From Decoupling and
Self-Normalization
to Machine Learning
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Introduction Then what do decoupling, self-normalization, and ma-

We now live in the age of the digital revolution, where ma-
chine learning and artificial intelligence have transformed
the way data is generated, processed, and analyzed to solve
complex research problems. One of the goals in the de-
velopment of algorithms in machine learning is to extract
as much information from the data as possible that can-
not be achieved through traditional techniques. Decou-
pling and self-normalization are statistical tools that han-
dle complex problems that are beyond the spheres of clas-
sical statistical methods. Self-normalization can be traced
back to the seminal work of Gosset [9], which is consid-
ered a breakthrough in science. Notably, his Student t-
statistic allowed statistical inference about the value of the
mean of a (Gaussian) distribution without knowledge of
the actual value of the variance, provided one has a ran-
dom sample from the target population. Remarkably, the
self-normalization approach provides techniques to ex-
tend the t-statistic to the case of non-Gaussian distribu-
tions and nonindependent variables.
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chine learning have in common? They enable the develop-
ment of algorithms with minimal dependence or paramet-
ric assumptions. In essence, decoupling and self-normal-
ization are areas that grew out of the need to extend mar-
tingale methods to high and infinite dimensions and com-
plex nonlinear dependence structures. Decoupling pro-
vides tools for treating dependent variables as if they were
independent. In particular, it provides a natural tool for
developing sharp exponential inequalities for self-normal-
ized martingales. Prototypical examples of self-normal-
ized processes are the t-statistic in dependent random vari-
ables as well as (self-normalized) extensions of the law of
the iterated logarithm of Kolmogorov. As will be described
in the last section, these results have been used to estab-
lish important machine-learning tools, the development
of efficient algorithms for the stochastic multiarmed ban-
dit problem, and for the so-called learning to rank (LTR)
model.

Complete Decoupling

Let {d;i = 1,...,n} be a sequence of dependent random
variables with E|d;| < oo. Let {y;i = 1,...,n} be a se-
quence of independent variables where for each i, d; and
Vi have the same marginal distributions. Since Ed; = Ey;,
linearity of expectations provides the first “complete de-
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coupling” equality:
n n
E> di=E> y. (1)
i=1 i=1

As a concrete example for constructing the sequence
{yi}, let {dl-(j),i =1,...,n;j =1,...,n} be independent
copies of {d;} and take y; = d;i). Then, it is easy to see
that {y;} is a sequence of independent random variables,
since each row in the array is independent of the others
and

n n n ) n n
E> di=>Edi=>Ed"=>Ey=E>y.
i=1 i=1 i=1 i=1 i=1

In complete decoupling, one compares Ef (> d;) to
Ef (> y;) for more general functions than f(x) = x. In
statistics, Hoeffding’s [11] inequality for comparing sam-
pling without replacement to sampling with replacement
provides an early example. More recent work involves ex-
tensions to the case of negatively associated variables of
Shao [19], as well as to the case of sequences of nonnega-
tive random variables with arbitrary dependence structures.
Applications of complete decoupling include, among oth-
ers, tools for the optimization of stochastic processes such
as the scheduling of dependent computer servers (see
Makarychev and Sviridenko [17]).

Let the population C consist of N values ¢, Cp, ..., CN.
Let dy,d>,...,d, denote a random sample without re-
placement from C, and let y1, V2, ..., Y denote a random
sample with replacement from C. The random variables
Y1,-..,Yn are independent and identically distributed.
Moreover, for all i, d; and y; have the same marginal dis-
tributions. Hoeffding [11] developed the following widely
used complete decoupling inequality: For every continu-
ous convex function ®,

Eq)(ndl>SEq)(ny,> (2)
i=1 i=1

Shao [19] extended it to the case of negatively associated
random variables.

In what follows we present a (sharp) complete decou-
pling inequality for sums of nonnegative dependent ran-
dom variables that provides a reverse Hoeffding's inequal-
ity for L, moments. The price one pays is a constant.

Theorem. Let TT(1) be a Poisson random variable with mean
1. Assume the d;'s are a sequence of arbitrarily dependent non-
negative random variables. Let yj, ..., Yn be independent ran-
dom variables with y; having the same distributions as d; for
alli. Then, forp = 1,
n 14 n p
E (Z y,-) < E(m(1)")E (Z d,-) :
i i=1

3)
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In particular, when p = 1 we obtain the original complete
decoupling equality in (1),
n n n
EYyi=En(DEY di=EY di.
i i=1 i=1
The above result was introduced by de la Pena [4] in the
case of more general functions, including powers with dif-
ferent constants. The sharp constants were first obtained
by Makarychev and Sviridenko [17].

Conditionally Independent (Tangent)
Decoupling
The theory of martingale inequalities has been central in
the development of modern probability theory. Recently
it has been expanded widely through the introduction of
the theory of conditionally independent (tangent) decou-
pling. This approach to decoupling can be traced back to a
result of Burkholder and McConell included in Burkholder
[2] that represents a step in extending the theory of martin-
gales to Banach spaces.

Let {d;} and {e;} be two sequences of random variables
adapted to the o -fields {F;}. Then {d;} and {e;} are said
to be tangent with respect to { F;} if, for all i,

L(di|Fi-1) = L(eil Fi-1), (4)

where L(d;| Fi-1) denotes the conditional probability law
of d; given Fi_1.

Let dy,...,d, be an arbitrary sequence of dependent
random variables adapted to an increasing sequence of o -
fields { Fi}. Then, as shown in de la Pena and Gine [6],
one can construct a sequence €1, ..., €, of random vari-
ables that is conditionally independent given G = Fj.
The construction proceeds as follows: First we take ¢; and
d, to be two independent copies of the same random
mechanism. Having constructed dy, ..., d;j—1; €1, ..., €i—1,
the ith pair of variables d; and e; comes from i.i.d. copies
of the same random mechanism given ‘F;—;. It is easy to
see that using this construction and taking

Fi=FiVvole,..

the sequences {d;}, {e;} satisfy
L(dilF{_y) = L(eil F{_1) = L(eilG)

and the sequence ey, ..
given G = Fy.

A sequence {e;} of random variables satisfying the
above conditions is said to be a decoupled F-tangent ver-
sion of {d;}.

As in the case of complete decoupling, linearity of ex-
pectations provides the canonical example of a decoupling
“equality.” In conditionally independent decoupling one
replaces dependent random variables with decoupled
(conditionally independent) random variables. If E|d;| <

,€i),

., ey is conditionally independent
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oo for all i, then

n n
EZdi=EZ€i- (5)
i=1 i=1
To see this note that

E> di=> Edi= > E(E(di|F|_,))
i i=1 i=1

=1

= > E(E(ei|Fi_1)) = D E(E(eilG))
i i=1

<r(e(§06)) e

The first general decoupling inequality for tangent se-
quences was obtained by Zinn [20] and extended by
Hitczenko [10].

A turning point in the theory of decoupling for tangent
sequences has been a 1986 result of Kwapien and Woy-
czynski (see Kwapien and Woyczinsky [14] for the exact ref-
erence). It is shown in that paper for the first time, and in
a precise manner, that one can always obtain a decoupled
tangent sequence to any adapted sequence hence, making
general decoupling inequalities widely applicable.

Developments of the theory and applications are found
in hard copy in Kwapien and Woyczynski [14] and in de la
Pena and Gine [6].

Decoupling and Self-Normalization

Next, we present a sharp decoupling inequality with con-
straints from de la Pena [5]. This result will be used later to
obtain a sharp extension of Bernstein’s inequality for inde-
pendent random variables to the case of self-normalized
martingales.

Let {d;} and {e;} be two tangent sequences with {e;}
decoupled. Then for all g > 0 adapted to o ({d;}),

n n
Egexp{AZdi} SJEgZ exp{Z?\Zei}. (6)
i=1 i=1

As a first application we use (6) in the context of the sam-
pling schemes discussed above.

Example (conditionally independent sampling). In this
example we show how to decouple a sample without re-
placement and show how the decoupled sequence relates
to sampling without replacement and sampling with re-
placement. (In survey sampling we treat draws without re-
placement as if they were independent, though they are ac-
tually weakly coupled.) As before, consider drawing sam-
ples of size n from a population C that consists of N val-
ues. Let dy, ..., d, denote a sample without replacement
and let y1, ..., ¥, denote a sample with replacement. A
conditionally independent sample can be constructed as
follows. At the ith stage of a simple random sampling with-
out replacement, both d; and e; are obtained sampling

NOVEMBER 2019

NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY

uniformly from {ci,...,cn}, excuding {di,...,di-1}.
This may be attained by selectively returning items to C.
More precisely, at the ith stage first draw e; and return it
to the population. Then draw d; and put its value aside. It
is easy to see that the above procedure will make {e;} tan-
gent to {d;} with F, = o(dy,...,dy;e1,...,e,). More-
over, the sequence {e;} is conditionally independent given
g=0'(d1, ,dN).

A use of the exponential decoupling inequality (with
g = 1) found in (6) gives

n n

Eexp{A > d;} SJEeXp{ZAZe,-}. (7)
i=1 i=1

In some sense, conditionally independent sampling can

be viewed as a sampling scheme in between sampling with

replacement and sampling without replacement.

Next we state Bernstein’s inequality for sums of inde-
pendent random variables and its self-normalized coun-
terpart in the case of self-normalized martingales.
Bernstein’s inequality. Let {X;} be a sequence of inde-
pendent random variables. Assume that E(x;) = 0 and
E(X?) = O'J-2 < 00 and set V3 = Z;Ll (TJ-Z. Furthermore,
assume that there exists a constant 0 < ¢ < 00 such that,
almost surely, E(|x;|*) < (k!/2)07c*? forall k > 2.
Then forall x > 0,

n X2
P (; Xi > X) < exp (_Z(WZI—I—CX)) . (8)

The following is a self-normalized inequality from de la
Pena [5]:
Self-normalized Bernstein's inequality. Let {d;, F;} bea
martingale difference sequence. Assume that E(d;|F;-1)
= 0 and E(djz-lfjfl) = (sz < oo (satisfied by subexpo-
nential random variables) and set V2 = Zyzl (TJ-Z. Further-
more, assume that there exists a constant 0 < ¢ < o such
that, almost surely, E(Idjlklfjfl) < (k! /2)0‘1-2Ck_2 for
allk > 2. Then forall x,y > 0,

Siidi 1 X2
p > X, — < <exp|—z7—77—7—~].
( V2 vz =Y Pl7ya+ o
)
Remark. The inequality is sharp, since when V32 = v

(nonrandom) the two inequalities are equivalent. The key
steps in obtaining this result involve the use of Markov's in-
equality followed by the decoupling inequality presented
in (6). We then (conditionally) apply the standard results
for sums of independent random variables to complete the
proof.

Self-Normalization

This area goes back to the seminal work of Gosset [9] (“Stu-
dent”), in which he introduced the t-statistic and the t-
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distribution. For more than a century, the t-statistic has
evolved into much more general Studentized statistics and
self-normalized processes. Let Xi,X>7,..., X, be a se-
quence of i.i.d. normal random variables. Gosset consid-
ered the problem of statistical inference on the mean u
when the standard deviation 0 of the underlying distribu-
tion is unknown. Let X, = n 'YL, X;, 62 =
Z’(L]quf’lfx”)z be the sample mean and the sample variance,
respectively. In his 1908 paper Gosset derived the distri-
bution of the t-statistic T, = \/ﬁ Z?:%}j'_“) for normal Xj;
this is the t-distribution with n — 1 degrees of freedom.
The t-distribution converges to the standard normal dis-
tribution, and in fact T, has a limiting standard normal
distribution even when the X; are nonnormal.

It is noted that for “fat-tailed” distributions with infinite
second or even first absolute moments, it has been found
that the t-test of 4 = Ly is robust against nonnormality
in terms of the type I error probability. Furthermore, di-
rectly plugging in the true variance will actually result in
a substantially worse statistic (that is extremely anticonser-
vative in the case of, e.g., tests involving Cauchy random
variables). Without loss of generality, consider testing the
hypothesis tp = 0 so that

6-n Vn n-— (Sn/vn)2 ’

Ty = (10)

where S, = XL X, Vi = 1Ly X7

In view of the above equality, if T,; or S,;/V,; has lim-
iting distribution, then so does the other, and it is well
known that they coincide. In de la Pena et al. [8], a more
complete historical perspective of the general theory is pro-
vided, as well as numerous applications in statistics.

Pseudo-maximization (Method of Mixtures)

The method of pseudo-maximization (also known as the
method of mixtures) was used in de la Pena et al. [7] and is
based on the following assumption: Let (A, B) be an arbi-
trarily ~dependent vector of random variables,
with B > 0. Assume that —00 < A < 00, Then, the pair is
said to satisfy the canonical assumption if

Eexp(AA — A°B?/2) < 1. (11)

The appendix provides a wide class of processes that sat-
isfy this assumption. These include martingales, randomly
stopped processes, and sums of conditionally symmetric
random variables. For some applications the range of A
can be smaller, e.g., 0 < A < Ag. Note that if the integrand
in Eexp(AA — A’B/2) can be maximized over A inside
the expectation (as can be done if A/B? is nonrandom),

taking A = A/B? would yield E exp(4;) < 1. This in

1644

NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY

turn would give the optimal Chebyshev-type bound

p (é > x) < ex _—XZ
B~ %) =P\ 2 )
However, since A/B? cannot (in general) be taken to be
nonrandom, we need to find an alternative method for
dealing with this maximization. One approach for attain-
ing a similar effect involves integrating over a probability

measure F and using Fubini’s theorem to interchange the
order of integration with respect to P and F:

(12)

JEeXp(AA — A%B2/2)F(dA)

= EJeXp(AA — A%B2/2)F(dA)  (13)

< JF(dA) <1.

To be effective for all possible pairs (A, B), the F chosen
would need to be as uniform as possible so as to include
the maximum value of E exp(AA — A?B?/2) regardless
of where it might occur. Thus some mass is certain to be
assigned to and near the random value A = A/B? that
maximizes exp(AA — A2B?/2). Since all uniform mea-
sures are multiples of Lebesgue measure (which is infinite),
we construct a finite measure (or a sequence of finite mea-
sures) that tapers off to zero as A — 00 as slowly as we can
manage. One can obtain different results by changing the
measure F.

For example, as shown in de la Pena et al. [7], by inte-
grating over a Gaussian measure in (13) one can develop
the following self-normalized exponential inequality:

P(|A|/\/B2 + (EB)2 = x) <+/2exp (—x?/4) (14)

forall x > 0.

We remark that we almost get the optimal Chebyshev
bound, the ideal inequality (see (12)) up to constants, and
the term (EB)?.

Under the following refinement of the canonical as-
sumption we obtain an LIL bound. Assume that

{exp(AA; — A°BZ/2),t = 0}

is a super martingale with mean < 1.

(15)

Then,
. Ay
lim sup <1 (16)

0t <,
t—c  [2B? loglog B?
on the set {lim;_ o B? = o0}.

As formalized in Lemma A.3, for conditionally symmet-
ric increments, d;, we can use this result to get

n .
lim sup 2= di
ne 251 d? loglog S, d

<1, (17)
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ontheset {lim;,_.co >1—1 d,-2 = 00}, which is a sharp exten-
sion of Kolmogorov's LIL without moments assumptions.
In particular, the result is valid for i.i.d. centered Cauchy
random variables.

Applications to Machine Learning

An area of important application in machine learning is
the stochastic multiarmed bandit problem. Following the
formulation by Kaufmann et al. [12], the model involves
sequentially sampling from a set of k probability distribu-
tions, called arms, each having an unknown mean . At
time t, an arm is selected according to a sampling strategy
that depends on the history of past arm selections and sam-
ples, and then a sample X; is drawn from the associated
distribution. A key objective is to adjust the sampling strat-
egy in order to maximize the expected value of the rewards
gathered up to a specified time horizon T. In their pa-
per Kaufmann et al. provide improved sequential stopping
rules that have guaranteed error probabilities and shorter
average running times. In a related paper Kaufmann and
Koolen [13] establish asymptotic optimality of a class of
sequential tests generalizing the track-and-stop method to
problems beyond best arm identification. The approach
they take involves the use of the method of mixtures and
a self-normalized law of the iterated logarithm (see (16)
above).

In addition in machine learning, self-normalization
techniques are being used in the development of efficient
algorithms for the so-called learning to rank (LTR). The pri-
mary objective of LTR, which is used in web search and rec-
ommender systems (Liu [16]), is to optimally select a sub-
set from a large set of documents that maximizes the satis-
faction of the user. It is well known that some of the com-
monly proposed approaches have limited applications, in-
cluding lack of convergence in certain situations.

In a recent paper, Lattimore et al. [15] introduced an
algorithm, called TopRank, with several desirable features,
such as performance superior to many of the competing
algorithms. A major step in the development of the pro-
posed algorithm is use of self-normalization principles.
For example, in their paper, the proof of their Lemma 6 is
based on this principle in the construction of the bounds
on relevant quantities.

The theory for self-normalized sums has also been ap-
plied in the formulation of regression models for high-
dimensional data. Notably, Belloni et al. [1] used the the-
ory to achieve Gaussian-like results under weak conditions
for a self-tuning and square-root function of the lasso
method that works well with unknown scale, heteroscedas-
ticity, and nonnormality of the error terms.

NOVEMBER 2019

NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY

Further Applications

The tools developed have been successfully applied in di-
verse areas such as extension of martingale results to infi-
nite dimensions, including Banach spaces; self-normalized
martingales; stochastic integration; empirical processes, in-
cluding U-statistics and U-processes; density estimation;
sequential analysis; survival analysis; efficient Monte Carlo
methods; matrix completion; large deviations; robust esti-
mation; likelihood; and Bayesian inference. See Kwapien
and Woyczynski [14], de la Pena and Gine [6], and de la
Pena et al. [8] for details.

More recent applications of conditionally independent
decoupling include Candes and Recht [3], which deals
with exact matrix completion via convex optimization.
There has been a recent surge of interest in applying and
developing the methods presented in this survey. In partic-
ular, Rahklyn et al. [18] uses conditional independent de-
coupling techniques to study sequential complexities and
exponential inequalities for martingales in Banach spaces.
Makarychev and Sviridenko [17] uses complete decoup-
ling inequalities to develop stochastic optimization tools
for energy efficient routing load balancing in parallel ma-
chines.

Concluding Remarks

As can be seen from the broad range of results and applica-
tions, it is worth looking at problems using the decoupling
and self-normalization perspectives. In fact, there are still
multiple open problems in these areas, including the de-
velopment of new sharp algorithms in the area of machine
learning.

Appendix
Lemma A.1. Let W; be a standard Brownian motion. Assume

that T is a stopping time such that T < 00 a.s. Then for all
—00 < A < 00,

Eexp{AWr — AT /2} < 1. (18)

Lemma A.2. Let M; be a continuous, square-integrable mar-
tingale, with My = 0. Then, for all —00 < A < 00,

exp{AM; — A2 <M >, /2} < 1. (19)

If M; is only assumed to be a continuous local martingale, the
inequality is also valid (by application of Fatou's lemma).

Lemma A.3. Let {d;} be a sequence of variables adapted to an
increasing sequence of o -fields {F;}. Assume that the d;’s are
conditionally symmetric (i.e., L(d;| Fi—1) = L(—=d;|Fi-1))-
Then,

n n
EexpfAd > di—A*>> d?/2} <1

i=1 i=1

(20)

forall —00 < A < 00,
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