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Introduction
Since its inception in the 1990s by Morel and Voevodsky,
and Voevodsky’s application to the proofs of the Milnor
conjecture and the Bloch–Kato conjecture, 𝔸1-homotopy
theory or, as it is also known, motivic homotopy theory has
experienced an explosive development. I had planned in
this survey to give an overview of progress and vistas in
motivic homotopy theory as it has developed in the past
ten years or so. I was both dismayed and heartened to find
that such an undertaking in the limited space available was
quite impossible: there has simply been too much going
on to report on in this format. I was therefore compelled to
select a few of the many areas I had planned to discuss for
inclusion in this article. For this reason, I have not written
anything at all about such topics as the recent applications
of the various Postnikov-like towers in motivic homotopy
theory; the Calmés–Fasel theory of Chow–Witt motives
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and its relation to the motivic sphere spectrum; the beau-
tiful work of Ananyevskiy–Druzhinin–Garkusha–Panin–
Neshitov–Sosnilo and Elmanto–Hoyois–Khan–Sosnilo–
Yakerson on motivic recognition principles; the study
of the tensor triangulated geometry of the motivic sta-
ble homotopy category by Andrews, Gheorghe, Heller,
Hornbostel, Joachimi, Kelly, and Thornton; connections
with equivariant homotopy theory by Hu, Heller, Kriz,
Ormsby, and others; the computations of unstable homo-
topy groups with applications to splitting vector bundles
by Asok and Fasel; or Ayoub’s work on motives for inte-
grable connections. Some of these topics are covered in
my memorial article for Vladimir Voevodsky in the Bul-
letin; others may be found in the lovely survey article [7]
of Isaksen–Østvær, as well as many other articles and work-
shop notes. Nonetheless, I hope that this perhaps idiosyn-
cratic selection ofmine will still be of interest to those non-
experts who would like to get a taste of a few of the many
directions in which motivic homotopy theory is moving
today. Finally, I would like to thank the AMS for giving
me the opportunity to present this material to the mathe-
matical community and the referees for their very helpful
comments and suggestions.
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What Is Motivic Homotopy Theory?
In a nutshell, motivic homotopy theory is a particular
homotopy theory of algebraic varieties. Motivic homo-
topy is distinguished from other homotopical approaches
to algebraic geometry, which rely on constructions such
as the homotopy theory of complex algebraic varieties or
the étale homotopy theory of schemes, by being essen-
tially internal. That is, motivic homotopy theory does not
rely on giving individual algebraic varieties a topology (or
Grothendieck topology) and constructing thereby a homo-
topy type in the usual homotopy theory of topological
spaces, but builds new categories of a homotopical nature
that include algebraic varieties themselves as objects and
in some sense are generated by these objects. Addition-
ally, the affine line 𝔸1 plays a privileged role as being a
version of the classical interval, so one can mix classical
notions of homotopy or homotopy equivalence with no-
tions of 𝔸1-homotopy and 𝔸1-homotopy equivalence, which in
turn may be viewed as refinements of the classical notion
of rational equivalence of algebraic cycles.

We begin with a brief sketch of the main players. Clas-
sical homotopy theory begins with choosing a suitable
category of spaces, 𝐒𝐩𝐜, for example CW complexes or,
for the more combinatorially minded, simplicial sets (we
will stick with this latter choice here). Given a small
category 𝒞, one can enlarge 𝐒𝐩𝐜 to the functor category
𝐒𝐩𝐜(𝒞) ∶= Fun(𝒞op, 𝐒𝐩𝐜), that is, presheaves of spaces on
𝒞. Viewing the category of sets as the category of discrete
spaces or constant simplicial sets, the Yoneda embedding
𝒞 ↪ Fun(𝒞op, 𝐒𝐞𝐭𝐬) gives an embedding 𝒞 ↪ 𝐒𝐩𝐜(𝒞), with
𝑋 ∈ 𝒞 going to the functor 𝑌 ↦ Hom𝒞(𝑌, 𝑋) =∶ 𝑋(𝑌). We
also have the embedding 𝐒𝐩𝐜 ↪ 𝐒𝐩𝐜(𝒞) sending a space 𝐾
to the constant presheaf on 𝒞 with value 𝐾. Thus 𝐒𝐩𝐜(𝒞)
gives a framework for combining 𝒞 with 𝐒𝐩𝐜.

As a functor category, 𝐒𝐩𝐜(𝒞) inherits many good prop-
erties of 𝐒𝐩𝐜, for example, products and coproducts, limits
and colimits, all computed sectionwise. As 𝐒𝐩𝐜 is gener-
ated by the set of 𝑛-simplices {Δ𝑛 ∣ 𝑛 = 0, 1, …}, this gives
us the set of generators {𝑋 × Δ𝑛 ∣ 𝑋 ∈ 𝒞, 𝑛 = 0, 1, …} for
𝐒𝐩𝐜(𝒞). One has a similar construction of pointed spaces
on 𝒞, 𝐒𝐩𝐜•(𝒞), by taking presheaves of pointed spaces.

For a presheaf 𝒳 ∈ 𝐒𝐩𝐜(𝒞), one has the associated
presheaf of sets 𝜋0(𝒳), 𝜋0(𝒳)(𝑥) = 𝜋0(𝒳(𝑥)), and for a
pointed presheaf 𝒳 ∈ 𝐒𝐩𝐜•(𝒞) the presheaves of groups
𝜋𝑛(𝒳) (for 𝑛 ≥ 1, abelian for 𝑛 ≥ 2). This gives the notion
of a weak homotopy equivalence of pointed presheaves,
namely, a map 𝑓 ∶ 𝒳 → 𝒴 that induces an isomor-
phism on 𝜋𝑛 for all 𝑛 (in the unpointed case, one needs
to make sense of the notion of “choice of basepoint,” but
this can be done). This gives us the unstable homotopy cat-
egory ℋ𝑝𝑠(𝒞) ∶= 𝐒𝐩𝐜(𝒞)[𝑊𝐸−1] and the pointed version
ℋ𝑝𝑠

• (𝒞) ∶= 𝐒𝐩𝐜•(𝒞)[𝑊𝐸−1] by formally inverting the re-
spective weak equivalences. For 𝒞 the one-point category,

we have 𝐒𝐩𝐜(𝒞) = 𝐒𝐩𝐜, ℋ𝑝𝑠(𝒞) is the classical unstable
homotopy category ℋ, and similarly for the pointed ver-
sions.

There are technical problems with this that we mention
briefly: as the categories 𝐒𝐩𝐜(𝒞) and 𝐒𝐩𝐜•(𝒞) are not small
(they contain after all 𝐒𝐞𝐭𝐬 and 𝐒𝐞𝐭𝐬•), it is not clear that
the localizations 𝐒𝐩𝐜(𝒞)[𝑊𝐸−1] and 𝐒𝐩𝐜•(𝒞)[𝑊𝐸−1] exist.
Also, we would really like to have a “homotopy theory”
rather than just a homotopy category. Without saying ex-
actly what we mean by this, we want to be able to general-
ize the standard constructions of classical homotopy the-
ory, such as homotopy fibers and cofibers, in this presheaf
setting. There are a number of solutions to these prob-
lems; the first really successful one is based on Quillen’s
theory of model categories. We already have the notion of
a weak equivalence in 𝐒𝐩𝐜(𝒞); to have a model category
structure one adds that of a fibration and cofibration, all
satisfying suitable axioms. One has an even nicer structure,
that of a simplicial model category, which enriches the cat-
egory 𝐒𝐩𝐜(𝒞) in spaces by defining the mapping space as
the simplicial set

Maps𝐒𝐩𝐜(𝒞)(𝒳, 𝒴) = [𝑛 ↦ Hom𝐒𝐩𝐜(𝒞)(𝒳 × Δ𝑛, 𝒴)].

In any case, the model category structure solves the exis-
tence problem for the homotopy categories and gives the
added structures needed to define a reasonable homotopy
theory of presheaves of spaces.

The motivic story starts by applying this construction in
the case 𝒞 = 𝐒𝐦/𝑆, where 𝑆 is a chosen base-scheme and
𝐒𝐦/𝑆 is the category of smooth finite type 𝑆-schemes. This
gives us the category of spaces over 𝑆, 𝐒𝐩𝐜(𝑆) ∶= 𝐒𝐩𝐜(𝐒𝐦/𝑆),
and the similarly defined category of pointed spaces over 𝑆,
𝐒𝐩𝐜•(𝑆), together with their homotopy categories ℋ𝑝𝑠(𝑆),
ℋ𝑝𝑠

• (𝑆).
We have decorated the homotopy categories because

these are not the categories we are ultimately looking for.
In order to have some reasonable descent properties, we
need to incorporate a suitable Grothendieck topology 𝜏
and we also need to make the affine line an interval-object.
This is accomplished by enlarging the weak equivalences
to include maps that induce isomorphisms on the as-
sociated homotopy sheaves (rather than the presheaves)
and the projection maps 𝒳 × 𝔸1 → 𝒳. Again invok-
ing the techniques of model categories, this leads to a
good notion of 𝔸1-𝜏 weak equivalence 𝑊𝐸𝔸1,𝜏, homo-
topy categories ℋ𝔸1,𝜏(𝑆) ∶= 𝐒𝐩𝐜(𝑆)[𝑊𝐸−1𝔸1,𝜏], ℋ𝔸1,𝜏

• (𝑆) ∶=
𝐒𝐩𝐜•(𝑆)[𝑊𝐸−1𝔸1,𝜏], and associated homotopy theories. This
was carried out in the seminal work of Morel–Voevodsky
[17]. Recent innovations give corresponding construc-
tions on the level of infinity categories.

The standard choice for the Grothendieck topology 𝜏 is
the Nisnevich topology, where a cover of a scheme 𝑋 is an
étale cover 𝒰 → 𝑋 that is surjective on 𝐿-valued points
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for all fields 𝐿. We write ℋ(𝑆) = ℋ𝔸1,𝑁𝑖𝑠(𝑆), ℋ•(𝑆) =
ℋ𝔸1,𝑁𝑖𝑠

• (𝑆). The étale topology is also useful, but we will
mainly discuss the Nisnevich version.

In classical topology, one is also interested in stable phe-
nomena, that is, information that is preserved by suspen-
sion with respect to the circle 𝑆1. This stability property is
built into the very definition of generalized (co)homology
via the suspension axiom. One can also see suspension
arising via Spanier–Whitehead duality, in that the Spanier–
Whitehead dual involves a negative suspension, so only de-
fines a true duality after inverting the suspension operator
with respect to 𝑆1. In fact, the Spanier–Whitehead dual of a
smooth compactmanifold𝑀 is the Thom space of its virtual
normal bundle 𝑀∨ = Th(−𝑇𝑀), with 𝑇𝑀 the tangent bun-
dle. To make some sense of this, one can find a vector bun-
dle 𝜈𝑀 → 𝑀 and an isomorphism 𝜈𝑀 ⊕ 𝑇𝑀 ≅ 𝑀 × ℝ𝑛 for
some large 𝑛. The Thom space of a vector bundle 𝑉 → 𝑀
can be defined as the disk bundle modulo the sphere bun-
dle, so Th(ℝ𝑛) = 𝑆𝑛. The isomorphism 𝜈𝑀⊕𝑇𝑀 ≅ 𝑀×ℝ𝑛

translates into the “identity”

Th(𝜈𝑀)=Th(ℝ𝑛)∧Th(−𝑇𝑀)=𝑆𝑛∧Th(−𝑇𝑀)=Σ𝑛𝑆1Th(−𝑇𝑀).

In other words, if we had an inverse to the suspension op-
erator Σ𝑆1 , we could define Th(−𝑇𝑀) ∶= Σ−𝑛𝑆1 Th(𝜈𝑀).

One inverts suspension by passing to a category of
𝑆1-suspension spectra, where an object is a sequence
(𝐸0, 𝐸1,…) of pointed spaces together with bonding maps
𝜖𝑛 ∶ 𝐸𝑛 ∧ 𝑆1 → 𝐸𝑛+1, and then introducing a suitable
notion of stable weak equivalence (see below). The 𝑆1-
suspension is then realized as shifting the sequence to the
left, which has, as a stable inverse, the shift to the right
(this replaces 𝐸0 with the one-point space, but this new
spectrum is stably equivalent to our original one).

In the motivic setting one has an analog of Spanier–
Whitehead duality, where instead of inverting suspension
with respect to 𝑆1, one needs to invert suspension with
respect to ℙ1. To explain how this ℙ1 suspension arises,
there is a purely algebraic definition of the Thom space of
an algebraic vector bundle 𝑉 → 𝑋 by setting Th(𝑉) ∶=
ℙ(𝑉 ⊕𝑂𝑋)/ℙ(𝑉), where ℙ(𝑉) → 𝑋 is the bundle of projec-
tive spaces associated to the vector bundle 𝑉 → 𝑋 . Clas-
sical excision shows that one can also use this formula to
define the Thom space in the topological setting. Morally
speaking, one has the same problem in the motivic set-
ting as in the classical one: one needs to invert the opera-
tor of smash product with Th(𝔸𝑛𝐵) = ℙ𝑛𝐵/ℙ𝑛−1

𝐵 to be able
to define the dual of a smooth projective 𝐵-scheme 𝑋 as
Th(−𝑇𝑋/𝐵). For 𝑛 = 1, instead of Th(ℝ1) = 𝑆1 we get
Th(𝔸1𝐵) = ℙ1𝐵 (pointed by ∞), and one can rather easily
show that Th(𝔸𝑛𝐵) ≅ (ℙ1𝐵)∧𝑛 in ℋ•(𝐵).

This leads to the category of ℙ1-spectra, where a ℙ1-
spectrum is a sequence ℰ = (𝐸0, 𝐸1, …) with 𝐸𝑛 ∈ 𝐒𝐩𝐜•(𝑆),
together with bonding maps 𝜖𝑛 ∶ 𝐸𝑛 ∧ ℙ1 → 𝐸𝑛+1, where

we consider ℙ1 as pointed by∞. This gives us the category
of ℙ1-spectra over our base-scheme 𝑆, Spℙ1(𝑆).

To define a suitable notion of stable equivalence in
the topological setting, one uses the suspension map
− ∧ 𝑆1 ∶ 𝜋𝑛(𝑋) = [𝑆𝑛, 𝑋]ℋ• ↦ [𝑆𝑛+1, 𝑋 ∧ 𝑆1]ℋ• =
𝜋𝑛+1(𝑋 ∧𝑆1), giving the stable homotopy groups 𝜋𝑛(𝐸) for
𝐸=((𝐸0,𝐸1,…), 𝜖∗) a spectrum:

𝜋𝑛(𝐸) ∶= colim𝑁𝜋𝑛+𝑁(𝐸𝑁), 𝑛 ∈ ℤ,
using the suspension map and bonding map 𝜖𝑁 ∶ 𝐸𝑁 ∧
𝑆1 → 𝐸𝑁+1 to define the colimit. A map 𝑓 ∶ 𝐸 → 𝐹 of
suspension spectra is a stable weak equivalence if 𝑓 induces
an isomorphism on 𝜋𝑛 for all 𝑛 and the stable homotopy
category is formed from the category of suspension spectra
by inverting the stable weak equivalences.

In the motivic setting, there is no nice relation of 𝜋∗(𝒳)
and 𝜋∗(𝒳 ∧ ℙ1), but one does have the Tate circle 𝔾𝑚 ∶=
(𝔸1 ⧵ {0}, {1}) ∈ 𝐒𝐩𝐜•(𝐵) and the isomorphism in ℋ•(𝐵)
ℙ1 ≅ 𝑆1 ∧ 𝔾𝑚. This suggests introducing the bi-graded
𝔸1-homotopy sheaf 𝜋𝔸1𝑎,𝑏(𝒳) associated to the presheaf

𝑈 ∈ 𝐒𝐦/𝐵 ↦ [𝑈 ∧ 𝑆𝑎−𝑏 ∧ 𝔾∧𝑏
𝑚 , 𝒳]ℋ•(𝑆)

for 𝑎 ≥ 𝑏 ≥ 0. ℙ1-suspension induces the map

(−) ∧ ℙ1 ∶ 𝜋𝔸1𝑎,𝑏(𝒳) → 𝜋𝔸1𝑎+2,𝑏+1(𝒳 ∧ ℙ1),
and thus for a ℙ1-spectrum ℰ = ((𝐸0, 𝐸1, …), 𝜖∗) we can use
𝜖𝑁 ∶ 𝐸𝑁 → 𝐸𝑁+1 ∧ ℙ1 to define

𝜋𝔸1𝑎,𝑏(𝐸) ∶= colim𝑁𝜋𝔸
1

𝑎+2𝑁,𝑏+𝑁(𝐸𝑁)
for all 𝑎, 𝑏 ∈ ℤ. A map 𝑓 ∶ ℰ → ℱ of ℙ1-spectra is then de-
fined to be a motivic stable weak equivalence if 𝑓 induces
an isomorphism on 𝜋𝔸1𝑎,𝑏 for all 𝑎, 𝑏 ∈ ℤ. Inverting the
motivic stable weak equivalence, one forms the motivic
stable homotopy category SH(𝑆) ∶= Spℙ1(𝑆)[𝑊𝐸−1]. As
for spaces, this localization should be put in the setting of
stable model categories or stable infinity categories to have
a well-defined homotopy category and a stable homotopy
theory.

Some Useful Motivic Cohomology Theories
The classical stable homotopy category SH is the category
of generalized cohomology theories, where a spectrum 𝐸
gives rise to the cohomology theory (on spaces 𝑋) 𝑋 ↦
𝐸∗(𝑋), with 𝐸𝑛(𝑋) ∶= [Σ∞𝑋+, Σ𝑛𝐸]SH. Here Σ∞𝑋+ is the
infinite suspension spectrum (𝑋+, Σ𝑋+, … , Σ𝑛𝑋+, …) with
identity bonding maps 𝜖𝑛. The invertibility of Σℙ1 on
SH(𝑆) gives the two-parameter family of suspensions Σ𝑎,𝑏
corresponding to Σ𝑎−𝑏𝑆1 Σ𝑏𝔾𝑚 for 𝑎 ≥ 𝑏 ≥ 0. A ℙ1-spectrum ℰ
thus gives rise to bi-graded cohomology on 𝐒𝐦/𝑆 or even
on 𝐒𝐩𝐜•(𝑆) by

ℰ𝑎,𝑏(𝑋) = [Σ∞ℙ1𝑋+, Σ𝑎,𝑏ℰ]SH(𝑆),
ℰ𝑎,𝑏(𝒳) = [Σ∞ℙ1𝒳,Σ𝑎,𝑏ℰ]SH(𝑆).

JANUARY 2020 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 11



Here we introduce a few of the most important examples
of motivic cohomology theories with their classical coun-
terparts.

One of the first results in motivic homotopy theory
was the representability of algebraic 𝐾-theory. In topol-
ogy, stable, virtual vector bundles are represented by ℤ ×
𝐵𝑈, 𝐵𝑈 being the classifying space of the infinite unitary
group. Bott periodicity extends this to a 2-periodic spec-
trum 𝐾𝑈 ∶= (ℤ × 𝐵𝑈, Σℤ × 𝐵𝑈, ℤ × 𝐵𝑈,…) representing
topological 𝐾-theory.

The unstable representability of algebraic 𝐾-theory was
proven by Morel–Voevodsky (over a regular base-scheme)
[17, Theorem 4.3.13]. One can take as model for the clas-
sifying scheme BGL /𝑆 the doubly infinite Grassmannian

Gr𝑆 = colim𝑛,𝑚Gr𝑆(𝑛, 𝑛 + 𝑚).
Morel–Voevodsky first show that ℤ×BGL /𝑆 represents the
Grothendieck group of algebraic vector bundles 𝑋↦𝐾0(𝑋)
on 𝐒𝐦/𝑆 via an isomorphism

[𝑋, ℤ × BGL /𝑆]ℋ(𝑆) ≅ 𝐾0(𝑋)
that extends to higher 𝐾-theory using the isomorphism

𝐾𝑛(𝑋) ≅ 𝐾0(𝑋 × Δ𝑛ℤ; 𝑋 × 𝜕Δ𝑛ℤ)
for 𝑋 regular and affine. Here Δ𝑛ℤ is the algebraic version
of the 𝑛-simplex

Δ𝑛ℤ = Specℤ[𝑡0, … , 𝑡𝑛]/(
𝑛
∑
𝑖=0

𝑡𝑖 − 1),

and 𝜕Δ𝑛ℤ is the union of faces 𝑡𝑖 = 0, 𝑖 = 0, … , 𝑛. Using the
contractibility of 𝔸1 in ℋ(𝑆), they show that

[𝑆𝑛 ∧ 𝑋, BGL /𝑆]ℋ•(𝑆) ≅ 𝐾0(𝑋 × Δ𝑛ℤ; 𝑋 × 𝜕Δ𝑛ℤ) ≅ 𝐾𝑛(𝑋),
establishing the representability of algebraic 𝐾-theory by
ℤ × BGL /𝑆, in case of regular 𝑆.

This extends to a stable representability. Replacing Bott
periodicity is an algebraic version: let 𝑉𝑛 → BGL𝑛 =
Gr(𝑛,∞) be the universal 𝑛-plane bundle and let 𝑂(−1) →
ℙ1 = Gr(1, 2) be the tautological line bundle. This gives
the tensor product bundle 𝑝∗1𝑉𝑛 ⊗ 𝑝∗2𝑂(−1) → 𝐵GL𝑛 ×ℙ1.
Applying the unstable representability to the virtual bun-
dle [𝑝∗1𝑉𝑛 ⊗ 𝑝∗2𝑂(−1)] − [𝑝∗1𝑉𝑛] − [𝑝∗2𝑂(−1)] + [𝑂BGL𝑛 ×ℙ1]
gives maps 𝛾𝑛 ∶ BGL𝑛 /𝑆 ∧ ℙ1 → BGL /𝑆, compatible in 𝑛,
which induce 𝛾 ∶ BGL /𝑆 ∧ ℙ1 → BGL /𝑆, defining the ℙ1-
spectrum KGL ∶= (ℤ×BGL, ℤ×BGL, …). This is explained
in Voevodsky’s ICM talk [18].

Another important cohomology theory represented in
SH(𝑆) is motivic cohomology, here for 𝑆 smooth over a
field 𝑘. In the case of 𝑆 = Spec 𝑘, char𝑘 = 0, the motivic co-
homology spectrum𝑀ℤ is represented by infinite symmet-
ric powers, relying on a motivic analog of the Dold–Thom
theorem, which for 𝑇 a connected pointed CW complex
gives the identity 𝜋𝑛(Sym∞𝑇) = 𝐻̃𝑛(𝑇, ℤ).

The Dold–Thom theorem implies that the classical
Eilenberg–MacLane spectrum 𝐻ℤ can be constructed as
𝐻ℤ = (Sym∞𝑆0, Sym∞𝑆1, … , Sym∞𝑆𝑛, …); 𝐻ℤ represents
singular cohomology on 𝐒𝐩𝐜: 𝐻ℤ𝑛(𝑇) = 𝐻𝑛(𝑇, ℤ).

Replacing 𝑆1 with ℙ1, one has the motivic version

𝑀ℤ ∶= (Sym∞𝑆+, Sym∞ℙ1, … , Sym∞(ℙ1)∧𝑛, …).

For 𝑆 = Spec 𝑘, 𝑘 a perfect field, and 𝑋 ∈ 𝐒𝐦/𝑘, one has
Voevodsky’s motivic cohomology 𝐻𝑎(𝑋, ℤ(𝑏)) defined us-
ing his triangulated category of motives DM(𝑘). In case
char𝑘 = 0, this theory is represented by𝑀ℤ: 𝐻𝑎(𝑋, ℤ(𝑏)) =
𝑀ℤ𝑎,𝑏(𝑋) (see [18]). In characteristic 𝑝, this still holds af-
ter inverting 𝑝 or by modifying the definition of 𝑀ℤ suit-
ably. There are extensions ofDM(−) tomore general bases,
and the results for 𝑘 extend to 𝑆 smooth over a perfect field
(see for example [4]).

Both of these theories represent constructions that were
available before the introduction of the motivic stable ho-
motopy category: Quillen’s higher algebraic 𝐾-theory goes
back to the early 1970s, and motivic cohomology is rep-
resented by Bloch’s higher Chow groups, first defined in
the mid-1980s, while the idea that a good theory of mo-
tivic (co)homology could be achieved by a suitable alge-
braic translation of the Dold–Thom theorem goes back
to Suslin and his construction of Suslin homology, in-
troduced shortly after Bloch constructed his higher Chow
groups. Voevodsky [18] introduced a completely new the-
ory, algebraic cobordism, by defining the ℙ1 spectrum
MGL modeled closely on the Thom spectrum MU =
(MU0,MU1, …). Recall thatMU2𝑛 is the Thom spaceTh(𝑉𝑛),
where 𝑉𝑛 → 𝐵𝑈(𝑛) is the universal rank 𝑛 complex vec-
tor bundle over the classifying space of the unitary group
𝐵𝑈(𝑛). To defineMGL, one simply replaces the classifying
space 𝐵𝑈(𝑛) and its universal bundle 𝑉𝑛 → 𝐵𝑈(𝑛)with the
algebraic version𝐸𝑛 → BGL𝑛 and the Thom spaceMU𝑛 ∶=
Th(𝑉𝑛) with the algebraic Thom space MGL𝑛 ∶= Th(𝐸𝑛).
Completely analogous to the topological setting, the fact
that the MGL𝑛 fit together to form a ℙ1 spectrum follows
from the identity Th(𝐸 ⊕ 𝑂𝑋) ≅ Th(𝐸) ∧ ℙ1 for 𝐸 → 𝑋 a
vector bundle and the fact that the restriction of 𝐸𝑛+1 to
BGL𝑛 is 𝐸𝑛 ⊕𝑂BGL𝑛 .

This opened the door to constructions of a whole slew
of new cohomology theories for algebraic varieties, many
of which are modeled on classical topological theories,
others being strikingly new. One now has available mo-
tivic versions of all the Morava 𝐾-theories, cobordism the-
oriesMSL andMSp, modeled on the special linear groups
and the symplectic groups, and Eilenberg–MacLane-type
theories EM(𝑀∗) built out ofMorel’s homotopy modules (see
[11, §5.2]). There are also many (in fact infinitely many)
different ways of constructing families of connective covers
of a given theory. We will discuss some of these in more
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detail in “Cohomology Theories, Orientations, and Char-
acteristic Classes.”

The theories 𝑀ℤ, KGL, and MGL are oriented theories,
which means they admit Thom isomorphisms

𝜃𝑉 ∶ ℰ𝑎,𝑏(𝑋) ∼−→ ℰ𝑎+2𝑟,𝑏+𝑟(Th(𝑉))

for each rank 𝑟 vector bundle 𝑉 → 𝑋 . This motivic notion
is an algebraic analog of the topological theory of complex
oriented spectra. In the topological setting, giving a spec-
trum 𝐸 a complex orientation gives rise to pushforward
maps in 𝐸-cohomology for proper maps endowed with
a complex structure on the stable normal bundle, for in-
stance, for any proper complex analytic map of complex
manifolds. In the algebraic setting, an oriented spectrum
ℰ gives rise to pushforward maps in ℰ-cohomology for
proper maps of smooth schemes.

Of course, a rank 𝑟 vector bundle is just a Zariski locally
trivial fiber bundle with fiber 𝔸𝑟 and group GL𝑟. One can
look at “structured” vector bundles, where the extra struc-
ture is given by restricting the structure group. For instance,
a rank 𝑟 SL-vector bundle is a vector bundle with group SL𝑟,
a rank 2𝑟 symplectic bundle is a vector bundle with group
Sp2𝑟 ⊂ GL𝑟, and so on. One can describe these structures
more intrinsically: an SL-vector bundle is a vector bundle

𝑉 → 𝑋 together with an isomorphism det 𝑉 ∼−→ 𝑂𝑋 , and a
symplectic vector bundle is a vector bundle together with
a symplectic form, i.e., a section 𝜔 of Λ2𝑉∨ that is non-
degenerate on each fiber.

Each of these structures gives rise to a notion of orienta-
tion. An SL-oriented theory is a commutative ring spectrum
ℰ ∈ SH(𝑘) together with Thom isomorphisms

𝜃𝑉,𝜌 ∶ ℰ∗,∗(𝑋) → ℰ2𝑟+∗,𝑟+∗(Th(𝑉))

for each rank 𝑟 vector bundle 𝑉 → 𝑋 with trivialized deter-
minant bundle 𝜌 ∶ det 𝑉 ∼−→ 𝑂𝑋 . These must satisfy a few
natural axioms. An Sp-oriented theory ℰ ∈ SH(𝑘) together
with Thom isomorphisms

𝜃𝑉,𝜔 ∶ ℰ∗,∗(𝑋) → ℰ2𝑟+∗,𝑟+∗(Th(𝑉))

for each rank 𝑟 symplectic vector bundle (𝑉 → 𝑋,𝜔 ∈
𝐻0(𝑋, Λ2𝑉∨)). The corresponding cobordism theories are
MSL and MSp. For the sake of uniformity of notation, we
sometimes refer to an oriented theory as aGL-oriented the-
ory.

An important example of an SL-oriented theory is her-
mitian 𝐾-theory. This may be constructed as a version of
Quillen 𝐾-theory, where one works in the setting of an
exact category with duality. This gives us the presheaf of
spectra on 𝐒𝐦/𝑆, 𝑋 ↦ 𝐾ℎ(𝑋), which is represented by a
ℙ1-spectrum KQ (see [13]). Just as KGL2𝑟,𝑟(𝑋) is the “geo-
metric” part 𝐾0(𝑋) of 𝐾-theory, the classical Grothendieck
group of vector bundles, KQ2𝑟,𝑟(𝑋), has a description as a

Grothendieck–Witt group of quadratic forms. More pre-
cisely, one has the notion of a quadratic form in the de-
rived category of perfect complexes on 𝑋 , namely, a map
𝑞 ∶ 𝐶∗ ⊗𝐿

𝒪𝑋 𝐶∗ → 𝑂𝑋 in 𝐷perf(𝑋), which is symmetric with
respect to the symmetry isomorphism 𝜏 ∶ 𝐶∗ ⊗𝐿

𝒪𝑋 𝐶∗ →
𝐶∗ ⊗𝐿

𝒪𝑋 𝐶∗, and which is nondegenerate, in that the ad-
joint map to 𝑞, 𝐶∗ → Hom(𝐶∗, 𝒪𝑋), is an isomorphism
in 𝐷perf(𝑋). One can also introduce a shifted duality by us-
ing quadratic forms with values in 𝒪𝑋[𝑟] for some 𝑟, and
this, modulo a suitable derived isometry relation, gives the
group KQ2𝑟,𝑟(𝑋).

Fundamental Invariants
In many ways, the most fundamental motivic theory is the
one represented by the unit, the motivic sphere spectrum
𝕊𝑘 ∶= Σ∞ℙ1Spec 𝑘+. This is the motivic analog of the classi-
cal sphere spectrum 𝕊 ∶= Σ∞𝑆1𝑆0, which is the unit in SH.

First a toy model, the derived category. For a commu-
tative ring 𝑅, much of the basic structure of the derived
category of 𝑅-modules, 𝐷(𝑅), follows from the structure of
the (graded) endomorphism ring of the unit 𝑅:

Hom𝐷(𝑅)(𝑅, 𝑅[𝑛]) = {𝑅 for 𝑛 = 0,
0 else.

For the classical stable homotopy category, things are
much more mysterious: HomSH(𝕊, Σ𝑛𝕊) is exactly the 𝑛th
stable homotopy group𝜋𝑛(𝕊). These have been intensively
studied, but only the first fifty or so have been completely
computed.

At least one does know that 𝜋𝑛(𝕊) = 0 for 𝑛 < 0, a re-
flection of the fact that 𝜋𝑚(𝑆𝑛) = 0 for 0 < 𝑚 < 𝑛, and that
𝜋0(𝕊) = ℤ, since 𝜋𝑛(𝑆𝑛) = 𝐻𝑛(𝑆𝑛, ℤ) = ℤ, this following
from the connectivity of 𝑆𝑛 and theHurewicz theorem. Ad-
ditionally, Serre’s finiteness theorem and the Freudenthal
suspension theorem imply that 𝜋𝑛(𝕊) is a finite group for
all 𝑛 > 0.

In the motivic setting life is already made more compli-
cated by having a two-variable family of stable homotopy
groups, 𝜋𝑎,𝑏(𝕊𝑘)(𝑘) ∶= HomSH(𝑘)(Σ𝑎,𝑏𝕊𝑘, 𝕊𝑘) and homo-
topy sheaves 𝜋𝑎,𝑏(𝕊𝑘) on 𝐒𝐦/𝑘.

Morel’s homotopy 𝑡-structure [11, §5.2] leads one to
reindex these as 𝜋𝑛(𝕊𝑘)𝑚 ∶= 𝜋𝑛−𝑚,−𝑚(𝕊𝑘) and consider
𝜋𝑛(𝕊𝑘)∗ ∶= ⨁𝑚 𝜋𝑛(𝕊𝑘)𝑚 as the motivic analog of 𝜋𝑛(𝕊).

For instance, Morel’s stable 𝔸1-connectivity theo-
rem [11, Theorem 4.2.10, Lemma 4.3.11] implies that
𝜋𝑛(𝕊𝑘)∗ = 0 for 𝑛 < 0. A beautiful analog of the identity
𝜋0(𝕊) = ℤ is Morel’s computation of the motivic 0-stem
[11, Theorem 6.4.1]

𝜋0(𝕊𝑘)∗(𝑘) = 𝐾𝑀𝑊
∗ (𝑘).

Here 𝐾𝑀𝑊
𝑛 (𝑘) is the 𝑛th Milnor–Witt 𝐾-group of the field

𝑘, defined via explicit generators and relations by Hopkins
and Morel [11, §6.3].
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The unstable algebraic Hopf map is the map 𝜂 ∶ 𝔸2 ⧵
{0} → ℙ1 defining ℙ1 as the quotient of 𝔸2 ⧵ {0} modulo
the 𝔾𝑚-action, that is, 𝜂((𝑥, 𝑦)) = [𝑥 ∶ 𝑦]. One has isomor-
phisms inℋ•(𝑘), (𝔸2⧵{0}, (1, 0)) ≅ 𝑆1∧𝔾𝑚∧𝔾𝑚, and ℙ1 ≅
𝑆1∧𝔾𝑚, so stably 𝜂 gives the class 𝜂 ∈ 𝜋0(𝕊𝑘)−1(𝑘) and, by
Morel’s theorem, the corresponding element 𝜂 ∈ 𝐾𝑀𝑊

−1 (𝑘).
The Milnor 𝐾-theory of 𝑘, 𝐾𝑀

∗ (𝑘), is simply the tensor
algebra on the group of units 𝑘×, modulo the ideal gener-
ated by {𝑎 ⊗ (1 − 𝑎) ∣ 𝑎 ∈ 𝑘 ⧵ {0, 1}}. There is a surjective
ring homomorphism 𝐾𝑀𝑊

∗ (𝑘) → 𝐾𝑀
∗ (𝑘) with kernel the

two-sided ideal generated by 𝜂. In fact, it follows from the
very definition that 𝐾𝑀𝑊

∗ (𝑘) is generated as a graded ring
by 𝜂 ∈ 𝐾𝑀𝑊

−1 (𝑘) and elements [𝑢] ∈ 𝐾𝑀𝑊
1 (𝑘) for 𝑢 ∈ 𝑘×,

corresponding via Morel’s theorem to 𝑢 viewed as a map
Spec 𝑘+ → 𝔾𝑚, with the following relations [11, Defini-
tion 6.3.1]:

1. 𝜂 ⋅ [𝑢] = [𝑢] ⋅ 𝜂 for all 𝑢 ∈ 𝑘×.
2. [𝑢] ⋅ [1 − 𝑢] = 0 for 𝑢 ∈ 𝑘 ⧵ {0, 1}.
3. [𝑢𝑣] = [𝑢] + [𝑣] + 𝜂[𝑢][𝑣] for 𝑢, 𝑣 ∈ 𝑘×.
4. 𝜂 ⋅ (2 + 𝜂[−1]) = 0.
The map 𝐾𝑀𝑊

∗ (𝑘) → 𝐾𝑀
∗ (𝑘) is defined by sending 𝜂 to zero

and [𝑢] to the class {𝑢} of 𝑢.
The assignment of a field 𝐹 to the Milnor–Witt ring

𝐾𝑀𝑊
∗ (𝐹) or the Milnor 𝐾-theory ring 𝐾𝑀

∗ (𝐹) both extend
to Nisnevich sheaves𝒦𝑀𝑊

∗ ,𝒦𝑀
∗ on 𝐒𝐦/𝑘, and Morel’s iso-

morphism extends to an isomorphism of sheaves

𝜋0(𝕊𝑘)∗ ≅ 𝒦𝑀𝑊
∗ .

The Milnor–Witt ring thus combines the Milnor 𝐾-
groups 𝐾𝑀

∗ (𝑘) with information having to do with qua-
dratic forms. 𝐾𝑀𝑊

0 (𝑘) is exactly the Grothendieck–Witt
ring GW(𝑘) of nondegenerate symmetric bilinear forms
over 𝑘, and for 𝑛 < 0, 𝐾𝑀𝑊

𝑛 (𝑘) is the Witt ring, that is,
GW(𝑘) modulo the hyperbolic form. Explicitly, the rank
one form 𝑞ᵆ(𝑥) = 𝑢𝑥2, 𝑢 ∈ 𝑘×, gets sent to ⟨𝑢⟩ ∶= 1+𝜂[𝑢] ∈
𝐾𝑀𝑊
0 (𝑘). The relation (3) translates into the multiplicativ-

ity ⟨𝑢𝑣⟩ = ⟨𝑢⟩⋅⟨𝑣⟩, which the relation 𝑞ᵆ ⋅𝑞𝑣 = 𝑞ᵆ𝑣 inGW(𝑘)
requires. The hyperbolic form ℎ(𝑥, 𝑦) = 𝑥2 − 𝑦2 gets sent
to 2 + 𝜂[−1] and is thus 𝜂𝑛 ⋅ ℎ = 0 in 𝐾𝑀𝑊

−𝑛 (𝑘) for all 𝑛 > 0.
This shows that the map GW(𝑘) → 𝐾𝑀𝑊

0 (𝑘) descends to
𝑊(𝑘) → 𝐾𝑀𝑊

−𝑛 (𝑘) for all 𝑛 > 0. Morel shows that all these
maps are isomorphisms [11, Lemmas 6.3.8 and 6.3.9].

For 𝑛 > 0, there is an exact sequence

0 → 𝐼𝑛+1 → 𝐾𝑀𝑊
𝑛 (𝑘) → 𝐾𝑀(𝑘) → 0,

where 𝐼 ⊂ GW(𝑘) is the augmentation ideal of quadratic
forms of virtual rank zero [11, Theorem 6.4.5]. All this
extends to the sheaf setting without change; in particu-
lar 𝒦𝑀𝑊

0 is the sheaf 𝒢𝒲 of Grothendieck–Witt rings on
𝐒𝐦/𝑘.

One can try to understand the sheaves 𝜋∗(𝕊𝑘)∗ via unit
maps to various motivic ring spectra. For the oriented

theories ℰ = 𝑀ℤ,KGL,MGL, 𝜂 acts as zero, 𝜋0(ℰ)∗ =
𝒦𝑀

∗ , and the respective unit map induces the surjection
𝒦𝑀𝑊

∗ → 𝒦𝑀
∗ . As a first attempt, consider the unit map

𝑢KGL ∶ 𝕊𝑘 → KGL. For ∗ = 0, this is simply the rank
map 𝒢𝒲 → ℤ, so these theories do not carry any of the
quadratic forms information in 𝒦𝑀𝑊

∗ .
Hermitian 𝐾-theory gives a better approximation to the

sphere spectrum than 𝑀ℤ,KGL, or MGL. In fact the unit
map 𝕊𝑘 → KQ induces an isomorphism on 𝜋0(−)∗ for
∗ ≤ 3 by work of Suslin and Asok–Fasel. This is perhaps
not so surprising, at least for 𝜋0(−)0 as 𝜋0(𝕊𝑘)0 = 𝒢𝒲 =
KQ0,0, the first identity from Morel’s theorem and the sec-
ondmore or less by construction. In her 2019 doctoral the-
sis, Maria Yakerson [20] considers 𝜋0(MSL)∗ and shows by
a direct computation that this is also 𝒦𝑀𝑊

∗ .
Relying heavily on properties of KQ, Röndigs–

Spitzweck–Østvær [15] compute themotivic stable 1-stem.
Here is the result; for simplicity we give the statement only
in characteristic zero, although suitably modified, it re-
mains true in arbitrary characteristic ≠ 2.
Theorem 1 ([15, Theorem 5.5]). Let 𝑘 be a field character-
istic 0. The unit map 𝕊𝑘 → KQ induces a short exact sequence
of Nisnevich sheaves

0 → 𝒦𝑀
2+𝑛/24 → 𝜋1(𝕊𝑘)𝑛 → 𝜋1(𝑓0 KQ)𝑛.

The right-hand map is surjective for 𝑛 ≤ 4. In addition,
𝜋1(𝑓0 KQ)𝑛 = 0 for 𝑛 ≤ −2; in particular 𝜋1(𝕊𝑘)−2 ≅ ℤ/24
and 𝜋1(𝕊𝑘)𝑛 = 0 for 𝑛 < −2.

Here 𝑓0 KQ is the so-called effective cover of KQ. This in-
volves Voevodsky’s slice filtration, a motivic analog of the
classical Moore–Postnikov tower. The cover 𝑓0 KQ → KQ
induces an isomorphism on 𝜋𝑖(−)𝑛 for all 𝑛 ≤ 0, so in that
range, one can replace 𝑓0 KQ with hermitian 𝐾-theory KQ
itself. We refer the reader to the excellent survey article [7]
as well as the original paper [15] for details on the theo-
rem, the slice filtration, and many other interesting topics.

A remarkable and perhaps unexpected application of
the motivic theory has been to give a new and quite effec-
tive tool for computing classical stable homotopy groups
of spheres. The (topological) Adams and Adams–Novikov
spectral sequences promote higher multiplicative struc-
tures in singular cohomology or complex cobordism to
yield computations of the stable homotopy groups of
spheres. Computations of the differentials are often very
difficult.

There are motivic analogs of these spectral sequences,
using the motivic cohomology spectrum or the algebraic
cobordism spectrum as motivic replacements for singu-
lar cohomology and complex cobordism. The motivic
versions involve an additional grading, the Tate twist,
which tends to split the classical differentials into a num-
ber of summands. This additional information is often
very helpful in resolving ambiguities and determining the
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differentials in the classical spectral sequence. Using this
approach in a number of papers, Isaksen, Xu, and Wang
(see for example [6], [19]) have corrected earlier computa-
tions and have begun pushing beyond; their paper on the
61st stem has the beautiful geometric consequence: the
61-sphere has a unique smooth structure, and it is the last
odd-dimensional case. Pushing up to 𝜋126 could resolve
the last remaining case of the Kervaire invariant one con-
jecture. We refer the reader to [7] for a much more com-
plete survey of this fascinating topic, as well as many other
results on the motivic homotopy groups of spheres.

Plus and Minus
One fascinating aspect of motivic homotopy theory is how
it unifies two different homotopical worlds via complex
and real embeddings. An algebraic variety 𝑋 over ℝ de-
termines simultaneously two topological spaces, namely,
the space ofℂ-points 𝑋(ℂ) and the space ofℝ-points 𝑋(ℝ),
with the topology induced by ℂ, ℝ, respectively. As a sim-
ple example, the algebraic projective line ℙ1 has ℙ1(ℂ) ≅
𝑆2 and ℙ1(ℝ) ≅ 𝑆1. This dual nature extends to realization
functors Reℂ ∶ SH(ℂ) → SH, Reℝ ∶ SH(ℝ) → SH. Morel
has introduced the heuristic principle, that a conjecture in
SH(𝑘) can be tested by seeing if it remains true in SH after
applying Reℂ and Reℝ for all complex or real embeddings
𝑘 → ℂ, 𝑘 → ℝ.

As an elementary but fundamental example, consider
the symmetry isomorphism 𝜏 ∶ ℙ1 ∧ ℙ1 → ℙ1 ∧ ℙ1, ex-
changing the factors; clearly 𝜏2 = Id. Under the complex
realization, this is 𝑆4 = 𝑆2 ∧ 𝑆2 → 𝑆2 ∧ 𝑆2 = 𝑆4, which is
homotopic to the identity map, while under the real real-
ization, this is 𝑆2 = 𝑆1 ∧ 𝑆1 → 𝑆1 ∧ 𝑆1 = 𝑆2, which is ho-
motopic to minus the identity map. Thus, the map 𝜏 gives
a way of distinguishing between Reℂ and Reℝ, even after
passing to the stable setting. We can use the additive na-
ture of SH(𝑘) to form the two idempotent endomorphisms
of the sphere spectrum 𝕊𝑘 (after inverting 2),

𝜏+ ∶= 1 + 𝜏
2 , 𝜏− ∶= 1 − 𝜏

2 .

This splits 𝕊𝑘 in SH(𝑘)[1/2] as
𝕊𝑘 = 𝕊+𝑘 ⊕𝕊−𝑘 ,

with 𝜏+ acting as the identity on 𝕊+𝑘 and as zero on 𝕊−𝑘 ,
and with 𝜏− having the opposite behavior. Since 𝕊𝑘 is the
unit for the monoidal structure on SH(𝑘), this splitting of
𝕊𝑘 into plus and minus factors splits the whole category
SH(𝑘)[1/2] as the product of two tensor triangulated cate-
gories

SH(𝑘)[1/2] = SH(𝑘)+ × SH(𝑘)−.
The fact that 𝜏 induces Id under Reℂ and −Id under Reℝ
says that Reℂ factors through the projection to SH(𝑘)+ and
Reℝ factors through the projection to SH(𝑘)− after invert-
ing 2.

The two factors SH(𝑘)+ and SH(𝑘)− behave quite differ-
ently. One aspect of this is the relation with Voevodsky’s
triangulated category of motives, DM(𝑘). There is a mo-
tivic Eilenberg–MacLane functorEMmot ∶ DM(𝑘) → SH(𝑘)
that formally mimics the classical one EM ∶ 𝐷(𝐀𝐛) → SH.
The fact that the higher stable homotopy groups of the
sphere spectrum 𝕊 in SH are all torsion implies that the
classical Eilenberg–MacLane functor is an equivalence af-
ter ℚ-localization. As the symmetry operator 𝜏ℤ ∶ ℤ(1) ⊗
ℤ(1) → ℤ(1) ⊗ ℤ(1) is the identity, EMmot factors through
SH(𝑘)+ (after inverting 2). Thus, for fields 𝑘 such that
SH(𝑘)− survives ℚ-localization, it cannot be the case that
EMmot is a ℚ-equivalence. On the other hand, a result
of Cisinski–Déglisé [4, Theorems 16.1.4 and 16.2.13] tells
us that EMmotℚ ∶ DM(𝑘)ℚ → SH(𝑘)+ℚ is an equivalence,
so EMmot ∶ DM(𝑘)ℚ → SH(𝑘)ℚ is an equivalence exactly
when SH(𝑘)−ℚ = 0.

For which fields 𝑘 does SH(𝑘)− survive ℚ-localization?
Again, the answer to this lives in End(𝕊𝑘) = GW(𝑘). The
unit in DM(𝑘) is the weight-zero Tate motive ℤ(0), and it
is not hard to show that

EndDM(𝑘)(ℤ(0)) = ℤ ⋅ Idℤ(0).
Now, SH(𝑘)− survives ℚ-localization if and only if
EndSH(𝑘)(𝕊−)ℚ ≠ {0}. Also, as the map EndSH(𝑘)(𝕊𝑘) →
EndDM(𝑘)(ℤ(0)) induced by the adjoint to EMmot is the
rank homomorphism GW(𝑘) → ℤ, we see that SH(𝑘)− sur-
vives ℚ-localization if and only if the augmentation ideal
𝐼 ∶= ker(rnk) ⊂ GW(𝑘) is nontorsion. This property of 𝑘
has been studied classically, and the answer is: 𝐼 is not a
torsion group if and only if 𝑘 admits an ordering or, equiv-
alently, −1 is not a sum of squares in 𝑘. In particular,
SH(𝑘)− survives ℚ-localization for any field 𝑘 that admits
an embedding into ℝ.

To summarize: the motivic stable homotopy category
SH(𝑘) splits into two pieces after inverting 2, the plus part
and the minus part. Rationally, the plus part is the same
as Voevodsky’s triangulated category of motives, a motivic
reflection of the fact that the classical stable homotopy
category is rationally the same as the derived category of
abelian groups. The minus part survives ℚ-localization ex-
actly when −1 is not a sum of squares in 𝑘, for example, if
𝑘 admits an embedding into ℝ.

This suggests that the mysterious minus part could be
approached via the real realization for each embedding
𝑘 ↪ ℝ. As a simple example ofMorel’s heuristic, look back
at our friend the involution 𝜏 ∶ ℙ1 ∧ℙ1 → ℙ1 ∧ℙ1. This in-
duces an endomorphism of 𝕊𝑘, giving us an element [𝜏] of
GW(𝑘). What element is this? We know under complex re-
alization ℙ1 becomes an 𝑆2, so under GW(𝑘) → GW(ℂ) =
ℤ (which is the rank map) [𝜏] maps to 1. One can show
that the map GW(𝑘) → EndSH(𝕊) = ℤ under real realiza-

tion is the signature map GW(𝑘) → GW(ℝ)
sig
−−→ ℤ. As ℙ1
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becomes an 𝑆1 under real realization, [𝜏] maps to −1, so
[𝜏] has signature −1. In fact, if we expand our horizons a
bit and allow ourselves towork in themotivic stable homo-
topy category over ℤ, then as 𝜏 is defined over ℤ, we should
expect that [𝜏] lives in GW(ℤ) ⊂ GW(ℚ). GW(ℤ) is quite
simple; in fact the map ℤ → ℝ induces an isomorphism
GW(ℤ) → GW(ℝ), and the pair (rnk, sig) ∶ GW(ℝ) → ℤ×ℤ
is an injective ring homomorphism. Thus the information
rnk[𝜏] = 1, sig[𝜏] = −1 would completely determine [𝜏]
and tells us that [𝜏] is the one-dimensional form 𝑥 ↦ −𝑥2.

We underscore that the heuristic reasoning given
above is not a proof. Although one suspects that
EndSH(ℤ)(𝕊ℤ) = GW(ℤ), this has not been proven, and
there are in fact quite fundamental problems that stand
in the way. Even showing that the image of EndSH(ℤ)(𝕊ℤ)
in EndSH(ℚ)(𝕊ℚ) = GW(ℚ) is the subring GW(ℤ) is still
out of reach, but perhaps not as far as the complete com-
putation of EndSH(ℤ)(𝕊ℤ). The computation of the im-
age of EndSH(ℤ)(𝕊ℤ) in EndSH(ℚ)(𝕊ℚ) relies on extending
the known theory of hermitian 𝐾-theory to schemes over
ℤ[1/2] to schemes over ℤ. With our present knowledge,
the best we can say is that the image of EndSH(ℤ)(𝕊ℤ) in
EndSH(ℚ)(𝕊ℚ) is contained in GW(ℤ[1/2]) ⊂ GW(ℚ). As
GW(ℤ[1/2]) is only a little larger than GW(ℤ) (there is an
additional 2-torsion element), this is not too bad, but still
it would be nice to get all the way down to GW(ℤ) =
GW(ℝ).

On the positive side, Bachmann’s results (see Theo-
rems 2 and 3 below) can be viewed as making at least the
real part of this heuristic precise. In any case, Morel has
verified the above guess for [𝜏], showing [11, Remark 6.3.5]
that [𝜏] = ⟨−1⟩ = 1 + 𝜂[−1] ∈ 𝐾𝑀𝑊

0 (𝑘) = GW(𝑘).

The Algebraic Hopf Map
Another way to get at the mysterious minus part of SH(𝑘)
is by inverting the algebraic Hopf map. In topology, the
Hopf map 𝜂𝑡𝑜𝑝 ∶ 𝑆3 → 𝑆2 is the first “surprising” bit
of the homotopy groups of spheres. 𝜂𝑡𝑜𝑝 is the genera-
tor of 𝜋3(𝕊2) ≅ ℤ, and its first suspension Σ𝜂𝑡𝑜𝑝 is also
a generator of 𝜋4(𝑆3) = ℤ/2. The Freudenthal suspen-
sion theorem shows that further suspension gives isomor-
phisms 𝜋4(𝑆3) ≅ 𝜋𝑛+1(𝑆𝑛), 𝑛 ≥ 3, so stably 𝜂𝑡𝑜𝑝 generates
𝜋1(𝕊) = colim𝑛𝜋𝑛+1(𝑆𝑛) ≅ ℤ/2. We can view 𝑆3 as the unit
sphere in ℂ2, which shows that our algebraic Hopf map
𝜂 ∶ 𝔸2 ⧵ {0} → ℙ1 has ℂ-realization (for 𝑘 ⊂ ℂ) equal to
𝜂𝑡𝑜𝑝. What is the real realization? 𝔸2 ⧵{0} becomes ℝ2 ⧵{0},
and ℙ1 becomes ℝℙ1 ≅ 𝑆1. The inclusion of the unit cir-
cle defines a homotopy equivalence 𝑆1 ∼ ℝ2 ⧵ {0}, and
𝜂 realizes the map ×2 ∶ 𝑆1 → 𝑆1, giving the homotopy
class [Reℝ(𝜂)] ∈ 𝜋1(𝑆1) = 𝜋0(𝕊) = ℤ, i.e., [Reℝ(𝜂)] =
2 ∈ ℤ. Note that in contrast to [Reℂ(𝜂)] ∈ 𝜋1(𝕊) = ℤ/2,
[Reℝ(𝜂)] ∈ 𝜋0(𝕊) is a nontorsion element.

If we formally invert 𝜂 in SH(𝑘), then under ℂ-

realization we have inverted a 2-torsion element, so
ℂ-realization sends SH(𝑘)[𝜂−1] to zero, while
ℝ-realization merely inverts 2. This suggests that
SH(𝑘)[𝜂−1, 1/2] ≅ SH(𝑘)−, which is in fact the case. This
identity follows from a basic relation in GW(𝑘).

As mentioned above, Morel has shown that [𝜏] =
⟨−1⟩ = 1+𝜂[−1]. Splitting SH(𝑘)[1/2] into plus and minus
parts corresponds to the two idempotents 𝜏+ ∶= (1+[𝜏])/2,
𝜏− ∶= (1 − [𝜏])/2, with 𝜏± acting by the identity on SH(𝑘)±
and by zero on SH(𝑘)∓. As 𝜏− = (−1/2)𝜂[−1], both 𝜂 and
[−1] are invertible on SH(𝑘)−. Similarly, as 𝜏+ = Id +
(1/2)𝜂[−1], 𝜂[−1] = 0 on SH(𝑘)+. In fact, SH(𝑘)+[𝜂−1] = 0.
As we have already seen, 𝜂𝑛 ⋅ 𝐾𝑀𝑊

0 (𝑘) = 𝐾𝑀𝑊
−𝑛 (𝑘) = 𝑊(𝑘)

for all 𝑛 > 0, and thus

𝐾𝑀𝑊
∗ (𝑘)[𝜂−1] = colim𝑛,×𝜂𝐾𝑀𝑊

−𝑛 (𝑘) = 𝑊(𝑘).
The augmentation ideal 𝐼 ⊂ GW(𝑘) is also an ideal
in 𝑊(𝑘), and 𝑊(𝑘)/𝐼 = ℤ/2; and as the projection
onto the plus part gives the rank map GW(𝑘)[1/2] →
ℤ[1/2], we see that the projection ofEndSH(𝑘)(𝕊𝑘)[𝜂−1, 1/2]
to EndSH(𝑘)+(𝕊

+
𝑘 )[𝜂−1, 1/2] is the zero map, and thus

SH(𝑘)+[𝜂−1] = 0.
After inverting 2, inverting [−1] has exactly the same ef-

fect as inverting 𝜂. Let 𝜌 ∶ 𝑆0𝑘 → 𝔾𝑚 be the map corre-
sponding to −1 ∈ 𝔾𝑚(𝑘). We also use 𝜌 ∶ 𝕊𝑘 → 𝔾𝑚 ∧ 𝕊𝑘
for the stable version, corresponding to [−1] ∈ 𝐾𝑀𝑊

1 (𝑘).
Then SH(𝑘)−[𝜌−1] = SH(𝑘)− and SH(𝑘)+[𝜌−1] = 0. We
have seen the interpretation of 𝜂 as the classical Hopf map
via the complex realization and as multiplication by 2 on
𝑆1 via the real realization. We can do the same for the
map 𝜌. The complex realization of 𝔾𝑚 is ℂ× ∼ 𝑆1, and
Reℂ([−1]) is the inclusion of 𝑆0 to 𝑆1 as {±1}. As this map
is clearly homotopic to 0, inverting Reℂ(𝜌) will kill the en-
tire stable homotopy category. The real realization of 𝜌 is
𝑆0 → ℝ×, again being the inclusion of {±1} into ℝ×, but
this time the map is a homotopy equivalence, even with-
out inverting 2. This suggests that SH(𝑘)[𝜌−1] should be
closely related to the classical stable homotopy category
via the real realization.

The 𝜌-inverted Motivic Stable
Homotopy Category
Bachmann has proven a much more precise statement
about the 𝜌-localization of SH(𝑘). We first give the simple
version.

Theorem 2 (Bachmann [3]). The real realization Reℝ ∶
SH(ℝ) → SH induces an equivalence SH(ℝ)[𝜌−1] → SH.

This is just a special case. In general, Bachmann con-
siders the motivic stable homotopy category over a base-
scheme 𝑋 . One has the topological space of “real” points
of 𝑋 , ℛ(𝑋). Here, the points of ℛ(𝑋) are pairs (𝑥, 𝛼) con-
sisting of a point 𝑥 of 𝑋 and an ordering 𝛼 on the residue
field 𝜅(𝑥). The topology is formed by incorporating the
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orderings and the Zariski topology on 𝑋 . As any topo-
logical space, ℛ(𝑋) has a homotopy theory of sheaves of
simplicial sets, giving rise to a stable homotopy category
SH(ℛ(𝑋)). Bachmann’s general theorem is

Theorem 3. There is an equivalence of SH(𝑋)[𝜌−1] with
SH(ℛ(𝑋)).

For 𝑋 = Specℝ, there is a unique ordering on the
residue field ℝ of the unique point of 𝑋 , so SH(ℛ(Specℝ))
is just the usual stable homotopy category SH, giving back
the special case Theorem 2.

In particular, Bachmann’s theorem gives a canonical ob-
ject in SH(ℝ)[𝜌−1] with real realization MU. Recognizing
the important role that complex cobordism plays in under-
standing the structure of SH, it would be interesting to see
to what extent one can lift this object to SH(ℚ) and how
unique such a lifting would be. For lifting to SH(ℝ), an
obvious candidate would be the cobordism spectrum built
out of the restriction of scalars 𝑅ℂ/ℝ GL𝑛, 𝑛 = 0, 1, 2, …, but
the general picture is unclear.

As we have seen, SH(𝑘)[𝜌−1] and SH(𝑘)[𝜂−1] both agree
with SH(𝑘)− after inverting 2, so Bachmann’s theorem
gives a workable description of SH(𝑘)−, with some quite
beautiful consequences. One of these is a new proof of a re-
sult of Ananyevskiy–Levine–Panin [1], an analog of Serre’s
theorem on the finiteness of 𝜋𝑛(𝕊) for 𝑛 > 0.
Theorem 4. The homotopy sheaves 𝜋𝑖(𝕊−𝑘 )∗ are torsion for all
𝑖 ≠ 0.

Combining the Cisinski–Déglisé result identifying
DM(𝑘)ℚ with SH(𝑘)+ℚ, Morel’s 𝔸1-connectivity theorem
(𝜋𝑖(𝕊𝑘)∗ = 0 for 𝑖 < 0), and Morel’s theorem 𝜋0(𝕊𝑘)∗ =
𝐾𝑀𝑊
∗ , we thus have a complete description of 𝜋∗(𝕊𝑘)∗ℚ

in terms of the Witt sheaves 𝒲 and motivic cohomology
sheaves ℋ𝑝,𝑞.

One sees the complexity of motivic homotopy theory
as compared to the classical case, as well as an interesting
parallel, in the following tables:

𝜋𝑖(𝕊) = 0 for 𝑖 < 0,
𝜋0(𝕊) = ℤ,
𝜋𝑖(𝕊)ℚ = 0 for 𝑖 > 0,

𝜋𝑖(𝕊𝑘)∗ = 0 for 𝑖 < 0,
𝜋0(𝕊𝑘)∗ = 𝒦𝑀𝑊

∗ ,
𝜋𝑖(𝕊)𝑛ℚ = ℋ𝑛−𝑖,𝑛

ℚ for 𝑖 > 0.
If we think of ℋ𝑛−𝑖,𝑛 as the “cohomology of a point,”
we see another way in which the motivic theory differs
from the classical one: a point (that is, the spectrum of
a field) can have nontrivial higher cohomology in the mo-
tivic case.

To finish off the story, we note that ℋ𝑝,𝑞
ℚ = 0 for 𝑞 < 0,

ℋ𝑝,0 = 0 for 𝑝 ≠ 0, and ℋ0,0 = ℤ. The Beilinson–Soulé
conjectures assert that the sheafℋ𝑝,𝑞

ℚ is zero for 𝑝 ≤ 0 and
𝑞 > 0, but this is known only for 𝑞 = 1. Thus, in addi-
tion to Morel’s vanishing (𝜋𝑖(𝕊𝑘)∗ = 0 for 𝑖 < 0), we have
𝜋𝑖(𝕊)𝑛ℚ = 0 for 𝑖 > 0 and 𝑛 ≤ 0, and the Beilinson–Soulé

conjectures imply the additional vanishing 𝜋𝑖(𝕊)𝑛ℚ = 0 for
𝑛 > 0 and 𝑖 ≥ 𝑛.

Cohomology Theories, Orientations,
and Characteristic Classes
Let ℰ be a 𝐺-oriented theory (𝐺 = GL, SL, Sp) and let 𝑉 →
𝑋 be a 𝐺-vector bundle of rank 𝑟. Via the Thom isomor-
phism ℰ𝑎,𝑏(𝑋) → ℰ2𝑟+𝑎,𝑟+𝑏(Th(𝑉)), the unit 1𝑋 ∈ ℰ0,0(𝑋)
gives the Thom class th(𝑉) ∈ ℰ2𝑟,𝑟(Th(𝑉)). The Euler class
𝑒(𝑉) ∈ ℰ2𝑟,𝑟(𝑋) is the pullback of th(𝑉) by the zero-section.
Starting with the Euler class, there are often ways of con-
structing other quite useful characteristic classes for vector
bundles.

The theory of Chern classes lies at the very roots of our
modern theory of motives. Grothendieck showed how to
make Chern’s topological theory algebraic, yielding a the-
ory of Chern classes of algebraic vector bundles with values
in the Chow ring. His approach relies on the existence of
a first Chern class for line bundles and the projective bundle
formula, which for a vector bundle 𝐸 → 𝑋 expresses the
Chow ring of a projective space bundle ℙ(𝐸) → 𝑋 as a free
module over the Chow ring of 𝑋 , with generator powers
of the first Chern class of the tautological line bundle. In
fact, Grothendieck worked in the abstract setting, using a
contravariant functor 𝐴∗ from smooth varieties to graded
rings, satisfying certain axioms. A version of these axioms
is satisfied (suitably modified for bi-graded theories) for
the functors 𝑋 ↦ ℰ∗∗(𝑋), where ℰ∗∗ is an oriented com-
mutative ring spectrum in the sense indicated in “Some
Useful Motivic Cohomology Theories,” and are all com-
patible via the complex realization functor with the cor-
responding topological theory of characteristic classes for
Reℂ(ℰ). The Euler class construction is recovered as the top
Chern class, in particular, for a line bundle 𝐿, 𝑒(𝐿) = 𝑐1(𝐿),
so one can use the Euler class as the starting point for the
whole construction.

For example, one has a motivic theory of Conner–Floyd
Chern classes forMGL, which underℂ-realizationmaps to
the classical Conner–Floyd Chern classes for MU. In fact,
once one has set up the machinery, the motivic setting
for oriented theories is formally exactly the same as the
topological setting for complex oriented theories. This is
mademore precise by the universality ofMGL as amotivic-
oriented theory, proved by Panin–Pimenov–Röndigs [12],
exactly parallel to the universality of MU among complex
oriented theories, and by the fact that the coefficient ring
MGL2∗,∗(𝑘) is equal to the coefficient ring of MU, namely,
the Lazard ring, classifying rank one commutative formal
group laws. This fundamental result was first stated by
Hopkins–Morel and was given a complete proof by Hoy-
ois [5]. In positive characteristics, one needs to invert the
characteristic for the proof, although it is conjectured that
the result remains true integrally.
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Complex cobordism and the theory of formal group
laws give rise to some of the most basic theorems on the
structure of the stable homotopy category, for instance, the
nilpotence theorem of Devinatz–Hopkins–Smith. One
might expect that via the close connection of MGL with
MU, one could lift these results to SH(𝑘). However, the
algebraic Hopf map 𝜂 acts as the zero map on MGL∗∗, so
MGL∗∗ dies after inverting 𝜂, and one cannot use the theory
of oriented spectra to say anythingmuch about SH(𝑘)[𝜂−1]
or SH(𝑘)−. However, theories with SL or Sp orientations
do not automatically die after inverting 𝜂, and these will
thus be useful for understanding SH(𝑘)−.

Panin–Walter [14] have considered the symplectically
oriented theories as motivic analogs of the classical quater-
nionic theories. They have constructed a motivic analog of
quaternionic projective space as the symplectic Grassman-
nian ℍℙ𝑛, this being the open subscheme of the usual
Grassmann variety of 2-planes in 2𝑛+2-space,Gr(2, 2𝑛+2),
consisting of those 2-planes for which the standard sym-
plectic form 𝜔2𝑛+2 on 𝔸2𝑛+2 is nondegenerate, and thus
the restriction ̃𝐸2 → ℍℙ𝑛 of the tautological 2-plane bun-
dle on Gr(2, 2𝑛 + 2) is a symplectic vector bundle.

This generalizes to the setting of a rank 2𝑛 + 2 symplec-
tic bundle (𝑉 → 𝑋,𝜔𝑉 ): one has the Grassmann bundle
Gr𝑋(2, 𝑉) → 𝑋 and the open subbundle ℍℙ(𝑉) → 𝑋 of
2-planes for which 𝜔𝑉 restricts to a nondegenerate form.
Just as for ℍℙ𝑛, we have restriction ̃𝐸2𝑉 → ℍℙ(𝑉) of the
tautological 2-plane bundle, which gives us the Borel class
𝑏1( ̃𝐸2𝑉 ), defined as the Euler class 𝑒( ̃𝐸2𝑉 ) ∈ ℰ4,2(ℍℙ(𝑉)).
Themain result of Panin–Walter is that ℰ∗∗(ℍℙ(𝑉)) is a free
ℰ∗∗(𝑋)-module with basis the powers 𝑏1( ̃𝐸2𝑉 ), … , 𝑏1( ̃𝐸2𝑉 )𝑛.
They can then apply a suitably modified version of the
Grothendieck approach to define the higher Borel classes
𝑏𝑖(𝑉) ∈ ℰ4𝑖,2𝑖(𝑋), 𝑖 = 1, … , 𝑛.

This is fine for symplectic bundles, but what about an
arbitrary vector bundle 𝑉 → 𝑋 without a symplectic struc-
ture? Here one has an analogy with the Pontryagin classes
of real topological vector bundles. The Pontryagin classes
𝑝𝑖(𝑉) for a real vector bundle 𝑉 → 𝐵 are defined by tak-
ing the even Chern classes of the complexification of 𝑉 :
𝑝𝑖(𝑉) = (−1)𝑖𝑐2𝑖(𝑉ℂ) ∈ 𝐻4𝑖(𝐵, ℤ). The odd Chern classes
𝑐2𝑖+1(𝑉ℂ) are all 2-torsion, so the 𝑝𝑖(𝑉) have better proper-
ties, such as satisfying a Whitney formula, after inverting
2.

In themotivic world, we symplectify a vector bundle𝑉 →
𝑋 by forming 𝑉 ⊕ 𝑉∨ with the canonical symplectic form
𝜔(𝐿, 𝑣) = 𝐿(𝑣), 𝜔(𝑣, 𝑣′) = 0 = 𝜔(𝐿, 𝐿′) for 𝑣, 𝑣′ sections of
𝑉 , 𝐿, 𝐿′ sections of the dual bundle 𝑉∨. We then define

𝑝𝑖(𝑉) ∶= (−1)𝑖𝑏2𝑖((𝑉 ⊕ 𝑉∨, 𝜔)) ∈ ℰ8𝑖,4𝑖(𝑋).

Just as the topological Pontryagin classes are better be-
haved after inverting 2, the motivic Pontryagin classes are
better behaved after inverting 𝜂, since the odd Borel classes

are 𝜂-torsion. We also note that as the symplectic form for
a rank 2𝑛 symplectic vector bundle (𝑉 → 𝑋,𝜔) defines an
isomorphism 𝜔𝑛 ∶ det 𝑉 → 𝒪𝑋 , every symplectic vector
bundle is an SL-vector bundle, and thus an SL-oriented
theory is also Sp-oriented. We therefore have a good the-
ory of Pontryagin classes for arbitrary vector bundles with
values in a given SL-oriented theoryℰ for which 𝜂 is already
invertible.

We do have a wealth of theories that do not die af-
ter inverting 𝜂, ranging in complexity from the Eilenberg–
MacLane spectrum EM(𝒦𝑀𝑊

∗ ) to hermitian 𝐾-theory KQ,
special linear cobordism MSL, or symplectic cobordism
MSp. In topology, all the trouble is at the prime 2, and
as the real realization of 𝜂 is multiplication by 2, it seems
reasonable to look first at these more complicated theories
after inverting 𝜂.

The isomorphism of 𝒦𝑀𝑊
∗ [𝜂−1] with the sheaf of Witt

rings 𝒲 leads to the identification EM(𝒦𝑀𝑊
∗ )[𝜂−1] ≅

EM(𝒲∗), where 𝒲∗ is the homotopy module 𝒲𝑛 = 𝒲.
We also have the simple description of EM(𝒲∗)-theory
and 𝒲-cohomology: EM(𝒲∗)𝑎,𝑏(𝑋) = 𝐻𝑎−𝑏(𝑋,𝒲). As
𝑊(ℝ) = ℤ, one can view 𝐻∗(−,𝒲) as a good analog
of singular cohomology 𝐻∗(−, ℤ[1/2]) via the real realiza-
tion. In fact, it follows from Bachmann’s result on the real
realization (Theorem 2) that in SH(ℝ), EM(𝒦𝑀𝑊

∗ )[𝜌−1]
represents usual singular cohomology of the real points.
Thus, as the real realization sends 𝜂 to 2, 𝐻∗(𝑋,𝒲[1/2]) =
𝐻∗(𝑋(ℝ), ℤ[1/2]) for 𝑋 a smooth ℝ-scheme.

Also, the corresponding Pontryagin classes 𝑝𝑖(𝑉) for
a vector bundle 𝑉 → 𝑋 live in EM(𝒲∗)8𝑖,4𝑖(𝑋) =
𝐻4𝑖(𝑋,𝒲), another good analogy with the topological set-
ting. I suspect that the motivic Pontryagin class 𝑝𝑖(𝑉) ∈
𝐻4𝑖(𝑋,𝒲) goes over to the topological one 𝑝𝑖(𝑉(ℝ)) ∈
𝐻4𝑖(𝑋(ℝ), ℤ[1/2]) under real realization, but as far as I
know this has not been checked. In any case, the 𝜂-
invertible theories in SH(𝑘) are useful tools in pursuing
analogies between motivic homotopy theory and the clas-
sical setting via real realizations.

The theory of characteristic classes for theories has been
extensively studied by Ananyevskiy [2]. Here are a few of
his results. The first one says that for SL-vector bundles, the
Pontryagin classes and (for even rank bundles) the Euler
class generate all characteristic classes in an 𝜂-inverted, SL-
oriented theory.

Theorem 5 (Ananyevskiy [2, Theorem 10]). Let ℰ ∈ SH(𝑘)
be an 𝜂-inverted, SL-oriented commutative ring spectrum. Then

ℰ∗∗(BSL𝑛)

= {ℰ
∗∗(𝑘)[𝑝1, … , 𝑝𝑚, 𝑒]/(𝑝𝑚 − 𝑒2) for 𝑛 = 2𝑚 even,

ℰ∗∗(𝑘)[𝑝1, … , 𝑝𝑚] for 𝑛 = 2𝑚 + 1 odd.

Here 𝑝𝑖 = 𝑝𝑖(𝐸𝑛), where 𝐸𝑛 → BSL𝑛 is the universal vector
bundle, and 𝑒 = 𝑒(𝐸𝑛) is the Euler class.
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As is well known, the projective bundle formula for
Chern classes gives rise to the splitting principle, which says
that in order to check a natural identity in Chern classes of
vector bundles, it suffices to check the identity for Chern
classes of direct sums of line bundles. This principle is not
available for SL-bundles, as the only line bundle that is an
SL-bundle is the trivial line bundle. The following theo-
rem of Ananyevskiy is the next best thing.

Theorem 6 (Ananyevskiy [2, Theorem 6]). Let ℰ ∈ SH(𝑘)
be an 𝜂-inverted, SL-oriented commutative ring spectrum. Then
the block diagonal embedding (SL2)𝑚 → SL2𝑚 induces an in-
jection

ℰ∗∗(BSL2𝑚) → ℰ∗∗((BSL2)𝑚).
Moreover, ℰ∗∗((BSL2)𝑚) = ℰ∗∗(𝑘)[𝑒1, … , 𝑒𝑚], where 𝑒𝑖 is
the pullback of the Euler class 𝑒(𝐸2) via the 𝑖th projection
(BSL2)𝑚 → BSL2. Finally, the inclusion
ℰ∗∗(BSL2𝑚)

= ℰ∗∗(𝑘)[𝑝1, … , 𝑝𝑚, 𝑒]/(𝑝𝑚 − 𝑒2) → ℰ∗∗(𝑘)[𝑒1, … , 𝑒𝑚]
= ℰ∗∗((BSL2)𝑚)

identifies ℰ∗∗(BSL2𝑚) with the invariants of ℰ∗∗(𝑘)[𝑒1, … , 𝑒𝑚]
under the action of the semidirect product {±1}𝑚−1⋊𝑆𝑚, which
acts by sending (𝑒1, … , 𝑒𝑚) to (𝜖1𝑒𝜍(1), … , 𝜖𝑚𝑒𝜍(𝑚)), where 𝜎 ∈
𝑆𝑚 is a permutation and 𝜖𝑖 ∈ {±1} with∏𝑖 𝜖𝑖 = 1. Explicitly,
𝑝(𝐸2𝑚)

∶=1+𝑝1(𝐸2𝑚) +⋯+ 𝑝𝑚(𝐸2𝑚)=
𝑚
∏
𝑖=1

(1 + 𝑒2𝑖 ), 𝑒=
𝑚
∏
𝑖=1

𝑒𝑖.

This reduction to rank 2 bundles still leaves open a ba-
sic question. Given an SL𝑛-vector bundle 𝑉 → 𝑋 and a
representation 𝜌 ∶ SL𝑛 → SL𝑁 one has the associated SL𝑁 -
bundle 𝑉𝜌 → 𝑋 . What are the Pontryagin classes and Euler
class of 𝑉𝜌 in terms of those of 𝑉? For the Chern classes,
this is answered by the classical splitting principle and the
theory of symmetric functions. Ananyevskiy’s SL2 splitting
principle reduces one to understanding the characteristic
classes of Sym𝑛𝐸2, with 𝐸2 → BSL2 the tautological bun-
dle.

The solution lies in a further splitting principle: reduc-
tion to the normalizer 𝑁 of the maximal torus 𝑇 ⊂ SL2. 𝑇
is isomorphic to 𝔾𝑚 via

𝑡 ↦ (𝑡 0
0 𝑡−1) ,

and 𝑁 is generated by 𝑇 and the element 𝜎,

𝜎 = ( 0 1
−1 0) .

Based on amotivic version of the classical Becker–Gottlieb
transfer, we show in [10] that for any ℰ ∈ SH(𝑘), the pull-
back via 𝜋 ∶ 𝐵𝑁 → BSL2 induces an injection

𝜋∗ ∶ ℰ∗∗(BSL2) → ℰ∗∗(𝐵𝑁).

This is useful, as the irreducible representations of𝑁 are all
one- or two-dimensional, so the bundle 𝜋∗Sym𝑛𝐸2 splits
as a direct sum of bundles of rank at most two. One can
write these bundles explicitly, and we have computed their
Euler classes inWitt cohomology. This yields the following
formula, inspired by an analogous formula of Okonek–
Teleman for real topological bundles.

Theorem 7 (Levine [10, Theorem 8.1]). Suppose 𝑘 has char-
acteristic 0 or characteristic 𝑝 > 𝑛. Then in 𝐻𝑛+1(BSL2,𝒲),
we have

𝑒(Sym𝑛𝐸2) = {0 for 𝑛 even,
𝑛! ! 𝑒(𝐸2)𝑚+1 for 𝑛 = 2𝑚 + 1 odd.

Here 𝑛! ! = 𝑛(𝑛 − 2)⋯3 ⋅ 1 for 𝑛 odd. Moreover, the total
Pontryagin class 𝑝(Sym𝑛𝐸2) ∈ 𝐻∗(BSL2,𝒲) is given by

𝑝(Sym𝑛𝐸2) =
[𝑛/2]
∏
𝑖=0

(1 + (𝑛 − 2𝑖)2𝑒(𝐸2)2).

We note in [10, Example 8.2] that the above computa-
tion can be used to give a “count” of the lines on a general
hypersurface of degree 2𝑑 − 1 in ℙ𝑑+1 as

𝐶𝑑 = 𝑛! ! ⟨1⟩ + 1
2(𝑁𝑑 − 𝑛! ! )ℎ ∈ GW(𝑘),

where ℎ is the hyperbolic form ⟨1⟩ + ⟨−1⟩, 𝑁𝑑 is the degree
of the top Chern class 𝑐2𝑑(Sym2𝑑+1𝐸∨2,2𝑑+2), and 𝐸2,𝑑+2 →
Gr(2, 𝑑+2) is the tautological bundle on theGrassmannian
of 2-planes in 𝑑+2-space. The rank of 𝐶𝑑 gives the classical
count of the number of lines on a general hypersurface of
degree 2𝑑 − 1 in ℙ𝑑+1, while the signature of 𝐶𝑑 has an
interpretation of a signed count of real lines on a general
real hypersurface of degree 2𝑑−1 inℙ𝑑+1, another example
of how the 𝜂-invertible theories relate to topology over the
reals.

The quadratic form 𝐶𝑑 itself is constructed as the push-
forward of the Euler class

𝑒(Sym2𝑑−1𝐸2,𝑑+2) ∈ 𝐻2𝑑(Gr(2, 𝑑 + 2),𝒦𝑀𝑊
2𝑑 )

to GW(𝑘) = 𝐻0(Spec 𝑘,𝒦𝑀𝑊
0 ), that is, the quadratic de-

gree of the Euler class. The case of lines on a cubic was
treated earlier using different motivic methods by Kass–
Wickelgren [9]. We are hopeful that pursuing these invari-
ants in Witt cohomology and other motivic theories, one
can enrich classical enumerative geometry by providing in-
variants that have interesting arithmetic content through
the theory of quadratic forms.

In another direction, the computation of the Euler class
of symmetric powers given by Theorem 7 is limited to the
case of the classes in Witt cohomology. As 𝐻∗(−,𝒲) is in
some sense an analogy of classical singular cohomology,
one would expect a more complicated behavior for the
characteristic classes in other theories, such as KQ, MSL,
or MSp, even after inverting 𝜂. For oriented theories, the
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degree of complexity is captured by the associated formal
group law. Is there such an algebraic invariant of an SL-
oriented, 𝜂-inverted theory?

Yet another question involves comparing the plus and
minus parts of theories. For example, Witt cohomology
is formed by inverting 𝜂 on bi-graded Milnor–Witt coho-
mology 𝐻∗(−,𝒦𝑀𝑊

∗ ). This latter theory (in appropriate
degrees) specializes to the Chow ring by killing 𝜂 and to
Witt cohomology by inverting 𝜂; one has similar behavior
for the other theories such as KQ, MSL, and MSp. Can
one exploit this to find comparisons between behavior of
characteristic classes or solutions of enumerative problems
over ℂ and over ℝ? There are for instance conjectures
of Itenberg–Kharlamov–Shustin comparing the growth of
classical enumerative invariants with their real counter-
parts [8]. Can these questions be approached using mo-
tivic methods?
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