From Operator Algebras to
Complexity Theory and Back

Thomas Vidick

Quantum mechanics and the theory of operator algebras
have been intertwined since their origin. In the 1930s [20]
von Neumann laid the foundations for the theory of (what
are now known as) von Neumann algebras with the ex-
plicit goal of establishing Heisenberg's matrix mechanics
on a rigorous footing (quoting from the preface, in the
translation by Beyer: “The object of this book is to present
the new quantum mechanics in a unified representation
which, so far as it is possible and useful, is mathematically
rigorous”). Following the initial explorations of Murray
and von Neumann, the new theory took on a life of its
own, eventually leading to multiple applications unrelated
to quantum mechanics, such as to free probability or non-
commutative geometry.

In his 1976 paper completing the classification of in-
jective von Neumann algebras [6] Connes made a casual
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remark that has become a central conjecture in the theory
of operator algebras. Paraphrasing, Connes’ remark was
that any finite von Neumann algebra, i.e., one that has
a finite trace, “ought to” be well approximated by finite-
dimensional matrix algebras. Thanks to the work of other
mathematicians, such as Kirchberg and Voiculescu, the re-
mark, now known as Connes” embedding conjecture (CEC),
has become one of the most important open problems
in operator algebras. (Formally, the CEC states that every
von Neumann algebra type II; factor embeds into an ultra-
power of the hyperfinite II; factor.) Kirchberg showed that
CEC is equivalent to the QWEP conjecture about the equiv-
alence of the minimal and maximal tensor products on
the full group C*-algebra of a nonabelian free group [12].
Voiculescu gave a reformulation in terms of the existence
of matrix microstates in free probability [19]. Radulescu
showed that a group is hyperlinear if and only if its group
von Neumann algebra satisfies CEC [16]. Goldbring and
Hart showed that CEC holds if and only if every type I tra-
cial von Neumann algebra has a computable universal the-
ory [8].! Many more equivalent formulations are known
(see e.g. [4] for a survey).

In this note we are concerned with an equivalent for-
mulation of CEC known as “Tsirelson’s problem.” The

YThis connection with a question in logic is, to the best of our knowledge, not
related in any direct way with the connection discussed in the present article.
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problem arose from Tsirelson's study of the nonlocal prop-
erties of entanglement, a puzzling phenomenon first
brought to light by Einstein, Podolsky, and Rosen. Loosely
speaking, Tsirelson’s problem asks about the appropriate
way to model locality in quantum mechanics: it asks if the
Hilbert space associated with spacelike isolated regions al-
ways factors as a tensor product of Hilbert spaces on which
observables associated with each region can be localized.

With the development of quantum computing, entan-
glement and the nonlocality of quantum mechanics have
come to be seen as resources for computation and com-
munication. Thus the CEC, through its equivalence with
Tsirelson’s problem, is tied back to questions in quantum
information whose study has been pursued largely inde-
pendently of the developments in operator algebras that
led to Connes’ original remark. The purpose of this note
is to show how work in quantum computing theory leads
to a complexity-theoretic conjecture whose proof would
imply a negative answer to Tsirelson’s problem. (Interest-
ingly, a refutation of the conjecture is not known to have
any implications for CEC.) Informally, the complexity-the-
oretic conjecture states that the class MIP* of problems
that can be decided by a polynomial-time verifier interact-
ing with quantum provers sharing entanglement contains
undecidable languages; we explain these terms as the arti-
cle progresses.

We start with a formulation of Tsirelson’s problem and
tie it to Bell’s work in the foundations of quantum mechan-
ics. We then dive into the key notion of interactive proof,
which has played a major role in the development of com-
plexity theory over the past three decades. This allows us to
introduce the theory of nonlocal games in quantum infor-
mation and relate it, through the framework introduced by
Bell, to Tsirelson’s problem. Finally, we close the loop by
formulating a conjecture on the power of quantum interac-
tive proof systems whose proof would lead to a refutation
of CEC.

Tsirelson’s Problem

In the early 1980s Boris Tsirelson wrote a series of papers
laying out the mathematical formalism for the systematic
study of the nonlocal properties of quantum mechanics.
In one of the papers [18] Tsirelson introduces two sets that
capture certain kinds of distributions that arise from mea-
surements on entangled states. For a (separable) Hilbert
space H a projection valued measure (PVM) on H is a fi-
nite collection {P1, ..., Py} of projections on H such that
>.P; = Id. For arbitrary finite indexing sets X,Y, A, B
Tsirelson considers the convex subsets Q Sz yy and Q¥ gxy
of [0, 1]4%BXX*Y "where the superscripts ¢ and s stand
for commuting and spatial, respectively:
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Qlsxy = { (W, ASBY W) ) apny -
JH Hilbert space, ¢ € H, ||y| =1,
V(Xx,y) € XXY, {A%}aca, {B) }rep PVM on H
s.t. [AX,Bj1=0V(a,b) € AX B}, (1)

QSABXY = { (<W1Az ®Bzw>)a,b,x,y :
JH 5, Hp Hilbert spaces, ¢ € H, ® Hp,
lyll =1, V(x,y) € X XY,

{AX}aea, 1B) }pep PYM on H , Hyp, resp.} .
(2)

By taking direct sums of PVMs and scaled vectors it is not
hard to see that both sets are convex. Moreover, in case
the Hilbert spaces in both definitions are taken to be finite-
dimensional, the two sets can be shown to coincide. In his
paper Tsirelson states as “fact” the claim that Q% zyy =
QSpxy for arbitrary separable Hilbert spaces and all finite
A,B,X,Y. Having realized that a proof of the claim
seemed elusive (with the inclusion Q% zyvy S Q%pxy be-
ing the only obvious one), in a subsequent note? Tsirelson
reformulates the “fact” as an open problem and, realizing
that the answer may be negative, formulates as an “even
more important” problem the question of whether the clo-
sure Q%gxy = QSpxy- Two and a half decades after its
introduction Tsirelson'’s first problem was solved by Slof-
stra [17], who used techniques from the theory of non-
local games to show the existence of finite indexing sets
A,B,X,Y such that Q%zyy # QSpxy. But Tsirelson’s
“even more important problem” remains open:

Tsirelson’s “even more important” problem:
Does Q% pxy = QSpxy forall finitesets A, B, X, Y?

Building on work of many others, including Fritz [7]
and Junge et al. [11], Ozawa [15] showed that Tsirelson’s
“even more important” problem (hereafter referred to as
“Tsirelson’s problem”) is equivalent to CEC, thereby lift-
ing the problem from a question in the foundations of
quantum mechanics to a central conjecture in operator al-
gebras. In the remainder of this article we explain the rela-
tion of Tsirelson’s problem with quantum nonlocality, as
seen through the lens of complexity theory. We start by
explaining the origins of Tsirelson’s problem in the foun-
dations of quantum mechanics.

Bell Experiments

On to quantum information. Tsirelson’s problems are
rooted in the quantum phenomenon of entanglement. We
will not attempt to give a precise mathematical definition
of the term here or explain its physical underpinnings:

2u

Bell inequalities and operator algebras,” available at I’lttps 1 //www. tau |

[.ac.i1/~tsirel/downToad/beTTopalg.pdf]
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roughly, a state of multiple particles is said to be entan-
gled when some observable degrees of freedom (e.g. angu-
lar momentum) of the particles are highly correlated.

Almost three decades after the publication of the
famous paper by Einstein, Podolsky, and Rosen (EPR) us-
ing the “spookyness” of entanglement to argue the incom-
pleteness of quantum mechanics, John Bell in 1964 was
the first to introduce a concrete (though impractical)
thought experiment that sharply delineates the predictions
of quantum mechanics from those of classical theory. Bell
considered the following scenario, today referred to as a
“Bell experiment.” Suppose that two distant physical sys-
tems (e.g. spatially localized collections of particles) are
initialized in an arbitrary state; the systems may be as cor-
related as is allowed by the physical theory.®> Suppose fur-
ther that the first (resp., second) system can be measured
using any one of a finite collection of possible procedures
AX (resp., B”) indexed by x € X (resp., y € Y). Suppose
finally that performing the measurements A on the first
system and B” on the second yields a pair of
outcomes (a,b) € A X B, where A, B are finite sets.
Define the resulting “correlation set” as the convex set
Kapxy S [0, 1147BXXXY that contains all tuples (Papxy)
such that there is an initial quantum state for the systems
and measurements on them that lead to outcomes (a, b)
with probability papxy whenever measurements Ay and
B, are performed. (The convexity of K follows as soon
as the theory counts any probabilistic mixture of allowed
states as an allowed state.)

Interestingly, giving a precise mathematical definition
of the correlation set QQ zspxy associated with measure-
ments on quantum systems requires us to make a non-
trivial design choice. In quantum mechanics the state of
a physical system is represented by a positive linear func-
tional w of norm 1 on B(H'), the bounded linear opera-
tors acting on a separable Hilbert space ZH . It turns out to
be sufficient to restrict our attention to vector states, which
are those v such that there exists a unit vector ¢ € H
such that w(A) = (¢, Ay). To each measurable quan-
tity, such as the location of a photon or the spin of an
electron, is associated an observable, which is a bounded
self-adjoint operator on . In general each of the two
systems can be measured using a certain set of allowed ob-
servables, @4 € B(H ) for the first and O S B(H ) for
the second.

In quantum mechanics a measurement in general per-
turbs the state that it is performed on. As a result, two
different observables cannot always be measured simul-
taneously: the order in which the measurements are
performed may matter. In a Bell experiment it is assumed

3For example, consider two “distant” coins that are both in state “heads” with
probability % and in state “tails” with probability % This is an “allowed state”
in classical physics.
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that the two systems are “distant” and in particular do not
interact. Thus in any reasonable physical realization of
a Bell experiment it ought to be possible to perform the
measurements on both systems in any order and obtain
the same distribution on outcomes. Von Neumann [20]
showed that this joint measurability condition is equivalent
to the algebraic requirement that any A* € @4 and B” €
Op commute. Given a pair of observables (A%, B”) that
satisfy this condition, we can specify the probability that
their joint measurement on a state (/ returns a pair of out-
comes (a, b) as follows. Using that observables are self-
adjoint we can write the spectral decompositions as A* =
D adgAkand BY = >, ubBZ with a finite set of real eigen-
values A, Up (the assumption that there is a finite number
of distinct eigenvalues is unimportant but generally fol-
lows from the interpretation that each eigenvalue of an ob-
servable is associated with a measurement outcome). The
probability of observing (a,b) is then given by
(Y, AZBZ ). Using that A}, BZ are positive semidefinite
and commute, and that >, AX = >, B) = Id, the for-
mula specifies a well-defined family of distributions. The
resulting correlation set is precisely the “quantum com-
muting set” Q¢ pyy introduced in (1).

In his study of quantum correlations Bell was not partic-
ularly interested in the distinction between Q* and Q—as
already mentioned, he considered only finite-dimensional
systems for which the sets coincide. Rather, Bell was inter-
ested in how either set relates to the set of classical cor-
relations Capxy, defined analogously except that the ini-
tial state of the systems is required to have a classical de-
scription (equivalently, @4 and Op both generate com-
muting algebras). Bell’s work was motivated by a desire
to give a logically clear statement that would place the EPR
thought experiment on a firm mathematical footing, a task
in which he largely succeeded!

Concisely stated, Bell's result is the identification of an
explicit point in Q%pyy that does not lie in Cagxy for
some large enough X, Y. (Bell considers the case of in-
finite X, Y, but his construction can be easily discretized.
A few years later Clauser et al. gave an explicit separation
for |[X| = |Y| = |A| = |B| = 2.) An insightful reformu-
lation of Bell’s theory can be given using the language of
nonlocal games. We motivate these games by showing how
they arise in an a priori entirely distinct line of work, the
theory of interactive proofs in complexity theory.

In nonrelativistic quantum mechanics it is generally as-
sumed that the number of degrees of freedom of the
physical systems considered is finite, in which case the
underlying Hilbert space H is finite-dimensional. (In
some cases, such as the position and momentum
observables, H is infinite, but the algebra of physically

VoLuME 66, NUMBER 10



relevant observables is a type I von Neumann algebra,
for which the ensuing discussion applies as well.) In
finite dimensions it is a simple consequence of Schur’s
lemma that for any two mutually commuting collec-
tions of observables @4 and Op acting on H there is
an isomorphism H = @;(Ha; ® Hp,;) such that
Ox = B; 04, and Op = P, Op;, where for each i,
Q4 (resp., Op;) acts nontrivially only on H 4 ; (resp.,
Hpi). In such cases the sets Q% zyy and Q% zyy coin-
cide, and indeed Bell formulated his theory using ten-
sor products. More generally, in relativistic quantum
mechanics the local algebra of observables associated
with a bounded region of space-time is generally be-
lieved to be of type III. Under additional physical as-
sumptions such as strict spacelike separation between
regions or some bounded energy-density assumptions,
it is possible to show rigorously that the algebras have
the split property; i.e., there exists a type I factor ‘F such
that A C F C B’ [3]. In these cases it is also known
that Tsirelson’s problem has an affirmative answer. Yet
not all algebras have the property! For example, it is
known not to hold for certain unbounded spacelike
separated regions [3].

Interactive Proofs

We begin with an instructive example. Suppose we are
given an explicit description of two graphs G and H on
the same vertex set V. = {1,...,n} (see Figure 1). Can
you tell if the two graphs are isomorphic? On the example
you probably can, but in general this is a hard problem,
by which we mean that there is no known algorithm that
runs in time at most some fixed polynomial in n and pro-
vides the correct answer on all pairs of graphs on n vertices
for all integers n = 1. But if someone—an all-powerful
prover—conveniently hands you a proof of isomorphism in
the form of an explicit map between the graph’s respective
vertex sets, it is easy to verify that the map is a bijection that
preserves the adjacency relation of the graphs and hence is
a valid graph isomorphism.

Figure 1. Two graphs on 10 vertices. The graphs are
isomorphic.

Thus isomorphic graphs always have valid proofs of
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isomorphism that can be efficiently verified. In complexity-
theoretic terms we say that the graph isomorphism prob-
lem lies in the class NP of problems that have efficiently
verifiable proofs.* What about the complement problem,
where the verification procedure aims to verify a proof sup-
porting the claim that the two graphs are not isomorphic?
This seems more difficult, and indeed there is no known
efficiently verifiable proof for graph nonisomorphism. Yet
consider the following interactive proof, executed between
the verifier (who wishes to verify that the graphs are non-
isomorphic) and the prover. At the first step the verifier
privately selects a uniformly random bit ¢ € {0,1} and a
uniformly random permutation 7T on {1, ...,n}. Ifc =0
the verifier sends the permuted graph 11(G) obtained by
relabeling the vertices of G according to 7T to the prover. If
¢ = 1 the verifier sends 17 (H) to the prover. The prover is
asked to respond with the label of one of the two graphs,
G or H. The verifier accepts the prover’s answer if and only
if the returned label matches that of the chosen graph (i.e.,
G incase c = 0 and H in casec = 1).

To check that this is a valid proof system for graph non-
isomorphism we need to consider two cases. First, in case
the graphs G and H are not isomorphic there exists a strat-
egy for the prover that is always accepted by the verifier.
Indeed, by investing sufficient computational effort (e.g.
iterating over all possible relabelings) it is possible for the
prover to uniquely determine which of G or H it was sent
arelabeling of. Second, in case the graphs G and H are iso-
morphic then it is easy to see that no prover, however pow-
erful, can succeed with probability strictly larger than %
This is because in this case the prover receives a uniformly
random relabeling of G, or equivalently of H, and has no
way to determine from which graph it was obtained.

Summarizing, in case the graphs are not isomorphic
there is a prover that is always accepted, and in case they
are not, any prover is accepted with probability at most %
Repeating the interaction a few times in sequence and ac-
cepting only if all interactions accept amplifies the gap be-
tween 1 and % exponentially fast. In complexity-theoretic
terms, we have shown the graph nonisomorphism prob-
lem lies in the class IP of problems that have efficiently
verifiable randomized interactive proofs.’

4Formally, the graph isomorphism problem is modeled as a language, i.e., the
set Liso S {0, 1} of all binary representations of pairs of graphs (Go, G1)
such that Go and Gy are isomorphic. The statement Liso € NP means that
there is an efficient verification procedure such that given an arbitrary X €
{0,117, if X € Lijgo, then there is a proof Tt that the verification procedure
accepts, whereas if X & Liso, then no proof is accepted.

The consideration of randomized proofs comes with an inevitable caveat: for
any statement needing verification, the verifier may have a small chance of mak-
ing the wrong decision. This fact is an integral part of the definition of a “ran-
domized verification procedure.” It is generally required that the chance of mak-
ing an error should be bounded below a fixed constant, say 1/3. In our exam-
ple this is achieved by performing two repetitions of the protocol and accepting if

1621



This example demonstrates the power of randomization
and interaction in verifying proofs. The discovery of this
gain in expressive power initiated major lines of work in
complexity theory and cryptography along which research
very actively continues today. One of the most important
milestones, which is relevant for this article, is the charac-
terization by Babai, Fortnow, and Lund [2] of the class of
problems that can be decided by an efficient verifier who
may interact with two (or more) cooperating but mutually
noninteracting provers. Here by “noninteracting” we mean
that the provers are not allowed to communicate directly
between themselves while they are being interrogated by
the verifier. (The provers may still discuss, and agree on, a
common strategy ahead of time.)

From the provers’ point of view, two is not more pow-
erful than one, as the prover is always considered to have
infinite computational power. Instead, the addition of a
second prover gives more power to the verifier, who now
has at her disposition the entire policeman’s arsenal in her
interrogation of (possibly) colluding spies. A concrete way
in which this power can be used is by sending an entire list
of questions to one prover and a single question from the
list to the other. By checking that the provers return consis-
tent answers, the verifier can ascertain that the first prover’s
answer to each of the questions in the list is made indepen-
dently of the other questions (since it has to match the
second prover’s answer, which by definition depends on
a single one of the questions). The same effect could not
be achieved with a single prover, even through sequential
interaction, as there would be no way to guarantee that the
prover’s answers in a certain round are independent from
his questions in earlier rounds.

This observation allows us to think of the information
held by the second prover, the list of all possible answers
that could be given to each of the verifier's individual ques-
tions, as an exponentially long proof that the verifier has
the ability to query at polynomially many locations (by
asking the first prover for all entries (s)he cares about and
checking consistency with the second at a randomly cho-
sen entry). The aforementioned result of Babai et al. is that
any language that can be verified by an exponential-time ver-
ifier given a static exponentially long proof can be verified
by a polynomial-time verifier in this model. In complexity-
theoretic terms, NEXP & MIP, where NEXP is the exponen-
tial-time version of NP and MIP denotes the class of prob-
lems that can be decided by a randomized polynomial-
time verifier interacting with multiple provers.

Tracing back through Babai et al’s construction, after ad-
ditional refinements complexity theorists have arrived at
the striking statement that any polynomial-size proof that
can be verified in polynomial time by reading the entirety
of the proof can systematically be (efficiently) encoded in a

and only if both repetitions accept.
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format such that the proof can be verified by reading only a
very small, in fact constant, number of entries in the proof!
This result is known as the PCP theorem, for “probabilis-
tically checkable proofs,” a landmark result in complexity
theory. For our purposes we need not go further in this
direction. Instead we investigate a variant of multiprover
interactive proofs in which the provers may implement a
quantum strategy that makes use of entanglement.

Nonlocal Games

Starting with the work of Cleve et al. [5] in 2004, computer
scientists started investigating the consequences of entan-
glement for the theory of multiprover interactive proofs.
To simplify the presentation and make the connection with
Bell experiments, it is convenient to focus on interactive
proofs that involve a single round of interaction. Such in-
teractive proofs can be described using the language of non-
local games that we now introduce.

A nonlocal game involves a referee (a.k.a. verifier) and
two cooperating but noncommunicating players (a.k.a.
provers), generally referred to as “Alice” and “Bob.” The
game proceeds in a single round: the referee selects a pair
of questions (X, y) according to a distribution 7T on X XY
They send x to Alice and y to Bob. The players each re-
ply with an answer, a € A for Alice and b € B for Bob.
Finally, the referee evaluates a decision predicate
V(a,blx,y) € {0,1}. If they obtain 1 we say that the
players win, and if not the players lose. The rules of the
game (in the form of the sets X, Y, A, B), the distribution
77, and the predicate V are publicly known. The players
may agree on a strategy ahead of time, but once the game
has started they are no longer allowed to communicate.
The “value” of a game is the maximum probability, over
the verifier's choice of questions and the players’ strategy,
that the players win in the game. To define this precisely
we distinguish between classical strategies, in which each
player is restricted to evaluatinga functionfs : XXQ - A
and fg | Y X Q — B, respectively, where  is an arbitrary
probability space,® and quantum strategies, in which each
player may perform a measurement on a quantum state.
This naturally leads to three possible “values” of a nonlo-
cal game: the classical value

w(G) =sup > m(x,¥)> V(a,blx,y)
fafe Xy ab

(3)

X Lz Lt ow)=alfy(y,w)=p AW ,

where the supremum ranges over all probability spaces Q
and measurable fy : X XQ > Aandfz . Y X Q - B;

OThe space Q) models the use of “shared randomness” between the players, i.e.,
any question-independent prior information they may wish to share.
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the spatial value

w’s(G) = sup Z 'IT(X,)/)Z Via,blx,y)
AX BY X,y a,b (4)

X (@, (AX® B)) y),

where the supremum is taken over all separable Hilbert
spaces H 5, Hp and finite collections of observables @4 =
{AY}y € B(Ha) and O = {B”}, S B(Hjp); and the
commuting value

w(G) = sup
AX,BY

X (@, AXB), @) ,

where the supremum is taken over all separable Hilbert
spaces H and finite collections of observables O, =
{AX}yand Op = {B”}, on B(H ) such that [A*,BY] = 0
for all x, y.

In general, w(G) < w*(G) < w°(G). By employing
suitable scaling arguments to relate arbitrary linear func-
tionals to games it can be shown that Tsirelson’s problem
is equivalent to the assertion that w*(G) = w°(G) forall
G. Before tackling this question we give an example that
demonstrates w(G) < w?*(G). Since a nonlocal game
can naturally be translated into a Bell experiment by associ-
ating a measurement to each possible question to a player
in the game (with as many outcomes as there are possible
answers to that question), such a game establishes a separa-
tion between Capxy and Q% yy, proving Bell’s theorem.

The example is called the “Magic Square game” (MS)
and is due to Aravind [1], building on work of Mermin
and Peres. In this game the players are asked to fill in
entries of a “magic square” to which there is no solution
(see Figure 2 for an explanation of the rules of the game;
there is no relation between the game and the more usual
kind of “magic square” studied in combinatorics). Aravind
showed that for any strategy that classical players could em-
ploy, there is always a question on which the strategy must
sometimes return a wrong answer, whereas there exists a
quantum strategy that involves performing measurements
on a specific quantum state using which the players can
succeed 100% of the time. (The quantum strategy is ex-
plained in the next section.) In other words, the classical
value of the Magic Square game satisfies (0 (MS) < 1 (in
fact, w(MS) = 17/18), but the quantum spatial value is
w*(MS) = 1.

After the publication of the EPR paper most physicists
brushed aside the “weirdness” of entanglement, preferring
to focus on those aspects of quantum mechanics that
“work” and yield useful scientific predictions. Although
the work of Bell and others established the nonlocality
of entanglement on a firm footing, both theoretical (no
“spooky action at a distance”) and experimental (culminat-
ing in the recent “loophole-free” tests [9]), for a long time

> m(x,y) > V(a,blx,y)
X,y a,b (5)
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X2 X3

+1

X5 Xg +1

Xg| X9

+1

-1 -1 -1

Figure 2. The Magic Square game. The first player, Alice, is
sent the label of a row or column chosen uniformly at random.
The second player, Bob, is sent the label of a uniformly
random entry in Alice’s row or column. Alice should return a
{+1, —1}-valued assignment to the three variables in her row
or column such that the product of the entries is as indicated
on the figure. Bob should return a {+1, —1}-valued
assignment to the variable he is asked about that matches
Alice’s assignment to the same variable. The players’ winning
probability is the probability, over the referee’s choice of
questions as well as randomness in their strategy, that the
players’ answers satisfy the constraints imposed. The fact
that there is no assignment to the variables satisfying all
constraints implies that the players do not have a perfect
consistent strategy.

the special correlations afforded by quantum mechanics re-
mained an oddity, of interest to researchers in foundations
but of little practical relevance. The situation changed dras-
tically in the early 1990s with the discovery that entan-
glement could act as a resource for quantum information
tasks. For example, the technique of “superdense coding”
allows transmission of two bits of information using a sin-
gle qubit (quantum bit) aided by one pair of entangled
particles. In 1991 Ekert introduced a protocol for quantum
key distribution, a task in quantum cryptography that con-
stitutes one of the most promising applications of quan-
tum information to communication networks, based on
entanglement: Ekert argued that by verifying that two dis-
tant, cooperating parties share a quantum state that allows
them to succeed in a nonlocal game, the parties are able
to certify that the quantum state they share is entirely un-
correlated with any third party and in particular from a
malicious eavesdropper (as such sharing would necessarily
weaken the entanglement, a phenomenon known as the
monogamy of entanglement). In the next section we inves-
tigate consequences of entanglement and nonlocal games
in another direction: complexity theory.

Consequences of Nonlocality for Complexity
Theory

Consider again the Magic Square game. Observe that the
game can be repurposed as a multiprover interactive proof
system, as introduced in the section “Interactive Proofs.”
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Specifically, in the game the referee always sends a triple
of questions to the first player, Alice, and one question
chosen uniformly at random from the triple to the sec-
ond player, Bob. Thus a classical deterministic strategy for
Bob can be described using nine variables X; € {1} rep-
resenting Bob’s answer to each of his nine possible ques-
tions, as illustrated in Figure 2. For the players’ strategy
to succeed in all cases (for all possible question pairs that
could be chosen by the referee) these nine values together
must form a satisfying assignment to the magic square con-
straints: X1X2X3 = 1, X1X4X7 = —1, etc. Indeed, consis-
tency with Alice’s strategy and the requirement that Alice’s
answers satisfy the row and column parity constraints im-
ply that in a strategy that wins with probability 1 all equa-
tions must be simultaneously satisfied by the assignment
specified by Bob’s strategy. Yet the astute mathematician
will have no difficulty devising her own proof that there
does not exist an assignment to the nine variables that si-
multaneously satisfies all six constraints. Hence there does
not exist a classical strategy in the Magic Square game that
succeeds with certainty on all possible pairs of questions.
Why does this argument not rule out the existence of
a perfect quantum strategy? One may think of the addi-
tional flexibility given to a quantum strategy as follows.
Although the system of six equations in nine variables im-
plied by the square has no solution in terms of variables in
{—1, 1}, it has a noncommutative solution in the following
sense: there exist nine 4 X4 Hermitian matrices X1, ..., Xg
that each square to identity and such that moreover the
three matrices in any row (resp., column) (i) commute
and (ii) multiply to +1Id (resp., —Id). (The solution is
not too hard to find; as a hint, it suffices to consider ma-
trices with coefficients in {0, =1, =i}.) These matrices are
the quantum analogue of an assignment (instead of be-
ing fixed values in {—1, 1} they have eigenvalues in that
range). Physically, the players’ quantum strategy takes the
following form. Initially, the players each have two spin-
% particles in their possession. The joint state of the four
particles is described by a unit vector ¢ € C* ® C*. Upon
reception of its question, a player performs a measurement
on its two particles. If the player is Bob, the measurement
is the one associated with the observable Xj, where i is the
index of his question. The outcome of the measurement
is avalue in {—1, 1} that Bob returns as his answer. If the
player is Alice, the measurement is the one associated with
the three observables Xj,, Xj,, X;, in her row or column.
The fact that these three operators always commute guar-
antees that they can be jointly measured. The outcome is a
triple of values in {—1, 1} that Alice returns as her answer.
It can then be verified, using property (ii) above and the
laws of quantum mechanics, that the joint measurement
of Alice’s and Bob's observables on a well-chosen state
(independent of their respective questions) always results
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in answers that satisfy the verifier’s checks in the game.

The existence of games such as the Magic Square game
shatters the complexity theorist’s world view regarding
multiprover interactive proofs. Recall that the power of
proof systems such as MIP rests on the use of “cross-
checking” of the prover’s answers; it is such cross-checking
that allowed us to think of a multiprover proof system as
a device through which the verifier is able to obtain ran-
dom access to an exponentially long proof. What the ex-
ample shows is that the connection between strategy and
proof does not extend to the quantum case: there exist for-
mulas that have no satisfying assignment, such as the for-
mula that underlies the row and column constraints of the
“magic square,” yet the provers are able to provide valid
answers to the verifier's checks 100 percent of the time. In-
deed, in the case of a quantum strategy the extraction per-
formed earlier—writing down Bob’s answer to each of his
possible questions—is nonsensical, because it entirely ig-
nores the fact that in general Bob’s answers may be strongly
correlated, due to entanglement, with Alice’s.

Nevertheless, a sequence of results in complexity theory
has established techniques to design proof systems that are
“resistant” to the provers’ malicious use of entanglement:
it is now known that any proof system, including the one
of Babai et al., can be encoded in such a way that entan-
glement is no longer useful to malicious provers. This es-
tablishes the inclusion NEXP = MIP S MIP* [10], where
the * refers to the provers’ allowed use of entanglement.
(For historical reasons the model used for entangled-player
strategies in MIP* is the “finite-dimensional” model corre-
sponding to (4); the complexity class obtained from (5)
is denoted MIP°.) But we are interested in a much more
exciting possibility, which is that entanglement between
the provers may be used by the verifier to their advantage,
yielding proof systems that allow deciding problems be-
yond NEXP. A priori there is no limit to how complex
of a problem may be decided in this model—there is no
limit to the complexity of the provers’ strategy; only the
verifier is restricted to being efficient. Indeed, our current
state of knowledge is consistent with, and in fact points
to, the possibility that MIP* contains undecidable prob-
lems. This, however, would have surprising consequences
for Tsirelson’s problem and Connes’ embedding conjec-
ture, as we explain in the next section.

A Complexity-Theoretic Approach to Tsirelson’s
Problem

Recall the characterization MIP = NEXP that follows from
the work of Babai et al. on classical multiprover interactive
proof systems. As discussed in the previous section, allow-
ing the provers to share entanglement breaks the sound-
ness of certain proof systems (such as a proof system that
relies on the soundness of the Magic Square game), but
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not all. Recently an important additional step has been
taken by Natarajan and Wright [13], who show that MIP*
is strictly larger than NEXP and in particular strictly larger
than its classical, entanglement-free counterpart MIP. In
symbols, the new result is that NEEXP S MIP*, where
NEEXP stands for nondeterministic doubly exponential
time. In words, by querying two provers sharing entangle-
ment, a polynomial-time verifier has the ability to verify
the validity of a proof of doubly exponential length!

Our purpose is not to dwell too much on what to the
noncomplexity theorist may seem like rather exotic alpha-
bet soup, but rather to explore the potential significance
of results such as Natarajan and Wright's and possible im-
provements thereof for Tsirelson’s problem. For this we
take a closer look at the optimization problems (4) and (5)
used to define the spatial and commuting value of a game,
respectively. Suppose we are given a set of rational coef-
ficients (11(x,y)V(a,bl|X,y))apx,y that specify a game,
i.e., an input to either (4) or (5). How would one go about
algorithmically estimating the supremum to within some
accuracy &7

We sketch two possible approaches, the first “from be-
low” and the second “from above.” The first approach
directly attempts to exhaustively search over all possible
strategies for the players. In the simpler case of classical
deterministic players, a strategy is a map from questions
to answers. Such a map can be written using space
| X |1log | Al for Alice and | Y| log | B| for Bob simply by list-
ing the answer that the player would give to each possible
question. Guessing an optimal strategy at random within
that space yields an algorithm that runs in nondetermin-
istic time O (| X|log |A| + |Y|log |B|). In an interactive
proof system the verifier is restricted to run in polynomial
time, so it can only write and read questions and answers
of polynomial length, implying that | X|, | Y|, |Al, |B| are
each at most of exponential size. This algorithm thus im-
plies the inclusion MIP & NEXP, which as we saw applies
to classical interactive proofs—but not quantum.

Indeed, the case of quantum players sharing entangle-
ment is more difficult for two reasons. First, quantum
strategies are specified by “continuous” objects, a quan-
tum vector state () € ', and collections of observables
Oa,O0p S B(H). Second, even if we restrict our atten-
tion to finite-dimensional strategies there is no a priori
obvious bound on the dimension of a Hilbert space that
is sufficient to support a state and observables that achieve
a value close to the optimum. The first difficulty is easily
handled: in fixed dimension d, it is possible to consider
a nested sequence of finite nets Ny € - & N € - over
all states and observables in that dimension such that Nj
has size k%) and for any strategy in dimension d, there
is a strategy in N that performs almost as well, up to an
additive (1/k) loss in the objective value (4). Let w¥,
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denote the success probability of the best strategy encoun-
tered within the net Ny in dimension d over all d,k < n.
Then {w%,,},>1 is a bounded nondecreasing sequence of
values that converges to (4) from below.” Note that a sim-
ilar approach does not seem to apply for (5), as the op-
erators considered in the supremum in (5) may not have
finite-dimensional approximations.

It seems much more difficult to give any numerical ap-
proximation to the supremum (5). Perhaps surprisingly,
there exists a “dual” approach that considers the problem
of optimizing over a larger region than the feasible region
of (5). The most naive relaxation replaces each term
((,U,AEBZ ) by a coefficient &gpxy and considers the
supremum over all ®gpxy in [0, 1]. In general this leads
to a wild overestimate which can be refined by introduc-
ing additional constraints on the Xapxy. For example, it
should be that for any X, ¥ the coefficients sum to 1 over
all a,b, because >, AX = >, B} = Id, and ¢ is nor-
malized. To go further the authors of [14] introduce an
increasing hierarchy of constraints: informally, the idea is
to introduce additional coefficients to represent quantities
such as (g, (A3} Bi,’iAf;zz Blﬁ’)(,u) and use relations such
as (A¥)? = AY and the commutation relations to place
constraints that relate different coefficients together. Con-
sidering all relations that hold on coefficients obtained
from products of length at most n yields a sequence of
finite optimization problems with supremum w$,, such
that (w%,),>1 is a nonincreasing sequence that can be
shown to converge to the optimum of (5) from above.

We have devised two procedures: the first returns a se-
quence of values converging to (4) from below, and the
second converges to (5) from above. Although we have
not discussed the runtime of the procedures, as it does
not matter for the general argument, it can be shown that
both run in time exp(poly(n)). The “from above” proce-
dure can be further optimized by using techniques from
semidefinite programming, and it is used in practice to
obtain numerically tight upper bounds on small nonlocal
games that arise in experiments or in cryptographic appli-
cations. Irrespective of the runtime, the existence of these
procedures has an important consequence. Suppose the
values (5) and (4) happen to be equal. Then we claim
that there exists an algorithm that provided as input coef-
ficients {1T(X,y)V(a,b|x,y)} always halts and correctly
decides between the case when (5) is at least %, or at most

%, provided that one of the two cases is promised to hold.
Indeed, such an algorithm can be obtained by executing
both procedures in parallel and stopping as soon as either
the “from below” procedure returns a value that strictly

"To show this rigorously, write Y € Ha ® Hp using the “Schmidt decompo-
sition” as W = >;diu; ® vj withdy = dp = - and consider projections
Piand Qjon{u; : 1 <i < j}and{v; .1 <i < j}, respectively.
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exceeds % or the “from above” procedure returns a value
strictly less than %

Now consider a problem L that lies in the class MIP*.
By definition, this means that there is a procedure that
transforms instances of the problem (such as, in the case
of the graph nonisomorphism problem, pairs of graphs)
into coefficients G = {1t (x,y)V(a,b|x, y)} such that if
the instance is a positive instance (the graphs are not iso-
morphic), then the associated value (?® (G) is 1 or close to

it, say at least % ; and if it is a negative instance, then w®(G)

is much smaller, say less than % Executing the algorithm
described above on G it follows that membership in L can
be decided by an algorithm that always halts. In the lan-
guage of complexity theory, this means that every problem
in MIP* is decidable. It is worth explicitly formulating this
finding:

If Q% 5xy = Q%pxy, then the class MIP* contains
only decidable problems.

How likely is this consequence to hold? In a major
breakthrough two years ago, Slofstra [17] showed that if
one were to remove the % / % promise, then there would ex-
ist games such that the question “w?*(G) = 1 or w*(G) <
1” is undecidable. (As mentioned earlier, leading up to
this result Slofstra was able to prove false Tsirelson’s “fact”
from [18].) In such a case, however, the algorithm de-
scribed above does not work, because there is no finite
gap 6 > 0 such that the algorithm can safely stop in case
the “from below” procedure obtains a value that exceeds
1 — &. The best result known to date on the class MIP*
is the aforementioned inclusion of problems in NEEXP.
While this remains a far cry from undecidable languages,
NEEXP is such a gargantuan class that extending the re-
sult to NEEEXP, and more, all the way to undecidable lan-
guages, is an enticing research program that could lead to a
complexity-theoretic refutation of Tsirelson’s problem and
by extension of Connes’ conjecture. We ambitiously for-
mulate it as a conjecture:

Conjectured complexity-theoretic counterpoint
to Tsirelson’s problem:
The class MIP* contains undecidable problems.

Interestingly, a proof of the complexity-theoretic con-
jecture could be obtained without exhibiting any of the
objects that CEC or Tsirelson’s problem posit to not exist,
such as a type II; algebra with no finite-dimensional ap-
proximations. In any case we may still be far from such a
refutation; indeed, CEC may still hold its ground, so that
MIP* would be decidable. In complexity-theoretic land
this arguably would be a much more expected and com-
fortable situation. Isn't it rather “spooky” when undecid-
ability crops up in a “reasonable” model of computation?
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