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Introduction

Beginning in the spring of 2016, a team of more than thirty
mathematics teachers, mathematics educators, and mathe-
maticians at Illustrative Mathematics began to write a
grades 6-8 mathematics curriculum that was released as
an open education resource in the summer of 2017. Since
then the team has expanded, and Illustrative Mathematics
released a high school curriculum in the summer of 2019
and will release a grades K-5 mathematics curriculum in
the summer of 2021. The four authors of this article are
mathematicians who have worked together since the in-
ception of Illustrative Mathematics in 2011 on these and
other K-12 mathematics projects.

Over the time we have worked together, we have en-
joyed the surprising variety of interesting mathematical is-
sues that arise when writing about K-12 mathematics. For
example, choosing a unique best definition for a given
mathematical concept may be a sensible undertaking for
a textbook covering a single semester or a year’s worth of
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content. But for a comprehensive K-12 curriculum, def-
initions and notation must evolve alongside student un-
derstanding, and diagrams and other representations must
change over time to accommodate and facilitate the expan-
sion of these ideas. In this article, we discuss some of the
mathematical and pedagogical nuances of making K-12
curriculum-wide decisions about the selection and adop-
tion of a coherent and rigorous set of definitions, notation,
and graphical conventions that both hold up to mathemat-
ical scrutiny and also serve the needs of the students to
whom they are introduced.

In particular, we will focus our attention on curriculum
design issues surrounding the development of the real
numbers from kindergarten to grade 12, keeping in mind
the work that students might do in later years. Because our
work is rooted in the Common Core State Standards for
Mathematics [1], we constrain our discussion to the devel-
opment of a K-12 mathematics curriculum designed with
these standards in mind, and all subsequent discussion of
grade-level work refers to the sequential development of
the mathematics in these standards.

Numbers and the Number Line

Developing the notion of a number requires attention to
both the relevant mathematics and how students learn that
mathematics. Students need some understanding of the
real number system by the time they complete high school,
and yet the real numbers are notoriously more subtle to
define and work with than is typically evident from their
treatment in instructional materials. None of the classi-
cal constructions or definitions from a real analysis course
(via Cauchy sequences, Dedekind cuts, or as the unique
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ordered field satisfying certain axioms) are particularly use-
ful for most K-12 students (though neither are they far
from our minds, e.g., infinite decimal expansions as
Cauchy sequences of finite approximations). Of course,
even a set-theoretic mathematical definition of the count-
ing numbers is out of the question, and yet the need re-
mains: students learn about and make use of the counting
numbers starting in kindergarten and expand and refine
their notion of what a number is many times in the twelve
years of schooling that follow. Students need working def-
initions of the various types of numbers they encounter
that allow them to reason deductively within the frame-
work of their current stage of learning. Because the concept
of a number expands from year to year, students’ working
definitions must evolve accordingly over time.

H. S. Wu advocates that we define a real number as a
point on a number line [3]. However, even if this is the def-
inition adopted in later grades, students in kindergarten
and grade 1 need something more concrete to reason from.
We agree that number line diagrams should be the primary
representation of numbers once students are sophisticated
enough to learn about and interpret these types of repre-
sentations. By tying any understanding of a number to the
number line, students can expand their understanding of
the real number system in an intuitive but not mathemati-
cally misleading way. While we must attend to long-term
goals for how we want students to think about mathemati-
cal concepts, we must also respect the intellectual work ap-
propriate to each grade level to ensure that students have
a strong foundation on which to build a more abstract un-
derstanding of number in later grades. Curriculum writers
must pay careful attention to the evolution of the work-
ing definitions that students will use at various stages of
learning. We assert that a good curriculum will help stu-
dents build their understanding of the counting and ratio-
nal numbers as telling “how many/how much” and then
help them connect this understanding to the representa-
tion of a number as a point on the number line. This
stance raises a number of important mathematical ques-
tions related to the use of number line diagrams in cur-
riculum materials.

For our work the number line begins as a line in the usual
Euclidean sense, which is used as a geometric model for
the real numbers. Two distinct points are chosen and iden-
tified with the numbers 0 and 1 (which establishes a met-
ric on the line). As new sets of numbers are introduced,
a process for locating them on the number line is also in-
troduced, so that the difference between the two numbers
is reflected in the displacement on the line between the
two corresponding points. The mechanism for locating
further points is grade-level dependent: in early grades stu-
dents locate points on the number line that correspond to
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the whole numbers by placing the number 2 on the op-
posite side of 1 from 0 so that 1 is equidistant from both,
and so on. Later, students will reason through the loca-
tion of the positive rational numbers on the number line
by partitioning the segment from 0 to 1 into equal-length
pieces to identify unit fractions (fractions of the form %,
for b a positive integer). Then, by adding a whole num-
ber, a, of copies of % they can place any fraction %, just
as the location of the whole number a was deduced from
the location of 1. Negative rational numbers are located
by finding the point that is the same distance from but
on the opposite side of 0 as its positive counterpart. The
real numbers are located via an exploration of decimal ex-
pansions (with some hand-waving around limits). Thus,
as students’ understanding of number evolves from whole
numbers to rational numbers to real numbers, we enlarge
the subset of points on the number line that correspond to
numbers, eventually filling out that initial Euclidean line
as a visual representation of the set of all real numbers.

A number line diagram is a drawing that represents an in-
terval of the number line. The question of how to draw
number line diagrams is tied intimately with pedagogical
decisions about the use of the number line itself, and so
we are left with a slew of questions. Among others, of prin-
cipal interest are the following:

e When should number lines first be introduced?

e What conventions for drawing number line dia-
grams should be followed at each grade level?

e Should operations be represented on a number
line diagram? If so, how?

We address these and other questions below.

Working Definitions and Representations for
Number Systems

We begin by describing the development of the real num-
ber system across grade levels. Students study the whole
numbers in kindergarten through grade 2, the positive ra-
tional numbers in grades 3-6, the rational numbers in
grades 6 and 7, and the real numbers in grade 8 and be-
yond (although they are introduced to 7T in grade 7, they
do not explore the more general notion of nonrational
numbers until grade 8). Table 1 shows the way in which
the number system expands across K-8. Beyond the count-
ing numbers, students first study a new set of numbers as
objects in their own right before they study the four arith-
metic operations (+ — X =) in the context of each system.

To support the understanding expected of students in
later grades, early elementary students need working defi-
nitions for the whole numbers, addition, and subtraction
that are developmentally appropriate, robust enough to
support mathematical reasoning, and engineered to admit
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Grade | K 1 2 3 4 5 6 7 8
o [T 7 7] 5T

Q numbers ;:

R numbers

Table 1. Evolution of the real number system K-8.

(or at least minimally interfere with) an expanding defini-
tion of the number system. We believe that properly en-
gineered working definitions for numbers and operations
that systematically evolve over time can help bootstrap stu-
dents to an increasingly more sophisticated and unified
understanding of the real number system.

This is no easy task: the early development of students’
understanding of the counting numbers, addition, and
subtraction is surprisingly complex and one of the most
well-researched areas in mathematics education (see [2]).
Once they have learned to count and know that the count
represents “how many,” kindergartners understand addi-
tion as the operation that represents putting two amounts
together or adding one amount to another and
understand subtraction as splitting or removing. They use
the working definition of addition as “putting together or
adding to” to reason about things like the value of 2 +
3, and the primary representations of numbers that they
study include concrete objects and discrete diagrams (see
Figure 1), which they use to build meaning for numerals.
In grade 1, students expand their definition of addition

LA _NOROR®

Figure 1. A discrete diagram.

to include situations that involve comparing two amounts.
They continue to use discrete diagrams to understand the
operations, including diagrams that show base-ten struc-
ture.

Should kindergarten and grade 1 students also study
number line diagrams, which require an understanding
of length? Students compare objects by length in kinder-
garten, “express the length of an object as a whole num-
ber of length units” in grade 1, and measure lengths in
standard units in grade 2. When in this sequence of learn-
ing should students be introduced to the number line and
number line diagrams? Research suggests that number
lines can be difficult to understand for children below
grade 2 and that related representations like the “number
path,” such as the one shown in Figure 2, are more
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accessible at this age (see [2]). Discrete representations are
the primary way that students in grades K and 1 represent
numbers and operations, and a number path can provide a
bridge to continuous representations like number line dia-
grams. Figure 2 can be viewed as an intermediary between
Figures 1 and 3.

1 2 3 4 5 6 7

Figure 2. A number path representation of the counting
numbers.

In grade 2, students extend their understanding of ad-
dition and subtraction to larger whole numbers and are
ready for work with number line diagrams, which are ex-
cellent tools for, e.g., comparing numbers. In grade 3, frac-
tions (nonnegative rational numbers) are introduced. The
fraction % is defined to be the sum of a copies of a num-

ber %/ where the sum of b copies of % equals 1. Fractions

are understood both in terms of quantities (% of a cup of
juice) and as points on the number line. The number line
is a powerful tool for placing % in the same universe as
the counting numbers, and number line diagrams can be
used to compare fractions by comparing their relative po-
sitions. They can also be used to illustrate instances of frac-
tion equivalence; for example, students can locate 143 ona
number line diagram (Figure 3) using the definition above
to see that it occupies the same location as 3.

Figure 3. A number line diagram that can illustrate why

12 _
=3

While the number line is useful for understanding or-
der and equivalence, we note that number systems are not
merely sets of numbers; they are endowed with one or
more operations. This raises a new question: should one
represent operations with number line diagrams? If yes,
which operations, with which numbers, and how should
the operations be represented? In grade 2, students can
use the number line to represent adding or subtracting as
moving to the right or left (respectively) on the number
line (Figure 4), which helps students visualize sums and
differences with larger numbers. Representing addition
and subtraction on the number line in grade 2 and be-

RN

1 ! ! ! ! ! ° ! ! ® !
0 10 20 30 40 50 60 70 80 90 100

Figure 4. Representing 90 — 30 in grade 2.
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-30

+90

O
0 10 20 30 40 50 60 70 80 90 100
Figure 5. Representing 90 + (-30) in grade 7.

yond also lays the foundation for understanding adding
and subtracting signed numbers in grade 7 (see Figure 5).

In grades 4-6, students use both quantities and the
number line to develop their understanding of operations
on fractions. For example, in grade 5, a number line dia-
gram like the one shown in Figure 3 can also help students
determine how many %’s there are in 3 as a way to under-

stand 3 + i.

Students learn in grade 8 that the myriad rational num-
bers do not fill up the number line. They learn there are
numbers, such as 1T and \/5, that cannot be expressed
as rational numbers and that each real number (that is,
each point on a number line) can be written via a decimal
expansion. Building on their work representing rational
numbers on a number line diagram, students can visualize
finite and then infinite decimal expansions (see Figure 6
for a number line diagram inspired by [4]).

In high school, students look at operations on real num-
bers and study what happens when we add or multiply an
irrational number by a rational number. For example, con-
tinuing the development of ideas begun in grade 2, they
may use visualizations based on the number line to reason
about sums of irrational numbers. Since numbers like 7T
or /2 are more difficult to locate on a number line dia-
gram than rational numbers, older students will have to
make informed choices; e.g., 7T + \/§ is somewhere in the
vicinity of 4.5, since 7T is slightly to the right of 3 and /2
is slightly to the left of 1.5. This work prepares them for
more abstract reasoning about the real numbers in later
mathematics.

T
@

3.14

Figure 6. Placing 7T on a number line.
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Beyond K-12

While the primary goal of the curriculum is to prepare all
K-12 students for their mathematical futures regardless of
their eventual destination, it is worth touching upon how
this work ties to students’ mathematical work in subse-
quent years if they do pursue more mathematics in college.
Even as far as a real analysis course, before students write
proofs we often ask them to draw a number line diagram,
pick arbitrary points, and visualize the general argument.
For example, to show that an interval (a, b) is open they
might draw a picture like the one in Figure 7.

a X
O

os

__ min{|x—al,|x—=bl}
6= 3

Figure 7. Showing an arbitrary open interval in an open set.

Students who have used the number line throughout
K-12 to extend their understanding of the number system
and who have used number line diagrams to solve prob-
lems are in a better position to continue using them as a
tool to visualize and make sense of abstract ideas in later
mathematical work. Ideally, they will have the inclina-
tion to draw helpful diagrams before they attempt writing
proofs.

We note that in such exercises, students are asked to
draw upon both their mathematical content knowledge
and the metamathematical practice of using, adapting, or
adopting conventions for drawing number line diagrams
to convey their arguments. Figure 7 reflects several such
conventions, using both open circles and open parenthe-
ses to indicate the openness of intervals, filled circles to
indicate the relevant point, and various adornments for
naming and indicating points and lengths. There are no
“proofs by pictures” without good pictures.

Relatedly, though formal definitions of real numbers
were mentioned as a bit of a bogeyman earlier in this ar-
ticle, students who do encounter a definition of the real
numbers as, say, Dedekind cuts, will continue to make use
of these kinds of diagrams. The aforementioned grade 8 ex-
ercise of identifying 7T ++/2 as a point on the number line
is almost direct preparation for exercises like proving the
commutative law for real number addition in this frame-
work. And regardless of the formal definition adopted, stu-
dents must eventually run into the nested interval property
(or one of its equivalents) that an infinite intersection of
nested closed intervals

L2L 2132 -

is necessarily nonempty.
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Figure 8. Representing a sequence of nested closed intervals.

It is hard to imagine inspiration for a proof of this prop-
erty that does not begin with a diagram closely akin to Fig-
ure 8.

The number line serves as a common unifying represen-
tation of the real numbers that begins in the early grades
and continues throughout students’ mathematical careers.
Though the proportion of K-12 students who will pursue
mathematics to this depth is small, carefully chosen con-
ventions starting even as early as grade 2 can help all stu-
dents develop a robust understanding of numbers while
also laying the foundations for a more formal understand-
ing of the real numbers if students do decide to pursue it.

Answering Our Last Question

The curriculum writing team at IM intends that the dia-
grams in the curriculum support both the current math-
ematics that students are learning and, to the extent pos-
sible, the mathematics that they will learn in the future.
Earlier we showed several visual milestones that reflect the
progression of student understanding of the real numbers,
and it is with that progression in mind that we ask our fi-
nal question: What conventions should be followed for
drawing number line diagrams that will best support stu-
dents’ evolving understanding of the real number system?
Figure 9 shows some of the possible variations. Which
should we use in elementary school? In middle or high
school? In an undergraduate or graduate textbook? What
are the reasons for these choices?

Should number line diagrams include arrows on each

| | | | | |
[ [ | [ [ [

0 1 2 0 1 2
| | | | | |
[ [ [ [ [ [

0 1 2 0 1 2
| | | | | |
[ [ [ [ [ [

0 1 2 0 1 2

Figure 9. Different examples of number line diagrams.
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end (as in some textbooks), indicating that the numbers
“go on forever in each direction,” even though students are
not introduced to negative numbers until grade 62 Should
diagrams include an arrow just to indicate the positive end,
as is often used for axes in the coordinate plane? Should
they be omitted entirely, because arrows in number line di-
agrams can also be used to represent operations and signed
numbers?

Our choices were heavily influenced by how students’
understanding of numbers changes over time and how
number line diagrams will be used in later grades. In grade
7, we used directed line segments to represent signed num-
bers, with an arrow to depict the direction, and we lined
the directed segments up tip to tail to represent addition,
as shown in Figure 5. As one consequence of this decision,
we elected to suppress the arrows that show the numbers
“go on forever in each direction” in number line diagrams
in grades 6 and 7 and then, to be consistent, in all other
number line diagrams in the curriculum. Decisions about
other conventional features of the diagram required simi-
lar reflection. For example, the grade 2 diagrams include
a segment to the left of zero, as shown in Figure 4. This
feature suggests that there is territory to be explored to the
left of zero, in much the same way that the space between
the whole number tick marks leaves room for the rationals.
We also decided that the conventions chosen for represent-
ing addition and subtraction in number line diagrams in
grade 2 should build on students’ understanding of addi-
tion and subtraction from grades K and 1 while anticipat-
ing their use in the middle school curriculum. The conven-
tions adopted in Figure 4 reflect these considerations.

Final Thoughts

The K-12 evolution of working definitions for numbers
and operations and representations of the real number sys-
tem is an illustration of a set of much larger decisions that
have to be made when writing K-12 curricula. Even
though abuse of notation, sloppy diagrams, and impre-
cise language occur routinely in dialogue between profi-
cient users of mathematics, curriculum writers need to be
especially careful not to let their own fluency interfere with
more deliberate and principled usage. This need is at its
greatest when standardly accepted uses of a mathematical
term include instances where there are multiple implicit
(or explicit) definitions of the term. Fluent practitioners
of mathematics typically come to coalesce these separate
definitions as facets of the same Platonic mathematical ob-
ject, but for first learners, a multitude of dissonant defini-
tions may cause more harm than good. One example that
a certain subset of the mathematical community has been
debating passionately for years is the term “ratio.” Here
are examples of two commonly accepted uses of the term:
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® The ratio of bees to fliesis 2 © 5.
® The ratio of the side-lengths of the triangle is %

In the first instance, the implicit definition of a ratio is an
ordered pair, and in the second it is a single number. So
what “should” the definition of ratio be? One can argue
this point ad nauseam—and some people have! We chose
to distinguish between the ratio a . b and the value of the
ratio, %, in grades 6-8 and to then follow common usage
(and the implicit shift in the language of the standards) in
high school, which refers to either of these as the ratio of
atob.

When writing curricula, one has to make choices and
then live with the logical, pedagogical, and psychological
consequences in all downstream materials (and accept
the fact that everyone who would have made different
choices will wish to readjudicate the issues forever). How-
ever, there is a tension between being internally consis-
tent and being reflective of how language and notation
are used by various mathematical demographics (e.g., by
fluent practitioners, previous generations of learners, or
other textbooks, etc.). In our work, we (attempt to) choose
meanings and representations that require minimal alter-
ation through the grades, except as needed to accommo-
date the expansion of concepts as students mature in their
mathematical understanding. Finally, we note we are not
by any means alone in these endeavors: the authors of the
EngageNY curriculum [5], for example, have given a lot of
thought to these issues and have written a very detailed
description of the definitions they use and the grades at
which those definitions are introduced in that curriculum
[6]. Since our curriculum is still a work in progress, we do
not yet have such detailed documentation of our own de-
cisions, but we hope the examples we have given here help
convey the complexity and nuance of this kind of work.
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