
WHAT IS. . .

a Minuscule Representation?
Richard M. Green

A minuscule representation is a particular type of high-
est weight representation. Highest weight representations
play a key role in the representation theory of several
classes of algebraic objects occurring in Lie theory, includ-
ing Lie algebras, Lie groups, algebraic groups, Chevalley
groups, and quantized enveloping algebras.

A highest weight representation is calledminuscule if the
associated Weyl group acts transitively on the weights. The
highest weight of a minuscule representation is known as
a minuscule weight, which is a translation of Bourbaki’s
term poids minuscule [1, VIII, §7.3]. The French word
“minuscule” can mean “lower case” instead of “tiny”. Al-
though minuscule representations can have large dimen-
sions, their structure is in some sense more basic than that
of representations in general, so they can be thought of as
“lower case representations”.

For our purposes, we will regard minuscule representa-
tions as representations of finite-dimensional simple Lie
algebras over the complex numbers. The representation
theory of these algebras is described in detail in the books
by Erdmann and Wildon [3], Carter [2], and Kac [5]. The
aim of this article is to explain how minuscule representa-
tions can be used to construct almost all of these simple
Lie algebras, by using combinatorial methods and with
relatively little theory. The framework we discuss here is
described in the 𝐴𝐷𝐸 case in Wildberger’s paper [7], but
that paper does not include all the proofs. For a detailed
development of the ideas in this article, including proofs
and comprehensive references, the reader is referred to the
author’s book [4].
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A significant advantage of minuscule representations is
that they can be easier to construct than the Lie algebras
themselves. When a simple Lie algebra over ℂ has a mi-
nuscule representation, it is possible to construct the alge-
bra in terms of its action on the corresponding minuscule
module. The good news is that minuscule representations
exist in almost all cases, and one way to construct them is
by using certain linear operators associated to a combina-
torial structure called a “heap”.
Heaps and linear operators. A heap is a certain labeled
partially ordered set (or poset for short) where the labels
themselves are the vertices of a certain graph. Figure 1
shows the heap of the unique minuscule representation
of the simple Lie algebra of type 𝐸7. In this case, the un-
derlying graph is the Dynkin diagram of type 𝐸7, which
is shown in Figure 2. Because of its shape, this particular
heap has been variously nicknamed “the swallow” or “the
bat”.

Rather than give the axiomatic definition of heaps, we
will work with reference to this particular example. An im-
portant property of a heap is that the set of all elements
of the heap that have a particular label (for example, the
label “4”) forms a chain, meaning a totally ordered subset.
Another important property along these lines is that if we
choose a pair of labels that are adjacent in the graph, for
example “3” and “7”, then the set of all elements of the
heap having labels in the set {3, 7} also forms a chain.

The heaps associated to minuscule representations are
required to satisfy some additional combinatorial rules.
We will not go into full details here, but an example of
one such rule that applies to this case is that the interval
between any two consecutive elements with label 𝑝 is re-
quired to contain precisely two elements having labels that
are adjacent (in the underlying graph) to 𝑝. For example,
we can check by inspecting the heap in Figure 1 that be-
tween any two consecutive occurrences of the label 4 there
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Figure 1. The heap of the unique minuscule representation in
type 𝐸7, together with one of the ideals of the heap.
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Figure 2. The Dynkin diagram of type 𝐸7.

are either two elements with label 3, or an element with
label 3 and an element with label 5.

An ideal of a partially ordered set 𝐸 is a subset 𝐼 of 𝐸
that is downward-closed; in other words, whenever 𝑦 is an
element of 𝐼 and 𝑥 ∈ 𝐸 satisfies 𝑥 ≤ 𝑦, then we must also
have 𝑥 ∈ 𝐼. The set of ideals of a partially ordered set 𝐸
is denoted by 𝐽(𝐸), which in turn becomes a partially or-
dered set under the “subset” relation. (Note that ∅ and 𝐸
are both elements of 𝐽(𝐸).) Another example of an ideal
of the heap in Figure 1 consists of all the elements below
the given dashed line. This particular heap has 56 ideals in
total, which is the same as the dimension of the represen-
tation it is encoding.

The underlying posets of the heaps of minuscule repre-
sentations can be characterized concisely by the following
theorem. Recall that if 𝐸1 and 𝐸2 are posets, then 𝐸1×𝐸2 be-
comes a poset by stipulating that (𝑥1, 𝑦1) ≤ (𝑥2, 𝑦2) if and
only if both 𝑥1 ≤ 𝑥2 and 𝑦1 ≤ 𝑦2. Let [𝑘] denote a chain
with 𝑘 elements, and let 𝐽𝑟 denote the result of applying
the 𝐽 operator 𝑟 times.

Theorem. The only posets that occur as the underlying poset
of the heap of a minuscule representation are the following:

[𝑠] × [𝑡] (𝑠, 𝑡 ≥ 1),
𝐽([2] × [𝑡]) (𝑡 ≥ 1),
𝐽𝑘([2] × [2]) (𝑘 ≥ 0),
𝐽2([2] × [3]) and

𝐽3([2] × [3]).
Proof. This is proved in [4, Theorem 11.2.8 (iv)]. □

Despite its somewhat intricate appearance, the partially
ordered set in Figure 1 can be simply described as 𝐽3([2] ×
[3]).

The posets in the theorem above appear as the answer
to various combinatorial problems; for example, they are
the only known examples of connected Gaussian posets,
in the sense of Stanley [6, Exercise 4.25].

The reason that heaps such as the one in Figure 1 are
useful in representation theory is that one can use their
combinatorial properties to define linear operators on cer-
tain vector spaces.

If 𝐸 is the heap of a minuscule representation, we de-
fine 𝑉𝐸 to be the ℂ-vector space with basis {𝑣𝐼 ∶ 𝐼 ∈ 𝐽(𝐸)}.
Whenever 𝑝 is the label of an element of the heap 𝐸, we
can define linear operators 𝑋𝑝 and 𝑌𝑝 on 𝑉𝐸 by their effect
on basis elements as follows:

𝑋𝑝(𝑣𝐼) = { 𝑣𝐾 if 𝐾\𝐼 is a singleton with label 𝑝,
0 otherwise;

𝑌𝑝(𝑣𝐼) = { 𝑣𝐿 if 𝐼\𝐿 is a singleton with label 𝑝,
0 otherwise.

(The ideals 𝐾 and 𝐿 given above are necessarily unique if
they exist.)

Example. Consider the ideal 𝐼 of the heap 𝐸 that is given
by the dashed line in Figure 1. Since 𝐼 has a maximal ele-
ment 𝑥 with label 6, it follows that 𝑌6(𝑣𝐼) = 𝑣𝐿, where 𝐿 is
the ideal given by 𝐼\{𝑥}. On the other hand, 𝐸\𝐼 has a mini-
mal element 𝑦 with label 4, which means that 𝑋4(𝑣𝐼) = 𝑣𝐾 ,
where 𝐾 = 𝐼 ∪ {𝑦}. Similar arguments show that 𝑋7(𝑣𝐼) ≠ 0
and 𝑌3(𝑣𝐼) ≠ 0. However, 𝑋5(𝑣𝐼) is equal to zero, because
𝐸\𝐼 has no minimal element with a label of 5.

There are also operators 𝐻𝑝 and 𝑆𝑝 on 𝑉𝐸 . These can be
defined in terms of the operators 𝑋𝑝 and 𝑌𝑝 as follows:

𝐻𝑝(𝑣𝐼) = {
−𝑣𝐼 if 𝑋𝑝(𝑣𝐼) ≠ 0,
𝑣𝐼 if 𝑌𝑝(𝑣𝐼) ≠ 0,
0 otherwise;

𝑆𝑝(𝑣𝐼) = {
𝑋𝑝(𝑣𝐼) if 𝑋𝑝(𝑣𝐼) ≠ 0,
𝑌𝑝(𝑣𝐼) if 𝑌𝑝(𝑣𝐼) ≠ 0,
𝑣𝐼 otherwise.

It is not immediately clear that the various cases above are
exclusive, but this can be proved from the combinatorial
properties of the heap in question.
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Representations of Lie algebras overℂ. The operators𝑋𝑝,
𝑌𝑝, and 𝐻𝑝 defined in the previous section give a represen-
tation of a particular simple Lie algebra. Recall that a rep-
resentation of a Lie algebra 𝔤 is a homomorphism of Lie
algebras 𝜌 ∶ 𝔤⟶𝔤𝔩𝑛(ℂ), where 𝔤𝔩𝑛(ℂ) is regarded as a
Lie algebra with the bracket [𝐴, 𝐵] ∶= 𝐴𝐵 − 𝐵𝐴. A simple
Lie algebra 𝔤 is one for which [𝔤, 𝔤] is nonzero and 𝔤 has
no ideals other than itself and the zero ideal.

The following theoremuses the linear operators defined
above to construct all minuscule representations of simple
Lie algebras overℂ. This procedure also constructs the sim-
ple Lie algebras themselves and their Weyl groups.

Theorem. For every minuscule representation of a simple Lie
algebra 𝔤 over ℂ, there exists a heap 𝐸 with set of labels Γ,
satisfying the following properties.

(i) The subalgebra of 𝔤𝔩(𝑉𝐸) generated by the operators
{𝑋𝑝, 𝑌𝑝, 𝐻𝑝 ∶ 𝑝 ∈ Γ} is isomorphic to the Lie algebra
𝔤. This construction endows 𝑉𝐸 with the structure of
a 𝔤-module affording the minuscule representation in
question.

(ii) The operators {𝑆𝑝 ∶ 𝑝 ∈ Γ} give permutations of 𝐽(𝐸)
of order 2. The group generated by these permutations
is isomorphic to the Weyl group, 𝑊 , of 𝔤.

The generators 𝑋𝑖, 𝑌𝑖, and 𝐻𝑖 for 𝔤 that are given in the
theorem agree with the usual Serre generators 𝑒𝑖, 𝑓𝑖, and ℎ𝑖
for 𝔤. Similarly, the generators 𝑆𝑖 for 𝑊 agree with the
usual Coxeter generators 𝑠𝑖 for 𝑊 .
Weights. Recall that a representation is called minuscule
if the Weyl group acts transitively on the weights. The
weights of a minuscule representation are particularly easy
to workwith, because they can be identifiedwith the ideals
𝐼 of the associated heap 𝐸.

An important property of the basis elements 𝑣𝐼 is that
they are simultaneous eigenvectors for the operators 𝐻𝑝.
The weight associated to 𝑣𝐼 can be identified as the formal
linear combination ∑𝑝∈Γ 𝑐𝑝𝜔𝑝, where 𝑐𝑝 is the eigenvalue
of 𝐻𝑝 acting on 𝑣𝐼 .
Example. Consider the ideal 𝐼 of the heap 𝐸 given in Fig-
ure 1. A direct check using the definitions shows that 𝐻4
and 𝐻7 act on 𝑣𝐼 with the eigenvalue −1, 𝐻3 and 𝐻6 act
on 𝑣𝐼 with the eigenvalue 1, and the other 𝐻𝑖 act on 𝑣𝐼
with the eigenvalue zero. It follows that the weight of 𝑣𝐼 is
𝜆 = 𝜔3 − 𝜔4 + 𝜔6 − 𝜔7.

In fact, the operators {𝐻𝑝 ∶ 𝑝 ∈ Γ} are a basis for the
Cartan subalgebra, and {𝜔𝑝 ∶ 𝑝 ∈ Γ} is the associated dual
basis.

The weights of a highest weight representation can be
made into a partially ordered set in a natural way, and this
corresponds to the natural order on ideals given by the sub-
set relation. It follows from this that the ideals 𝐸 and ∅ are
the highest and lowest weights, respectively, of the corre-
sponding minuscule representation. Since any ideal of 𝐸

may be transformed to the empty ideal by successive re-
moval of maximal elements, it follows that the action of
the Weyl group on the ideals of 𝐸 (and therefore on the
weights of the representation) is transitive.

By inspection of the heap shown in the diagram, we see
that the minuscule representation in type 𝐸7 has highest
weight 𝜔6 and lowest weight −𝜔6. Because this particular
heap has symmetry about a horizontal axis, it follows that
the weights of the corresponding representation are closed
under negation.

Every minuscule module 𝑉𝐸 whose weights are closed
under negation can be endowed with a bilinear form 𝑝 ∶
𝑉𝐸 ⊗ℂ 𝑉𝐸⟶ℂ given by its effect on basis elements as fol-
lows:

𝑝(𝑣𝐼 , 𝑣𝐾) = { (−1)|𝐼| if wt(𝑣𝐼) = −wt(𝑣𝐾),
0 otherwise.

Theorem. Let 𝐸 be the heap of a minuscule module 𝑉𝐸 that
has the property that the weights are closed under negation, and
let 𝑝 be the bilinear form defined above.

(i) The form 𝑝 is nondegenerate, and it is invariant in the
sense that for every 𝑥 ∈ 𝔤 and every 𝑣 ∈ 𝑉𝐸, we have
𝑝(𝑥.𝑣, 𝑣) + 𝑝(𝑣, 𝑥.𝑣) = 0.

(ii) If the heap 𝐸 has an even number of elements, then 𝑝 is
orthogonal, meaning that we always have 𝑝(𝑣1, 𝑣2) =
𝑝(𝑣2, 𝑣1).

(ii) If the heap 𝐸 has an odd number of elements, then 𝑝 is
symplectic, meaning that we always have 𝑝(𝑣1, 𝑣2) =
−𝑝(𝑣2, 𝑣1).

Proof. This is proved in [4, Theorem 5.6.4]. This result is
true in a more general context than minuscule representa-
tions, as proved by Bourbaki [1, VIII, Chapter 7, Proposi-
tion 12]. □
When do minuscule representations exist? The finite-
dimensional simple Lie algebras over ℂ were classified by
W. Killing and E. Cartan in the late nineteenth century. It
turns out that there are four infinite families, known as 𝐴𝑛,
𝐵𝑛, 𝐶𝑛, and𝐷𝑛, together with five exceptional cases, known
as 𝐸6, 𝐸7, 𝐸8, 𝐹4, and 𝐺2. The number of (isomorphism
classes of) minuscule representations of each simple Lie
algebra is given in Table 1.

In more detail, the minuscule representations are as fol-
lows. In type 𝐴𝑛, there is an 𝑛 + 1-dimensional minus-
cule representaiton arising from the realization of the Lie
algebra as 𝔰𝔩𝑛+1(ℂ). The other minuscule representations
come from the exterior powers of this representation; they
have dimensions (𝑛+1

𝑘
) for 1 ≤ 𝑘 ≤ 𝑛. The minuscule rep-

resentation in type 𝐵𝑛 is the spin representation of dimen-
sion 2𝑛, and the minuscule representation in type 𝐶𝑛 is the
natural representation of dimension 2𝑛. In type 𝐷𝑛, the
three minuscule representations are the natural represen-
tation of dimension 2𝑛, and the two half spin representa-
tions of dimension 2𝑛−1. Finally, there are two minuscule
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Type Number of
minuscule

representations
𝐴𝑛 𝑛
𝐵𝑛 1
𝐶𝑛 1
𝐷𝑛 3
𝐸6 2
𝐸7 1
𝐸8 0
𝐹2 0
𝐺2 0

Table 1

representations in type 𝐸6, both of dimension 27, and one
minuscule representation in type 𝐸7, of dimension 56.

The correspondence between posets and minuscule rep-
resentations works as follows. The posets [𝑠] × [𝑡] give
rise to the minuscule representations in types 𝐴𝑛. The
heaps for type 𝐶𝑛 are chains, which corresponds to the spe-
cial case 𝑡 = 1. The posets 𝐽([2] × [𝑡]) give the spin and
half spin representations in types 𝐵𝑛 and 𝐷𝑛. The posets
𝐽𝑘([2] × [2]) give the natural representations in type 𝐷𝑛.
The poset 𝐽2([2] × [3]) gives the two 27-dimensional rep-
resentations in type 𝐸6, and the poset 𝐽3([2]×[3]) gives the
56-dimensional representation in type 𝐸7.
Remark. If we define𝑁 to be the number of minuscule rep-
resentations of the simple Lie algebra 𝔤 over ℂ, then there
are several interesting Lie-theoretic interpretations of the
number 𝑁 + 1. For example, 𝑁 + 1 is equal to (a) the de-
terminant of the Cartan matrix of 𝔤; (b) the index of the
root lattice of 𝔤 in the weight lattice of 𝔤; and (c) the ra-
tio |𝐺|/|𝐺|, where 𝐺 and 𝐺 are the automorphism groups
of the Dynkin diagram of 𝔤 and of the corresponding un-
twisted affine Dynkin diagram, respectively.

Connections with geometry. It turns out that there is a
natural way to identify weights of a minuscule representa-
tion with points in Euclidean space to form a highly sym-
metric polytope on which the Weyl group 𝑊 acts by or-
thogonal transformations [4, §8.4]. In particular, one can
obtain the simplex, the hypercube, and the hyperoctahe-
dron from the weights of suitable minuscule representa-
tions in type 𝐴𝑛, 𝐵𝑛, and 𝐶𝑛, respectively. Given an ar-
bitrary minuscule representation, it can be shown that if
(𝜆1, 𝜆2) and (𝜇1, 𝜇2) are two pairs of weights, then there ex-
ists an element 𝑤 ∈ 𝑊 satisfying (𝑤.𝜆1, 𝑤.𝜆2) = (𝜇1, 𝜇2) if
and only if the Euclidean distances 𝑑(𝜆1, 𝜆2) and 𝑑(𝜇1, 𝜇2)
are equal. This observation provides a more detailed view
of the transitive action of the Weyl group on the weights of
a minuscule representation; in particular, this can be used
to calculate the rank of the Weyl group as a permutation
group [4, Theorem 8.2.22].

The 56-dimensional minuscule representation in type

𝐸7 has a geometric interpretation in terms of the del Pezzo
surface that arises from blowing up seven points in gen-
eral position in the complex projective plane. (Here, “gen-
eral position”means that no three points are collinear, and
no six lie on a conic.) This gives rise to 56 curves of self-
intersection −1 that can be identified with the weights of
the representation in a way that is naturally compatible
with the action of the Weyl group. By pairing up these
56 curves in a canonical way, we obtain the action of the
Weyl group of type 𝐸7 on the 28 bitangents to a plane quar-
tic curve. This action has many interesting combinatorial
properties, which are the subject of [4, §9].

The 27-dimensional minuscule representations in type
𝐸6 are another very interesting case that arises from blow-
ing up six points in general position. Here, the 27 weights
correspond to a famous configuration of 27 lines on a cu-
bic surface [4, §10.1]. The Euclidean distances between
the weights then determine whether a pair of these lines is
incident or skew.

References
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