
Untangling Noncommutativity
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Emergence of Operator Integration
Operator integration (OI) is a collection of powerful meth-
ods and techniques that enable analysis of functions with
noncommuting arguments. Such functions arise, in par-
ticular, in various problems of applied matrix analysis,
mathematical physics, noncommutative geometry, and
statistical estimation.

Single operator integrals are basic tools in the classical
functional calculus. For instance, a self-adjoint operator
𝐴 densely defined in a separable Hilbert space admits the
operator integral decomposition

𝐴 = ∫
ℝ
𝜆 𝑑ℰ𝐴(𝜆),
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where ℰ𝐴 is the projection-valued spectral measure of 𝐴,
and the function of this operator 𝑓(𝐴) is given by the
operator integral

𝑓(𝐴) = ∫
ℝ
𝑓(𝜆) 𝑑ℰ𝐴(𝜆).

When 𝐴 is a finite matrix, the above integral degenerates
to a finite sum

𝑓(𝐴) = ∑
𝑘
𝑓(𝜆𝑘)ℰ𝐴(𝜆𝑘).

This spectral integral (or sum) decomposition induces a
straightforward estimate of an operator function in terms
of the scalar function

‖𝑓(𝐴)‖ ≤ ‖𝑓‖∞.

In approximation problems onemight need to estimate
the difference 𝑓(𝐴) − 𝑓(𝐵) of functions of self-adjoint op-
erators 𝐴 and 𝐵 in terms of some norms of 𝐴 − 𝐵 and
𝑓. When 𝐴 and 𝐵 are bounded and commuting, we can
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represent this difference as the integral

𝑓(𝐴) − 𝑓(𝐵)

=∬
ℝ2

𝑓(𝜆) − 𝑓(𝜇)
𝜆 − 𝜇 𝑑ℰ𝐴+𝑖𝐵(𝜆, 𝜇)(𝐴 − 𝐵)

with respect to the spectralmeasure of the normal operator
𝐴 + 𝑖𝐵. By submultiplicativity of the operator norm and
properties of the spectral integral, we deduce the bound

‖𝑓(𝐴) − 𝑓(𝐵)‖ ≤ ‖𝑓‖Lip(ℝ)‖𝐴 − 𝐵‖.

Similar bounds for noncommuting 𝐴 and 𝐵 are deep re-
sults grounded on double or iterated operator integral de-
compositions

𝑓(𝐴) − 𝑓(𝐵)

= ∫
ℝ
∫
ℝ

𝑓(𝜆) − 𝑓(𝜇)
𝜆 − 𝜇 𝑑ℰ𝐴(𝜆)(𝐴 − 𝐵)𝑑ℰ𝐵(𝜇).

The right-hand side above can be interpreted as the value
of a linear transformation 𝑇𝐴,𝐵

𝜑 on 𝐴 − 𝐵, where 𝜑(𝜆, 𝜇) =
𝑓(𝜆)−𝑓(𝜇)

𝜆−𝜇
, and, thus,

𝑓(𝐴) − 𝑓(𝐵) = 𝑇𝐴,𝐵
𝜑 (𝐴 − 𝐵).

More generally, the OI approach reduces analysis of dif-
ferent noncommutative expressions to the analysis of a
multilinear transformation 𝑇𝐴1,…,𝐴𝑛+1

𝜑 acting on a Carte-
sian product of matrices or infinite-dimensional opera-
tors. The parameters 𝜑,𝐴1, … , 𝐴𝑛+1 are determined by
the model in question. The values of the transforma-
tion 𝑇𝐴1,…,𝐴𝑛+1

𝜑 are often decomposed into integrals with
operator-valued integrands or measures. Properties of
𝑇𝐴1,…,𝐴𝑛+1
𝜑 depend on the space where it acts, on the type

of symbol 𝜑, and sometimes on the spectral properties of
the operators 𝐴1, … , 𝐴𝑛+1.

Organization
Our first acquaintance with multiple operator integration
in this note will occur in the finite-dimensional setting
since 𝑇𝐴1,…,𝐴𝑛+1

𝜑 on tuples of matrices admits a finite sum
representation. We will see a nonchronological summary
of major results and glimpses of fundamental ideas along
with questions approachable by the OI method.

Then we will become familiar with OI in the general set-
ting of noncommutative 𝐿𝑝-spaces, where in addition to
puzzles of noncommutativity one deals with convergence
issues. We will touch upon several constructions known
under the name “multiple operator integral,” each one
supplying a particular type of estimate for noncommuta-
tive expressions arising in different setups.

From the beginning of its development, the theory of
operator integration has been motivated and guided by
applications, and this synergy will be reflected in this

note. We will demonstrate applicability of OI to ques-
tions arising in the study of smoothness properties of
operator functions, spectral shift, spectral flow, quantum
differentiability, and smoothness of noncommutative 𝐿𝑝-
norms.

Technical details will be omitted, but an interested
reader is invited to find them along with a continued dis-
cussion in the recent book [19]. Due to the restriction on
the allowed number of references many important contri-
butions in the field will not be cited here, but can be found
in [19].

Operator Integrals on Finite Matrices
Methods of operator integration have been actively used
and rediscovered in matrix analysis, often with many par-
ticular cases treated separately without appeal to a general
theory. In this section we give an overview of general re-
sults supplied by theOI approach alongwith types of prob-
lems where they can be applied.

Linear case. Let ℓ2𝑑 denote the 𝑑-dimensional Hilbert
space equipped with the Euclidean inner product and let
ℬ(ℓ2𝑑) denote the Banach space of linear operators (or
𝑑 × 𝑑 matrices) on ℓ2𝑑 equipped with the operator (spec-
tral) norm. Let 𝐴, 𝐵 ∈ ℬ(ℓ2𝑑) be self-adjoint matrices, let
{𝑔𝑗}𝑑𝑗=1, {ℎ𝑘}𝑑𝑘=1 be complete systems of orthonormal eigen-

vectors, and let {𝜆𝑗}𝑑𝑗=1, {𝜇𝑘}𝑑𝑘=1 be sequences of the corre-
sponding eigenvalues of 𝐴 and 𝐵, respectively. Let 𝑃ℎ de-
note the orthogonal projection onto the vector ℎ ∈ ℓ2𝑑 and
let 𝜑 ∶ ℝ2 → ℂ be a function.

The double operator integral constructed from the spec-
tral data of 𝐴, 𝐵 and the symbol 𝜑 is the bounded linear
transformation

𝑇𝐴,𝐵
𝜑 ∶ ℬ(ℓ2𝑑) → ℬ(ℓ2𝑑)

given by

𝑇𝐴,𝐵
𝜑 (𝑋) =

𝑑
∑
𝑗=1

𝑑
∑
𝑘=1

𝜑(𝜆𝑗 , 𝜇𝑘)𝑃𝑔𝑗𝑋𝑃ℎ𝑘 (1)

for 𝑋 ∈ ℬ(ℓ2𝑑). In other words, 𝑇𝐴,𝐵
𝜑 acts on 𝑋 as the entry-

wise multiplier of the matrix of 𝑋 in the bases {𝑔𝑗}𝑑𝑗=1 and

{ℎ𝑘}𝑑𝑘=1 by the matrix (𝜑(𝜆𝑗 , 𝜇𝑘))
𝑑
𝑗,𝑘=1:

(𝑥𝑗𝑘)𝑑𝑗,𝑘=1 ↦ (𝜑(𝜆𝑗 , 𝜇𝑘) 𝑥𝑗𝑘)
𝑑
𝑗,𝑘=1. (2)

Due to this interpretation, the transformation 𝑇𝐴,𝐵
𝜑 is also

called a Schur multiplier.
Given a differentiable function 𝑓 ∶ ℝ → ℂ and the ma-

trix functions 𝑓(𝐴) and 𝑓(𝐵) defined by the functional cal-
culus,

𝑓(𝐴) =
𝑑
∑
𝑗=1

𝑓(𝜆𝑗)𝑃𝑔𝑗 and 𝑓(𝐵) =
𝑑
∑
𝑘=1

𝑓(𝜇𝑘)𝑃ℎ𝑘 ,
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we have the representation

𝑓(𝐴) − 𝑓(𝐵) = 𝑇𝐴,𝐵
𝑓[1] (𝐴 − 𝐵). (3)

Here 𝑓[1] is the divided difference of 𝑓 given by

𝑓[1](𝜆, 𝜇) = {
𝑓(𝜆)−𝑓(𝜇)

𝜆−𝜇
if 𝜆 ≠ 𝜇,

𝑓′(𝜆) if 𝜆 = 𝜇.
The representation (3) was derived by K. Löwner in 1934
in his work on characterization of matrix monotone func-
tions by means of basic spectral theory. From (3) and the
Schur multiplier property (2) of 𝑇𝐴,𝐵

𝑓[1] we conclude that if

the matrix (𝑓[1](𝜆𝑗 , 𝜇𝑘))
𝑑
𝑗,𝑘=1 is positive definite, then the

function 𝑓 is matrix monotone, that is, 𝐴 ≤ 𝐵 implies
𝑓(𝐴) ≤ 𝑓(𝐵).

The representation (3) along with (1) can be used to
prove existence and the Schur multiplier property (2) of
the matrix derivative

𝑑
𝑑𝑡𝑓(𝐵 + 𝑡(𝐴 − 𝐵))||𝑡=0 = 𝑇𝐵,𝐵

𝑓[1] (𝐴 − 𝐵). (4)

The double operator integral also calculates the quasicom-
mutator

𝑓(𝐴)𝑋 − 𝑋𝑓(𝐵) = 𝑇𝐴,𝐵
𝑓[1] (𝐴𝑋 − 𝑋𝐵). (5)

The representations (3) – (5) indicate that increments and
derivatives of operator functions as well as quasicommuta-
tors can be studied and estimated in a unified way in the
double operator integration framework. We will consider
a variety of such estimates in different norms.

Multilinear case. Multilinear operator integrals arise as
natural extensions of double ones in higher-order pertur-
bation problems.

Let 𝑛 be a natural number, let 𝐴1, … , 𝐴𝑛+1 ∈ ℬ(ℓ2𝑑) be

self-adjoint matrices, let {𝑔(𝑗)𝑖 }𝑑𝑖=1 be an orthonormal ba-

sis of eigenvectors, and let {𝜆(𝑗)𝑖 }𝑑𝑖=1 be the corresponding
sequence of eigenvalues of 𝐴𝑗 for 𝑗 = 1, … , 𝑛 + 1. Let
𝜑 ∶ ℝ𝑛+1 → ℂ be a function.

The multilinear operator integral constructed from the
spectral data of𝐴1, … , 𝐴𝑛+1 and the symbol 𝜑 is the bound-
ed 𝑛-linear transformation

𝑇𝐴1,…,𝐴𝑛+1
𝜑 ∶ ℬ(ℓ2𝑑) ×⋯ × ℬ(ℓ2𝑑)⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

𝑛 times

→ ℬ(ℓ2𝑑)

given by

𝑇𝐴1,𝐴2,…,𝐴𝑛+1
𝜑 (𝑋1, 𝑋2, … , 𝑋𝑛) (6)

=
𝑑
∑

𝑟1,𝑟2,…,𝑟𝑛+1=1
𝜑(𝜆(1)𝑟1 , 𝜆

(2)
𝑟2 , … , 𝜆

(𝑛+1)
𝑟𝑛+1 )

⋅ 𝑃𝑔(1)𝑟1
𝑋1𝑃𝑔(2)𝑟2

𝑋2⋯𝑋𝑛𝑃𝑔(𝑛+1)𝑟𝑛+1

for 𝑋1, 𝑋2, … , 𝑋𝑛 ∈ ℬ(ℓ2𝑑). It is also called an 𝑛-linear Schur
multiplier.

The transformation 𝑇𝐴1,…,𝐴𝑛+1
𝜑 generalizes both the en-

trywise product (2) (when 𝑛 = 1) and the usual matrix
product 𝑋1⋯𝑋𝑛 (when 𝜑 ≡ 1). In the bases of eigenvec-
tors of 𝐴, the transformation 𝑇𝐴,𝐴,𝐴

𝜑 acts on the pair (𝑋, 𝑌)
by

((𝑥𝑖𝑗)𝑑𝑖,𝑗=1, (𝑦𝑗𝑘)𝑑𝑗,𝑘=1)

↦ (
𝑑
∑
𝑗=1

𝜑(𝜆𝑖, 𝜆𝑗 , 𝜆𝑘) 𝑥𝑖𝑗 𝑦𝑗𝑘)
𝑑

𝑖,𝑘=1
.

This transformation appears in the representation for
the Taylor remainder

𝑓(𝐴) − 𝑓(𝐵) −
𝑛−1
∑
𝑘=1

1
𝑘!

𝑑𝑘
𝑑𝑡𝑘𝑓(𝐵 + 𝑡(𝐴 − 𝐵))||𝑡=0 (7)

= 𝑇𝐴,𝐵,…,𝐵
𝑓[𝑛] (𝐴 − 𝐵, … , 𝐴 − 𝐵).

Here 𝑓 is an 𝑛 times differentiable function whose deriva-
tive 𝑓(𝑛) is bounded on a segment that contains the spectra
of 𝐴 and 𝐵, and 𝑓[𝑛] is the 𝑛th order divided difference of
𝑓, which is defined recursively by

𝑓[𝑚+1] = (𝑓[𝑚])[1].
The relation (7) reduces questions on Taylor approxima-
tion and convexity of matrix functions to the analysis of
𝑇𝐴,𝐵,…,𝐵
𝑓[𝑛] .
A multilinear Schur multiplier also calculates the

higher-order Fréchet matrix derivative

1
𝑘!

𝑑𝑘
𝑑𝑡𝑘𝑓(𝐵 + 𝑡(𝐴 − 𝐵))||𝑡=0 (8)

= 𝑇𝐵,𝐵,…,𝐵
𝑓[𝑘] (𝐴 − 𝐵, … , 𝐴 − 𝐵),

where 𝑓 is 𝑘 times continuously differentiable. The idea
of involving OI in higher-order differentiation of oper-
ator functions was introduced by Yu. L. Daletskii and
S. G. Krein in 1956, while the best up-to-date results in
this area are consequences of modern approaches to OI.

Norm estimates for Schur multipliers. One of the main
objectives in the study of multiple operator integrals is
finding useful estimates for their norms. While dimension
dependent bounds for multilinear Schur multipliers fol-
low directly from their definitions, delicate dimension in-
dependent bounds stand on a decades-long development
of a comprehensive theory.

The best dimension independent bound is

‖
‖𝑇

𝐴1,…,𝐴𝑛+1
𝜑 ∶ 𝒮2𝑑 ×⋯ × 𝒮2𝑑 → 𝒮2𝑑‖‖ (9)

= max
1≤𝑟1,…,𝑟𝑛+1≤𝑑

||𝜑(𝜆(1)𝑟1 , … , 𝜆
(𝑛+1)
𝑟𝑛+1 )||,
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where 𝒮2𝑑 is the space ℬ(ℓ2𝑑) equipped with the Hilbert–
Schmidt (Frobenius) norm. The result of (9) is also the
simplest one to derive in the collection of dimension in-
dependent bounds. Indeed, the inequality ≤ in (9) for
𝑛 = 1 quickly follows from the entrywise multiplier prop-
erty of 𝑇𝐴,𝐵

𝜑 and for 𝑛 ≥ 2 from the repeated application
of Hölder’s inequality.

The analog of (9) for 𝒮𝑝𝑑 , which is the space ℬ(ℓ2𝑑)
equippedwith the 𝑝th Schatten–vonNeumann norm ‖⋅‖𝑝,
takes the form

‖
‖𝑇

𝐴1,…,𝐴𝑛+1
𝑓[𝑛] ∶ 𝒮𝑝1𝑑 ×⋯ × 𝒮𝑝𝑛𝑑 → 𝒮𝑝𝑑‖‖ (10)

≤ 𝑐𝑝1,…,𝑝𝑛 ‖𝑓(𝑛)‖∞.
Here

1 < 𝑝, 𝑝𝑗 < ∞, 𝑗 = 1, … , 𝑛,
1
𝑝 = 1

𝑝1
+⋯+ 1

𝑝𝑛
,

𝑓 is an 𝑛 times differentiable function with essentially
bounded 𝑓(𝑛), and ‖ ⋅ ‖∞ denotes the sup norm. A simi-
lar bound holds for the seminorm |Tr (⋅)|, which is smaller
than the norm ‖ ⋅ ‖1, of the multilinear Schur multiplier

||Tr (𝑇𝐴,…,𝐴
𝑓[𝑛] (𝑋1, … , 𝑋𝑛))||

≤ 𝑐𝑛 ‖𝑓(𝑛)‖∞ ‖𝑋1‖𝑛 …‖𝑋𝑛‖𝑛, (11)

where Tr is the canonical matrix trace and

‖𝑋‖𝑛 = (Tr (|𝑋|𝑛))1/𝑛

is the 𝑛th Schatten–von Neumann norm of 𝑋 .
The result of (10) is based on harmonic analysis of

Banach spaces with unconditional martingale differences
(UMD) and an intricate recursive procedure reducing the
order yet preserving the nature of the symbol 𝑓[𝑛]. The
respective approach for 𝑛 = 1 was introduced and imple-
mented in [16], its higher-order equivalent in a more tech-
nical setting of 𝑛 ≥ 2 in [12]. The estimate (11) follows
from a suitable generalization of (10) from 𝑓[𝑛] to more
general symbols given by polynomial integral momenta
and from Hölder’s inequality.

There is a more universal approach to estimating
𝑇𝐴1,…,𝐴𝑛+1
𝑓[𝑛] , which results in bounds for more general

norms but with a coarser dependence on 𝑓[𝑛] and a smaller
set of admissible functions 𝑓. Namely,

‖
‖𝑇

𝐴1,…,𝐴𝑛+1
𝑓[𝑛] ∶ ℐ ×⋯ × ℐ → ℐ‖‖ (12)

≤ ‖
‖𝑓[𝑛]

‖
‖⊗,

where ℐ is the space ℬ(ℓ2𝑑) equipped with a unitarily in-
variant norm, 𝑓 is a function with smoothness properties
stronger than 𝑛-times but weaker than (𝑛+1)-times contin-

uous differentiability, and ‖‖𝑓[𝑛]
‖
‖⊗ is the integral projective

tensor product norm of 𝑓[𝑛]. This norm is generally greater
than the norm of 𝑓 appearing in (10):

1
𝑛!‖𝑓

(𝑛)‖∞ = ‖
‖𝑓[𝑛]

‖
‖∞ ≤ ‖

‖𝑓[𝑛]
‖
‖⊗.

The inequality (12) is based on a factorization of the
function 𝑓[𝑛](𝜆1, … , 𝜆𝑛+1) separating the variables 𝜆1, … ,
𝜆𝑛+1,

𝑓[𝑛](𝜆1, … , 𝜆𝑛+1)

= ∫
Ω
𝑎1(𝜆1, 𝜔)⋯𝑎𝑛+1(𝜆𝑛+1, 𝜔) 𝑑𝜈(𝜔),

which was implemented in [11] and [2]. This factorization
is in the spirit of the celebrated A. Grothendieck’s character-
ization of bounded linear Schur multipliers on ℬ(ℓ2). In
the next section, we will see alternatives to the bound (12)
that reveal dependence on smoothness and decay proper-
ties of the function 𝑓.

From the estimates (9) – (12) and representations (7)
and (8) we immediately deduce analogous bounds for
derivatives and Taylor remainders of matrix functions.

We note that the Lipschitz-type dimension independent
bound

‖𝑓(𝐴) − 𝑓(𝐵)‖𝑝 ≤ 𝑐𝑝 ‖𝑓‖Lip(ℝ) ‖𝐴 − 𝐵‖𝑝, (13)

1 < 𝑝 < ∞, which follows for every Lipschitz function 𝑓 by
the samemethod as (10), does not extend to the trace class
norm (𝑝 = 1) or operator norm. In particular, E. B. Davies
showed in 1988 that given 𝑑 ∈ ℕ, there exist self-adjoint
𝐴, 𝐵 ∈ ℬ(ℓ22𝑑) such that

‖|𝐴| − |𝐵|‖1 ≥ const log(𝑑) ‖𝐴 − 𝐵‖1.

There are also continuously differentiable functions 𝑓with
bounded derivative for which the supremum of ‖𝑓(𝐴) −
𝑓(𝐵)‖1/‖𝐴 − 𝐵‖1 over distinct self-adjoint 𝐴, 𝐵 ∈ ℬ(ℓ22𝑑)
grows like√log(𝑑). Higher-ordermatrix Taylor remainders
possess a similar behavior with respect to the trace class
norm [15]. Different lower bounds derived in [20] provide
a theoretical limitation on the accuracy of matrix Taylor
approximations.

Bounds supplied by OI can be used to predict sensitiv-
ity of computational problems to small perturbations or
rounding errors as well as the accuracy of estimators by
sample data. For instance, the norm of a matrix Fréchet de-
rivative calculates a condition number for problems with
matrix functions in numerical analysis. For another exam-
ple, if 𝐴 is an unknown covariance matrix whose function
or functional 𝑓(𝐴) is to be estimated and 𝐵 is a sample co-
variancematrix, then the bounds formatrix derivatives and
Taylor remainders can help to gain insight into the quality
of the estimator 𝑓(𝐵).
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Operator Integrals on Noncommutative
𝐿𝑝-spaces
In the noncommutative analysis involving functions of
infinite-dimensional operators with continuous spectra,
one works with suitable replacements of the transforma-
tions (1) and (6) that still satisfy properties like (3) – (5)
and (7) – (12). Nowadays we have a rather comprehensive
theory of multilinear operator integration as a cumulative
product of many groundbreaking results.

Before proceeding, we briefly recall noncommutative
𝐿𝑝-spaces where operator integrals are defined. Letℳ be a
semifinite von Neumann algebra of bounded linear oper-
ators acting on a separable Hilbert space ℋ and let 𝜏 be a
normal faithful semifinite trace on ℳ. The noncommuta-
tive 𝐿𝑝-space 𝐿𝑝(ℳ, 𝜏), 1 ≤ 𝑝 < ∞, associated with (ℳ, 𝜏)
consists of operators affiliated with ℳ and satisfying

‖𝑋‖𝑝 = (𝜏(|𝑋|𝑝))1/𝑝 < ∞.
The space 𝐿∞(ℳ, 𝜏) is identified with the algebra ℳ.

When ℳ equals the algebra ℬ(ℋ) of bounded linear
operators on ℋ, the noncommutative 𝐿𝑝-space coincides
with the Schatten–von Neumann ideal 𝒮𝑝. The latter con-
sists of compact operators onℋ whose sequences of singu-
lar values belong to ℓ𝑝, and the 𝒮𝑝-norm is defined to be
‖𝑋‖𝑝 = (Tr (|𝑋|𝑝))1/𝑝. The reader unfamiliar with general
noncommutative 𝐿𝑝-spaces can assume the particular case
of 𝒮𝑝 throughout the note.

Linear case. The first transformation receiving the name
“double operator integral” was introduced by Yu. L. Dalet-
skii and S. G. Krein in 1956, following Löwner’s utiliza-
tion of what nowadays is called double operator integra-
tion (which was mentioned in the previous section). They

proved existence of the derivative
𝑑
𝑑𝑡
𝑓(𝐴+ 𝑡𝑋)||𝑡=0 and esti-

mated its operator norm based on the representation (4),
where 𝑇𝐴,𝐴

𝑓[1] is an iterated Riemann–Stieltjes integral with
respect to the spectral family of 𝐴 and where the class of
scalar functions 𝑓 in their approach is assumed to be more
restrictive than turned out to be necessary for existence of
the operator derivative. Later in the 1960s, M. S. Birman
and M. Z. Solomyak developed several approaches to 𝑇𝐴,𝐵

𝜑
and substantially extended the range of applicability of the
double operator integration method, which we sketch be-
low along with more recent approaches.

Let 𝐴, 𝐵 be self-adjoint operators densely defined in ℋ
and let ℰ𝐴, ℰ𝐵 be their spectral measures. The product ℰ of
ℰ𝐴 and ℰ𝐵 defined on the rectangular sets 𝜎1 × 𝜎2 of ℝ2 by

ℰ(𝜎1 × 𝜎2)(𝑋) = ℰ𝐴(𝜎1)𝑋ℰ𝐵(𝜎2)

for every 𝑋 in the Hilbert space 𝒮2 of Hilbert–Schmidt op-
erators on ℋ is the spectral measure itself. The double
operator integral 𝑇𝐴,𝐵

𝜑 on 𝒮2 is then defined as the spectral

integral

𝑇𝐴,𝐵
𝜑 (𝑋) =∬

ℝ2
𝜑(𝜆, 𝜇) 𝑑ℰ(𝜆, 𝜇)(𝑋), (14)

where 𝜑 ∶ ℝ2 → ℂ is a bounded Borel function. The trans-
formation 𝑇𝐴,𝐵

𝜑 inherits all the nice properties of a spectral
integral, including the inequality

‖𝑇𝐴,𝐵
𝜑 ∶ 𝒮2 → 𝒮2‖ ≤ ‖𝜑‖∞, (15)

which is an analog of (9). M. S. Birman and M. Z.
Solomyak showed that the transformation given by (14)
satisfies (3) for 𝐴 − 𝐵 ∈ 𝒮2 and 𝑓 ∈ Lip(ℝ). The defini-
tion (14) and property (15) extend from 𝒮2 to a general
noncommutative 𝐿2-space 𝐿2(ℳ, 𝜏).

If the transformation 𝑇𝐴,𝐵
𝜑 extends from a dense sub-

set 𝐿2(ℳ, 𝜏) ∩ 𝐿𝑝(ℳ, 𝜏) of the noncommutative 𝐿𝑝-space
𝐿𝑝(ℳ, 𝜏), 1 ≤ 𝑝 < ∞, to a bounded transformation on
𝐿𝑝(ℳ, 𝜏), then it inherits properties of a double operator
integral, as was realized by B. de Pagter, H. Witvliet, and
F. Sukochev in [6]. By the duality (𝒮1)∗ = ℬ(ℋ), the
transformation 𝑇𝐴,𝐵

𝜑 also extends from 𝒮1 toℬ(ℋ), as was
noted by M. S. Birman and M. Z. Solomyak in the 1960s.

Sufficient conditions for existence of double operator
integrals on non-Hilbert spaces and useful estimates for
their norms build on analysis of their symbols. One ap-
proach relies on existence of a factorization of the symbol
𝜑(𝜆, 𝜇) that separates its variables 𝜆 and 𝜇. It was first sug-
gested by M. S. Birman and M. Z. Solomyak in 1966 and
then generalized by V. V. Peller in 1985 to characterize
bounded 𝑇𝐴,𝐵

𝜑 on ℬ(ℋ). Later, the separation of variables
approach to operator integrals was implemented on many
symmetrically normed ideals ℐ of a semifinite von Neu-
mann algebra by N. A. Azamov, A. L. Carey, P. G. Dodds,
and F. Sukochev in [2]. These ideals possess a so-called
property (F) and include 𝐿𝑝(ℳ, 𝜏)∩ℳ and 𝐿𝑝,∞(ℳ, 𝜏)∩ℳ,
1 < 𝑝 < ∞. This method is explained below.

Let 𝜑 ∶ ℝ2 → ℂ admit the representation

𝜑(𝜆, 𝜇) = ∫
Ω
𝑎1(𝜆, 𝜔) 𝑎2(𝜇, 𝜔) 𝑑𝜈(𝜔) (16)

with some finite measure space (Ω, 𝜈) and bounded Borel
functions 𝑎𝑖(⋅, ⋅) ∶ ℝ × Ω → ℂ, 𝑖 = 1, 2, satisfying

∫
Ω
‖𝑎1(⋅, 𝜔)‖∞‖𝑎2(⋅, 𝜔)‖∞ 𝑑|𝜈|(𝜔) < ∞.

The double operator integral 𝑇𝐴,𝐵
𝜑 is then affixed to the

factorization (16) via

𝑇𝐴,𝐵
𝜑 (𝑋)(𝑦) (17)

= ∫
Ω
(𝑎1(𝐴, 𝜔) 𝑋 𝑎2(𝐵, 𝜔))(𝑦) 𝑑𝜈(𝜔)
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for every 𝑦 ∈ ℋ. For an ideal ℐ as above, we obtain

‖
‖𝑇

𝐴,𝐵
𝜑 ∶ ℐ → ℐ‖‖ ≤ ‖𝜑‖⊗

by the symmetric property of ℐ. Here the norm ‖ ⋅ ‖⊗ is
defined by

‖𝜑‖⊗ = inf∫
Ω
‖𝑎1(⋅, 𝜔)‖∞‖𝑎2(⋅, 𝜔)‖∞ 𝑑|𝜈|(𝜔)

with the infimum taken over all possible representations
(16). We note that the transformation given by (17) satis-
fies (3) for 𝐴 − 𝐵 ∈ ℬ(ℋ) and 𝑓 ∈ Lip(ℝ) with 𝜑 = 𝑓[1]
admitting the representation (16). The decomposition
(17) is also convenient for passing to the limit with respect
to the parameters 𝐴, 𝐵, which was used to prove differen-
tiability results for operator functions.

The existence of the representation (16) for 𝜑 = 𝑓[1]
is determined by smoothness and decay properties of the
function 𝑓. Namely, if 𝑓 belongs to the Besov space
𝐵1∞1(ℝ), then 𝑓[1] satisfies (16) and

‖𝑓‖Lip(ℝ) ≤ ‖
‖𝑓[1]

‖
‖⊗ ≤ const ‖𝑓‖𝐵1∞1(ℝ),

as established by means of the Fourier analysis in
V. V. Peller’s work in 1985. To see how this analysis works
in a nontechnical case, we assume that both 𝑓 and its
Fourier transform ̂𝑓 are integrable. By the Fourier inver-
sion,

𝑓[1](𝜆, 𝜇) = 𝑓(𝜆) − 𝑓(𝜇)
𝜆 − 𝜇

= 1
√2𝜋

1
𝜆 − 𝜇 ∫ℝ

(𝑒𝑖𝜆𝑡 − 𝑒𝑖𝜇𝑡) ̂𝑓(𝑡) 𝑑𝑡

= 𝑖
√2𝜋

∫
ℝ
(∫

𝑡

0
𝑒𝑖(𝜆𝑠+𝜇(𝑡−𝑠)) 𝑑𝑠) ̂𝑓(𝑡) 𝑑𝑡

= 𝑖
√2𝜋

∫
ℝ2
𝑒𝑖𝜆ᵆ𝑒𝑖𝜇𝑣 ̂𝑓(𝑢 + 𝑣) 𝑑𝑢 𝑑𝑣.

The latter integral is in the form (16), where Ω = ℝ2,

𝑑𝜈(𝑢, 𝑣) = 𝑖
√2𝜋

̂𝑓(𝑢 + 𝑣) 𝑑𝑢 𝑑𝑣, 𝑎1((𝑢, 𝑣), 𝜆) = 𝑒𝑖𝜆ᵆ, and

𝑎2((𝑢, 𝑣), 𝜇) = 𝑒𝑖𝜇𝑣 for 𝑢, 𝑣 ∈ ℝ. The above calculation
and further Fourier analysis induce the bounds

‖
‖𝑓[1]

‖
‖⊗ ≤ ‖𝑓′‖𝐿1(ℝ)

≤ √2 (‖𝑓′‖𝐿2(ℝ) + ‖𝑓″‖𝐿2(ℝ)).
Sharpening dependence on the symbol 𝑓[1] for double

operator integrals on UMD spaces was crucial for resolu-
tion of several open problems. It was implemented by
D. Potapov and F. Sukochev in [16] by taking a novel ap-
proach and carrying out a different type of harmonic anal-
ysis on 𝑓[1]. The respective transformation 𝑇𝐴,𝐵

𝜑 is con-
structed by discretizing the spectra of 𝐴, 𝐵, then following
the pattern of the finite-dimensional case (1), and finally

taking limits to return to the initial operators. More pre-
cisely,

𝑇𝐴,𝐵
𝜑 (𝑋) (18)

= lim
𝑚→∞

lim
𝑁→∞

𝑁
∑

𝑙1,𝑙2=−𝑁
𝜑 ( 𝑙1𝑚, 𝑙2𝑚) ℰ𝐴,𝑙1,𝑚𝑋ℰ𝐵,𝑙2,𝑚,

where ℰ𝐴,𝑙,𝑚 = ℰ𝐴 ([
𝑙
𝑚
, 𝑙+1
𝑚
)) and ℰ𝐴 is the spectral mea-

sure of 𝐴. The transformation given by (18) exists for
𝜑 = 𝑓[1], where 𝑓 ∈ Lip(ℝ), and satisfies

‖𝑇𝐴,𝐵
𝑓[1] ∶ 𝐿𝑝(ℳ, 𝜏) → 𝐿𝑝(ℳ, 𝜏)‖ (19)

≤ 𝑐𝑝 ‖𝑓‖Lip(ℝ)
for 1 < 𝑝 < ∞. The constant in (19) is known to behave
like

𝑐𝑝 ∼
𝑝2

𝑝 − 1,
as established by M. Caspers, S. Montgomery-Smith,
D. Potapov, and F. Sukochev in 2014. The transformations
given by (17) and (18) coincide on 𝜑 = 𝑓[1] for a large set
of functions 𝑓, including the space 𝐵1∞1(ℝ).

There are several proofs of the estimate (19), each one
using deep results from harmonic analysis. To demon-
strate a few ideas from the original proof, let 𝜓 be a
Schwartz function satisfying 𝜓(𝑡) = 𝑒𝑡 for 𝑡 ∈ [log 𝛼, log 𝛽],
where [𝛼, 𝛽] ⊂ (0,∞). Then, the Fourier inversion implies
that

𝑥 = 𝜓(𝑡) = 1
√2𝜋

∫
ℝ

̂𝜓(𝑠) 𝑒𝑖𝑠𝑡𝑑𝑠

= 1
√2𝜋

∫
ℝ

̂𝜓(𝑠) 𝑥𝑖𝑠𝑑𝑠, 𝑥 ∈ [𝛼, 𝛽].

Hence,

𝑓[1](𝜆, 𝜇) = 1
√2𝜋

∫
ℝ

̂𝜓(𝑠)|𝑓(𝜆) − 𝑓(𝜇)|𝑖𝑠|𝜆 − 𝜇|−𝑖𝑠 𝑑𝑠

for those 𝑓, 𝜆, 𝜇 for which 𝑓[1](𝜆, 𝜇) ∈ [𝛼, 𝛽]. The latter de-
composition of 𝑓[1] induces a representation of 𝑇𝐴,𝐴

𝑓[1] as the
integral of compositions of the double operator integrals
𝑇𝐴,𝐴
𝜑 with 𝜑(𝜆, 𝜇) = |𝜆 − 𝜇|−𝑖𝑠 and 𝜑(𝜆, 𝜇) = |𝑓(𝜆) − 𝑓(𝜇)|𝑖𝑠.

Such transformations are bounded by the Marcinkiewicz–
Mihlin multiplier theory. The respective bounds along
with integrability of the moments of 𝜓 ultimately imply
the boundedness of 𝑇𝐴,𝐴

𝑓[1] and estimate (19).

Multilinear case. Attempts to extend linear double opera-
tor integrals to the multilinear case and derive analogous
useful bounds were driven by applications and made con-
currently with development of the double OI theory.

The first practical multiple operator integral construc-
tion was implemented on the product of Hilbert spaces in
B. S. Pavlov’s work in 1969. If 𝐴1, … , 𝐴𝑛+1 are self-adjoint
operators densely defined in ℋ with spectral measures
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ℰ𝐴1 , … , ℰ𝐴𝑛+1 , respectively, and 𝑋1, … , 𝑋𝑛 ∈ 𝒮2, then the
𝒮2-valued set function𝑚 defined on the rectangular sets of
ℝ𝑛+1 by

𝑚(𝛿1 × 𝛿2 ×⋯ × 𝛿𝑛+1)
= ℰ𝐴1(𝛿1)𝑋1ℰ𝐴2(𝛿2)𝑋2⋯𝑋𝑛ℰ𝐴𝑛+1(𝛿𝑛+1)

admits extension to a countably additive measure with
semivariation bounded by

‖𝑚‖ ≤ ‖𝑋1‖2⋯‖𝑋𝑛‖2.
The multiple operator integral defined by

𝑇𝐴1,…,𝐴𝑛+1
𝜑 (𝑋1, … , 𝑋𝑛) = ∫

ℝ𝑛+1
𝜑(𝜔) 𝑑𝑚(𝜔) (20)

for a bounded function 𝜑 that is measurable with re-
spect to the product of scalar-valued spectral measures of
𝐴1, … , 𝐴𝑛+1 and 𝑋1, … , 𝑋𝑛 ∈ 𝒮2 enjoys the bound

‖𝑇𝐴1,…,𝐴𝑛+1
𝜑 ∶ 𝒮2 ×⋯ × 𝒮2 → 𝒮2‖ ≤ ‖𝜑‖∞.

The definition (20) does not extend beyond the 𝒮2 setting,
as confirmed by K. Dykema and A. Skripka in 2009.

There is a more recent approach to the transformation
(20) by C. Coine, C. Le Merdy, and F. Sukochev in [5],
which adds new technical opportunities. They realized
this transformation as a 𝑤∗-continuous contractive map
𝜑 → 𝑇𝐴1,…,𝐴𝑛+1

𝜑 acting on elementary tensors by

𝑇𝐴1,…,𝐴𝑛+1
𝑓1⊗⋯⊗𝑓𝑛+1(𝑋1, … , 𝑋𝑛)
= 𝑓1(𝐴1)𝑋1⋯𝑋𝑛𝑓𝑛+1(𝐴𝑛+1).

This realization makes 𝑇𝐴1,…,𝐴𝑛+1
𝑓1⊗⋯⊗𝑓𝑛+1 amiable to approxima-

tion arguments with respect to the parameters 𝜑,𝐴1, … ,
𝐴𝑛+1. It was recently used to substantially extend results
on differentiability of operator functions and obtain the
representation (7) for a broad set of of functions.

The double operator integral (17) was extended to the
multilinear transformation

𝑇𝐴1,…,𝐴𝑛+1
𝜑 ∶ ℬ(ℋ) ×⋯ ×ℬ(ℋ) → ℬ(ℋ)

for 𝜑 admitting a separation of variables analogous to (16)
and to the transformation

𝑇𝐴1,…,𝐴𝑛+1
𝜑 ∶ ℐ ×⋯ × ℐ → ℐ,

where ℐ is a symmetrically normed ideal with property (F),
by V. V. Peller in [11] and by N. A. Azamov, A. L. Carey,
P. G. Dodds, and F. Sukochev in [2], respectively. This
transformation satisfies the bound

‖𝑇𝐴1,…,𝐴𝑛+1
𝜑 ∶ ℐ ×⋯ × ℐ → ℐ‖ ≤ 𝑐ℐ ‖𝜑‖⊗.

If 𝑓 ∈ 𝐵𝑛∞1(ℝ), then
‖𝑓[𝑛]‖⊗ ≤ const ‖𝑓‖𝐵𝑛∞1(ℝ).

As in the linear case, this OI construction is convenient for
passing to the limit with respect to the parameters 𝐴1, … ,
𝐴𝑛+1.

A transformation 𝑇𝐴1,…,𝐴𝑛+1
𝜑 that captures nice proper-

ties of UMD spaces and sharpens dependence on the sym-
bol 𝜑 was constructed by D. Potapov, A. Skripka, and
F. Sukochev in [12] to solve open problems in higher-order
noncommutative analysis. This transformation is given by
a limit generalizing (18), and it satisfies the bounds (10)
and (11) as well as their variants in noncommutative 𝐿𝑝-
spaces. We will discuss the importance of (10) and (11) in
the next section.

The estimate (10) is established inductively through an
elaborate reduction of the order of 𝑇𝐴1,…,𝐴𝑛+1

𝑓[𝑛] that pre-
serves major features of its symbol. For instance, a frag-
ment of this reduction for 𝑛 = 2 and 𝜆 < 𝜇 < 𝜈 involves
the decomposition

𝑓[2](𝜆, 𝜇, 𝜈)

= ∫
ℝ
(𝜇 − 𝜆)𝑖𝑠𝜑𝑓″(𝜆, 𝜇)(𝜈 − 𝜆)−𝑖𝑠 ̂𝜓(𝑠) 𝑑𝑠

+∫
ℝ
(𝜈 − 𝜇)𝑖𝑠𝜑𝑓″(𝜈, 𝜇)(𝜈 − 𝜆)−𝑖𝑠 ̂𝜓(𝑠) 𝑑𝑠,

where 𝜓 is a Schwartz function and

𝜑𝑓″(𝜆, 𝜇) = ∫
1

0
𝑡 𝑓″(𝜆 + (𝜇 − 𝜆) 𝑡) 𝑑𝑡.

The decomposition of the symbol 𝑓[2] given above leads
to the representation of the triple operator integral 𝑇𝐴,𝐴,𝐴

𝑓[2] ,
subject to the restriction 𝜆 < 𝜇 < 𝜈, as the integral of
compositions of the double operator integrals 𝑇𝐴,𝐴

𝜑 with
𝜑(𝜆, 𝜇) = (𝜆 − 𝜇)±𝑖𝑠 (discussed in the previous subsection)
and 𝜑(𝜆, 𝜇) = 𝜑𝑓″(𝜆, 𝜇), which is similar to (𝑓′)[1](𝜆, 𝜇)
(also discussed in the previous subsection). The sets like
𝜆 < 𝜇 < 𝜈 are carved out by triangular truncation opera-
tors.

Below we consider several important problems that
were solved by methods of multilinear operator integra-
tion implemented in different technical setups, each one
determined by the intrinsic nature of the problem.

Smoothness of Operator Functions
In the 1960s, M. G. Krein posed a question on Lipschitz
continuity of operator functions that opened a new direc-
tion of research in noncommutative analysis. Although ex-
isting results of K. Löwner, Yu. L. Daletskii, and S. G. Krein
suggested that OI would be a natural tool in questions
on operator smoothness, this idea was successfully imple-
mented only in this century after development of a deep
and beautiful OI theory.

More precisely, M. G. Krein asked for which functions
𝑓 ∶ ℝ → ℝ the respective operator function is Lipschitz in
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𝒮𝑝, 1 ≤ 𝑝 < ∞, that is,

‖𝑓(𝐴) − 𝑓(𝐵)‖𝑝 ≤ 𝑐𝑓,𝑝 ‖𝐴 − 𝐵‖𝑝
for all self-adjoint 𝐴, 𝐵 such that 𝐴 − 𝐵 ∈ 𝒮𝑝. The answer
to M. G. Krein’s question is twofold. The set of scalar func-
tions giving rise to operator functions that are Lipschitz
in the 𝒮𝑝-norm, 1 < 𝑝 < ∞, coincides with Lip(ℝ), and
the bound (13) holds, as established by D. Potapov and
F. Sukochev in [16]. However, not every 𝑓 ∈ Lip(ℝ) is Lip-
schitz with respect to the 𝒮1-norm or operator norm, as
noted by Yu. B. Farforovskaya in the 1970s. Examples of
𝐴, 𝐵 with 𝐴 − 𝐵 ∈ 𝒮1 and continuously differentiable 𝑓 ∈
Lip(ℝ) for which 𝑓(𝐴) − 𝑓(𝐵) ∉ 𝒮1 can be constructed by
taking direct sums of matrices 𝐴𝑑, 𝐵𝑑 of increasing dimen-
sion 𝑑 for which the quotient ‖𝑓(𝐴𝑑)−𝑓(𝐵𝑑)‖1/‖𝐴𝑑−𝐵𝑑‖1
grows logarithmically with 𝑑, as discussed in the section
on finite-dimensional OI.

The set of 𝒮1-Lipschitz functions is known to contain
those 𝑓 ∈ Lip(ℝ) for which 𝑓[1] admits the decomposition
(16). It follows from the infinite-dimensional version of
(3) and the bound for the respective double operator inte-
gral that

‖𝑓(𝐴) − 𝑓(𝐵)‖1 ≤ ‖𝑓[1]‖⊗‖𝐴 − 𝐵‖1.

We also have the bound in the weak noncommutative 𝐿1
quasi-norm

‖𝑓(𝐴) − 𝑓(𝐵)‖𝐿1,∞(ℳ,𝜏)
≤ const ‖𝑓‖Lip(ℝ) ‖𝐴 − 𝐵‖𝐿1(ℳ,𝜏)

for every 𝑓 ∈ Lip(ℝ), as established by M. Caspers,
D. Potapov, F. Sukochev, and D. Zanin in [4].

As distinct from Lipschitzness, the operator functions
inherit their Hölder property with 0 < 𝛼 < 1 in the opera-
tor norm from scalar functions, according to the result of
A. B. Aleksandrov and V. V. Peller [1]. That is,

‖𝑓(𝐴) − 𝑓(𝐵)‖ ≤ 𝑐 (1 − 𝛼)−1 ‖𝑓‖Λ𝛼(ℝ) ‖𝐴 − 𝐵‖𝛼

for all self-adjoint𝐴, 𝐵 with bounded𝐴−𝐵 and scalar func-
tions 𝑓 in the Hölder class Λ𝛼(ℝ).

Another aspect of smoothness is differentiability.
A function 𝑓 is 𝑛 times continuously Fréchet 𝒮𝑝-
differentiable, 1 < 𝑝 < ∞, at every bounded self-adjoint
operator 𝐴 on ℋ if and only if 𝑓 ∈ 𝐶𝑛(ℝ). This result
was obtained by E. Kissin, D. Potapov, V. Shulman, and
F. Sukochev in [8] and by C. Le Merdy and A. Skripka in
[9] for 𝑛 = 1 and 𝑛 ≥ 2, respectively. The proof for 𝑛 ≥ 2
combines advantages of two approaches to OI introduced
in [12] and [5]. The respective 𝑘th Fréchet differential is
expressed in terms of the multilinear operator integral

𝐷𝑘
𝑝𝑓(𝐴)(𝑋1, … , 𝑋𝑘)
= ∑

𝜍∈Sym𝑘

𝑇𝐴,…,𝐴
𝑓[𝑘] (𝑋𝜍(1), … , 𝑋𝜍(𝑘)),

where Sym𝑘 is the group of all permutations of the set
{1, … , 𝑘}.

When 𝐴 is unbounded or when the direction of differ-
entiation belongs to another ideal, we do not have a full
characterization of Fréchet differentiability. Nonetheless,
we have sufficient conditions for existence of the 𝑛th-order
Fréchet derivatives stated in terms of smoothness and de-
cay properties of 𝑓 and also a characterization of the 𝑛th-
order Gâteaux 𝒮𝑝-differentiability, 1 < 𝑝 < ∞. The respec-
tive 𝑘th-order Gâteaux derivative is given by (8).

Thanks to the representation (7) in the infinite-dimen-
sional case, the estimates for operator integrals apply to
operator Taylor remainders

𝑅𝑛,𝑓,𝐵(𝐴 − 𝐵)

= 𝑓(𝐴) − 𝑓(𝐵) −
𝑛−1
∑
𝑘=1

1
𝑘!

𝑑𝑘
𝑑𝑡𝑘𝑓(𝐵 + 𝑡(𝐴 − 𝐵))||𝑡=0.

In particular, when the derivatives
𝑑𝑘

𝑑𝑡𝑘
𝑓(𝐵 + 𝑡(𝐴 − 𝐵)) are

evaluated in the operator norm, we have

‖𝑅𝑛,𝑓,𝐵(𝐴 − 𝐵)‖𝑝 (21)

≤ 𝑐𝑝,𝑛‖𝑓(𝑛)‖∞‖𝐴 − 𝐵‖𝑛𝑝𝑛, 1 < 𝑝 < ∞,

for a self-adjoint bounded 𝐵 and 𝑓 ∈ 𝐶𝑛(ℝ). When the
operator derivatives are calculated in the 𝒮𝑝-norm, 1 <
𝑝 < ∞, the bound (21) extends to an unbounded 𝐵 and 𝑛-
times differentiable 𝑓 with bounded derivatives. We also
have

‖
‖𝑅𝑛,𝑓,𝐵(𝐴 − 𝐵)‖‖1 ≤ 𝑐𝑛‖𝑓‖𝐵𝑛∞1(ℝ)‖𝐴 − 𝐵‖𝑛𝑛 (22)

for 𝑓 ∈ 𝐵1∞1(ℝ) ∩ 𝐵𝑛∞1(ℝ). The bound (22) follows from
the work of V. V. Peller [11], and it does not extend to all
𝑓 ∈ 𝐶𝑛(ℝ) by the counterexamples constructed in thework
of D. Potapov, A. Skripka, F. Sukochev, and A. Tomskova
[15].

Trace Formulas in Mathematical Physics
Trace formulas relate spectral properties of two operators,
where one operator is well understood and the other is
viewed as its perturbationwhose spectral properties are un-
known. This line of research originates from M. G. Krein’s
seminal 1953 work addressing I. M. Lifshits’s findings and
questions in physics in the 1940s. Its development and
several breakthroughs benefited from the method of mul-
tilinear operator integration.

Let 𝐻 and 𝑉 be self-adjoint operators, 𝐻 possibly un-
bounded. If 𝑉 belongs to the Schatten–von Neumann
ideal 𝒮𝑛 for some 𝑛 ∈ ℕ, then there exists a unique real-
valued function 𝜂𝑛 ∈ 𝐿1(ℝ) depending only on 𝑛,𝐻, 𝑉
such that

‖𝜂𝑛‖1 ≤ 𝑐𝑛‖𝑉‖𝑛𝑛

52 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 67, NUMBER 1



and

Tr (𝑓(𝐻 + 𝑉) −
𝑛−1
∑
𝑘=0

1
𝑘!

𝑑𝑘
𝑑𝑡𝑘𝑓(𝐻 + 𝑡𝑉)||𝑡=0) (23)

= ∫
ℝ
𝑓(𝑛)(𝑡) 𝜂𝑛(𝑡) 𝑑𝑡

for sufficiently nice 𝑓. This result was established by
M. G. Krein in 1953, L. S. Koplienko in 1984, and
D. Potapov, A. Skripka, and F. Sukochev in [12] in the cases
𝑛 = 1, 𝑛 = 2, and 𝑛 ≥ 3, respectively. The function 𝜂𝑛,
called the spectral shift function, plays a fundamental role
in perturbation theory, but little is known about properties
of 𝜂𝑛 when 𝑛 ≥ 3 due to its complexity.

The proof of (23) for 𝑛 = 2 utilizes the double operator
integrals introduced by M. S. Birman and M. Z. Solomyak
to carry out an approximation of 𝑉 ∈ 𝒮2 by a sequence of
finite rank 𝑉𝑘, for which 𝜂2 can be calculated explicitly in
terms of 𝜂1. The trace formula for 𝑛 ≥ 3 crucially relies on
the estimate (11). Indeed, by the integral representation
for the remainder and OI representation for the operator
derivative (8),

𝑓(𝐻 + 𝑉) −
𝑛−1
∑
𝑘=0

1
𝑘!

𝑑𝑘
𝑑𝑡𝑘𝑓(𝐻 + 𝑡𝑉)||𝑡=0

= 1
(𝑛 − 1)! ∫

1

0
(1 − 𝑡)𝑛−1 𝑇𝐻𝑡,…,𝐻𝑡

𝑓[𝑛] (𝑉, … , 𝑉) 𝑑𝑡,

where 𝐻𝑡 = 𝐻 + 𝑡𝑉 . Then the estimate (11) implies ex-
istence of the measure 𝜇𝑛 such that the left-hand side of
(23) equals ∫ℝ 𝑓(𝑛)(𝑡) 𝑑𝜇𝑛(𝑡) and the total variation of 𝜇𝑛
is bounded by 𝑐𝑛‖𝑉‖𝑛𝑛. Finally, an approximation argu-
ment involving OI and reduction to the lower-order case
confirms absolute continuity of 𝜇𝑛 or, equivalently, exis-
tence of 𝜂𝑛.

While the condition 𝑉 ∈ 𝒮𝑛 can hold for perturbations
of discrete Schrödinger operators, it does not hold for typ-
ical perturbations of differential operators. Instead, when
𝐻 is a continuous Schrödinger or Dirac operator, its per-
turbation 𝑉 can possibly satisfy

(𝐻 + 𝑉 − 𝑖𝐼)−1 − (𝐻 − 𝑖𝐼)−1 ∈ 𝒮𝑛.
Analogs of the trace formula (23) were obtained in this
extended setting with modified right- and, in some cases,
also left-hand sides and the respective 𝜂𝑛 integrable with
a weight. These results are based on the theory of spectral
shift functions for unitary and contractive operators with
perturbations in 𝒮𝑛, a change of variables in multiple op-
erator integrals, and creation of summable weights within
the OI framework. The condition (𝐻 + 𝑉 − 𝑖𝐼)−1 − (𝐻 −
𝑖𝐼)−1 ∈ 𝒮𝑛 in the cases 𝑛 = 1 and 𝑛 = 2 was handled via
a reduction to unitaries by M. G. Krein and H. Neidhardt
in 1962 and 1988, respectively. The case 𝑛 ≥ 2 was treated
via a reduction to contractions by D. Potapov, A. Skripka,

and F. Sukochev in [14] and 𝑛 ≥ 3 via a reduction to uni-
taries by A. Skripka in [18]. The respective higher-order
spectral shift theory for contractions and unitaries builds
on OI methods developed in [13] and [18].

The formula (23) extends to more general traces and
unsummable perturbations in semifinite von Neumann
algebras that arise in noncommutative geometry. In par-
ticular, the trace formula with locally integrable 𝜂𝑛 holds
for an arbitrary bounded self-adjoint 𝑉 and unbounded
self-adjoint 𝐻 whose resolvent (𝐻 − 𝑖𝐼)−1 is 𝜏-compact.
This property is satisfied, for instance, by differential op-
erators on compact Riemannian manifolds. The trace
formulas also hold for perturbations in symmetrically
normed ideals equipped with continuous, including sin-
gular, traces. They were established for general ideals and
𝑛 = 1, 2 by K. Dykema and A. Skripka in [7] and for the
dual Macaev ideal and 𝑛 ≥ 3 by D. Potapov, A. Usachev,
F. Sukochev, and D. Zanin in 2015.

Spectral Flow
The concept of the spectral flow stems from the celebrated
work of M. F. Atiyah, V. K. Patodi, and I. M. Singer in the
1970s, where it was introduced primarily in a topological
sense. At the International Congress of Mathematicians in
1974, I. M. Singer communicated that the spectral flow can
be expressed as an integral of 1-form. After J. Phillips in-
troduced an analytic approach to the spectral flow in the
context of von Neumann algebras in the 1990s, the imple-
mentation of I. M. Singer’s suggestion was pursued in the
framework of noncommutative geometry. This represen-
tation via the integral of a 1-form was confirmed in a gen-
eral setting without summability restrictions by incorpo-
rating double operator integration techniques in the work
of N. A. Azamov, A. L. Carey, and F. Sukochev [3].

Let 𝐷0, 𝐷1 be self-adjoint operators affiliated with ℳ
whose resolvents are 𝜏-compact so that 𝑉 = 𝐷0 − 𝐷1
is bounded. If 𝐷0 and 𝐷1 are unitarily equivalent, then
the spectral flow sf(𝐷0, 𝐷1) from 𝐷0 to 𝐷1 along the path
𝑟 → 𝐷0 + 𝑟𝑉 can be calculated by

sf(𝐷0, 𝐷1) =
1

‖𝑓‖𝐿1(ℝ)
∫

1

0
𝜏(𝑉𝑓(𝐷0 + 𝑟𝑉)) 𝑑𝑟 (24)

for every nonnegative 𝑓 ∈ 𝐶2
𝑐 (ℝ). The expression

∫
1

0
𝜏(𝑉𝑓(𝐷0 + 𝑟𝑉)) 𝑑𝑟

is the result of integration of the closed exact 1-form 𝑑𝜃𝑓𝐷
given by

𝑑𝜃𝑓𝐷(𝑋)

= 𝑑
𝑑𝑠 (∫

1

0
𝜏((𝑉 + 𝑠𝑋)𝑓(𝐷0 + 𝑟𝑉 + 𝑠𝑟𝑋)) 𝑑𝑟) ||𝑠=0.
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The above conclusion builds on OI methods for func-
tions of operators with 𝜏-compact resolvents developed by
analogy with OI for summable perturbations discussed in
the previous section.

When 𝐷0 and 𝐷1 are not unitarily equivalent, the rep-
resentation (24) is modified by the truncated 𝜂-invariants
and 𝜏-dimensions of the kernels of 𝐷0 and 𝐷1. The spec-
tral flow sf(𝐷0−𝜆𝐼, 𝐷1−𝜆𝐼) coincides with the spectral shift
function 𝜂1(𝜆) discussed above up to the kernel correction
terms.

Quantum Differentiability
A quantized differential was introduced by A. Connes in
the 1980s to replace the differential calculus in noncom-
mutative differential geometry by an operator theoretic no-
tion involving a commutator. The asymptotic behavior of
the singular values of the quantized derivative determines
the dimension of an infinitesimal in the quantized calcu-
lus.

Let 𝑓 ∈ 𝐿∞(ℝ𝑑), 𝑑 ∈ ℕ, and let 𝑀𝑓 be the operator of
pointwise multiplication by 𝑓. If 𝐷 is the Dirac operator

densely defined inℂ⌊ 𝑑2 ⌋⊗𝐿2(ℝ𝑑) and sgn(𝐷) is its sign given
by the functional calculus, then the quantized derivative of
𝑓 is defined to be the commutator

𝑑𝑓̄ ∶= 𝑖[sgn(𝐷), 𝐼 ⊗ 𝑀𝑓].

It follows from work of S. Janson and T. H. Wolff in 1982
that 𝑑𝑓̄ ∈ 𝒮𝑑 if and only if 𝑓 is a constant, while the prop-
erty of the quantized derivative to be in the weak Schatten–
von Neumann ideal 𝒮𝑑,∞ is achievable in nontrivial cases.
In particular, if 𝑑 > 1 and 𝑓 ∈ 𝐿∞(ℝ𝑑), then 𝑑𝑓̄ ∈ 𝒮𝑑,∞
if and only if ∇𝑓 ∈ 𝐿𝑑(ℝ𝑑, ℂ𝑑). Moreover, there exist con-
stants 𝑐𝑑, 𝐶𝑑 > 0 such that

𝑐𝑑 ‖∇𝑓‖𝐿𝑑(ℝ𝑑 ,ℂ𝑑) ≤ ‖𝑑𝑓̄‖𝒮𝑑,∞ ≤ 𝐶𝑑 ‖∇𝑓‖𝐿𝑑(ℝ𝑑 ,ℂ𝑑).

The latter result was proved by S. Lord, E. McDonald,
F. Sukochev, and D. Zanin in [10] using the method of
double operator integration. The appearance of OI in this
problem is suggested by the formula (5), which extends to
the infinite-dimensional case under appropriate assump-
tions. This variant of (5) gives

[𝐷(𝐼 + 𝐷2)−
1
2 , 𝐼 ⊗ 𝑀𝑓] = 𝑇𝐷,𝐷

𝑔[1] ([𝐷, 𝐼 ⊗ 𝑀𝑓]),

where 𝑔(𝑡) = 𝑡(1 + 𝑡2)−1/2 is the regularized sign function.
Results for double operator integrals allow estimation of

𝑇𝐷,𝐷
𝑔[1] on 𝒮1 and on ℬ(ℂ⌊ 𝑑2 ⌋ ⊗ 𝐿2(ℝ𝑑)). Then interpola-

tion transfers this estimate to 𝑇𝐷,𝐷
𝑔[1] on 𝒮𝑑,∞. Along with

a suitable analysis of the commutators [𝐷, 𝐼 ⊗ 𝑀𝑓] and

[sgn(𝐷)−𝐷(𝐼+𝐷2)−
1
2 , 𝐼⊗𝑀𝑓], it ultimately gives the stated

upper bound.

Smoothness of Banach Norms
The study of smoothness properties in function Banach
spaces was naturally lifted to a similar investigation in
the noncommutative Haagerup 𝐿𝑝-spaces 𝐿𝑝𝐻𝑎𝑎𝑔(ℳ) asso-
ciated with an arbitrary von Neumann algebra ℳ. This
general setting includes the following cases: when ℳ is
semifinite, the space 𝐿𝑝𝐻𝑎𝑎𝑔(ℳ) is isometric to the classical
noncommutative 𝐿𝑝-space associated with ℳ, 1 ≤ 𝑝 < ∞;
whenℳ is a type I von Neumann algebra, then 𝐿𝑝𝐻𝑎𝑎𝑔(ℳ)
contains an isometric copy of the sequence space ℓ𝑝; when
ℳ is not of type I, 𝐿𝑝𝐻𝑎𝑎𝑔(ℳ) contains an isometric copy
of the function space 𝐿𝑝(0, 1).

The first-order Fréchet differentiability of the norm
power ‖ ⋅ ‖𝑝𝐿𝑝𝐻𝑎𝑎𝑔

, 1 < 𝑝 < ∞, was essentially established

by H. Kosaki in 1984 and its higher-order Fréchet differ-
entiability by D. Potapov, F. Sukochev, A. Tomskova, and
D. Zanin in [17]. Namely, we have that ‖ ⋅ ‖𝑝𝐿𝑝𝐻𝑎𝑎𝑔

is

(i) infinitely many times Taylor–Fréchet differentiable
whenever 𝑝 is an even integer;
(ii) (𝑝−1)-times Taylor–Fréchet differentiable whenever 𝑝
is an odd integer;
(iii) ⌊𝑝⌋-times Taylor–Fréchet differentiable whenever 𝑝 is
not an integer.
More specifically, for self-adjoint 𝐴, 𝑋 ∈ 𝐿𝑝𝐻𝑎𝑎𝑔(ℳ),

‖𝐴 + 𝑋‖𝑝𝐿𝑝𝐻𝑎𝑎𝑔

= ‖𝐴‖𝑝𝐿𝑝𝐻𝑎𝑎𝑔
+

⌈𝑝−1⌉
∑
𝑘=1

𝛿𝐴𝑘 (𝑋, … , 𝑋) + 𝒪(‖𝑋‖𝑝𝐿𝑝𝐻𝑎𝑎𝑔
),

where 𝛿𝐴𝑘 is a symmetric 𝑘-linear bounded functional on
𝐿𝑝𝐻𝑎𝑎𝑔(ℳ)×⋯×𝐿𝑝𝐻𝑎𝑎𝑔(ℳ). When𝑝 is even,𝒪(‖𝑋‖𝑝𝐿𝑝𝐻𝑎𝑎𝑔

) =
𝛿𝐴𝑝 (𝑋, … , 𝑋). The differentials 𝛿𝐴𝑘 are given in terms ofmul-
tilinear operator integrals.

Since ‖𝑋‖𝑝𝐿𝑝𝐻𝑎𝑎𝑔
= 𝜓(|𝑋|𝑝), where 𝜓 is a normalized

trace on the weak noncommutative 𝐿1-space 𝐿1,∞(𝒩) asso-
ciated with a certain semifinite crossed product von Neu-
mann algebra𝒩, the analysis of smoothness properties of
‖ ⋅ ‖𝑝𝐿𝑝𝐻𝑎𝑎𝑔

reduces to the analysis of the operator function

arising from the scalar function 𝑓(𝑡) = |𝑡|𝑝. The latter
analysis is fulfilled by means of multilinear operator in-
tegration developed on weak noncommutative 𝐿𝑝-spaces
𝐿𝑝,∞(𝒩), which contain 𝐿𝑝𝐻𝑎𝑎𝑔(ℳ) as a closed subspace.
One of the features specific to this setting is involvement of
Calderón-type operators in derivation of Hölder-type esti-
mates for OI.

Closing Remarks
In this brief journey to operator integration we considered
only the case of self-adjoint operators 𝐴1, … , 𝐴𝑛+1. Multi-
linear operator integration has also been developed in the
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cases when 𝐴1, … , 𝐴𝑛+1 are unitary, contractive, dissipative,
or unbounded normal operators. The theory has also been
extended to noncommutative weak 𝐿𝑝-spaces and, in the
linear case, to general Banach spaces. The details can be
found in [19].

While we demonstrated usefulness of operator inte-
gration on selected representative applications, the OI
method hasmore to offer. Further general results based on
this method along with their variants designed for specific
models of mathematical physics and noncommutative ge-
ometry can be found in [19], thematic surveys, and recent
and upcoming articles.
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differentiability of the norm of 𝐿𝑝-spaces associated with
arbitrary von Neumann algebras, Trans. Amer. Math. Soc.,
no. 11 (371):7493–7532, 2019, DOI 10.1090/tran/7215.
MR3955526

[18] Skripka A. Estimates and trace formulas for unitary and
resolvent comparable perturbations, Adv. Math. (311):481–
509, 2017, DOI 10.1016/j.aim.2017.02.026. MR3628221

[19] Skripka A, Tomskova A. Multilinear Operator Integrals:
Theory and Applications, Lecture Notes in Mathematics,
vol. 2250, 2019.

[20] Skripka A, Zinchenko M. Stability and uniqueness
properties of Taylor approximations of matrix func-
tions, Linear Algebra Appl. (582):218–236, 2019, DOI
10.1016/j.laa.2019.07.037. MR3992426

Anna Skripka

Credits

Opener image is courtesy of Getty.
Author photo is courtesy of the author.

JANUARY 2020 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 55

http://www.ams.org/mathscinet-getitem?mr=3955526
http://www.ams.org/mathscinet-getitem?mr=3628221
http://dx.doi.org/10.1090/tran/7215
http://dx.doi.org/10.1007/s00220-007-0329-9
http://dx.doi.org/10.1016/j.laa.2019.07.037
http://dx.doi.org/10.1006/jfan.2001.3898
http://dx.doi.org/10.1112/plms/pds014
http://www.ams.org/mathscinet-getitem?mr=2342288
http://www.ams.org/mathscinet-getitem?mr=3956516
http://www.ams.org/mathscinet-getitem?mr=2504014
http://www.ams.org/mathscinet-getitem?mr=3152748
http://www.ams.org/mathscinet-getitem?mr=1918492
http://www.ams.org/mathscinet-getitem?mr=2989800
http://www.ams.org/mathscinet-getitem?mr=3992426
https://arxiv.org/abs/1706.01662
https://doi.org/10.1017/S1474748019000033
http://dx.doi.org/10.1016/j.jfa.2017.06.020
http://www.ams.org/mathscinet-getitem?mr=3091975
http://www.ams.org/mathscinet-getitem?mr=2214586
http://www.ams.org/mathscinet-getitem?mr=3677828
http://www.ams.org/mathscinet-getitem?mr=2628799
http://dx.doi.org/10.1016/j.aim.2017.09.012
http://www.ams.org/mathscinet-getitem?mr=3166355
http://dx.doi.org/10.1016/j.aim.2014.12.016
http://www.ams.org/mathscinet-getitem?mr=3303244
http://www.ams.org/mathscinet-getitem?mr=3709129
http://www.ams.org/mathscinet-getitem?mr=2892613
http://dx.doi.org/10.1016/j.aim.2017.02.026
http://dx.doi.org/10.4153/CJM-2009-012-0
http://dx.doi.org/10.1353/ajm.2019.0019
https://arxiv.org/abs/1706.01662
https://arxiv.org/abs/1706.01662
http://dx.doi.org/10.1016/j.jfa.2005.09.003
http://dx.doi.org/10.1007/s00222-012-0431-2

