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ABSTRACT. Operator integration is a powerful tool en-
abling analysis of functions with noncommuting argu-
ments. Such functions arise, for example, in matrix
analysis, mathematical physics, noncommutative ge-
ometry, and statistical estimation. Over some seventy
years of its development, the theory underlying multi-
linear operator integration has accumulatedmany deep
results and important applications. We will discuss ma-
jor advancementsmade in recent years and their impact
on differentiation and approximation of operator func-
tions.

Introduction
“Multilinear operator integration” refers to methods and
techniques designed for treating noncommutativity and
obtaining properties of operator functions analogous to
those of scalar functions. Given self-adjoint matrices or,
more generally, infinite-dimensional operators 𝐴 and 𝐵
on a separable Hilbert space, a scalar function 𝑓, and the
operator function 𝑓(𝐴) defined by the functional calculus,
the inequalities

𝐴 ≤ 𝐵 ⇒ 𝑓(𝐴) ≤ 𝑓(𝐵), (1)

‖𝑓(𝐴)𝐵− 𝐵𝑓(𝐴)‖ < ∞, (2)

‖𝑓(𝐴) − 𝑓(𝐵) −
𝑛−1
∑
𝑘=1

1
𝑘!

𝑑𝑘

𝑑𝑡𝑘 𝑓(𝐵 + 𝑡(𝐴− 𝐵))|𝑡=0‖ (3)

≤ 𝑐𝑛 ‖𝑓[𝑛]‖‖𝐴− 𝐵‖𝑛,

where ‖⋅‖ stands for an appropriate norm and 𝑓[𝑛] for the
𝑛th divided difference of 𝑓, are products of the operator
integration approach. Indeed, under suitable assumptions
on 𝐴,𝐵, and 𝑓, we have the representations

𝑓(𝐴) − 𝑓(𝐵) = 𝑇𝐴,𝐵
𝑓[1] (𝐴− 𝐵), (4)
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𝑓(𝐴)𝐵− 𝐵𝑓(𝐴) = 𝑇𝐴,𝐴
𝑓[1] (𝐴𝐵− 𝐵𝐴), (5)

𝑓(𝐴) − 𝑓(𝐵) −
𝑛−1
∑
𝑘=1

1
𝑘!

𝑑𝑘

𝑑𝑡𝑘 𝑓(𝐵 + 𝑡(𝐴− 𝐵))|𝑡=0 (6)

= 𝑇𝐴,𝐵,…,𝐵
𝑓[𝑛] (𝐴− 𝐵,… ,𝐴− 𝐵),

where 𝑇𝐴1,𝐴2,…,𝐴𝑛+1
𝑓[𝑛] is an 𝑛-linear operator integral. Thus,

a proper analysis of the latter transformation ultimately
leads to (1)–(3).

The relation (4) was applied to derive (1) by K. Löwner
in his work on characterization of matrix monotone func-
tions in 1934. In that setting,𝑇𝐴,𝐵

𝑓[1] is a Schur multiplier by

the matrix {𝑓[1](𝜆𝑗, 𝜇𝑘)}𝑑𝑗,𝑘=1, where 𝜆𝑗 and 𝜇𝑘 are the
eigenvalues of the self-adjoint matrices 𝐴 and 𝐵, respec-
tively. The relation (5) is useful for obtaining (2). When
𝐴 is a Dirac operator, 𝐵 is an operator of pointwise mul-
tiplication by a function 𝑔, and 𝑓 is a sign function, the
condition (2) means that the quantized derivative of 𝑔 is
summable in a certain sense. The relation (6) is essen-
tial for proving bounds like the one in (3), which arise
in approximation problems of operator functions. For in-
stance, to estimate the function 𝑓(𝐴) or the functional
Tr (𝑓(𝐴)) of an unknown covariance matrix 𝐴, one can
replace 𝐴 by the sample covariance matrix 𝐵 constructed
from collected data. Other examples arise in mathemati-
cal physics, where 𝐵 is a discrete Laplacian or differential
operator with known properties and 𝐴 is a perturbed op-
erator. In that context, one often considers the trace of the
Taylor remainder (6), which encodes information about
quantitative characteristics of the perturbation.

The proof of (6) requires both originality and technical
proficiency, especially in the case of infinite-dimensional
operators 𝐴 and 𝐵, even when one does not intend to in-
clude the most general functions 𝑓 and operators 𝐴,𝐵. In
particular, the proof utilizes the boundedness of the mul-
tilinear operator integral

𝑇𝐴1,𝐴2,…,𝐴𝑛+1
𝜑 ∶ 𝒳1 ×⋯×𝒳𝑛 → 𝒳 (7)

defined on the product of Banach spaces 𝒳1,… ,𝒳𝑛 with
values in the Banach space 𝒳. Proving existence of the

derivative 𝑑𝑘

𝑑𝑡𝑘 𝑓(𝐵 + 𝑡(𝐴 − 𝐵)) in a fairly general infinite-
dimensional setting is also a nontrivial task that depends
on efficient bounds for (7). Moreover, as suggested by the
examples (1)–(3), the boundedness of𝑇𝐴1,𝐴2,…,𝐴𝑛+1

𝜑 along
with the respective inequalities is an ultimate goal of the
operator integration. The investigation of this question
was initiated by Yu. L. Daletskii and S. G. Krein in 1956
and eventually led to a deep, comprehensive theory.

The existing norm bounds for the transformation (7)
depend on the norms of the domain and target spaces, on
the type of the symbol 𝜑, and sometimes on the opera-
tors𝐴1, 𝐴2,… ,𝐴𝑛+1. The best bound for (7) holds when
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𝒳1 = ⋯ = 𝒳𝑛 equals theHilbert–Schmidt ideal𝒮2. More
precisely, the results by B. S. Birman, M. Z. Solomyak, and
B. S. Pavlov in the 1960s provide

‖𝑇𝐴1,𝐴2,…,𝐴𝑛+1
𝜑 ∶ 𝒮2 ×⋯×𝒮2 → 𝒮2‖ ≤ ‖𝜑‖∞ (8)

for every Borel function 𝜑 ∶ ℝ𝑛+1 → ℂ. The second
best bound holds when 𝒳𝑗 equals the Schatten–von Neu-
mann ideal 𝒮𝑝𝑗 and 𝒳 = 𝒮𝑝, where 1 < 𝑝,𝑝𝑗 < ∞,
𝑗 = 1,… ,𝑛, and 1

𝑝 = 1
𝑝1

+⋯+ 1
𝑝𝑛
. Namely, D. Potapov,

A. Skripka, and F. Sukochev established in 2013 that

‖𝑇𝐴1,𝐴2,…,𝐴𝑛+1
𝑓[𝑛] ∶ 𝒮𝑝1 ×⋯×𝒮𝑝𝑛 → 𝒮𝑝‖ (9)

≤ 𝑐𝑝1,…,𝑝𝑛 ‖𝑓(𝑛)‖∞

for every 𝑛 times continuously differentiable function 𝑓.
When 𝒳1 = ⋯ = 𝒳𝑛 = 𝒳 equals the space ℬ(ℋ) of
bounded linear operators on a Hilbert space or, more gen-
erally, equals a symmetrically normed ideal ℐ of a semi-
finite von Neumann algebra with certain properties, we
have the bound

‖𝑇𝐴1,𝐴2,…,𝐴𝑛+1
𝑓[𝑛] ∶ ℐ ×⋯× ℐ → ℐ‖ ≤ ‖𝑓[𝑛]‖⊗ (10)

for 𝑓 in the Besov space 𝐵𝑛
∞1(ℝ), where ‖𝑓[𝑛]‖⊗ ≤

𝑐𝑛‖𝑓‖𝐵𝑛
∞1(ℝ) is the integral projective tensor product norm,

which is generally greater than the norm ‖𝑓(𝑛)‖∞. The
bound (10) for ℐ = ℬ(ℋ) was established by V. V. Peller
in 2006 and for a more general ideal ℐ by N. A. Azamov,
A. L. Carey, P. G. Dodds, and F. A. Sukochev independently
in 2009.

The methods leading to (8) and (9) benefit from spe-
cial features of the domain and target spaces. More specif-
ically, the bound (8) is a consequence of the Hilbert space
structure of 𝒮2, and (9) is based on harmonic analysis of
the UMD space 𝒮𝑝, 1 < 𝑝 < ∞. There are counterexam-
ples showing that (9) does not extend to the case of the
non-UMD space 𝒮1 (corresponding to 𝑝 = 1), and then
(10) works as a possible replacement of (9) for sufficiently
smooth functions 𝑓. The approach behind (10) relies on
existence of a factorization for the function 𝑓[𝑛](𝜆1,… ,
𝜆𝑛+1) separating the variables 𝜆1,… ,𝜆𝑛+1, which in-
evitably leads to a larger norm of the symbol 𝑓[𝑛] that
makes the bound ineffectual in certain situations. To com-
pare, the separation of variables is avoided in the deriva-
tion of (9), and instead an intricate recursive procedure
that essentially preserves the symbol 𝑓[𝑛] is applied.

To specify the parameters for which (3) holds, we need,
in particular, to summarize results on existence of the op-
erator derivatives. Differentiability of operator functions
with respect to the Schatten 𝒮𝑝-norms, 1 < 𝑝 < ∞, holds
under minimal assumptions on the respective scalar func-
tions. For instance, 𝑓 is 𝑛 times Fréchet 𝒮𝑝-differentiable
at every bounded self-adjoint operator 𝐴 if and only if
𝑓 ∈ 𝐶𝑛(ℝ). This result in the case 𝑛 = 1 was proved

by E. Kissin, D. Potapov, V. Shulman, and F. Sukochev in
2012 and in the case𝑛 ≥ 2 by C. LeMerdy and F. Sukochev
in 2019. Its proof utilizes (9) and, when 𝑛 ≥ 2, the re-
cent approach to the multilinear operator integration on
𝒮2 × ⋯ × 𝒮2 by C. Coine, C. Le Merdy, and F. Sukochev.
Using (10), V. V. Peller established differentiability of oper-
ator functions with respect to the operator norm for every
𝑓 ∈ 𝐵1

∞1(ℝ) ∩ 𝐵𝑛
∞1(ℝ) in 2006. Thus, (3) with norms

of the operators equal to the 𝒮𝑝-norm, 1 < 𝑝 < ∞, and
‖𝑓(𝑛)‖∞ standing for ‖𝑓[𝑛]‖ holds for 𝑓 ∈ 𝐶𝑛(ℝ) if 𝐴,𝐵
are bounded; (3) with norms of the operators equal to the
operator norm and ‖𝑓‖𝐵𝑛

∞1(ℝ) standing for ‖𝑓[𝑛]‖ holds
for 𝑓 ∈ 𝐵1

∞1(ℝ) ∩ 𝐵𝑛
∞1(ℝ).

The talk is based on [1] and will address the aforemen-
tioned and related results along with some open questions.
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