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1. Introduction
The concept of soliton provides a useful way to find or
discover elements in a given set that are somehow distin-
guished. Heuristically, only three ingredients are needed
to define a soliton:

• A set Γ endowed with some kind of tangent space or
space of directions 𝑇𝛾Γ at each 𝛾 ∈ Γ.

• An equivalence relation ≃ on Γ collecting in each
equivalence class [𝛾] all the elements that cannot be
distinguished from 𝛾 in relation to the question to be
studied.

• An optimal or preferred direction at each point, 𝑞(𝛾) ∈
𝑇𝛾Γ, viewed as a “direction of improvement” in some
sense.

In that case, 𝛾 ∈ Γ is called a soliton if

𝑞(𝛾) ∈ 𝑇𝛾[𝛾]; (1)

that is, 𝛾 is in a way nice enough that it cannot be improved
toward 𝑞(𝛾) (see Figure 1). The relation ≃ is typically de-
fined by the action of a group 𝐻, and if 𝑞 is 𝐻-equivariant,
then 𝛾 is a soliton if and only if the whole class [𝛾] consists
of solitons.

By assuming enough differentiability in the situation,
we may consider the evolution differential equation de-
fined by 𝑞 on Γ,

𝜕
𝜕𝑡
𝛾(𝑡) = 𝑞(𝛾(𝑡)), 𝛾(0) = 𝛾.
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Figure 1. Solitons are not actually improved toward the
“direction of improvement.”

The existence of solutions is not guaranteed. Solitons are
not in general fixed points of this evolution flow (i.e., ze-
roes of 𝑞). However, 𝛾 is a soliton if and only if 𝛾(𝑡) ∈ [𝛾]
for all 𝑡, called a self-similar solution (see Figure 1 and the
opener image on the left). In other words, solitons are not
improved by the flow, and so their existence is not that wel-
comed if one is hoping to use the flow to find a fixed point
in Γ. Indeed, an element may be attracted or stopped in
its way to a fixed point by a soliton.

On the other hand, the existence of solitons is great
news for the search for canonical or distinguished ele-
ments in Γ beyond the zeroes of 𝑞.

We note that if 𝑞(𝛾) = −grad(𝐹)|𝛾 for some functional
𝐹 ∶ Γ → ℝ that is constant on equivalence classes (or
𝐻-invariant), then 𝛾 is a soliton if and only if 𝑞(𝛾) = 0;
that is, solitons are precisely the critical points of 𝐹 or the
fixed points of the corresponding flow. Most interesting
phenomena occur when this is not the case.
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The evocative word soliton first appeared in PDE the-
ory in the context of the Korteweg–de Vries equation to
name certain solutions resembling solitary water waves
that evolve only by translation without losing their shape.
More generally, in the study of geometric flows, solitons re-
fer to geometric structures that evolve along symmetries of
the flow (i.e., self-similar solutions). The use of the word
soliton was initiated by Hamilton in the 1980s in the con-
text of Ricci flow to name Ricci solitons (see [8]) and nowa-
days is spread over the fields of differential geometry and
geometric analysis.

In this article we discuss and find solitons in many dif-
ferent contexts, including matrices, polynomials, plane
curves, Lie group representations (momentmaps), and the
variety of Lie algebras, as well as in the context of geomet-
ric structures (Riemannian, Hermitian, almost-Kähler, and
𝐺2) and their homogeneous versions on Lie groups.1

2. Matrices
Consider Γ = 𝔤𝔩𝑛, the vector space of all real 𝑛 × 𝑛 matri-
ces. As is well known, a matrix is semisimple (i.e., diago-
nalizable over ℂ) if and only if it is conjugate to a normal
matrix (i.e., [𝐴, 𝐴𝑡] = 0). The subset of normal matrices
is invariant under scaling and the action of the orthogo-
nal group O(𝑛) by conjugation, and there is exactly one
O(𝑛)-orbit of normal matrices in each semisimple conju-
gacy class. With the aim of finding distinguished matrices
other than normal matrices, we consider orthogonal con-
jugation and scaling as the equivalence relation, that is,

[𝐴] ≔ 𝐻⋅𝐴 = {𝑐ℎ𝐴ℎ−1 ∶𝑐 ∈ ℝ∗, ℎ ∈ O(𝑛)}, 𝐻 ≔ ℝ∗O(𝑛).

It is easy to see that the tangent space at a matrix 𝐴 of its
conjugacy class GL𝑛 ⋅ 𝐴 is given by 𝑇𝐴GL𝑛 ⋅ 𝐴 = [𝐴, 𝔤𝔩𝑛],
where GL𝑛 is the group of all invertible real 𝑛×𝑛matrices,
so the simplest preferred direction that will make normal
matrices solitons is

𝑞(𝐴) ≔ [𝐴, [𝐴, 𝐴𝑡]].

According to (1), a matrix 𝐴 is a soliton if and only if

[𝐴, [𝐴, 𝐴𝑡]] = 𝑐𝐴 + [𝐴, 𝐵] ∈ 𝑇𝐴[𝐴], 𝑐 ∈ ℝ, 𝐵 ∈ 𝔰𝔬(𝑛),

where 𝔰𝔬(𝑛) denotes the space of skew-symmetric matrices.
Since [𝐴, 𝐵] ⟂ 𝐴,𝐴𝑡 (relative to the usual inner product
tr 𝑋𝑌 𝑡), we obtain that 𝐴 is a soliton if and only if either 𝐴
is normal (𝑐 = 0 implies −|[𝐴, 𝐴𝑡]|2 = ⟨[𝐴, [𝐴, 𝐴𝑡]], 𝐴⟩ = 0)
or 𝐴 is nilpotent (𝑐 ≠ 0 implies tr 𝐴𝑘 = 0 for any 𝑘) and
satisfies the following matrix equation:

[𝐴, [𝐴, 𝐴𝑡]] = − |[𝐴,𝐴𝑡]|2

|𝐴|2
𝐴.

1In order to limit the number of references to twenty, most citations have been
omitted, and mainly survey articles where the precise references can be found
have been included.

Remark 2.1. Arguing as above, one obtains that the even
simpler possibility 𝑞(𝐴) = [𝐴, 𝐴𝑡] gives that only normal
matrices are solitons.

Besides normal matrices, it is straightforward to check
that the following nilpotent matrices are also solitons:

[ 01 0 ] , [
0
√2 0
0 √2 0

] , [
0
√3 0
0 2 0
0 0 √3 0

] ,

[
0
2 0
0 √6 0
0 0 √6 0
0 0 0 2 0

] , ⋯ , [
0
𝑎1 0

⋱ ⋱
𝑎𝑘−1 0

] ,
(2)

where 𝑎𝑖 ≔ √𝑖(𝑘 − 𝑖) (rather than the expected matrices
with 𝑎𝑖 = 1 for all 𝑖). Any nilpotent matrix is therefore
conjugate to a soliton by using the Jordan canonical form.

An easy computation gives that actually 𝑞(𝐴) ≔
− 1
4
grad(E)|𝐴, where E ∶ 𝔤𝔩𝑛 → ℝ is the functional E(𝐵) ≔

|[𝐵, 𝐵𝑡]|2 measuring how far a matrix is from being normal.
Note that E is not constant on [𝐴] due to scaling, but it is
easy to see that 𝐴 is a soliton if and only if it is a critical
point of the normalized functional E(𝐵) ≔ E(𝐵)/|𝐵|4.

An interesting characterization of normal matrices, per-
haps less known, is that they have minimal norm among
their conjugacy classes. Also, it is not hard to show that
if 𝐴 = 𝑆 + 𝑁, where 𝑆 is semisimple, 𝑁 nilpotent, and
[𝑆, 𝑁] = 0, then 𝑆 ∈ GL𝑛 ⋅ 𝐴. In particular, if a conju-
gacy class GL𝑛 ⋅ 𝐴 is closed, then 𝐴 is necessarily semisim-
ple (also note that 0 ∈ GL𝑛 ⋅ 𝑁 for any nilpotent matrix
𝑁). The following nice properties of soliton matrices fol-
low from well-known results in geometric invariant theory
(GIT for short) and the fact that the moment map (to be
defined later) for the GL𝑛-action on 𝔤𝔩𝑛 by conjugation is
precisely m(𝐴) = [𝐴, 𝐴𝑡]:
• For any nilpotent matrix 𝐴, there is exactly one
ℝ∗O(𝑛)-orbit of solitons in its conjugacy class GL𝑛 ⋅ 𝐴.

• Any soliton 𝐴 is a minimum of E restricted to GL𝑛 ⋅
𝐴; that is, a nilpotent soliton is in a sense the matrix
closest to being normal in its conjugacy class.

• A conjugacy class GL𝑛 ⋅ 𝐴 is closed if and only if 𝐴 is
semisimple, if and only if GL𝑛 ⋅ 𝐴 contains a matrix of
minimal norm (or normal matrix).

• The negative gradient flow solution 𝐴(𝑡) of the func-
tional E starting at 𝐴 stays in the conjugacy class
GL𝑛 ⋅ 𝐴, and if 𝐴 = 𝑆 + 𝑁 as above, then 𝐴(𝑡) con-
verges as 𝑡 → ∞ to either a normal matrix in the con-
jugacy class of 𝑆 or, in the case 𝑆 = 0, to a soliton in
the conjugacy class of 𝑁.

3. Polynomials
The space Γ is now given by 𝑃𝑛,𝑑, the vector space of all
homogeneous polynomials of degree 𝑑 in 𝑛 variables with
coefficients inℝ (e.g., quadratic (𝑑 = 2) and binary (𝑛 = 2)
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forms). There is a natural left GL𝑛-action on 𝑃𝑛,𝑑 given by
ℎ ⋅ 𝑓 ≔ 𝑓 ∘ ℎ−1 and the inner product for which the basis
of monomials

{𝑥𝐷 ≔ 𝑥𝑑11 ⋯𝑥𝑑𝑛𝑛 ∶ 𝑑1 +⋯+ 𝑑𝑛 = 𝑑} , 𝐷 ≔ (𝑑1, … , 𝑑𝑛),

is orthogonal and ||𝑥𝐷||2 ≔ 𝑑1!⋯𝑑𝑛! /𝑑! is O(𝑛)-invariant.
The role of normal matrices in the previous section is
played here by the renowned harmonic polynomials, i.e.,
Δ𝑓 = 0, where Δ is the Laplace operator defined by

Δ ∶ 𝑃𝑛,𝑑 ⟶𝑃𝑛,𝑑−2, Δ ≔ 𝜕2

𝜕𝑥21
+⋯+ 𝜕2

𝜕𝑥2𝑛
.

Δ is O(𝑛)-equivariant, and so the subspace ℋ𝑛,𝑑 ⊂ 𝑃𝑛,𝑑 of
all harmonic polynomials is invariant under scalings and
orthogonal maps. Moreover, ℋ𝑛,𝑑 is known to be O(𝑛)-
irreducible (i.e., the only O(𝑛)-invariant subspaces are {0}
and ℋ𝑛,𝑑).

It is therefore natural to consider the equivalence de-
fined by 𝐻 = ℝ∗O(𝑛) ⊂ GL𝑛 and as a preferred direction
at 𝑓 ∈ 𝑃𝑛,𝑑,

𝑞(𝑓) ≔ −𝑟2Δ𝑓 ∈ 𝑃𝑛,𝑑 = 𝑇𝑓𝑃𝑛,𝑑,

where

𝑟2 ≔ 𝑥21 +⋯+ 𝑥2𝑛 ∈ 𝑃𝑛,2.
Note that harmonic polynomials are the fixed points of
the corresponding flow. A polynomial 𝑓 is a soliton (see
(1)) if and only if

𝑟2Δ𝑓 = 𝑐𝑓 + 𝜃(𝐴)𝑓 ∈ 𝑇𝑓(𝐻 ⋅ 𝑓), 𝑐 ∈ ℝ, 𝐴 ∈ 𝔰𝔬(𝑛),

where 𝜃(𝐴)𝑓 ≔ 𝑑
𝑑𝑡
||0 𝑒

𝑡𝐴 ⋅ 𝑓. Are there solitons other than

harmonic polynomials?
We first note that

𝑃𝑛,𝑑 = ℋ𝑛,𝑑 ⊕ 𝑟2ℋ𝑛,𝑑−2 ⊕ 𝑟4ℋ𝑛,𝑑−4 ⊕⋯ (3)

is a decomposition of 𝑃𝑛,𝑑 in irreducible O(𝑛)-invariant
subspaces2 (note that 𝑟𝑘 is fixed by O(𝑛) for any 𝑘 ∈ ℕ).
This is suggesting candidates for solitons. For instance, a
straightforward computation gives that if 𝑓 = 𝑟2𝑘𝑔 with
𝑔 ∈ ℋ𝑛,𝑑−2𝑘, then

𝑟2Δ𝑓 = 𝜆𝑘𝑓, where 𝜆𝑘 ≔ 2𝑘(2𝑑 − 2𝑘 + 𝑛 − 2), (4)

and thus 𝑓 is a soliton.3 Moreover, by writing any poly-
nomial according to (3) and using that 𝜆0 < 𝜆1 < 𝜆2 < ⋯
and 𝜃(𝔰𝔬(𝑛))𝑓 ⟂ 𝑓 for any 𝑓 ∈ 𝑃𝑛,𝑑, it is easy to see that any
soliton is actually of this form. Thus the subset of solitons
is precisely the union of the O(𝑛)-irreducible subspaces in
decomposition (3).

2Since 𝑟2𝑃𝑛,𝑑−2 is the orthogonal complement of ℋ𝑛,𝑑 in 𝑃𝑛,𝑑 , which is
straightforward to check, and hence Δ𝑃𝑛,𝑑 = 𝑃𝑛,𝑑−2.
3This is strongly related to the fact that 𝑑(𝑑 + 𝑛 − 2) is precisely the 𝑑th eigen-
value of the Laplace–Beltrami operator on the sphere 𝑆𝑛−1 with eigenspace
ℋ𝑛,𝑑 |𝑆𝑛−1 .

𝛾″(𝑡)

𝛾

Figure 2. Curvature of a plane curve.

Concerning evolution, given 𝑓 = 𝑓𝑗 + 𝑓𝑗+1 + ⋯ + 𝑓𝑘,
𝑓𝑗 , 𝑓𝑘 ≠ 0, 𝑗 < 𝑘, relative to decomposition (3) (i.e., 𝑓𝑖 ∈
𝑟2𝑖ℋ𝑛,𝑑−2𝑖), the solution to the corresponding flow

𝑑
𝑑𝑡
𝑓(𝑡) = −𝑟2Δ𝑓(𝑡), 𝑓(0) = 𝑓,

is given by 𝑓(𝑡) = 𝑒−𝑡𝜆𝑗𝑓𝑗 +⋯+ 𝑒−𝑡𝜆𝑘𝑓𝑘. This implies that

lim
𝑡→∞

1
|𝑓(𝑡)|

𝑓(𝑡) = 1
|𝑓𝑗 |

𝑓𝑗 ,

and so each polynomial in the open and dense subset of
𝑃𝑛,𝑑 defined by 𝑓0 ≠ 0 flows to some harmonic polynomial.
On the contrary, any polynomial 𝑓 with 𝑓0 = 0 will be
stopped in its way to ℋ𝑛,𝑑 by a soliton.

4. Plane Curves
Plane curves naturally flow according to their curvature,
and this may be considered as the gene of all geometric
flows.

Let Γ be the space of all regular plane curves,

Γ ≔ {𝛾 ∶ ℝ⟶ ℝ2 ∶ 𝛾 is differentiable}.
Two curves are considered equivalent if their traces coin-
cide up to rotations, translations, and scaling. We note
that an element of 𝑇𝛾Γ consists of a vector field along the
curve 𝛾 or, in other words, a smooth family of vectors, one
at each point of the trace of the curve (see Figure 2). After
assuming that 𝛾 is parametrized by arc length (i.e., |𝛾′| ≡ 1),
the most natural preferred or optimal direction is its “cur-
vature,”

𝑞(𝛾) ≔ 𝛾″.
Being a measure of how sensitive your constant velocity
car 𝛾′ is to passing through the point 𝛾(𝑠), 𝛾″(𝑠) certainly
provides a good perception of how curved the trace of 𝛾 is
at that point (see Figure 2).

The evolution equation defined by this preferred direc-
tion is called the curve shortening flow (CSF for short); the
following are just a few of its several wonderful properties:

• Each of the following kinds of curves is invariant un-
der the flow: embedded, closed, simple, and convex.
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Figure 3. The unique translating soliton is the Grim Reaper
found by Calabi, given by the graph of the function
𝑦 = − log(cos 𝑥). Its curvature produces the precise gentle
breeze needed to move it up without losing its shape.

• For closed curves, the CSF is precisely the negative gra-
dient flow of the length; that is, 𝑞(𝛾) = 𝛾″ is the op-
timal direction to shorten a closed curve, explaining
the name of the flow.

• Grayson proved that under CSF, any simple curve be-
comes convex (cf. Figure 2 and the opener image on
the right), and Gage–Hamilton showed that once it is
convex, it converges toward a round point (i.e., asymp-
totically becoming a circle), collapsing in finite time.

We note that according to the equivalence relation on
Γ considered above, a curve is a soliton if and only if it
evolves under CSF without losing its shape, i.e., by only a
combination of rotations, translations, and scalings (pos-
sibly expanding or shrinking). It is therefore easy to con-
vince ourselves that a circle 𝛾 is a soliton; indeed, 𝑞(𝛾) is
in the appropriate sense tangent to the subset of all circles
with the same center as 𝛾. It is not so easy, however, to fig-
ure out what would be another example of soliton, other
than straight lines, which are the trivial solitons with 𝑞 = 0.

The complete classification of CSF-solitons was ob-
tained by Halldorsson in [7]. We give in Figures 3, 4, 5,
and 6 examples of all the behaviors that appear. Note that
in particular solitons that translate and are scaled at the
same time do not exist.

Figure 4. Three shrinking solitons from the infinite discrete
family obtained in the classification by Abresch–Langer. Their
evolution consists of the very same flower, just reducing its
size.

1 x
1

y

1 x
1

y

Figure 5. Three expanding solitons (left) and one rotating
soliton (right).

1 x
1

y

1 x

1

y

Figure 6. Rotating and expanding soliton (left) and rotating
and shrinking soliton (right).

5. Lie Group Representations
As a massive generalization of the matrices example given
above, we may consider any linear action of a Lie group4 𝐺
on a real vector space 𝑉 . Thus Γ = 𝑉 , and a natural ques-
tion arises: What would be a distinguished vector 𝑣 ∈ 𝑉
analogous to a normal matrix? If we endow 𝑉 with an in-
ner product, then natural candidates are minimal vectors;
i.e., |𝑣| ≤ |ℎ ⋅ 𝑣| for any ℎ ∈ 𝐺 (recall the characteriza-
tion of normal matrices as minimal vectors in their conju-
gacy classes). Note that any closed 𝐺-orbit contains a min-
imal vector. The next question, more intriguing, is, What
should the other solitons be, playing the role of nilpotent
soliton matrices (see (2)) in this much more general con-
text?

Motivated by the following equation satisfied in the
case of matrices,

⟨[𝐴, 𝐴𝑡], 𝐵⟩ = 1
2

𝑑
𝑑𝑡
||𝑡=0

||𝑒𝑡𝐵𝐴𝑒−𝑡𝐵||2 ,

we fix inner products on the Lie algebra 𝔤 of 𝐺 and on
𝑉 and consider for each 𝑣 ∈ 𝑉 the element m(𝑣) ∈ 𝔤
implicitly defined by

⟨m(𝑣), 𝑋⟩ = 1
2

𝑑
𝑑𝑡
||𝑡=0 |exp 𝑡𝑋 ⋅ 𝑣|2 = ⟨𝜃(𝑋)𝑣, 𝑣⟩ ∀𝑋 ∈ 𝔤,

(5)

4A group that is also, compatibly, a differentiable manifold.

650 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 67, NUMBER 5



where 𝜃 ∶ 𝔤 → 𝔤𝔩(𝑉) is the corresponding Lie algebra rep-

resentation (i.e., 𝜃(𝑋)𝑣 ≔ 𝑑
𝑑𝑡
||0 exp 𝑡𝑋 ⋅ 𝑣 ∈ 𝑇𝑣(𝐺 ⋅ 𝑣)). Thus

m(𝑣) encodes the behavior of the norm of vectors inside
the orbit 𝐺 ⋅ 𝑣 in a neighborhood of 𝑣. Moreover, by (5),
−𝜃(m(𝑣))𝑣 ∈ 𝑇𝑣(𝐺 ⋅ 𝑣) is the direction of fastest norm de-
creasing tangent to the orbit 𝐺 ⋅ 𝑣 at 𝑣, in the sense that

𝑑
𝑑𝑡
||0 | exp (−𝑡m(𝑣)) ⋅ 𝑣|

2 = −2⟨𝜃(m(𝑣))𝑣, 𝑣⟩ = −2|m(𝑣)|2

≤ 2⟨m(𝑣), 𝑋⟩ = ⟨2𝜃(𝑋)𝑣, 𝑣⟩

= 𝑑
𝑑𝑡
||0 | exp 𝑡𝑋 ⋅ 𝑣|2,

for any 𝑋 ∈ 𝔤 such that |𝑋| = |m(𝑣)|, where equality holds
if and only if 𝑋 = −m(𝑣) (note that any minimal vector 𝑣
satisfies m(𝑣) = 0).

We assume from now on that the following conditions
on the 𝐺-action on 𝑉 hold. If

𝔨 ≔ {𝑋 ∈ 𝔤 ∶ 𝜃(𝑋)𝑡 = −𝜃(𝑋)},
𝔭 ≔ {𝑋 ∈ 𝔤 ∶ 𝜃(𝑋)𝑡 = 𝜃(𝑋)},

then 𝔤 = 𝔨 ⊕ 𝔭 and 𝐺 = 𝐾 exp 𝔭, where 𝐾 ≔ {ℎ ∈ 𝐺 ∶
𝑣 ↦ ℎ ⋅ 𝑣 is orthogonal}. It follows that 𝔤 is reductive
(i.e., semisimple modulo an abelian factor), 𝔤 = 𝔨 ⊕ 𝔭
is a Cartan decomposition (i.e., [𝔨, 𝔨] ⊂ 𝔨, [𝔨, 𝔭] ⊂ 𝔭, and
[𝔭, 𝔭] ⊂ 𝔨), 𝐾 is a maximal compact subgroup of𝐺 with Lie
algebra 𝔨, and the function 𝐾 × 𝔭 → 𝐺, (ℎ, 𝑋) ↦ ℎ exp𝑋
is a diffeomorphism. By (5), m(𝑣) ∈ 𝔭 for any 𝑣 ∈ 𝑉 , and
the function m ∶ 𝑉 → 𝔭, called in GIT the moment map5

(or 𝐺-gradient map) for the action, is 𝐾-equivariant.
Similarly to matrices, we consider Γ = 𝑉 , [𝑣] = 𝐾 ⋅ 𝑣,

and as the preferred direction,

𝑞(𝑣) ≔ −grad(E)|𝑣, where E ∶ 𝑉 ⧵ {0} → ℝ,

E(𝑣) ≔ |m(𝑣)|2
|𝑣|2 ,

is the 𝐾-invariant functional measuring how far 𝑣 is from
being a minimal vector. Therefore, solitons are precisely

the critical points of E (i.e., 𝑞(𝑣) = 0), and 𝑑
𝑑𝑡
𝑣(𝑡) = 𝑞(𝑣(𝑡))

is the negative gradient flow of the functional E. A straight-
forward computation gives that

grad(E)|𝑣 =
4
|𝑣|2

(𝜃(m(𝑣))𝑣 − |m(𝑣)|2𝑣) ;

hence 𝑣 is a soliton if and only if

𝜃(m(𝑣))𝑣 ∈ ℝ𝑣. (6)

This suggests that, as in the case of matrices, there may be
solitons other than minimal vectors, probably having non-
closed 𝐺-orbits (see examples below). The following are
nice and important results from real GIT (see [3,9]):

5The suggestive name comes from the fact that if we complexify everything, then
m is precisely the moment map for the Hamiltonian action of 𝐾 on the complex
projective space 𝑃(𝑉ℂ).

• A 𝐺-orbit is closed if and only if it contains a minimal
vector. The closure of any𝐺-orbit contains exactly one
𝐾-orbit of minimal vectors.

• The subset of solitons of a given 𝐺-orbit is either
empty or consists of exactly one 𝐾-orbit (up to scal-
ing).

• Every soliton 𝑣 is a minimum of the functional E re-
stricted to 𝐺 ⋅ 𝑣. Solitons are therefore the vectors
closest to being a minimal vector in their 𝐺-orbit in
a sense.

• The negative gradient flow solution of E starting at any
𝑣 ∈ 𝑉 stays in 𝐺 ⋅ 𝑣 and converges as 𝑡 → ∞ to a
soliton 𝑤 ∈ 𝐺 ⋅ 𝑣. Moreover, there is exactly one 𝐾-
orbit (up to scaling) of solitons 𝑧 ∈ 𝐺 ⋅ 𝑣 such that
m(𝑧) ∈ 𝐾 ⋅m(𝑤), which is the limit set towards which
the whole orbit 𝐺 ⋅ 𝑣 is flowing.

In what follows, we analyze the existence of solitons on
some particular examples of representations.
Ternary cubics. Consider 𝐺 = SL3 acting on 𝑉 = 𝑃3,3, the
vector space of all homogeneous polynomials of degree 3
on 3 variables with real coefficients. It follows that 𝔤 =
𝔰𝔩3, 𝐾 = SO(3), 𝔨 = 𝔰𝔬(3), and 𝔭 = sym0(3), the space of
traceless symmetric 3 × 3 matrices. It is easy to compute
that the moment map m ∶ 𝑃3,3 → sym0(3) is given by

m(𝑓) = 𝐼 − 1
|𝑓|2

[⟨𝑥𝑗
𝜕𝑓
𝜕𝑥𝑖

, 𝑓⟩] .

Thusm(𝑥𝐷) = Diag(1−𝑑1, 1−𝑑2, 1−𝑑3) for anymonomial
𝑥𝐷, 𝐷 = (𝑑1, 𝑑2, 𝑑3), and so any monomial is a soliton by
(6)with critical valueE(𝑥𝐷) = −1+∑𝑑2𝑖 (this holds on any
𝑃𝑛,𝑑). It also easily follows that E(𝑝) = 0 for 𝑝 ≔ 𝑥1𝑥2𝑥3;
that is, 𝑝 is a minimal vector and its SL3-orbit is therefore
closed. On the other hand, the polynomials

𝑔 = 𝑥21𝑥3 + 𝑥1𝑥22 and 𝑓 = 𝑥21𝑥3 + ( 5
27
)
1
2 𝑥32

are both solitons with critical values E(𝑔) = 1
2
and E(𝑓) =

155
49

− 3 < 1
2
, respectively, which in particular implies that

𝑓 ∉ SL3 ⋅ 𝑔.
Algebras. We consider the vector space

𝑉 = 𝒜 ≔ {𝜇 ∶ ℝ𝑛 × ℝ𝑛 → ℝ𝑛 ∶ 𝜇 is bilinear},

parametrizing the set of all 𝑛-dimensional algebras over ℝ.
Note that isomorphism classes of algebras are precisely 𝐺-
orbits, where𝐺 = GL𝑛, relative to the standardGL𝑛-action
on 𝑉 given by ℎ ⋅ 𝜇 ≔ ℎ𝜇(ℎ−1⋅, ℎ−1⋅). The corresponding
representation,

𝜃(𝐴)𝜇 = 𝐴𝜇− 𝜇(𝐴⋅, ⋅) − 𝜇(⋅, 𝐴⋅) ∀𝐴 ∈ 𝔤𝔩𝑛, 𝜇 ∈ 𝒜, (7)

measures how far 𝐴 is from being a derivation of the al-
gebra 𝜇. Thus 𝔨 = 𝔰𝔬(𝑛), 𝔭 = sym(𝑛), 𝐾 = O(𝑛), and it
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is straightforward to see that the moment map m ∶ 𝒜 →
sym(𝑛) is given by

⟨m(𝜇)𝑋, 𝑋⟩ = − 1
2
∑⟨𝜇(𝑒𝑖, 𝑒𝑗), 𝑋⟩2 (8)

+ 1
8
∑⟨𝜇(𝑋, 𝑒𝑖), 𝑒𝑗⟩2

+ 1
8
∑⟨𝜇(𝑒𝑖, 𝑋), 𝑒𝑗⟩2 ∀𝑋 ∈ ℝ𝑛.

Since trm(𝜇) = −|𝜇|2 by (5) and (7), the only minimal
vector is the trivial algebra 𝜇 = 0, which is also the only
closed GL𝑛-orbit (note that actually 0 ∈ GL𝑛 ⋅ 𝜇 for any
𝜇 ∈ 𝒜). However, there are closed SL𝑛-orbits and SL𝑛-
minimal vectors.

According to (6), an algebra product 𝜇 ∈ 𝒜 is a soliton
if and only if the following nice compatibility condition
between 𝜇 and the fixed inner product ⟨⋅, ⋅⟩ holds:

m(𝜇) = 𝑐𝐼 + 𝐷, 𝑐 ∈ ℝ, 𝐷 ∈ Der(𝜇). (9)

Which algebras are isomorphic to a soliton? How special
are they?
Lie algebras. We now list only a few of several known
results on solitons in the case of Lie algebras (see [12]).
Note that the set of all 𝑛-dimensional Lie algebras is
parametrized by the GL𝑛-invariant algebraic subset

ℒ ⊂ 𝒜 (10)

of all algebras that are in addition skew-symmetric and sat-
isfy the Jacobi condition,6 called the variety of Lie algebras.

• SL𝑛 ⋅ 𝜇 is closed if and only if 𝜇 is semisimple. More-
over, 𝜇 is an SL𝑛-minimal vector if and only if the
Killing form𝐵𝜇 is either a negativemultiple of ⟨⋅, ⋅⟩ and
𝜇 is compact semisimple, or 𝐵𝜇 has exactly two oppo-
site eigenvalues (relative to ⟨⋅, ⋅⟩) and the eigenspace
decomposition is a Cartan decomposition.

• There is a soliton in the isomorphism class of each of
the fifty nilpotent Lie algebras of dimension ≤ 6 (see
[20]). In dimension 7, there are infinitely many nilpo-
tent Lie algebras that are not isomorphic to a soliton,
and a complete classification was obtained in [6].

• The only known general obstruction in the nilpotent
case is that any soliton 𝜇 has to admit an ℕ-gradation.
Everything seems to indicate that a full structural char-
acterization of nilpotent solitons may be hopeless.

• A Lie algebra 𝜇 is a soliton if and only if its nilradical 𝔫
is a soliton and the orthogonal complement 𝔯 of 𝔫 is
a reductive Lie algebra such that ad𝜇 𝑋|𝑡𝔫 ∈ Der(𝔫) for
any 𝑋 ∈ 𝔯. In that case, ad𝜇 𝑋|𝔫 is a normal operator
for any 𝑋 in the center of 𝔯 and the subspaces 𝔨 ≔ {𝑋 ∶
ad𝜇 𝑋|𝑡𝔫 = −ad𝜇 𝑋|𝔫} and 𝔭 ≔ {𝑋 ∶ ad𝜇 𝑋|𝑡𝔫 = ad𝜇 𝑋|𝔫}
give rise to a Cartan decomposition [𝔯, 𝔯] = 𝔨 ⊕ 𝔭 of
the semisimple Lie subalgebra [𝔯, 𝔯].

6𝜇(𝜇(𝑒𝑖 , 𝑒𝑗), 𝑒𝑘) + 𝜇(𝜇(𝑒𝑗 , 𝑒𝑘), 𝑒𝑖) + 𝜇(𝜇(𝑒𝑘, 𝑒𝑖), 𝑒𝑗) = 0 for all 𝑖, 𝑗, 𝑘.

The study of soliton Lie algebras was stronglymotivated
by their relationship with left-invariant Ricci solitons and
Einsteinmetrics on Lie groups (see [12]). The author is not
aware of any study of solitons in other classes of algebras,
such as associative or Jordan algebras.

6. Geometric Structures
Let 𝑀 be a differentiable manifold. We consider the
space Γ of all geometric structures on 𝑀 of a given type,
e.g., Riemannian metrics, almost-Hermitian structures, 𝐺2-
structures, etc. As usual, Γ is identified with a subset of the
vector space 𝒯𝑟,𝑠𝑀 of all tensor fields of some type (𝑟, 𝑠),
or tuples of tensors, and the equivalence relation is scal-
ing and pulling back by diffeomorphisms. Thus the equiv-
alence class of 𝛾 ∈ Γ is determined by the natural action
of the group 𝐻 ≔ Diff(𝑀) × ℝ∗ on tensor fields:

[𝛾] ≔ 𝐻 ⋅ 𝛾 = {𝑐ℎ∗𝛾 ∶ 𝑐 ∈ ℝ∗, ℎ ∈ Diff(𝑀)}.
The preferred direction

𝛾 ↦ 𝑞(𝛾) ∈ 𝑇𝛾Γ ⊂ 𝒯𝑟,𝑠𝑀
is typically given by a curvature tensor associated to some
affine connection associated with 𝛾, or the gradient of
a natural geometric functional, or the Hodge–Laplacian
on differential forms, etc. Thus 𝑞 is in most cases dif-
feomorphism equivariant, i.e., 𝑞(ℎ∗𝛾) = ℎ∗𝑞(𝛾) for any
ℎ ∈ Diff(𝑀), which implies that if 𝛾 is a soliton, then any
ℎ∗𝛾 is also a soliton.
Γ is many times open in a vector subspace 𝒯 ⊂ 𝒯𝑟,𝑠𝑀,

in which case one has that 𝑇𝛾Γ = 𝒯, and so any tensor
field in 𝒯 can be the “direction of improvement” 𝑞(𝛾) at
the structure 𝛾 ∈ Γ.

Once the space Γ and the preferred direction 𝑞 have
been specified, it follows from (1) that 𝛾 ∈ Γ is a soliton if
and only if

𝑞(𝛾) ∈ 𝑇𝛾(𝐻 ⋅ 𝛾), 𝐻 = Diff(𝑀) × ℝ∗,
which is equivalent to

𝑞(𝛾) = 𝑐𝛾 + ℒ𝑋𝛾, 𝑐 ∈ ℝ, 𝑋 ∈ 𝔛(𝑀), (11)

where ℒ𝑋 denotes the Lie derivative with respect to the
vector field 𝑋 of 𝑀. Indeed, recall that if 𝑋 is defined by a
one-parameter family 𝑓(𝑡) ∈ Diff(𝑀) with 𝑓(0) = id, then
𝑑
𝑑𝑡
||0 𝑓(𝑡)

∗𝛾 = ℒ𝑋𝛾.

Example 6.1 (Ricci solitons). Consider Γ = ℳ, the space
of all Riemannian metrics on 𝑀. Thus ℳ is open in 𝒯 =
𝒮2𝑀 ⊂ 𝒯2,0𝑀, the vector space of all symmetric 2-tensors
on 𝑀. A natural preferred direction is 𝑞(𝑔) ≔ −2Ric𝑔,
where Ric𝑔 is the Ricci tensor of the metric 𝑔 ∈ ℳ, giv-
ing rise to the well-known Ricci solitons (see [5, Chap-
ter 1]). Note that the corresponding evolution equation

is precisely the famous Ricci flow
𝜕
𝜕𝑡
𝑔(𝑡) = −2Ric𝑔(𝑡) in-

troduced in the 1980s by Hamilton and used as a primary
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tool by Perelman to prove the Poincaré and geometriza-
tion conjectures.

In the case we want to consider a space Γ of geomet-
ric structures satisfying some extra properties, e.g., an
integrability-like condition such as Hermitian, almost-
Kähler, or closedness/coclosedness for 𝐺2-structures, we
have to reduce accordingly the group 𝐻 ⊂ Diff(𝑀) × ℝ∗

determining the equivalence between structures. The pos-
sibilities for preferred directions also decrease, and the vec-
tor field 𝑋 in the definition of soliton (11) must be tangent
to 𝐻 as 𝑞(𝛾) ∈ 𝑇𝛾(𝐻 ⋅ 𝛾). Note that 𝑞 is assumed to be
only𝐻-equivariant in this situation rather than diffeomor-
phism equivariant. On the other hand, Γ is no longer open
in 𝒯.

Example 6.2. If a complex manifold (𝑀, 𝐽) is fixed and
Hermitian metrics or any other kind of geometric struc-
tures on (𝑀, 𝐽) are to be considered, then 𝐻 = Aut(𝑀, 𝐽) ×
ℝ∗, whereAut(𝑀, 𝐽) is the group of bi-holomorphic diffeo-
morphisms, 𝑞 is assumed to be onlyAut(𝑀, 𝐽)-equivariant,
and 𝑋 has to be a holomorphic field. Analogously, in the
symplectic case, 𝐻 = Aut(𝑀, 𝜔), the group of symplecto-
morphisms of a fixed symplectic manifold (𝑀, 𝜔).

Concerning the associated evolution equation,

𝜕
𝜕𝑡
𝛾(𝑡) = 𝑞(𝛾(𝑡)), 𝛾(0) = 𝛾, (12)

one easily obtains that 𝛾 is a soliton if and only if

𝛾(𝑡) = 𝑐(𝑡)𝑓(𝑡)∗𝛾, 𝑐(𝑡) ∈ ℝ, 𝑓(𝑡) ∈ Diff(𝑀); (13)

that is, 𝛾(𝑡) is a self-similar solution. It is worth pointing
out at this point that the natural preferred direction 𝑞 cho-
sen may or may not produce a flow, as the existence of
solutions to the PDE (12) is not always guaranteed. So
possibly, a study of solitons can be worked out without
any reference to a flow. An example of this situation is
Ricci solitons in pseudo-Riemannian geometry (see [4]).
On the other hand, even though the flow is not defined on
the whole space Γ, there may be special subclasses Γ′ ⊂ Γ
on which solutions to (12) do exist, e.g., homogeneous
structures (see below).

Assuming that the scaling behavior of the preferred di-
rection 𝑞 is given by 𝑞(𝑐𝛾) = 𝑐𝛼𝛾 for any 𝑐 ∈ ℝ∗, 𝛾 ∈ Γ, for
some fixed 𝛼 < 1, it is easy to check that the scaling in (13)
is given by

𝑐(𝑡) = ((1 − 𝛼)𝑐𝑡 + 1)
1

1−𝛼 ,

where 𝑐 is the constant appearing in the soliton equation
(11). The soliton 𝛾 is therefore called expanding, steady, or
shrinking depending on whether 𝑐 > 0, 𝑐 = 0, or 𝑐 < 0.
Themaximal time intervals of the self-similar solutions are

respectively given by

(−𝑇𝛼,∞) , (−∞,∞), (−∞,𝑇𝛼) ,

where 𝑇𝛼 ≔
1

(1 − 𝛼)|𝑐| > 0,

often called immortal, eternal, and ancient solutions, respec-
tively. For instance, 𝛼 = 0 if 𝑞 is the Ricci tensor or form
of any connection associated to a metric or to an almost-
Hermitian structure, and 𝛼 = 1

3
for most of the known

flows for 𝐺2-structures.
In what follows, we give an overview of different kinds

of solitons in complex, symplectic, and 𝐺2 geometries.
Chern–Ricci solitons. For a given complex manifold
(𝑀, 𝐽), consider the space Γ of all Hermitian metrics on 𝑀
(or 𝐽-invariant, i.e., 𝑔(𝐽⋅, 𝐽⋅) = 𝑔). Thus 𝒯 ⊂ 𝒯2,0𝑀 is the
vector space of holomorphic (or 𝐽-invariant) symmetric 2-
tensors, and the group providing the equivalence relation
is the subgroup𝐻 ⊂ Diff(𝑀) of bi-holomorphic diffeomor-
phisms (i.e., ℎ∗𝐽 = 𝐽). The Chern connection ∇𝐶 , being
the only Hermitian connection (i.e., ∇𝐶𝑔 = 0, ∇𝐶𝐽 = 0)
with an anti-𝐽-invariant torsion, provides us with the nat-
ural preferred direction 𝑞(𝑔) ≔ −2Ric𝐶𝑔 ∈ 𝒯, where Ric𝐶𝑔
is the corresponding Chern–Ricci tensor of the Hermitian
metric 𝑔. Note that 𝑔 is a soliton, called the Chern–Ricci
soliton, if and only if Ric𝐶𝑔 = 𝑐𝑔 + ℒ𝑋𝑔, for some 𝑐 ∈ ℝ
and holomorphic vector field 𝑋 on 𝑀. The correspond-
ing Chern–Ricci flow was introduced by Gill and has been
studied by Tosatti–Weinkove among others. Examples of
homogeneous Chern–Ricci solitons were given in [16].

Remark 6.3. Another possible preferred direction for Her-
mitian metrics is to just take the 𝐽-invariant part of the
Ricci tensor, given by

𝑞(𝑔) ≔ −Ric1,1𝑔 = − 1
2
(Ric𝑔 +Ric𝑔(𝐽⋅, 𝐽⋅)) .

This choice does not give rise to any geometric flow on the
set of all Hermitian metrics. However, as recently shown
by Lafuente–Pujia–Vezzoni, it coincides with the Hermit-
ian curvature flow (HCF for short) introduced by Streets–
Tian among left-invariant Hermitian metrics on complex
unimodular Lie groups.

Pluriclosed solitons. Consider now on (𝑀, 𝐽) the space Γ
of all Hermitian metrics on 𝑀 that satisfy the pluriclosed
condition 𝜕𝜕𝜔 = 0, where 𝜔 = 𝑔(𝐽⋅, ⋅) ∈ Ω2𝑀 (also
called SKT metrics). A natural preferred direction here

is given by 𝑞(𝑔) ≔ − (Ric𝐵𝑔 )
1,1

, where Ric𝐵𝑔 denotes the
Bismut–Ricci tensor of 𝑔 associated to the Bismut connec-
tion.7 Pluriclosed solitons (i.e., Ric𝐵𝑔 = 𝑐𝑔 + ℒ𝑋𝑔) and the
corresponding pluriclosed flow, which coincides withHCF

7The only Hermitian connection whose torsion satisfies that (𝑋, 𝑌, 𝑍) ↦
𝑔(𝑇 𝐵(𝑋, 𝑌), 𝑍) is a 3-form.
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on SKT metrics, have been studied by several authors (see
[1]).
Anticomplexified Ricci solitons. Let (𝑀, 𝜔) be a symplec-
tic manifold and let Γ denote the space of all compatible
metrics (i.e., 𝐽2 = −𝐼 if 𝜔 = 𝑔(𝐽⋅, ⋅)). For each 𝑔 ∈ Γ,
the pair (𝜔, 𝑔) is called an almost-Kähler structure (in other
words, an almost-Hermitian structure (𝜔, 𝑔, 𝐽) such that
𝑑𝜔 = 0). It follows that 𝒯 is the vector space of anti-
𝐽-invariant symmetric 2-tensors (i.e., 𝑞(𝐽⋅, 𝐽⋅) = −𝑞) and
𝐻 ⊂ Diff(𝑀) is the subgroup of symplectomorphisms (i.e.,
ℎ∗𝜔 = 𝜔). As a preferred direction, the simplest option is

𝑞(𝑔) ≔ Ric2,0+0,2𝑔 = 1
2
(Ric𝑔 −Ric𝑔(𝐽⋅, 𝐽⋅)) ,

the anti-𝐽-invariant part of the Ricci tensor Ric𝑔. This flow
was introduced by Le–Wang, and examples of homoge-
neous solitons were given by Fernández–Culma (see [13]).
Symplectic curvature flow solitons. We now consider the
larger and trickier space Γ of all almost-Hermitian struc-
tures (i.e., a 3-tuple (𝜔, 𝑔, 𝐽) such that 𝑔 = 𝜔(𝐽⋅, ⋅)) on a
manifold 𝑀. It is easy to see that in this case

𝒯 = {(𝜔, 𝑔) ∈ Ω2𝑀 × 𝒮2𝑀 ∶ 𝑔1,1 = 𝜔1,1(⋅, 𝐽⋅)} , (14)

and we take the full𝐻 = Diff(𝑀)×ℝ>0, so the equivalence
class of an almost-Hermitian structure 𝛾 = (𝜔, 𝑔) is given
by [(𝜔, 𝑔)] = {(𝑐ℎ∗𝜔, 𝑐ℎ∗𝑔) ∶ 𝑐 ∈ ℝ∗, ℎ ∈ Diff(𝑀)}.

As above, we consider the Chern–Ricci tensor Ric𝐶(𝜔,𝑔)
and the corresponding Chern–Ricci form 𝑝(𝜔, 𝑔) ≔
Ric𝐶(𝜔,𝑔)(𝐽⋅, ⋅), which is a very natural preferred direction at
𝜔 to choose (indeed, 𝑑𝑝 = 0 if 𝑑𝜔 = 0, so 𝑝 is tangent
to the set of almost-Kähler structures). According to (14),
the 𝐽-invariant part of the preferred direction at 𝑔 must be
given by 𝑝(𝜔, 𝑔)1,1(⋅, 𝐽⋅); hence it only remains to set the
anti-𝐽-invariant part, for which we can just choose the sim-
plest one considered above. In this way, we arrive at the
following natural preferred direction:

𝑞(𝜔, 𝑔) ≔ (𝑝(𝜔, 𝑔), 𝑝(𝜔, 𝑔)1,1(⋅, 𝐽⋅) + Ric2,0+0,2𝑔 ) ∈ 𝒯.
Thus (𝜔, 𝑔) is a soliton if and only if there exist 𝑐 ∈ ℝ and
𝑋 ∈ 𝔛(𝑀) such that

{ 𝑝(𝜔, 𝑔) = 𝑐𝜔 + ℒ𝑋𝜔,
𝑝1,1(⋅, 𝐽⋅) + Ric2,0+0,2 = 𝑐𝑔 + ℒ𝑋𝑔.

The flow is called symplectic curvature flow (SCF for short)
and was introduced by Streets–Tian; see [17] for a study of
homogeneous SCF-solitons. The fact that the three struc-
tures 𝜔, 𝑔, and 𝐽 are actually evolving is particularly chal-
lenging.

Remark 6.4. The classification of complex surfaces is a ma-
jor problem motivating the study of all the above flows
among different subclasses of structures. They all coincide
with the Kähler–Ricci flow among Kähler stuctures (i.e.,
∇𝐽 = 0 for the Levi–Civita connection ∇ of 𝑔).

Laplacian solitons. A 𝐺2-structure on a 7-dimensional dif-
ferentiable manifold 𝑀 is a differential 3-form 𝜑 that is
positive (or definite), in the sense that 𝜑 (uniquely) de-
termines a Riemannian metric 𝑔 on 𝑀 together with an
orientation. The space Γ of all 𝐺2-structures on 𝑀 is an
open subset of 𝒯 = Ω3𝑀 ⊂ 𝒯3,0, and the equivalence is
determined by 𝐻 = Diff(𝑀) × ℝ∗. A very natural preferred
direction is 𝑞(𝜑) = Δ𝜑𝜑, where Δ𝜑 = ∗𝑑∗𝑑−𝑑∗𝑑∗ denotes
the Hodge Laplace operator on forms and ∗ the Hodge star
operator attached to 𝑔 and the orientation. Indeed, if𝑀 is
compact and Δ𝜑𝜑 = 0, then 𝑔 is Ricci flat and has holo-
nomy group contained in the exceptional compact simple
Lie group 𝐺2.

The corresponding Laplacian flow
𝜕
𝜕𝑡
𝜑(𝑡) = Δ𝜑(𝑡)𝜑(𝑡)was

introduced back in 1992 by Bryant as a tool to try to de-
form closed 𝐺2-structures toward holonomy 𝐺2 and has
recently been deeply studied by Lotay–Wei (see [18]). We
refer to [14] for an account of the existence and structure
of Laplacian solitons. Interestingly, the shrinking Lapla-
cian solitons found on certain solvable Lie groups are the
only Laplacian flow solutions with a finite-time singularity
known so far.

7. Geometric Structures on Lie Groups
The role of (locally) homogeneous manifolds in Ricci flow
theory has been very important (see [2]). More recently,
Lie groups have also played an even stronger role in the
study of geometric flows in complex, symplectic, and ex-
ceptional holonomy geometries, due mainly to the lack of
explicit examples (see [13]).

We continue in this section the study of solitons in dif-
ferential geometry initiated above. However, our fixed
manifold is here a Lie group8 𝐺, and we assume that Γ con-
sists of left-invariant geometric structures, i.e., 𝐿∗𝑎𝛾 = 𝛾 for
any 𝑎 ∈ 𝐺, where 𝐿𝑎 is the diffeomorphism of 𝐺 defined
by 𝐿𝑎(𝑏) = 𝑎𝑏 for all 𝛾 ∈ Γ. Thus each 𝛾 is determined by
its value at the identity 𝑒 ∈ 𝐺 and so is identified with the
tensor 𝛾𝑒 (or a tuple of tensors) on the Lie algebra 𝔤 = 𝑇𝑒𝐺
of 𝐺. In this way,

Γ ⊂ 𝑇𝑟,𝑠𝔤,
the finite-dimensional vector space of all left-invariant ten-
sor fields of type (𝑟, 𝑠) on 𝐺. Note that Γ is usually con-
tained in a singleGL(𝔤)-orbit, which ismany times open in
some suitable vector subspace 𝑇 ⊂ 𝑇𝑟,𝑠𝔤 (e.g., inner prod-
ucts, nondegenerate 2-forms, almost-Hermitian structures,
SU(3)-structures, positive 3-forms, etc.).

Accordingly, we consider the equivalence between left-
invariant structures to be defined by scalings and the partic-
ular diffeomorphisms of 𝐺 that are also group morphisms,
i.e., by the group

𝐻 ≔ Aut(𝐺) × ℝ∗,
8A differentiable manifold that is also, compatibly, a group.
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which is identified with Aut(𝔤) × ℝ∗, where Aut(𝔤) is the
automorphism group of 𝔤, as 𝐺 is assumed to be simply
connected from now on.

Any preferred direction 𝑞 from the general case that is
diffeomorphism equivariant produces a left-invariant one.
Indeed, one obtains a preferred direction determined by a
function

𝛾 ↦ 𝑞(𝛾) ∈ 𝑇𝛾Γ ⊂ 𝑇𝑟,𝑠𝔤.
We therefore have that 𝛾 ∈ Γ is a soliton, called a semi-
algebraic soliton in the literature, if and only if

𝑞(𝛾) = 𝑐𝛾 + ℒ𝑋𝐷𝛾, 𝑐 ∈ ℝ, 𝐷 ∈ Der(𝔤), (15)

where 𝑋𝐷 ∈ 𝔛(𝐺) is defined at each point 𝑎 ∈ 𝐺 by

𝑋𝐷(𝑎) =
𝑑
𝑑𝑡
||𝑡=0 𝑓(𝑡)(𝑎) and 𝑓(𝑡) ∈ Aut(𝐺) is determined

by 𝑑𝑓(𝑡)|𝑒 = 𝑒𝑡𝐷 ∈ Aut(𝔤) (since 𝑋𝐷(𝑒) = 0, these fields are
never left invariant). Note that (𝐺, 𝛾) is also a soliton from
the general point of view considered in (11). It is easy to
check that, algebraically, the Lie derivative is simply given
by

ℒ𝑋𝐷𝛾 = −𝜃(𝐷)𝛾, (16)

where 𝜃 denotes the usual 𝔤𝔩(𝔤)-representation on tensors.
As in the general case, additional conditions on the deriva-
tion𝐷may apply if Γ satisfies extra properties (see Example
6.2).

Remark 7.1. These vector fields 𝑋𝐷 on Lie groups attached
to a derivation 𝐷 may be viewed as a generalization of lin-
ear vector fields on ℝ𝑛 (i.e., 𝑋𝑣 = 𝐴𝑣, 𝐴 ∈ 𝔤𝔩𝑛) and have
been strongly used in control theory since a pioneering ar-
ticle by Ayala–Tirao.

It is important to point out that in the Lie group case
considered in this section, the corresponding geometric
flow

𝑑
𝑑𝑡
𝛾(𝑡) = 𝑞(𝛾(𝑡)), 𝛾(0) = 𝛾, (17)

is actually an ODE rather than a PDE. In particular, short
time existence and uniqueness of solutions are always guar-
anteed. It is also known that |𝑞(𝛾(𝑡))|must blow up at any
finite-time singularity (see [13]). Note that 𝛾 is a semialge-
braic soliton if and only if the solution 𝛾(𝑡) to (17) is given
by 𝛾(𝑡) = 𝑐(𝑡)𝑓(𝑡)∗𝛾 for some 𝑐(𝑡) ∈ ℝ and 𝑓(𝑡) ∈ Aut(𝐺).

Due perhaps to its neat definition as a combination
of geometric and algebraic aspects of (𝐺, 𝛾) (cf. (15) and
(16)), the concept of semialgebraic soliton has a long and
fruitful history in the Ricci flow case (see [10–12]) and has
also been a quite useful tool to address the existence prob-
lem of soliton structures for all the geometric flows in com-
plex, symplectic, and 𝐺2 geometries given above.

Remark 7.2. Given a semialgebraic soliton (𝐺, 𝛾), if 𝐺 has
a cocompact discrete subgroup Λ, then the solution 𝛾(𝑡)
also solves (17) on the compact manifold 𝐺/Λ. However,
in general, the locally homogeneous manifold (𝐺/Λ, 𝛾) is
no longer a soliton, since the field 𝑋𝐷 does not descend

to 𝐺/Λ. The solution (𝐺/Λ, 𝛾(𝑡)) is very peculiar though:
it is “locally self-similar” in the sense that 𝛾(𝑡) is locally
equivalent to 𝛾 up to scaling for all 𝑡.
The moving-bracket approach. The following viewpoint
is suggested by the fact that all the geometric information
on a Lie group endowed with a left-invariant geometric
structure, say (𝐺, 𝛾), is encoded in just the tensor 𝛾 ∈ 𝑇𝑟,𝑠𝔤
and the Lie bracket 𝜇 of 𝔤. We consider the variety of Lie al-
gebras ℒ ⊂ Λ2𝔤∗⊗𝔤 as in (10) (i.e., the algebraic subset of
all Lie brackets on the vector space 𝔤) and fix a suitable ten-
sor 𝛾 on 𝔤. Each 𝜇 ∈ ℒ is therefore identified with (𝐺𝜇, 𝛾),
the simply connected Lie group 𝐺𝜇 with Lie algebra (𝔤, 𝜇)
endowed with the left-invariant geometric structure on 𝐺𝜇
defined by the fixed 𝛾:

𝜇⟷ (𝐺𝜇, 𝛾). (18)

The naturalGL(𝔤)-actions on tensors provide the following
key equivalence between geometric structures:

(𝐺ℎ⋅𝜇, 𝛾) −→≃ (𝐺𝜇, ℎ∗𝛾) ∀ℎ ∈ GL(𝔤), (19)

given by the Lie group isomorphism 𝐺ℎ⋅𝜇 → 𝐺𝜇 with de-
rivative ℎ−1. Since Γ ⊂ GL(𝔤) ⋅ 𝛾, it follows from (18) and
(19) that the isomorphism class GL(𝔤) ⋅ 𝜇 contains all geo-
metric structures of the same type of 𝛾 (up to equivalence)
on the Lie group𝐺𝜇 for each 𝜇 ∈ ℒ. Thus one has insideℒ,
all together, all Lie groups of a given dimension endowed
with left-invariant geometric structures of a given type.

Remark 7.3. The usual convergence of a sequence of brack-
ets produces convergence of the corresponding geomet-
ric structures in well-known senses such as pointed (or
Cheeger–Gromov) and smooth up to pull-back by diffeo-
morphisms, under suitable conditions (see [13]). In par-
ticular, a degeneration (i.e., 𝜆 ∈ GL(𝔤) ⋅ 𝜇 ⧵GL(𝔤) ⋅ 𝜇) gives
rise to the convergence of a sequence of geometric struc-
tures on a given Lie group toward a structure on a different
Lie group, which may be nonhomeomorphic.

The moving-bracket approach has actually been used
for decades in homogeneous geometry (see [13, Section 5]
and [15]). In most applications, concepts and results from
GIT, including moment maps and their convexity proper-
ties, closed orbits, stability, categorical quotients, and Kir-
wan stratification, have been exploited in one way or an-
other.

A particularly fruitful interplay occurs in the Riemann-
ian case, which relies on the fact that if 𝜇 is nilpotent, then
the Ricci operator of (𝐺𝜇, ⟨⋅, ⋅⟩) is precisely the moment
mapm(𝜇) defined in (8) (up to scaling). This implies that,
remarkably, soliton nilpotent Lie algebras (see (9)) and
semialgebraic Ricci solitons (see (15) and (16)) on nilpo-
tent Lie groups (called nilsolitons) are the same thing. In
particular, the uniqueness up to isometry and scaling of
nilsolitons on a given nilpotent Lie group follow from the
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uniqueness of critical points of E(𝜇) = |m(𝜇)|2 on a given
nilpotent GL(𝔤)-orbit up to the action of O(𝔤) and scaling.
The bracket flow. Provided by equivalence (19), a main
tool to study the geometric flow (17) is a dynamical system
defined on the variety of Lie algebras ℒ called the bracket
flow, which is equivalent in a precise sense to the geometric
flow (17). It is defined by

𝑑
𝑑𝑡𝜇(𝑡) = 𝜃(𝑄𝜇(𝑡))𝜇(𝑡), 𝜇(0) = 𝜇, (20)

where 𝑄𝜇 ∈ 𝔤𝔩(𝔤) is a suitable (unique) operator such that

𝜃(𝑄𝜇)𝛾 = 𝑞(𝐺𝜇, 𝛾).9 Since
𝑑
𝑑𝑡
𝜇(𝑡) ∈ 𝑇𝜇(𝑡) (GL(𝔤) ⋅ 𝜇(𝑡)), the

solution 𝜇(𝑡) ∈ GL(𝔤) ⋅ 𝜇 for all 𝑡, and so each 𝜇(𝑡) rep-
resents a structure on 𝐺𝜇. However, 𝜇(𝑡) may converge to

a Lie bracket 𝜆 ∈ GL(𝔤) ⋅ 𝜇, i.e., toward a structure on a
different Lie group 𝐺𝜆 (cf. Remark 7.3). For instance, this
occurs already in dimension 3 for the Ricci flow.

The bracket flow is useful to better visualize the possi-
ble pointed limits of solutions under diverse rescalings, as
well as to address regularity issues. Immortal, ancient, and
self-similar solutions naturally arise from the qualitative
analysis of the bracket flow (see [1,2,13,17]).
Algebraic solitons. In light of the equivalence between
the flows (17) and (20), a natural question arises: How do
solitons evolve according to the bracket flow? It is natural
to expect an evolution of a very special kind.

If 𝜇 is a fixed point (up to scaling) of the bracket flow
(20), i.e., 𝜇(𝑡) = 𝑐(𝑡)𝜇 for 𝑐(𝑡) ∈ ℝ, then 𝜃(𝑄𝜇)𝜇 = −𝑐𝜇 for
some 𝑐 ∈ ℝ by evaluating (20) at 𝑡 = 0, and one obtains
from (7) that

𝑄𝜇 = 𝑐𝐼 + 𝐷, 𝑐 ∈ ℝ, 𝐷 ∈ Der(𝜇). (21)

In that case, (𝐺𝜇, 𝛾) is called an algebraic soliton. Note that
these are semialgebraic solitons, since by (16), 𝑞(𝐺𝜇, 𝛾) =
𝑐𝛾−ℒ𝑋𝐷𝛾 for some 𝑐 ∈ ℝ. They are distinguished though;
indeed, it is proved in [15] that in terms of the operator𝑄𝜇,
(𝐺𝜇, 𝛾) is a semialgebraic soliton if and only if 𝑄𝜇 = 𝑐𝐼 +
𝑝(𝐷) for some 𝑐 ∈ ℝ and 𝐷 ∈ Der(𝜇), where 𝑝 ∶ 𝔤𝔩(𝔤) → 𝔮
is the projection with respect to the decomposition10

𝔤𝔩(𝔤) = 𝔨 ⊕ 𝔮, 𝔨 ≔ {𝐴 ∈ 𝔤𝔩(𝔤) ∶ 𝜃(𝐴)𝛾 = 0}.

Thus algebraic solitons are the solitons for which𝑄𝜇 = 𝑐𝐼+
𝑝(𝐷) holds for a special derivation 𝐷 such that 𝑝(𝐷) = 𝐷
(see (21)).

Any Ricci soliton on a Lie group is isometric to an alge-
braic soliton (see [10]). On the other hand, examples of
Laplacian and pluriclosed semialgebraic solitons that are
not isometric to any algebraic soliton were found in [19]
and [1], respectively.

9The existence of such an operator relies on the fact that GL(𝔤) ⋅ 𝛾 is open in 𝑇.
10For instance, 𝑝(𝐷) = 1

2
(𝐷 + 𝐷𝑡) if 𝛾 is a metric or a closed 𝐺2-structure.

As expected, algebraic solitons are distinguished from
many other points of view. Some of the results supporting
this follow:

• Consider the Ricci pinching functional

𝐹(𝑔) ≔
scal2𝑔
| Ric𝑔 |2

,

measuring in a sense how far a homogeneous metric
𝑔 is from being Einstein (indeed, 𝐹(𝑔) ≤ dim𝑀, and
equality holds if and only if (𝑀, 𝑔) is Einstein). As
shown by Lauret–Will, algebraic Ricci solitons are pre-
cisely the global maxima for 𝐹 restricted to the set of
all left-invariantmetrics on any unimodular Lie group,
as well as on any solvable Lie group with codimension
one nilradical.

• Böhm–Lafuente proved that the dimension of the
isometry group of an algebraic Ricci soliton on a solv-
able Lie group 𝑆 (called solvsolitons) is maximal among
all left-invariant metrics on 𝑆. A stronger symmetry
maximality condition was shown to hold in the case
when 𝑆 is in addition unimodular by Jablonski: the
isometry group of a solvsoliton contains all possible
isometry groups of left-invariant metrics on 𝑆 up to
conjugation by a diffeomorphism.

• A closed𝐺2-structure𝜑 is called extremally Ricci-pinched
(ERP for short) if

𝑑𝜏 = 1
6
|𝜏|2𝜑 + 1

6
∗ (𝜏 ∧ 𝜏),

where 𝜏 = −∗𝑑∗𝜑 is the torsion 2-form of 𝜑. They are
characterized in the compact case as the structures at
which equality holds in the following Ricci curvature
estimate for closed 𝐺2-structures discovered by Bryant:

∫
𝑀
scal2 ∗1 ≤ 3∫

𝑀
| Ric |2 ∗ 1. (22)

It was proved by Lauret–Nicolini that any left-
invariant ERP𝐺2-structure on a Lie group is necessarily
a steady algebraic Laplacian soliton and its attached
metric is an expanding algebraic Ricci soliton.

Concerning bracket flow evolution of a semialgebraic
soliton that is not algebraic, we know that 𝜇(𝑡)/|𝜇(𝑡)| is ei-
ther periodic or not periodic and the following chaotic be-
havior occurs: for each 𝑡0 there exists a sequence 𝑡𝑘 → ±∞
such that 𝜇(𝑡𝑘)/|𝜇(𝑡𝑘)| converges to 𝜇(𝑡0)/|𝜇(𝑡0)| (see [15]).
The existence of a soliton of this last kind is an open prob-
lem.

Remark 7.4. More generally, the whole picture developed
in this section essentially works for 𝐺-invariant geometric
structures on a homogeneous space 𝐺/𝐾, though a more
technical exposition would be necessary (see [13,15]).
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8. Concluding Remarks
As discussed in the Introduction, solitons play the role of
“best” elements in a given set in the case when the most
natural ones are not available. A main aim of this article
was to show how fruitful this has been in the study of geo-
metric structures onmanifolds, with particular strength on
Lie groups.

On each solvable Lie group, there is at most one solv-
soliton up to isometry and scaling. This allows us to en-
dow several Lie groups that do not admit Einstein metrics
(e.g., nilpotent or unimodular solvable Lie groups) with a
canonical Riemannian metric. Analogously, Chern–Ricci,
pluriclosed, and HCF (resp., SCF) algebraic solitons pro-
vide distinguished Hermitian (resp., almost-Kähler) struc-
tures for Lie groups on which Kähler metrics do not exist.
Laplacian algebraic solitons play the same role in the ho-
mogeneous case, where holonomy 𝐺2 is out of reach since
Ricci flat implies flat.

The moving-bracket approach allows the rich interplay
between soliton geometric structures on Lie groups and
soliton Lie algebras, paving the way to many beautiful ap-
plications of GIT to differential geometry.
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