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In the last several decades, convex geometry methods have
proven very useful in algebraic geometry specifically to un-
derstand discrete invariants of algebraic varieties. An ap-
proach to study algebraic varieties is to assign to a family
of varieties a corresponding family of combinatorial ob-
jects which encode geometric information about the vari-
eties. Often, the combinatorial objects that arise are con-
vex polytopes, and convex geometry has been an essential
tool for this strategy.

The emergence of convexity in algebraic geometry is
rooted in the following geometric observations. Let 𝒜 ⊂
ℤ𝑛 be a finite set, then:

1. For any vector 𝜉 ∈ ℝ𝑛, themaximum/minimumof the
dot products 𝜉 ⋅ 𝑥, 𝑥 ∈ 𝒜, is attained on the boundary
of the convex hull of 𝒜.

2. As 𝑘 → ∞ the rescaled 𝑘-fold sums { 1
𝑘
(𝑥1 +⋯+ 𝑥𝑘) ∣

𝑥𝑖 ∈ 𝒜} converge to the convex hull of 𝒜.
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The first observation is related to describing a polytope as
an intersection of finitely many half spaces. It appears in
the notion of a Newton polygon introduced in Section 1
and is important in tropical geometry. The second observa-
tion is related to the construction of a polytope as a convex
hull of finitely many points. It is central to the proof of the
BKK theorem (see Theorem 1.2) and its generalization to
Newton–Okounkov bodies described in Section 3.

1. Newton Polytopes and Toric Varieties
The origin of appearances of convex polyhedra in algebraic
geometry goes back to Sir Isaac Newton and Ferdinand
Minding. Newton introduced what we now know as the
Newton diagram of a polynomial 𝑓(𝑥, 𝑡) in two variables 𝑥
and 𝑡. Given an equation 𝑓(𝑥, 𝑡) = 0 regarded as implicitly
defining 𝑥 in terms of 𝑡, Newton was interested in express-
ing 𝑥 as an infinite series in 𝑡. He knew that in general
𝑥 = 𝑥(𝑡)may not be a power series but a series of the form
∑𝑖≥0 𝑐𝑖𝑡𝑖/𝑘 for some fixed integer 𝑘 > 0, a series with frac-
tional exponents. In general one expects to have as many
solutions as the degree of 𝑓 in 𝑥.

Let 𝑓(𝑥, 𝑡) = ∑𝑎,𝑏 𝑐𝑎,𝑏𝑥𝑎𝑡𝑏. Consider the Newton dia-
gram (or Newton polygon) of 𝑓(𝑥, 𝑡) to be the lower convex
hull of {(𝑎, 𝑏) ∣ 𝑐𝑎,𝑏 ≠ 0} ⊂ ℝ2. This is the lower part of the
boundary of the convex hull stretching from the leftmost
to the rightmost point. Suppose the slopes of the (nonver-
tical) line segments in the Newton diagram are 𝜇1, … , 𝜇𝑠.
Newton showed that the fractional exponents for the first
terms in the series representations of solutions for 𝑥 are
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Figure 1. Example from Newton’s letter to Oldenburg dated
October 24, 1676.

the −𝜇𝑖. This observation is a key step in proving the well-
known Newton–Puiseux Theorem, which describes the al-
gebraic closure of the field of formal power series ℂ((𝑡))
(see [MS15, Theorem 2.1.5]).

Motivated by Newton’s classic work, Vladimir Arnold
asked his students to work on generalizations and ana-
logues of the notion of Newton diagram/polygon in sev-
eral variables. This resulted in the modern definition of
the Newton polytope of a polynomial. Unlike the Newton
diagram, which is a local concept related to multiplicities
of roots of a polynomial, the Newton polytope (Defini-
tion 1.1) is a global concept which can be thought of as a
refinement of the notion of degree of a polynomial.

Throughout we denote the multiplicative group of
nonzero complex numbers by ℂ∗. The product (ℂ∗)𝑛 of
𝑛 copies of ℂ∗ is an algebraic group often called an alge-
braic torus (it contains the usual topological torus (𝑆1)𝑛
as a maximal compact subgroup). The algebra of regu-
lar functions on (ℂ∗)𝑛 is the algebra of Laurent polynomials
ℂ[𝑥±1 , … , 𝑥±𝑛 ]. Wewill use themulti-index notation, and for
𝛼 = (𝑎1, … , 𝑎𝑛) ∈ ℤ𝑛 we write 𝑥𝛼 to denote the monomial
𝑥𝑎11 ⋯𝑥𝑎𝑛𝑛 .

Definition 1.1. Let 𝑓(𝑥) = ∑𝛼 𝑐𝛼𝑥𝛼 be a Laurent polyno-
mial. The Newton polytope of 𝑓 is the convex hull of the
finite set {𝛼 ∣ 𝑐𝛼 ≠ 0}. It is a convex polytope with vertices
in ℤ𝑛.

•

•

•

•

Figure 2. Newton polytope of 𝑓(𝑥, 𝑦) = 𝑥3 + 3𝑥𝑦 + 𝑦2 + 1.

One of the major discoveries of the Moscow Newton
polyhedra school is the celebrated BKK theorem named af-
ter David Bernstein (younger brother of Joseph Bernstein),
Askold Khovanskii, and Anatoli Kushnirenko. Fix a finite
set of lattice points 𝒜 = {𝛼0, … , 𝛼𝑠} ⊂ ℤ𝑛 and consider the

finite-dimensional vector space 𝐿𝒜 = {𝑓(𝑥) = ∑𝑠
𝑖=0 𝑐𝑖𝑥𝛼𝑖 ∣

∀𝑖, 𝑐𝑖 ∈ ℂ} consisting of Laurent polynomials with expo-
nents from 𝒜. The convex hull of 𝒜, which we denote Δ𝒜,
is the Newton polytope of a generic element of 𝐿𝒜.

Theorem 1.2 (BKK). For a generic choice of 𝑓1, … , 𝑓𝑛 ∈ 𝐿𝒜,
the number of solutions 𝑥 in (ℂ∗)𝑛 of the system 𝑓1(𝑥) = ⋯ =
𝑓𝑛(𝑥) = 0 is the same and is equal to 𝑛! vol(Δ𝒜), where vol
denotes the standard Lebesgue measure in ℝ𝑛.

Remark 1.3. In fact, the above form of this theorem is
due to Kushnirenko. Khovanskii has found many differ-
ent proofs for this theorem (worthy of Guinness Book of
Records?). Extending the BKK theorem, he also found for-
mulas in terms of the Newton polytope Δ𝒜 for genera and
Euler characteristics of subvarieties defined by 𝑓1(𝑥) = ⋯ =
𝑓𝑘(𝑥) = 0, for 𝑘 ≤ 𝑛, and, as before, generic elements
𝑓𝑖 ∈ 𝐿𝒜 (see [Hov78]).

Consider the subset 𝑇𝒜 ⊂ ℂℙ𝑠 defined by

𝑇𝒜 = {(𝑥𝛼0 ∶ ⋯ ∶ 𝑥𝛼𝑠) ∣ 𝑥 ∈ 𝑇 = (ℂ∗)𝑛}.
The subset 𝑇𝒜 is isomorphic to an algebraic torus. One can
show that if the differences of elements in 𝒜 generate ℤ𝑛,
then 𝑇𝒜 is isomorphic to 𝑇 = (ℂ∗)𝑛. Let 𝑋𝒜 ⊂ ℂℙ𝑠 be the
closure of 𝑇𝒜. Note that the torus 𝑇 = (ℂ∗)𝑛 acts on ℂℙ𝑠
by

𝑥 ⋅ (𝑧0 ∶ ⋯ ∶ 𝑧𝑠) = (𝑥𝛼0𝑧0 ∶ ⋯ ∶ 𝑥𝛼𝑠𝑧𝑠),
and the variety 𝑋𝒜 is the closure of the orbit of (1 ∶ ⋯ ∶ 1).
Recall that the degree of an 𝑛-dimensional projective vari-
ety 𝑋 ⊂ ℂℙ𝑠 is equal to the number of intersection points
of 𝑋 with a generic plane of codimension 𝑛. This notion
generalizes the degree of a polynomial and provides amea-
surement for how complex the embedding of 𝑋 in ℂℙ𝑠 is.
The BKK theorem can be restated as giving a formula for
the degree of 𝑋𝒜 ⊂ ℂℙ𝑠.

Theorem 1.4 (Alternative statement). The degree of 𝑋𝒜 ⊂
ℂℙ𝑠 is equal to 𝑛! vol(Δ𝒜).

Remark 1.5. One of the simplest proofs of the BKK theo-
rem, due to Khovanskii, uses the above restatement and
the classical Hilbert theorem on the relation between the
degree of a projective variety and the leading term of its
Hilbert polynomial. This proof enables a generalization
of this theorem to arbitrary systems of equations and is the
basis of the theory of Newton–Okounkov bodies (Section
3).

Since 𝑋𝒜 is the closure of an orbit, it is invariant under
the 𝑇-action. It is a 𝑇-toric variety in the sense of the fol-
lowing definition.

Definition 1.6. An (abstract) 𝑇-toric variety is an irre-
ducible variety with an algebraic 𝑇-action that has a finite
number of 𝑇-orbits.
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For 𝑋 a 𝑇-toric variety there is an open dense orbit 𝑈0 ⊂
𝑋 . After replacing 𝑇 with 𝑇/𝑇0, where 𝑇0 is the 𝑇-stabilizer
of 𝑈0, without loss of generality we can assume that 𝑈0 is
isomorphic to 𝑇 itself.

The degree of 𝑋𝒜 is not the only geometric information
we can obtain from the polytope Δ𝒜. In general, there is
a beautiful correspondence between the algebro-geometry
of toric varieties and the combinatorics of convex poly-
topes. The following is an example of this correspondence.

Theorem 1.7. There is a one-to-one correspondence between
the faces of the polytope Δ𝒜 and the torus orbits in 𝑋𝒜.

Tomake the connection between toric varieties and con-
vex polytopes more tight, one usually assumes 𝑋 is a nor-
mal variety. Some authors include this in the definition of
a toric variety (see [Ful93]). The connection between the
theory of toric varieties and Newton polytopes was discov-
ered by Khovanskii in now classic papers [Hov77,Hov78].

Remark 1.8. Using the rich correspondence between geom-
etry of toric varieties and combinatorics of convex poly-
topes, Victor Batyrev famously proved the mirror symmetry
conjecture for smooth toric varieties. This is a deep conjec-
ture in algebraic geometry inspired by high-energy physics,
and in particular string theory. Batyrev’s work is based on
the Khovanskii–Danilov computation of Hodge–Deligne
numbers using Newton polytopes.

Remark 1.9. The correspondence between toric varieties
and convex polytopes has also proven to be an extremely
powerful tool in attacking some deep combinatorial prob-
lems. Given a sequence 𝖿 = (𝖿0, … , 𝖿𝑛−1) of nonnegative
integers, one asks whether there is an 𝑛-dimensional poly-
tope 𝑃 all of whose faces are simplices so that 𝖿𝑖 is the
number of 𝑖-dimensional faces of 𝑃 for all 𝑖 = 0, … , 𝑛 −
1. The Dehn–Sommerville equations give necessary and
sufficient conditions on the sequence 𝖿 for this to hold.
Richard Stanley gave a proof of (the necessity of) Dehn–
Sommerville equations by interpreting the vector 𝖿 in terms
of the (intersection) cohomology of projective toric vari-
eties (see [Ful93, Section 5.6]). Alternatively Khovanskii
found a proof of the Dehn–Sommerville equations based
on Morse theory on polytopes/toric varieties.

Interestingly there is a natural (continuous and almost
everywhere differentiable) map 𝜇𝒜 ∶ 𝑋𝒜 → Δ𝒜. It is
called the moment map of the variety 𝑋𝒜. It is a special
case of the notion of moment map of a Hamiltonian torus
action from symplectic geometry and classical mechanics.
Here we regard (the smooth locus of) 𝑋𝒜 as a symplectic
manifold with respect to the restriction of the standard
Fubini–Study form on ℂℙ𝑠. This map can be written ex-
plicitly (without any knowledge of symplectic geometry re-
quired). Given a finite set 𝒜 = {𝛼0, … , 𝛼𝑠} ⊂ ℤ𝑛 the map

𝜇𝒜 ∶ ℂℙ𝑠 → ℝ𝑛 is defined by

𝜇𝒜 ∶ (𝑧0 ∶ ⋯ ∶ 𝑧𝑠) ↦
𝑠
∑
𝑖=0

( |𝑧𝑖|2

∑𝑠
𝑗=0 |𝑧𝑗|2

)𝛼𝑖 ∈ Δ𝒜.

One easily verifies that 𝜇 is invariant under the action
of the topological torus (𝑆1)𝑛 ⊂ 𝑇 = (ℂ∗)𝑛. Moreover,
𝜇𝒜(ℂℙ𝑠) = 𝜇𝒜(𝑋𝒜) = Δ𝒜.

Remark 1.10. The variety 𝑋𝒜 inherits a volume form/
measure, called the Liouville measure, from the standard
Fubini–Study metric on ℂℙ𝑠. One can directly compute
the pushforward of the Liouville measure on 𝑋𝒜 to Δ𝒜 and
show that the pushforward measure is (a constant multi-
ple of) the Lebesgue measure on Δ𝒜. From this one can
give an elegant proof of the BKK theorem. This proof is
due to Khovanskii. For a beautiful account of these ideas
and more details, see [Ati83].

Example 1.11 (Baby example). Let 𝑛 = 1 and 𝒜 = {0, 1} ⊂
ℤ. One sees that 𝑋𝒜 = ℂℙ1. The moment map 𝜇𝒜 ∶
ℂℙ1 → [0, 1] is the height function illustrated in Figure 3.
The Fubini–Study metric on ℂℙ1 is the usual metric on the
sphere, and the Liouvillemeasure is just the surface area on
the sphere.

Remark 1.12. In the above example, the fact that the push-
forward of the surface area on the sphere ℂℙ1 (the Fubini–
Study form in this case) is equal to the Lebesgue measure
was apparently known to Archimedes! It is directly related
to Archimedes’s theorem on surface area of a cylinder vs.
surface area of a sphere. Cicero describes visiting the tomb
of Archimedes, on top of which there were a sphere and a
cylinder that Archimedes had requested be placed on his
tomb to represent his mathematical discoveries.

μ

Figure 3. Moment map of the sphere.

2. The Permutohedron and Associahedron
Now suppose we have a linear action of a torus 𝑇 = (ℂ∗)𝑛
on ℂℙ𝑠 and a 𝑇-invariant subvariety 𝑋 such that the 𝑇-
stabilizer of 𝑋 is trivial. This yields a moment map 𝜇 ∶ 𝑋 →
ℝ𝑛, and its image is a polytope Δ𝑋 . (As mentioned before,
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Figure 4. Surface area of the sphere vs. the cylinder.

this is a special case of the moment map from symplec-
tic geometry.) In the previous section we further assumed
that 𝑋 was a toric variety. This implied the existence of
an open dense orbit 𝑈0 ⊂ 𝑋 isomorphic to 𝑇 which in
turn forced dim(𝑇) = dim(𝑋). In general we may have
that dim(𝑇) < dim(𝑋), which takes us out of the setting of
toric varieties. The polytope Δ𝑋 encodes some geometric
information of 𝑋 , but unlike the toric case, the moment
map does not yield a tight connection between Δ𝑋 and 𝑋 .
Regardless, the moment map construction gives rise to im-
portant combinatorics associated to 𝑋 . In this section we
give two examples of moment polytopes arising from the
study of flag varieties and see they are combinatorially in-
teresting. The first one will be associated to a projective
variety that is not toric.
2.1. The permutohedron. The flag variety 𝐹𝑛 consists of
the nested sequences {0} = 𝑉0 ⊊ 𝑉1 ⊊ ⋯ ⊊ 𝑉𝑛 = ℂ𝑛 of
vector subspaces of ℂ𝑛. One can realize this space as a
subvariety of a product of projective spaces as follows. An
element of 𝐹𝑛 can be represented by an invertible 𝑛×𝑛ma-
trix 𝑀 by setting 𝑉𝑖 to be the row-span of the top 𝑖 rows of
𝑀. Given an invertible matrix 𝑀 and a set 𝐼 ⊂ {1, 2, … , 𝑛},
let 𝑝𝐼(𝑀) be the minor of 𝑀 given by the top |𝐼| rows and
the columns in 𝐼. For 1 ≤ 𝑖 ≤ 𝑛, the homogeneous coor-

dinates (𝑝𝐼(𝑀) ∣ |𝐼| = 𝑖) ∈ ℂℙ(
𝑛
𝑖)−1 are called the Plücker

coordinates of the subspace 𝑉𝑖. Sending 𝑉1, … , 𝑉𝑛−1 to their
Plücker coordinates yields an embedding

𝐹𝑛 ↪ ℂℙ(
𝑛
1)−1 × ⋯ × ℂℙ(

𝑛
𝑛−1)−1,

and the image is a closed subvariety. To realize 𝐹𝑛 as a pro-

jective variety in ℂℙ(
𝑛
1)×⋯×( 𝑛

𝑛−1)−1, we can apply the Segre
embedding multiple times.

Define a torus action on the Plücker coordinates as fol-
lows. Realize the torus (ℂ∗)𝑛 as the group 𝒟 of invertible
diagonal 𝑛 × 𝑛 matrices. Given 𝐷 ∈ 𝒟 and an invertible
matrix𝑀, the action of𝐷 on the Plücker coordinates 𝑝𝐼(𝑀)
sends them to the Plücker coordinates of 𝑀𝐷. This ac-

tion comes from a linear action of 𝒟 on ℂℙ(
𝑛
1)×⋯×(𝑛𝑛)−1.

Furthermore, 𝐹𝑛 is a 𝒟-invariant subvariety and therefore
has a moment map. The image of this map is the permu-
tohedron 𝖯𝑛.

The permutohedron 𝖯𝑛 is the convex hull of the 𝑛! per-
mutations of (0, 1, … , 𝑛 − 1). Actually all of these points
are vertices of 𝖯𝑛. This polytope is the Newton polytope
of the Vandermonde determinant

det
⎡⎢⎢⎢
⎣

1 1 ⋯ 1
𝑥1 𝑥2 ⋯ 𝑥𝑛
⋮ ⋮ ⋮

𝑥𝑛−11 𝑥𝑛−12 ⋯ 𝑥𝑛−1𝑛

⎤⎥⎥⎥
⎦

= ∏
1≤𝑖<𝑗≤𝑛

(𝑥𝑗 − 𝑥𝑖).

The combinatorics of 𝖯𝑛 reflects some of the geometry of
the flag variety. For example, the vertices and edge direc-
tions of 𝖯𝑛 encode the 𝑇-equivariant cohomology (and
hence the usual cohomology) of 𝐹𝑛.

Remark 2.1. More generally, there is a large class of vari-
eties with a torus action for which one can give an elegant
description of their cohomology rings in terms of the com-
binatorial data of vertices and edges of theirmoment graphs.
This is the class ofGKM varieties named afterMark Goresky,
Robert Kottwitz, and Robert MacPherson. A 𝑇-variety 𝑋 is
a GKM variety if it has a finite number of 𝑇-fixed points, a
finite number of 𝑇-invariant curves, and the 𝑇-action is so-
called equivariantly formal. Examples include flag varieties
and toric varieties.

There is a classical formula for the volume of the per-
mutohedron. Let 𝐻𝑛 be the affine hyperplane given by

𝑥1 + ⋯ + 𝑥𝑛 = 𝑛(𝑛−1)
2

; note that 𝖯𝑛 lies on the affine hy-
perplane 𝐻𝑛. The volume of 𝖯𝑛 as a polytope in 𝐻𝑛 (nor-
malized so that every primitive parallelepiped in 𝐻𝑛 ∩ ℤ𝑛
has volume 1) equals 𝑛𝑛−2. This is equal to the number of
trees on 𝑛 labeled vertices. However, since 𝐹𝑛 is not a toric
variety, the BKK theorem does not apply and 𝑛𝑛−2 is not
the degree of 𝐹𝑛. The volume of 𝖯𝑛 equals the degree of
the largest 𝑇-toric subvariety in 𝐹𝑛.

Figure 5. From left to right, the permutohedra 𝖯3 and 𝖯4.

2.2. The associahedron. Consider the ways to put paren-
theses on 𝑡1⋯𝑡𝑛 so that we end up with binary prod-
ucts. These products can be arranged into a polyhedral
complex, called the associahedron 𝖠𝑛. Any balanced place-
ment of parentheses yields a face with vertices the binary
products that contain the given parentheses. For example,
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((𝑡1𝑡2)𝑡3)𝑡4

(𝑡1(𝑡2𝑡3))𝑡4
𝑡1((𝑡2𝑡3)𝑡4)

𝑡1(𝑡2(𝑡3𝑡4))
(𝑡1𝑡2)(𝑡3𝑡4)

Figure 6. A realization of 𝖠4.

𝑡1(𝑡2𝑡3𝑡4) corresponds to the edge with vertices 𝑡1(𝑡2(𝑡3𝑡4))
and 𝑡1((𝑡2𝑡3)𝑡4). See Figure 6 for an example. An alternative
description of the associahedron 𝖠𝑛 is given by considering
the vertices to be triangulations of an (𝑛+1)-gonwhere two
triangulations are adjacent if you can obtain one by flipping
a diagonal of the other; see Figure 7 for an example.

Figure 7. The polyhedral complex with vertices triangulations
of a regular hexagon.

A realization of 𝖠𝑛 is an (𝑛 − 2)-dimensional polytope
whose face structure equals the face structure of 𝖠𝑛. There
are many different polytopes that can arise in this way; the
paper [CSZ15] has a survey about the different realizations.
The Newton polytope of ∏1≤𝑖<𝑗≤𝑛−1(𝑥𝑖 + 𝑥𝑖+1 + ⋯ + 𝑥𝑗)
is Jean-Louis Loday’s realization of 𝖠𝑛. The toric variety of
Loday’s realization of 𝖠𝑛 can be constructed using concepts
from the flag variety; see [Esc16]. For brevity we describe
only the case 𝑛 = 4. Let 𝑒1, 𝑒2, 𝑒3 be the standard basis vec-
tors of ℂ3. Consider the variety 𝐵 consisting of the tuples
(𝑉1,1, 𝑉2,1, 𝑉2,2) of vector spaces such that the following inci-
dences hold:

𝑉1,1
⊂𝑉2,1

⊂
𝑉2,2

⊂
⟨𝑒1⟩

⊂
⟨𝑒3⟩

⊂ ⊂
⟨𝑒1, 𝑒2, 𝑒3⟩

One can then use the Plücker embedding and multiple

Segre embeddings to embed 𝐵 into ℙ(
3
1)×(32)×(32)−1.

Schubert varieties are subvarieties of the 𝐹𝑛 defined by
imposing conditions on how the flags intersect the coordi-
nate subspaces of ℂ𝑛. Varieties generalizing the one above
can be used to resolve singularities of transverse intersec-
tions of Schubert varieties.

Returning to the case at hand, the action of 𝒟 = (ℂ∗)3
on 𝐹3 induces an action of 𝒟 on 𝐵 and a moment map.
The moment polytope of the image is Loday’s realization
of 𝖠4. It turns out that the dimension of 𝐵 is equal to the
dimension of 𝖠4, which implies that this variety is actually
the toric variety of Loday’s realization of 𝖠4.

3. Newton–Okounkov Bodies
The success of toric methods encouraged algebraic geome-
ters to try to extend the scope of convex geometric meth-
ods in algebraic geometry. Many of the results about
toric varieties have been extended to varieties with actions
of so-called reductive groups. These are the complex alge-
braic counterparts of compact Lie groups and include fa-
miliar examples from linear algebra such as GL(𝑛, ℂ) and
SL(𝑛, ℂ). A large class of varieties with reductive group ac-
tions that extends that of toric varieties is the class of spher-
ical varieties. (We caution that the adjective spherical here is
not directly related to sphere, but rather to spherical func-
tions from representation theory.) The BKK theorem has
been generalized to spherical varieties byMichel Brion and
Boris Kazarnovskii and to more general reductive group
actions by Kaveh and Khovanskii (see [KK12b] and refer-
ences therein).

Far more generally, the theory of Newton–Okounkov
bodies extends the BKK theorem to arbitrary projective va-
rieties. Let 𝑋 ⊂ ℂℙ𝑠 be an 𝑛-dimensional projective vari-
ety. Generalizing the BKK formula for degree of 𝑋𝒜, we
would like to construct a convex body (i.e., a convex com-
pact subset) Δ ⊂ ℝ𝑛 such that its volume gives the degree
of 𝑋 . In this full generality Δ may not be a polytope but
only a convex body. To do this we need an extra choice of
a function 𝑣 ∶ ℂ(𝑋) ⧵ {0} → ℤ𝑛 satisfying the properties
of a valuation on the field of rational functions ℂ(𝑋). Instead
of giving the abstract definition of a valuation (from com-
mutative algebra), we explain the geometric construction
of a typical valuation on the field of rational functions. It
is a generalization of the familiar notion of leading term of
a polynomial.

First we equip the additive group ℤ𝑛 with the lexi-
cographic order. Pick a smooth point 𝑝 in 𝑋 and let
(𝑢1, … , 𝑢𝑛) be a system of parameters at 𝑝. That is, the
𝑢𝑖 are rational functions that are regular at 𝑝 such that
𝑢1(𝑝) = ⋯ = 𝑢𝑛(𝑝) = 0, and their differentials at 𝑝 are lin-
early independent (in other words, they generate the max-
imal ideal of 𝑝). It is well known that every rational func-
tion 𝑓 ∈ ℂ(𝑋) can be uniquely expressed as a formal Lau-
rent series in the 𝑢𝑖, that is, 𝑓 = ∑𝛼=(𝑎1,…,𝑎𝑛) 𝑐𝛼𝑢

𝑎1
1 ⋯𝑢𝑎𝑛𝑛 .
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Then we define 𝑣 ∶ ℂ(𝑋) ⧵ {0} → ℤ𝑛 by

𝑣(𝑓) = min{𝛼 ∣ 𝑐𝛼 ≠ 0}.
Here the minimum is taken with respect to the lexico-
graphic order on ℤ𝑛 (one shows that the minimum always
exists in this case). Note that the choice of 𝑣 is independent
of the choice of embedding of 𝑋 into projective space.

Let ℂ[𝑋] be the homogeneous coordinate ring of 𝑋 . If
𝐼 ⊂ ℂ[𝑥0, … , 𝑥𝑠] is the homogeneous ideal defining 𝑋 ⊂
ℂℙ𝑠, then ℂ[𝑋] = ℂ[𝑥0, … , 𝑥𝑠]/𝐼 and it is a ℤ≥0-graded al-
gebra. Denote by ℂ[𝑋]𝑚 the 𝑚th graded piece of ℂ[𝑋] so
that

ℂ[𝑋] = ⨁
𝑚∈ℤ≥0

ℂ[𝑋]𝑚.

Using the valuation 𝑣 we would like to associate a convex
body Δ to the graded algebra ℂ[𝑋]. Fix a nonzero element
ℎ ∈ ℂ[𝑋]1. First, we construct a semigroup 𝑆 = 𝑆(𝑋, 𝑣) ⊂
ℤ>0 × ℤ𝑛 by

𝑆 = ⋃
𝑚>0

{(𝑚, 𝑣(𝑓/ℎ𝑚)) ∣ 0 ≠ 𝑓 ∈ ℂ[𝑋]𝑚}.

Let 𝐶 ⊂ ℝ𝑛+1 be the closure of the convex hull of 𝑆 ∪ {0}.

Definition 3.1. TheNewton–Okounkov body Δ = Δ(𝑋, 𝑣) of
𝑋 ⊂ ℂℙ𝑠 is the intersection of the convex cone 𝐶 with the
hyperplane 𝑥1 = 1 in ℝ𝑛+1. One shows that Δ is bounded
and hence a convex body.

The construction of Δ(𝑋, 𝑣) appears (in passing) in
[Oko96,Oko03]. It was defined in a more general setting
and systematically studied in [LM09,KK12a].

The main theorem regarding Newton–Okounkov bod-
ies is a far generalization of the BKK theorem (see
[Oko03,LM09,KK12a]).

Theorem 3.2 (Okounkov, Lazarsfeld–Mustaţǎ, Kaveh–
Khovanskii). With notation as above,

deg(𝑋) = 𝑛! vol(Δ).

An important application of realizing degree as vol-
ume of a convex body is that one can apply the cel-
ebrated Brunn–Minkowski inequality (which is an in-
equality about volumes of subsets in Euclidean space)
to Newton–Okounkov bodies to obtain a simple proof
of a deep fact, known as the Hodge inequality, about
intersection numbers of hypersurfaces on varieties (see
[Oko03,LM09,KK12a]).

Example 3.3. Let 𝑋 ⊂ ℂℙ2 be a plane algebraic curve de-
fined by a homogeneous polynomial of degree 𝑑. Let 𝑣 be
the order of vanishing at a smooth point in 𝑋 . One shows,
by direct computation or using Theorem 3.2, that Δ(𝑋, 𝑣)
is the line segment [0, 𝑑].

Example 3.4. With notation as before, let 𝑋 ⊂ ℂℙ𝑠 be
a projective variety with degree 𝑑. Let 𝑣 be the valuation
obtained from a system of parameters corresponding to
𝑛 = dim(𝑋) hyperplane sections in general position. Then
Δ(𝑋, 𝑣) is the simplex inℝ𝑛 with vertices 0, 𝑒1, … , 𝑒𝑛−1, and
𝑑𝑒𝑛, where {𝑒1, … , 𝑒𝑛} is the standard basis.

It is possible that Δ(𝑋, 𝑣) is not a polytope (see [LM09,
Section 6.3]). For random choices of 𝑋 and 𝑣 one expects
that the convex body Δ(𝑋, 𝑣) is not a polytope, cf. work of
Küronya–Lozovanu–Maclean.

Remark 3.5. One can also define local versions of Newton–
Okounkov bodies. In commutative algebra terms, to a pri-
mary ideal 𝐼 in a local algebra 𝑅 one can associate a convex
set Γ(𝐼) inscribed in a cone 𝐶(𝑅) such that the volume of its
complement gives the Samuelmultiplicity 𝑒(𝐼) (see [KK14]
as well as work of Dale Cutkosky).

The notion of a toric degeneration provides a geometric
explanation for why Theorem 3.2 holds.

Definition 3.6. A toric degeneration of an embedded pro-
jective variety 𝑋 ⊂ ℂℙ𝑠 is a family 𝜋 ∶ 𝔛 → ℂ where
𝔛 ⊂ ℂℙ𝑠 × ℂ and 𝜋 is the projection on the second fac-
tor, such that the following hold:

(1) The family is trivial over ℂ∗ with fiber isomorphic
to 𝑋 . That is, 𝜋−1(ℂ∗) ≅ 𝑋 × ℂ∗.

(2) The fibers 𝑋𝑡 ∶= 𝜋−1(𝑡), 𝑡 ∈ ℂ, are all reduced and
irreducible (by (1) it suffices that 𝑋0 is reduced
and irreducible).

(3) The fiber 𝑋0 = 𝜋−1(0) (special fiber) is a toric vari-
ety with respect to an action of 𝑇 = (ℂ∗)𝑛 induced
from a linear action of 𝑇 on ℂℙ𝑠.

A toric degeneration is a “deformation” of a given vari-
ety to a toric variety such that some useful intersection the-
oretic data, in particular the degree, are preserved under
the deformation, hence enabling us to obtain some geo-
metric information about the embedding 𝑋 ⊂ ℂℙ𝑠 from
its degenerated toric variety.

We should point out that degenerations of curves is a
classical and very well-studied subject.

Figure 8. The family {((𝑥 ∶ 𝑦 ∶ 𝑧), 𝑡) ∣ 𝑦2𝑧 = 𝑥3 + 𝑡3𝑧3} ⊂ ℂℙ2 × ℂ
gives a toric degeneration of the elliptic curve 𝑦2𝑧 = 𝑥3 + 𝑧3 to
the singular toric variety 𝑦2𝑧 = 𝑥3. Topologically, a donut
shape degenerates to a pinched sphere. The two circles
around the arm and the hole of the donut contract to a point
on the pinched sphere.
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Using standard methods from commutative algebra
(namely, Rees algebra associated to a valuation) it can be
shown that whenever the semigroup 𝑆 = 𝑆(𝑋, 𝑣) is finitely
generated 𝑋 ⊂ ℂℙ𝑠 admits a toric degeneration to the toric
variety 𝑋𝒜 ⊂ ℂℙ𝑠 associated to a finite set 𝒜 of generators
of 𝑆 [AND13]. To be precise we want 𝑆 to be generated in
level 1.
Remark 3.7. These toric degenerations can be used in
symplectic geometry for constructions of full-dimensional
Hamiltonian torus actions as well as to obtain general re-
sults and constructions about symplectic ball embeddings
from symplectic topology [HK15,Kav19].

Remark 3.8. The Newton–Okounkov bodies of the flag
manifold have been computed by various mathemati-
cians with respect to some geometric valuations. For
example, in [Kav15] the author gives valuations for
which the resulting Newton–Okounkov bodies are the
string polytopes of Peter Littelmann, Arkady Berenstein,
and Andrei Zelevinsky, a generalization of the Gelfand–
Zetlin polytopes. Gelfand–Zetlin polytopes are in one-
to-one correspondence with irreducible representations
of GL(𝑛, ℂ). Moreover, the number of integral points
in a given Gelfand–Zetlin polytope is equal to the di-
mension of the irreducible representation it corresponds
to. Valentina Kiritchenko gave alternative valuations such
that the resulting Newton–Okounkov bodies are Feigin–
Fourier–Littelmann–Vinberg polytopes. Also, polytopes
of Nakashima–Zelevinsky were realized as Newton–
Okounkov bodies of flag varieties by Naoki Fujita and
Hironori Oya. There are also recent interesting connec-
tions between Newton–Okounkov bodies and cluster alge-
bras (see [RW19] as well as [KM19, p. 298] and references
therein).

Given an embedded projective variety 𝑋 ⊂ ℂℙ𝑠, one
is interested to know when there is a valuation 𝑣 on ℂ(𝑋)
such that the corresponding value semigroup 𝑆 is finitely
generated. In [KM19] the authors provide a criterion for
this in terms of tropical geometry and Gröbner theory.

With notation as before let 𝐼 ⊂ ℂ[𝑥0, … , 𝑥𝑠] be the ho-
mogeneous ideal defining 𝑋 ⊂ ℂℙ𝑠. Let us recall the basic
notion of initial form of a polynomial from the Gröbner
basis theory. Take 𝑤 ∈ ℚ𝑠+1 and let 𝑓(𝑥) = ∑𝛼∈ℤ𝑠+1≥0

𝑐𝛼𝑥𝛼
be a polynomial. The initial form in𝑤(𝑓) is defined to be
the sum of terms 𝑐𝛼𝑥𝛼 where the dot product ⟨𝑤, 𝛼⟩ is min-
imum. More precisely, let𝑚0 = min{⟨𝑤, 𝛼⟩ ∣ 𝑐𝛼 ≠ 0}. Then

in𝑤(𝑓) = ∑
⟨𝑤,𝛼⟩=𝑚0

𝑐𝛼𝑥𝛼.

The initial ideal of 𝐼 with respect to the weight𝑤 is the ideal
generated by the in𝑤(𝑓) for all 0 ≠ 𝑓 ∈ 𝐼.

Given a homogeneous ideal 𝐼, let us say that two vec-
tors 𝑤1, 𝑤2 ∈ ℚ𝑠+1 are equivalent if in𝑤1(𝐼) = in𝑤2(𝐼). It is

Figure 9. The Gröbner fan of the ideal (𝑦2𝑧 − 𝑥3 + 7𝑥𝑧2 − 2𝑧3).
The ray colored red is the only (full-dimensional) prime cone.

a well-known result that the equivalence classes partition
ℚ𝑠+1 into relatively open rational polyhedral cones. This
partition is usually referred to as the Gröbner fan of 𝐼, and
we denote it by Σ(𝐼).

We will say that a cone 𝐶 ∈ Σ(𝐼) is a prime cone if the
corresponding initial ideal in𝐶(𝐼) = in𝑤(𝐼), ∀𝑤 ∈ 𝐶, is
a prime ideal in ℂ[𝑥0, … , 𝑥𝑠]. One of the main results in
[KM19] establishes a correspondence between (full rank)
valuations on ℂ[𝑋]whose corresponding value semigroup
is finitely generated and (full-dimensional) prime cones
in the Gröbner fan of 𝐼. Thus to each such cone one can
naturally associate a Newton–Okounkov body (which in
this case is in fact a polytope) Δ𝐶 . The following example
is from [KM19, p. 300].

Example 3.9. Consider the ideal 𝐼 = (𝑦2𝑧−𝑥3+7𝑥𝑧2−2𝑧3)
defining an elliptic curve 𝐸 ⊂ ℂℙ2. The Gröbner fan of 𝐼
lives in ℝ3. Since 𝐼 is a homogeneous ideal, one sees that
every cone in the Gröbner fan is invariant under adding
scalar multiples of the vector (1, 1, 1). Thus we can think of
the Gröbner fan as living in ℝ3/⟨(1, 1, 1)⟩ ≅ ℝ2. It consists
of the seven cones (three 2-dimensional cones, three rays,
and the origin) in Figure 9. One computes that only the
ray colored red is a (full-dimensional) prime cone.

The above correspondence leads to the following ques-
tion: How does the Newton–Okounkov polytope change if we
cross from one prime cone to an adjacent prime cone in the Gröb-
ner fan? The preprint [EH19] gives the following answer:

𝗉1

•

•

𝗉2

•𝜉

Figure 10. Two Newton–Okounkov polytopes that project onto
the same polytope and such that the fibers under the
projection maps are the same length.
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Theorem 3.10 (Wall-crossing, Escobar–Harada). Suppose
that 𝐶1, 𝐶2 are two prime cones in Σ(𝐼) that share a
codimension-1 face. There exist a polytope Δ of dim(Δ) + 1 =
dim(Δ𝐶1) = dim(Δ𝐶2) and two natural surjective projections

Δ𝐶1

𝗉1⟶Δ 𝗉2⟵Δ𝐶2

such that the fibers of 𝗉1 and 𝗉2 of any point 𝜉 ∈ Δ are 1-
dimensional polytopes of the same Euclidean length (up to a
global constant). Moreover, there exists a piecewise linear bi-
jection 𝖥 ∶ Δ𝐶1 → Δ𝐶2 which makes the following diagram
commute:

Δ𝐶1
𝖥 Δ𝐶2

𝗉1 𝗉2

Δ

It was observed by Nathan Ilten and Christopher
Manon in 2017 that the geometric wall-crossing phenom-
enon for Newton–Okounkov bodies, as described above,
can also be derived from the theory of complexity-one T-
varieties.
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