homotopy theory is
that homotopy groups eventually stabilize, a corollary of
the Freudenthal suspension theorem.

Theorem12 (Freudenthal suspension theorem). Let𝑋 and
𝑌 be based CW-complexes and suppose 𝑋 has dimension 𝑛 ≥
1. Then the map

[Σ𝑘𝑋,Σ𝑘𝑌] → [Σ𝑘+1𝑋,Σ𝑘+1𝑌]

is a bijection if 𝑘 ≥ 𝑛+ 2.

Letting 𝑋 = 𝑆𝑛, one obtains an isomorphism

𝜋𝑛+𝑘(Σ𝑘𝑌) ≅ 𝜋𝑛+𝑘+1(Σ𝑘+1𝑌)

for 𝑘 ≥ 𝑛+ 2. Thus, the sequence

𝜋𝑛(𝑌) → 𝜋𝑛+1(Σ𝑌) → 𝜋𝑛+2(Σ2𝑌) → ⋯

eventually stabilizes.

Definition 13. The stable term in the sequence above is
the 𝑛th stable homotopy group of 𝑌, denoted 𝜋𝑠

𝑛(𝑌).

Stable phenomena appear in cohomology, topological
𝐾-theory, and a host of other examples. In the 1950s,
Spanier and Whitehead emphasized the study of stable
topology by defining a stable homotopy category. The ob-
jects were defined to be finite CW complexes, and the set
of maps from 𝑋 to 𝑌, called the stable maps, was given by
the direct limit

lim
𝑚→∞

[Σ𝑚𝑋,Σ𝑚𝑌].

Modern approaches to the stable homotopy category use
one of the many equivalent notions of spectrum, which
we now discuss.
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Topological spectra. A (topological) spectrum5 𝐸 consists
of a sequence {𝐸0, 𝐸1,…} of based spaces together with
structure maps

𝜎∶ Σ𝐸𝑛 → 𝐸𝑛+1.
For example, given a based space 𝑋, the suspension spec-
trum Σ∞𝑋 is given by the sequence {𝑋,Σ𝑋,Σ2𝑋,…},
with the structure maps given by identity maps. When
𝑋 = 𝑆0, we obtain the sphere spectrum, whose 𝑛th space is
𝑆𝑛.

A spectrum is an Ω-spectrum if the structure maps’ ad-
joints

𝐸𝑛 → Ω𝐸𝑛+1
are homotopy equivalences for all𝑛. We say that a space𝑋
is an infinite loop space if it is the zeroth space of an Ω-
spectrum. Suspension spectra are generally not Ω-spectra,
but every spectrum is equivalent in a suitable sense to an
Ω-spectrum. The classical example of anΩ-spectrum is the
Eilenberg–Mac Lane spectrum 𝐻𝐴 of an abelian group 𝐴.
The 𝑛th space of 𝐻𝐴 is given by the Eilenberg–Mac Lane
space 𝐾(𝐴,𝑛), and the adjoint structure maps are given
by the homotopy equivalences 𝐾(𝐴,𝑛) ≃ Ω𝐾(𝐴,𝑛 + 1)
we discussed above.

We have noted previously that the 𝑛th cohomology
group of a space𝑋with coefficients in the abelian group𝐴
is isomorphic to the group of homotopy classes of maps
from 𝑋 into 𝐾(𝐴,𝑛):

𝐻𝑛(𝑋;𝐴) ≅ [𝑋,𝐾(𝐴,𝑛)].
Using the loop-suspension adjunction (1), we recover the
suspension isomorphism in cohomology: for 𝑛 > 0 we
have

𝐻𝑛(𝑋;𝐴) ≅ [𝑋,𝐾(𝐴,𝑛)]
≅ [𝑋,Ω𝐾(𝐴,𝑛 + 1)] (2)

≅ [Σ𝑋,𝐾(𝐴,𝑛 + 1)] ≅ 𝐻𝑛+1(Σ𝑋;𝐴).
In fact, the most important features of cohomology with
coefficients in𝐴 can be recovered from the structure of the
spaces 𝐾(𝐴,𝑛), particularly as an Ω-spectrum.

These properties characterize the groups𝐻∗(𝑋;𝐴) and
were originally written down by Eilenberg and Steenrod as
a set of seven axioms, the first two of which constitute func-
toriality of 𝐻∗(−;𝐴). The final axiom is the dimension
axiom, stating that the cohomology of a point is the co-
efficient group in dimension zero and vanishes elsewhere.
Dropping the dimension axiom results in what are called
generalized cohomology theories. The Brown representabili-
ty theorem implies that all generalized cohomology theo-
ries are represented by Ω-spectra just as 𝐻∗(−;𝐴) is rep-
resented by 𝐻𝐴.

5The term “spectrum” in this sense is not motivated by any historical or math-
ematical relationship to its use in operator theory, ring theory, or algebraic
geometry.

Spectra, as we have defined them, form a category Sp,
and Ω-spectra form a full subcategory Ω Sp. While indi-
vidual spectra are generally more complicated than indi-
vidual spaces, the category Sp has many attractive features.
In particular, there is a notion of homotopy betweenmaps
of spectra, leading to analogues of homotopy groups. Tak-
ing suspension spectra defines a functor from the category
of based topological spaces to Sp, and the stable maps be-
tween spaces are given precisely by maps in the category Sp

between their suspension spectra. The stable homotopy
groups of a based space are the homotopy groups in Sp of
its suspension spectrum. Thus Sp generalizes the stable ho-
motopy category constructed by Spanier and Whitehead.

We can reproduce the theory of Postnikov towers in this
context, but now building the layers up using Eilenberg–
Mac Lane spectra and obtaining Postnikov invariants as sta-
ble maps. Stable Postnikov theory is simpler in some ways
than its unstable predecessor: all groups are abelian, and
the action of𝜋1 on higher homotopy is necessarily trivial.
Yet it still contains a wealth of information, as we will see
below.

The Algebra of Iterated Loop Spaces
Infinite loop space machines. One of the standard ways
to construct cohomology theories with specific character-
istics is to construct Ω-spectra using one of the so-called
“infinite loop space machines.” A first step in constructing
such an object is to determine when a space 𝐸0 is homo-
topy equivalent to the space of loops on another space 𝐸1.

Example 14. Let 𝐺 be a discrete group and let 𝐵𝐺 be its
classifying space. Then 𝐺 ≃ Ω(𝐵𝐺). Thus, the classi-
fying space is a construction of the Eilenberg–Mac Lane
space 𝐾(𝐺,1). One can construct further deloopings
𝐵2𝐺 = 𝐾(𝐺,2), etc., only under the further hypothesis
that 𝐺 is abelian.

The equivalence 𝐸0 ≃ Ω𝐸1 implies that 𝐸0 has addi-
tional structure inherited from the algebra of loops. We
can isolate the precise algebraic structure present on a loop
space and use that to recognizewhen a given space has a de-
looping. For example, Ω𝐸1 has a product induced by con-
catenation of loops. Although this product is not strictly
associative, there is a canonical homotopy—for loops 𝑎, 𝑏,
and 𝑐—between (𝑎𝑏)𝑐 and 𝑎(𝑏𝑐). This is the proof that
multiplication in 𝜋1(𝑋, 𝑥) is associative. These homo-
topies that witness associativity are themselves coherent;
i.e., there is a family of homotopiesmediating between the
two composite homotopies and thus filling the pentagon
in Figure 8 for any four loops 𝑎,𝑏, 𝑐, 𝑑 ∈ Ω𝐸1.

In the case of a loop space, one can continue to fill with
homotopies of higher dimensions, meaning that the prod-
uct in Ω𝐸1 is associative “up to all higher homotopies.”
Stasheff made this precise by constructing a family of
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((𝑎𝑏)𝑐)𝑑

(𝑎(𝑏𝑐))𝑑 𝑎((𝑏𝑐)𝑑)

(𝑎𝑏)(𝑐𝑑)

𝑎(𝑏(𝑐𝑑))

Figure 8. The associativity pentagon 𝐾4.

((𝑎(𝑏𝑐))𝑑)𝑒 (𝑎((𝑏𝑐)𝑑))𝑒

𝑎((𝑏𝑐)(𝑑𝑒))

((𝑎𝑏)(𝑐𝑑))𝑒

((𝑎𝑏)𝑐)(𝑑𝑒) 𝑎((𝑏(𝑐𝑑))𝑒)

(𝑎(𝑏𝑐))(𝑑𝑒) 𝑎(((𝑏𝑐)𝑑)𝑒)

(((𝑎𝑏)𝑐)𝑑)𝑒 (𝑎(𝑏(𝑐𝑑)))𝑒

⋅

⋅

⋅ ⋅

Figure 9. The associahedron 𝐾5. The six pentagonal faces are
instances of the pentagon 𝐾4.

spaces 𝐾𝑛 that parametrize the homotopies that relate dif-
ferent parenthesizations of an 𝑛-fold product in the loop
space. For each 𝑛 ≥ 2, 𝐾𝑛 can be realized as an (𝑛 − 2)-
dimensional polytope: 𝐾2 is a point, 𝐾3 is an interval, 𝐾4
is the pentagon shown in Figure 8, and 𝐾5 is shown in
Figure 9. These spaces are known as the associahedra and
appear prominently in the combinatorics of polytopes.

Stasheff defined an 𝐴∞-space (meaning associative up
to homotopies of all levels) to be a space 𝑋 together with
maps 𝜇𝑛 ∶ 𝐾𝑛 ×𝑋𝑛 → 𝑋 that satisfy certain compatibility
conditions with structure maps 𝐾𝑛 × 𝐾𝑚 → 𝐾𝑛+𝑚−1. In
particular, 𝑋 has a multiplication induced by 𝜇2 ∶ 𝐾2 ×
𝑋2 → 𝑋, and the map 𝜇3 ∶ 𝐾3 ×𝑋3 → 𝑋 encodes that it
is homotopy associative, just as we have seen for concate-
nation in a loop space Ω𝐸1. Stasheff proved that being
an 𝐴∞-space is essentially all that is needed to construct a
delooping.

Theorem 15. If𝑋 is an𝐴∞-space such that𝜋0(𝑋) is a group
(with respect to the multiplication 𝜇2), then there exists a based
space 𝑌 such that 𝑋 ≃ Ω𝑌.

A double loop space Ω2𝑌 has even more structure. Be-
ing a loop space, it has a multiplication that is associative
up to all higher homotopies, and, moreover, this multipli-
cation is commutative up to homotopy. The proof of this

𝛼
𝛽

𝛼
𝛽

𝛽
𝛼 𝛼

𝛽

Figure 10. The Eckmann–Hilton argument; a family of
reparametrizations of the disk.

fact is the same as the one used to prove that 𝜋2(𝑌,𝑦)
is abelian, known as the Eckmann–Hilton argument and
sketched in Figure 10.

Extending the work of Stasheff on deloopings and 𝐴∞-
spaces, one can ask whether there are necessary and suf-
ficient conditions on a space that ensure it is homotopy
equivalent to a double loop space or, more generally, an
𝑛-fold loop space for 𝑛 ≥ 2.
𝐸∞ operads. May answered this question positively with
his theory of operads in [May72].6 An operad𝑃 has spaces
𝑃(𝑘) encoding𝑘-ary operations for each natural number𝑘,
together with composition maps combining operations of
different arities. A 𝑃-algebra is a space 𝑋 together with
maps

𝑃(𝑘) ×𝑋𝑘 → 𝑋
that are compatible with the composition structure of 𝑃.
This gives 𝑋 a collection of operations parametrized by 𝑃.
May introduced the notion of 𝐸𝑛 operad for 1 ≤ 𝑛 ≤ ∞,
with 𝐸1 being equivalent to Stasheff’s notion of 𝐴∞, and
𝐸𝑛 encoding 𝑛 commuting 𝐸1 structures. He then proved
that 𝐸𝑛 structures characterize 𝑛-fold loop spaces.

Theorem 16 (The recognition principle). If 𝑋 is an 𝐸𝑛
space such that 𝜋0(𝑋) is a group, then there exists a based
space 𝑌 such that 𝑋 ≃ Ω𝑛𝑌.

If 𝑋 is an 𝐸∞ space such that 𝜋0(𝑋) is a group, then, for
each 𝑛 ≥ 1, there exists a based space 𝑌 such that 𝑋 ≃ Ω𝑛𝑌.

The reader might be wondering about the condition
that𝜋0(𝑋) is a group, since it has come up twice now. The
space 𝑋 is said to be grouplike when this condition holds.
The concatenation of loops is an operation on Ω𝑌 under
which every element has an inverse up to homotopy given
by the loop going in reverse. Thus,Ω𝑌 is grouplike for any
space 𝑌; this is the underlying reason that the fundamen-
tal group is a group, not merely a monoid. This seemingly
pedestrian observation about loop spaces is more than a
technicality. As we shall see below, invertibility in 𝜋0 is
essential to the categorical models of stable homotopy the-
ory.

For 𝑛 ≥ 2, the recognition principle can be extended
to more general 𝐸𝑛 spaces using the notion of topological
group completion. Topological group completion univer-
sally extends𝜋0 to a group by adding inverses while local-
izing homology with respect to the action of 𝜋0. It radi-

6Boardman and Vogt addressed the case 𝑛 = ∞ using the theory of PROPs.
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cally changes the higher homotopy groups and is a progen-
itor of the stable homotopy groups of spheres and higher
algebraic 𝐾-groups.

Categories with structure are an excellent way of produc-
ing 𝐸𝑛 spaces. Monoidal categories (i.e., categories with a
functorial product that is associative and unital up to nat-
ural isomorphism) give rise to 𝐸1 spaces upon taking clas-
sifying spaces, with braided and symmetric monoidal cat-
egories giving 𝐸2 and 𝐸∞ spaces, respectively.7 The latter
case follows from the work of May but was also indepen-
dently proved by Segal using the theory of Γ-spaces. Thus,
we have the following.

Slogan 17. To every symmetric monoidal category we can as-
sociate an Ω-spectrum given by the group completion of its clas-
sifying space.

Example 18. Recall the category 𝐒 introduced in Exam-
ple 1. This category is equivalent to the category of finite
sets and isomorphisms and is symmetric monoidal using
disjoint union. Its classifying space is then an 𝐸∞ space
with𝜋0(𝐵𝐒) ≅ ℕ, and the connected component labeled
by 𝑛 is an Eilenberg–Mac Lane space 𝐾(𝑆𝑛, 1).

The Barratt–Priddy–Quillen theorem proves that the
spectrum associated to 𝐒 is stably equivalent to the sphere
spectrum. In particular, its homotopy groups are the sta-
ble homotopy groups of spheres.

Example 19. Let 𝑅 be a commutative ring and consider
the category of finitely generated projective𝑅-modules and
module isomorphisms. This category is symmetric mon-
oidal using direct sum. The associated spectrum is the 𝐾-
theory spectrum, and its homotopy groups are the alge-
braic 𝐾-theory groups of 𝑅 defined by Quillen.

Stabilization in Category Theory
As discussed in the section “Higher Groupoids, More Sub-
tle Algebra,” one can motivate definitions of weak
𝑛-category by following the line of reasoning that led to
Desideratum 9 for weak 𝑛-groupoids but omitting the in-
vertibility requirement. We now explore another condi-
tion that every proposed definition should satisfy.

We have seen two perspectives on stable phenomena in
topology: one via 𝐸∞ structures and the other via iterated
loop structures, i.e., Ω-spectra. The two are linked by the
recognition principle, Theorem 16, which explains their
relationship. The categorical reflection of these dual per-
spectives leads to another desired property for definitions
of weak 𝑛-category, codified in the stabilization hypothe-
sis below.
The stabilization hypothesis. In parallel with the two
manifestations of topological stability, we identify two ap-
proaches to categorical stability. On the one hand, we have

7The reader may have expected 𝐸3 instead of 𝐸∞ here, but being 𝐸3 implies be-
ing 𝐸∞ due to the low categorical dimension.

a categorical analogue of an 𝐸∞ structure, given by the ac-
tion of an appropriate operad in categories, or𝑛-categories
for 𝑛 ≥ 1. On the other hand, we have a categorical ana-
logue of delooping by considering (𝑛+𝑘)-categories with
trivial cells in dimensions 0 through 𝑘 − 1; this means a
single object, a single 1-cell that is necessarily the identity,
a single 2-cell that is the identity on the identity, and so
on. These are known as 𝑘-degenerate (𝑛+𝑘)-categories, and
they carry additional algebraic structure as a consequence
of the low-dimensional degeneracy.

For a 𝑘-degenerate (𝑛 + 𝑘)-category, the composition
laws ∘0, ∘1,… ,∘𝑘−1 produce 𝑘 different, yet intertwined,
multiplications on the 𝑛-category obtained by treating the
𝑘-cells as the new objects, the (𝑘 + 1)-cells as the new 1-
cells, and so on. This is an algebraic analogue of the multi-
plicative structure one obtains on a 𝑘-fold loop space, and
one major research focus is the extent to which one can
describe this structure algebraically. For example, in the
case 𝑘 = 1, 𝑛 = 0, we have a 1-category with a single 0-
cell and a set of 1-cells. Composition ofmorphisms equips
this set with the structure of a monoid. In the case 𝑘 =
2, 𝑛 = 0, we have a 2-category with a single 0- and 1-cell,
and the 2-category structure equips the set of 2-cells with
the structure of a commutative monoid. The argument
proving commutativity is once again the Eckmann–Hilton
argument (Figure 10).

A study of higher categories by Baez and Dolan suggests
that (𝑘+1)-degenerate (𝑛+𝑘+1)-categories should have
a more commutative structure than 𝑘-degenerate (𝑛+ 𝑘)-
categories and further that this phenomenon should even-
tually yield a stable notion of symmetric monoidal higher
category, corresponding to the stability indicated by the
Freudenthal suspension theorem.

Stabilization Hypothesis. The theory of 𝑘-degenerate (𝑛+
𝑘)-categories is equivalent8 to that of (𝑘+1)-degenerate (𝑛+
𝑘+ 1)-categories for 𝑘 ≥ 𝑛+ 2.

As with the homotopy hypothesis, the stabilization hy-
pothesis is a desired property of a proposed definition of
𝑛-category. One can explore its validity for a variety of
notions of higher category, and as before the general case
for fully algebraic notions of higher categories is unsettled
[CG07,CG11]. One can also approach this question using
more topological notions of higher category and describe
their properties in homotopical terms. For these homo-
topical analogues of the stabilization hypothesis see, e.g.,
Lurie [Lur09], Batanin [Bat17], Simpson [Sim98], Gepner–
Haugseng [GH15].

The notions of stable 𝑛-category (via the stabilization
hypothesis) and 𝐸∞ 𝑛-category are related by an interme-
diate notion not appearing distinctly among topological

8As with the homotopy hypothesis, the notion of equivalence here is subject to
interpretation and beyond the scope of this article.
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𝑘-degenerate (𝑛 + 𝑘)-categories, for 𝑘 large

symmetric monoidal 𝑛-categories

𝐸∞ 𝑛-categories

Figure 11. Coherence theorems for symmetric monoidal
(𝑛-)categories serve to unify the two notions of stabilization in
categorical algebra.

spaces. This is the notion of symmetric monoidal 𝑛-category,
an 𝑛-category equipped with a monoidal structure which
is associative, unital, and commutative up to invertible 1-
cells which are coherent up to invertible 2-cells which are
coherent up to… until dimension 𝑛. It is this notion that
arises most directly in applications and should be consid-
ered the primary algebraic concept. This is depicted in Fig-
ure 11.

In the previous section we mentioned the case 𝑛 =
1; Mac Lane’s coherence theorem implies that categories
equipped with 𝐸∞ structures are the same, up to equiva-
lence, as symmetric monoidal categories. However, it is
not at all clear how the relationship between 𝐸∞ and sym-
metric monoidal generalizes to higher categories. Higher-
dimensional coherence theorems are needed to relate
these to each other and to 𝑘-degenerate (𝑛+𝑘)-categories.
The stable homotopy hypothesis. Having explored
some categorical analogues of stable phenomena, we seek
a conceptual explanation for these, a stable analogue of
the homotopy hypothesis. To explore this, we must first
determine the correct structures to compare. The stable no-
tion of homotopy 𝑛-type is that of stable homotopy 𝑛-type:
a spectrum whose stable homotopy groups vanish in nega-
tive degrees and those greater than 𝑛. The stable notion of
weak 𝑛-groupoid is known as a Picard 𝑛-category and has
three key properties:

• it has an underlying weak 𝑛-groupoid;
• it is a symmetric monoidal 𝑛-category;
• it is grouplike, meaning that every object is invert-

ible with respect to the monoidal product.

The first of these corresponds, topologically, to an under-
lying unstable 𝑛-type. The second corresponds to an 𝐸∞
structure, and the third corresponds to the fact that the ze-
roth space of any spectrum is grouplike. Thus we have the
following formulation.

Stable Homotopy Hypothesis. The theory of Picard 𝑛-cate-
gories is equivalent to that of stable homotopy 𝑛-types.

Low-Dimensional Examples of the Stable Homo-
topy Hypothesis
We will examine some low-dimensional cases of the sta-
ble homotopy hypothesis. When 𝑛 = 0, the topological
side consists of stable homotopy 0-types—the Eilenberg–
Mac Lane spectra 𝐻𝐴. On the categorical side we have
Picard 0-categories, which are weak 0-groupoids (such a
thing is just a set) together with an 𝐸∞ structure (giving a
commutative monoid) such that every object is invertible
(thus, an abelian group). In other words, stable homotopy
0-types are classified, up to stable equivalence, by a sin-
gle abelian group, 𝜋0, and Picard 0-categories are abelian
groups. The stable homotopy hypothesis in dimension
zero follows as an exercise in writing out the various defi-
nitions carefully.
The 1-dimensional stable homotopy hypothesis. The
case 𝑛 = 1 is more interesting and goes back to Sı́nh
[Sı́n78]. On the topological side, a stable homotopy 1-
type is a spectrum 𝑋 with all homotopy groups vanishing
except 𝜋0𝑋 and 𝜋1𝑋. These abelian groups alone do not
determine the stable 1-type. We also need a single Post-
nikov invariant 𝑘0, which is a priori given by a homotopy
class of maps of spectra 𝐻(𝜋0𝑋) → Σ2𝐻(𝜋1𝑋). Via a
group cohomology calculation, one can show that the set
of such homotopy classes is naturally isomorphic to the set
of group homomorphisms 𝜋0𝑋 ⊗ ℤ/2 → 𝜋1𝑋. On the
categorical side, a Picard 1-category is a weak 1-groupoid
(which just means an ordinary groupoid) together with
an 𝐸∞ structure (which makes it into a symmetric mon-
oidal category) such that every object is invertible (so for
any 𝑥, there exists 𝑦 such that 𝑥⊗𝑦 ≅ 1 and 𝑦⊗𝑥 ≅ 1).

The key to comparing these two structures is the follow-
ing observation. A Picard 1-category 𝑃 has naturally aris-
ing homotopy groups with 𝐴0 = 𝜋0𝑃 being the set of
isomorphism classes of objects and 𝐴1 = 𝜋1𝑃 being the
set of automorphisms of the unit object. We can also con-
struct a homomorphism ℎ0 ∶ 𝐴0 ⊗ ℤ/2 → 𝐴1 from the
symmetry of 𝑃: given an object 𝑥, ℎ0(𝑥) is an automor-
phism of the unit determined by the symmetry isomor-
phism 𝑥⊗ 𝑥−1 ≅ 𝑥−1 ⊗𝑥. These categorical invariants—
objects, automorphisms, and ℎ0—correspond to topolog-
ical invariants—two homotopy groups and the Postnikov
invariant 𝑘0 discussed in the section “Higher Homotopy
Groups, More Subtle Invariants.” Work of the second and
third authors [JO12] discusses this more thoroughly and
provides a proof of the following result.

Theorem 20 ([JO12]). Let 𝑃 be a Picard 1-category. The
classifying space 𝐵𝑃 is a stable 1-type. The stable homotopy
groups and single Postnikov invariant of 𝐵𝑃 are those computed
from 𝑃 above.

The correspondence between topological and categor-
ical data is summarized in Figure 12. With a little addi-
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𝑛 Stable 𝑛-types Picard 𝑛-categories

0 Abelian group 𝜋0 Abelian group of objects, 𝐴0

1 𝜋0, 𝜋1, and
𝑘0 ∶ 𝜋0⊗ℤ/2→𝜋1

𝐴0, 𝐴1
ℎ0 ∶ 𝐴0⊗ℤ/2→𝐴1

2 𝜋0, 𝜋1, 𝜋2
𝑘0 ∶ 𝜋0⊗ℤ/2→𝜋1

𝑘1𝑖1 ∶ 𝜋1⊗ℤ/2→𝜋2

𝑘1

𝐴0, 𝐴1, 𝐴2
ℎ0 ∶ 𝐴0⊗ℤ/2→𝐴1

ℎ1 ∶ 𝐴1⊗ℤ/2→𝐴2

currently unknown!

Figure 12. Low-dimensional data for stable homotopy types
and higher Picard categories.

tional work, we have the following.

Corollary 21. The 1-dimensional stable homotopy hypothesis
holds for Picard categories as defined above.

Wemention two features of the case 𝑛 = 1 before mov-
ing on to 𝑛 = 2. The first is that it is useful to consider Pi-
card 1-categories that are strict and skeletal, meaning that
their product is strictly associative and unital, and every
isomorphism is an automorphism; i.e., there are no iso-
morphisms between distinct objects. We thus picture a
strict and skeletal Picard 1-category as a discrete abelian
group of objects with an abelian group of automorphisms
over each object.

Example 22. Consider a skeletal Picard categorywhose ob-
jects are the group ℤ/6 and each object has automorphism
group ℤ/2. There are two such Picard categories: one with
trivial symmetry and the other with symmetry 𝑥 + 𝑦 ≅
𝑦 + 𝑥 given by 𝜎𝑥𝑦. These correspond to the two homo-
morphisms ℤ/6⊗ ℤ/2 → ℤ/2.

These abelian groups of automorphisms are necessar-
ily all isomorphic as a consequence of every object being
invertible. One can prove that every Picard 1-category is
equivalent to a strict skeletal one, but it is worth noting
that dropping the symmetry from the definition of a Pi-
card 1-category will cause the proof of this strict skeletal
approximation to fail. In fact, the nonsymmetric version
has a different algebraic classification in which the asso-
ciativity isomorphisms correspond to 3-cocycles for group
cohomology (see Baez–Lauda [BL04], Joyal–Street [JS93]).

The second feature to mention is that such a fully alge-
braic classification allows one to construct specific spectra
in new ways. The sphere spectrum is a central object of
study in algebraic topology, and it is easy to compute that
its stable 1-type is determined by 𝜋0 ≅ ℤ, 𝜋1 ≅ ℤ/2,
and the unique isomorphism 𝑘0 ∶ ℤ ⊗ ℤ/2 ≅ ℤ/2. This
technique gives a concrete and fully algebraic construction

of the 1-type of the sphere spectrum. These Postnikov
data appear in applications to quantum field theories as
the Picard 1-category of invertible graded abelian groups
and isomorphisms; see, e.g., Kapranov [Kap15] or Freed
[Fre14]. One can also show ([JO12]) that this is the free
Picard 1-category generated by a single object, giving the
1-truncated sphere spectrum an interesting universal prop-
erty.

Together, these two features and their analogues for 𝑛 >
1 are examples of the following.

Slogan 23. Definitions of Picard 𝑛-category for which the sta-
ble homotopy hypothesis holds will explicitly encode the alge-
braic invariants that characterize the stable 𝑛-type of a space or
spectrum.

The 2-dimensional stable homotopy hypothesis. A
proof of the stable homotopy hypothesis in dimension 2
appears in recent work of the authors [GJO19]. This uses
a notion of Picard 2-category defined in [GJO17,GJOS17]
that is fully algebraic and yet general enough to realize all
stable 2-types.

Theorem 24 ([GJO19]). There exists a fully algebraic notion
of Picard 2-category for which the 2-dimensional stable homo-
topy hypothesis holds.

One can now ask about the Postnikov theory of Picard
2-categories. Although we will not give the definition of
Picard 2-category here, we can describemuch of the charac-
terizing data and its role in an associated Postnikov tower.
First, a Picard 2-category 𝑃 is a grouplike symmetric mon-
oidal 2-groupoid. This implies we have three abelian
groups known as the algebraic homotopy groups of 𝑃:

• 𝐴0 is the set of equivalence classes of objects in 𝑃.
• 𝐴1 is the set of isomorphism classes of 1-cell en-

domorphisms of the unit object in 𝑃.
• 𝐴2 is the set of 2-cell endomorphisms of the iden-

tity 1-cell on the unit object of 𝑃.
We can also identify two Picard 1-categories associated

with𝑃. First, there is the truncation𝑃1 consisting of the ob-
jects of 𝑃 and the isomorphism classes of the 1-cells of 𝑃.
The symmetric monoidal structure on𝑃makes𝑃1 a Picard
1-category. Second, there is the category of 1- and 2-cells
over the unit in𝑃. This is the category of functors and natu-
ral transformations from the free loop category into 𝑃 and
is denoted Ω𝑃.

The symmetric monoidal structure on𝑃 alsomakesΩ𝑃
a Picard 1-category. Then by the theory of Picard 1-cate-
gories there are two algebraic Postnikov invariants, which
we denote by ℎ0 and ℎ1. From 𝑃1 we have ℎ0 ∶ 𝐴0 ⊗
ℤ/2 → 𝐴1, and from Ω𝑃 we have ℎ1 ∶ 𝐴1 ⊗ ℤ/2 → 𝐴2.
These are also shown in Figure 12. The following result
summarizes what we currently know about the Postnikov
data of Picard 2-categories.
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𝑃0

𝑃1

𝑃

Σ2𝐴1

??Σ𝐴1

Σ2𝐴2

𝑖1

ℎ0 (𝐵𝑃)0

(𝐵𝑃)1

𝐵𝑃

Σ2𝐻𝐴1

Σ3𝐻𝐴2Σ1𝐻𝐴1

Σ2𝐻𝐴2

𝑖1

𝑘0

𝑘1

Figure 13. Stable Postnikov towers for 𝑃 and 𝐵𝑃.

Theorem 25 ([GJO17,GJOS17]). Let 𝑃 be a Picard 2-cate-
gory, with classifying space 𝐵𝑃.

• The symmetric monoidal structure on 𝑃 gives 𝐵𝑃 an
infinite loop space structure.

• The spectrum associated to 𝐵𝑃 is a stable 2-type.
• The homotopy groups of 𝐵𝑃 are given by the algebraic
homotopy groups of 𝑃.

• The bottom Postnikov invariant of 𝐵𝑃, 𝑘0, is given
by ℎ0, the symmetry of 𝑃1.

• The composite 𝑘1𝑖1 is given byℎ1, the symmetry ofΩ𝑃
(see Figure 13).

Given an abelian group𝐴, we implicitly regard this as a
Picard 1- or 2-category with objects given by 𝐴 and triv-
ial higher morphisms. We let Σ𝐴 denote the Picard 1-
category with a single object and with endomorphism
group 𝐴. This is a 1-degenerate (0+1)-groupoid, and its
classifying space is a 𝐾(𝐴,1). We let Σ2𝐴 denote the Pi-
card 2-categorywith a single object, single 1-cell, and endo-
morphism 2-cells given by𝐴. This is a 2-degenerate (0+2)-
groupoid, and its classifying space is a 𝐾(𝐴,2). With this
notation, the content of Theorem 25 is expressed in a par-
tial Postnikov tower for 𝑃 in Figure 13.

The missing pieces in Figure 13, which one would la-
bel 𝑘1 and Σ3𝐴2, require a theory of symmetric monoidal
3-categories: following the stabilization hypothesis, the
natural categorical construction of Σ3𝐴2 should be as a
symmetricmonoidal 3-category with a single object, 1-cell,
and 2-cell, and 3-cells given by the elements of 𝐴2. This
is the subject of future work. The fifth bullet point of The-
orem 25 is a partial result in this direction, but does not
give complete information about 𝑘1.

Most of the steps outlined in the 1-dimensional case
have a 2-dimensional analogue. Although the proofs of
these results require more sophisticated categorical tech-
niques, the central technical tool is the coherence theory
of symmetric monoidal 2-categories as begun by the first
and third authors in [GO13], continued in [SP11], and fur-
ther refined in [GJO17].

Slogan 26. The identification of homotopical structure with al-
gebraic structure is an application of categorical coherence the-
ory.

Open Problems
A key feature of the 1-dimensional stable homotopy hy-
pothesis is the correspondence between the single Post-
nikov invariant 𝑘0 and the symmetry. However, we do
not have a 2-dimensional analogue that fully explains the
Postnikov invariant 𝑘1; this motivates a series of related
problems.

Problem 27. Extend the work above to a complete inter-
pretation of 𝑘1 in terms of the categorical structure in a
Picard 2-category. Use this to explore some interesting ex-
amples from topology.

Problem 28. Develop a theory of kernels and cokernels for
Picard 𝑛-categories and relate it to fiber/cofiber sequences
in stable homotopy.

Problem 29. Identify a Picard 2-category that models the
2-type of the sphere, along the lines of Kapranov’s alge-
braic model. This requires a connection between algebraic
sign conventions and the Postnikov invariants of the sphere
spectrum.

Problem 30. Develop a homological algebra for Picard 1-
categories and relate it to Postnikov obstructions.

Problem 31. Use the algebra of Picard 1- and 2-categories
to study homotopy operations.
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